CINXE.COM
A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables | Artificial Intelligence and Applications
<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables | Artificial Intelligence and Applications </title> <link rel="icon" href="https://ojs.bonviewpress.com/public/journals/5/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.4.0.7"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Artificial Intelligence and Applications"/> <meta name="citation_journal_abbrev" content="AIA"/> <meta name="citation_issn" content="2811-0854"/> <meta name="citation_author" content="Nabaasa Evarist"/> <meta name="citation_author_institution" content="Department of Computer Science, Mbarara University of Science and Technology, Uganda"/> <meta name="citation_author" content="Natumanya Deborah"/> <meta name="citation_author_institution" content="Department of Computer Science, Mbarara University of Science and Technology, Uganda"/> <meta name="citation_author" content="Grace Birungi"/> <meta name="citation_author_institution" content="Department of Chemistry, Mbarara University of Science and Technology, Uganda"/> <meta name="citation_author" content="Nakiguli Kiwanuka Caroline"/> <meta name="citation_author_institution" content="Department of Chemistry, Mbarara University of Science and Technology, Uganda"/> <meta name="citation_author" content="Baguma John Muhunga Kule"/> <meta name="citation_author_institution" content="Department of Accounting and Finance, Mbarara University of Science and Technology, Uganda"/> <meta name="citation_title" content="A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024/01/22"/> <meta name="citation_volume" content="2"/> <meta name="citation_issue" content="3"/> <meta name="citation_firstpage" content="225"/> <meta name="citation_lastpage" content="232"/> <meta name="citation_doi" content="10.47852/bonviewAIA42021388"/> <meta name="citation_abstract_html_url" content="https://ojs.bonviewpress.com/index.php/AIA/article/view/1388"/> <meta name="citation_abstract" xml:lang="en" content="With increased resistant pests and low crop yields, farmers especially in sub-Saharan Africa have greatly embraced usage of chemicals. These chemicals include pesticides used in gardens for better yields and also in the stalls for longer shelf life by sellers of farm products especially fresh perishables like tomatoes, cabbages, carrots, and green pepper vegetables. This, if not checked, may expose humans and animals to pesticide residues. In this research, a model for detecting the presence of pesticide residues in edible parts of vegetables (tomatoes, cabbages, carrots, and green pepper) was developed. A dataset consisting of 1094 images of both contaminated and uncontaminated vegetables including tomatoes, cabbages, carrots, and green pepper with a scale magnification of 800 × 1276 pixels taken using InfiRay P2 pro Night Vision Go Mini Infrared Thermal camera with a thermal module was taken from different daily markets in Mbarara city, South Western Uganda. Image preprocessing was done by noise removal and grayscale conversion. Both the neural network and median filter were applied on the images. A python script was used to cluster the dataset based on chemical concentrations rates of 0.1–0.8 mg/kg, 0.9–1.3 mg/kg, and 1.4–1.7 mg/kg, and this was done for both training and testing dataset. Feature extraction was done to detect the presence of mancozeb, dioxacarb, and methidathion residues from the cleaned images. To test the developed model, convolutional neural networks transfer learning models, Inception V3, VGG16, VGG19, ResNet50, and the scratch model were used. From the results obtained, Inception V3 achieved better performance compared to other transfer learning models with 96.77% followed by VGG16 at 86.98%, VGG19 at 87.56%, and ResNet50 at 82.11%, whereas the developed scratch model achieved 89.13% classification accuracy. Received: 21 July 2023 | Revised: 15 November 2023 | Accepted: 10 January 2024 Conflicts of Interest The authors declare that they have no conflicts of interest to this work. Data Availability Statement The data that support the findings of this study are openly available in vegetable chemical residue detection dataset at https://www.kaggle.com/datasets/vegetabledataset/mancozeb-and-other-chemical-residue."/> <meta name="citation_keywords" xml:lang="en" content="pesticide residues"/> <meta name="citation_keywords" xml:lang="en" content="artificial intelligence and vegetables"/> <meta name="citation_pdf_url" content="https://ojs.bonviewpress.com/index.php/AIA/article/download/1388/780"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Nabaasa Evarist"/> <meta name="DC.Creator.PersonalName" content="Natumanya Deborah"/> <meta name="DC.Creator.PersonalName" content="Grace Birungi"/> <meta name="DC.Creator.PersonalName" content="Nakiguli Kiwanuka Caroline"/> <meta name="DC.Creator.PersonalName" content="Baguma John Muhunga Kule"/> <meta name="DC.Date.created" scheme="ISO8601" content="2024-01-22"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2023-07-21"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-07-08"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-11-11"/> <meta name="DC.Description" xml:lang="en" content="With increased resistant pests and low crop yields, farmers especially in sub-Saharan Africa have greatly embraced usage of chemicals. These chemicals include pesticides used in gardens for better yields and also in the stalls for longer shelf life by sellers of farm products especially fresh perishables like tomatoes, cabbages, carrots, and green pepper vegetables. This, if not checked, may expose humans and animals to pesticide residues. In this research, a model for detecting the presence of pesticide residues in edible parts of vegetables (tomatoes, cabbages, carrots, and green pepper) was developed. A dataset consisting of 1094 images of both contaminated and uncontaminated vegetables including tomatoes, cabbages, carrots, and green pepper with a scale magnification of 800 × 1276 pixels taken using InfiRay P2 pro Night Vision Go Mini Infrared Thermal camera with a thermal module was taken from different daily markets in Mbarara city, South Western Uganda. Image preprocessing was done by noise removal and grayscale conversion. Both the neural network and median filter were applied on the images. A python script was used to cluster the dataset based on chemical concentrations rates of 0.1–0.8 mg/kg, 0.9–1.3 mg/kg, and 1.4–1.7 mg/kg, and this was done for both training and testing dataset. Feature extraction was done to detect the presence of mancozeb, dioxacarb, and methidathion residues from the cleaned images. To test the developed model, convolutional neural networks transfer learning models, Inception V3, VGG16, VGG19, ResNet50, and the scratch model were used. From the results obtained, Inception V3 achieved better performance compared to other transfer learning models with 96.77% followed by VGG16 at 86.98%, VGG19 at 87.56%, and ResNet50 at 82.11%, whereas the developed scratch model achieved 89.13% classification accuracy. Received: 21 July 2023 | Revised: 15 November 2023 | Accepted: 10 January 2024 Conflicts of Interest The authors declare that they have no conflicts of interest to this work. Data Availability Statement The data that support the findings of this study are openly available in vegetable chemical residue detection dataset at https://www.kaggle.com/datasets/vegetabledataset/mancozeb-and-other-chemical-residue."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="1388"/> <meta name="DC.Identifier.pageNumber" content="225–232"/> <meta name="DC.Identifier.DOI" content="10.47852/bonviewAIA42021388"/> <meta name="DC.Identifier.URI" content="https://ojs.bonviewpress.com/index.php/AIA/article/view/1388"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2024 Authors"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0"/> <meta name="DC.Source" content="Artificial Intelligence and Applications"/> <meta name="DC.Source.ISSN" content="2811-0854"/> <meta name="DC.Source.Issue" content="3"/> <meta name="DC.Source.Volume" content="2"/> <meta name="DC.Source.URI" content="https://ojs.bonviewpress.com/index.php/AIA"/> <meta name="DC.Subject" xml:lang="en" content="pesticide residues"/> <meta name="DC.Subject" xml:lang="en" content="artificial intelligence and vegetables"/> <meta name="DC.Title" content="A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research Article"/> <link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/AIA/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/AIA/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.7" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://ojs.bonviewpress.com/public/journals/5/homepageImage_en_US.jpg");}</style><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/assets/css/paperbuzzviz.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/public/journals/5/styleSheet.css?d=2022-09-03+15%3A23%3A03" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.7" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.bonviewpress.com/index.php/AIA/index " class="is_text">Artificial Intelligence and Applications</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/index"> HOME </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/about"> ABOUT </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/aimsandscope"> Aims and Scope </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/JM"> Journal Metrics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/indexing"> Indexing & Abstracting </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/contact"> Contact Us </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/archive"> BROWSE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/20"> Online First </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/current"> Current Issue </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/archive"> All Issues </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/contribute"> CONTRIBUTE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/about/submissions"> Author Guidelines </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/oa"> Open Access </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/peerreviewprocess"> Peer Review Process </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/publishingethics"> Publishing Ethics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/forreviewers"> For Reviewers </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/editorial_board"> EDITORIAL BOARD </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/special_issues"> SPECIAL ISSUES </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/SI_MOVE"> Call for Papers-SI on MOVE </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/submittingproposal"> Submitting a Proposal </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.bonviewpress.com/index.php/index/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/AIA/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/AIA/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/86"> Vol. 2 No. 3 (2024) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research Article </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Nabaasa Evarist </span> <span class="affiliation"> Department of Computer Science, Mbarara University of Science and Technology, Uganda </span> <span class="orcid"> <svg class="orcid_icon" viewBox="0 0 256 256" aria-hidden="true"> <style type="text/css"> .st0{fill:#A6CE39;} .st1{fill:#FFFFFF;} </style> <path class="st0" d="M256,128c0,70.7-57.3,128-128,128C57.3,256,0,198.7,0,128C0,57.3,57.3,0,128,0C198.7,0,256,57.3,256,128z"/> <g> <path class="st1" d="M86.3,186.2H70.9V79.1h15.4v48.4V186.2z"/> <path class="st1" d="M108.9,79.1h41.6c39.6,0,57,28.3,57,53.6c0,27.5-21.5,53.6-56.8,53.6h-41.8V79.1z M124.3,172.4h24.5 c34.9,0,42.9-26.5,42.9-39.7c0-21.5-13.7-39.7-43.7-39.7h-23.7V172.4z"/> <path class="st1" d="M88.7,56.8c0,5.5-4.5,10.1-10.1,10.1c-5.6,0-10.1-4.6-10.1-10.1c0-5.6,4.5-10.1,10.1-10.1 C84.2,46.7,88.7,51.3,88.7,56.8z"/> </g> </svg> <a href="https://orcid.org/0000-0002-1722-767X" target="_blank"> https://orcid.org/0000-0002-1722-767X </a> </span> </li> <li> <span class="name"> Natumanya Deborah </span> <span class="affiliation"> Department of Computer Science, Mbarara University of Science and Technology, Uganda </span> <span class="orcid"> <svg class="orcid_icon" viewBox="0 0 256 256" aria-hidden="true"> <style type="text/css"> .st0{fill:#A6CE39;} .st1{fill:#FFFFFF;} </style> <path class="st0" d="M256,128c0,70.7-57.3,128-128,128C57.3,256,0,198.7,0,128C0,57.3,57.3,0,128,0C198.7,0,256,57.3,256,128z"/> <g> <path class="st1" d="M86.3,186.2H70.9V79.1h15.4v48.4V186.2z"/> <path class="st1" d="M108.9,79.1h41.6c39.6,0,57,28.3,57,53.6c0,27.5-21.5,53.6-56.8,53.6h-41.8V79.1z M124.3,172.4h24.5 c34.9,0,42.9-26.5,42.9-39.7c0-21.5-13.7-39.7-43.7-39.7h-23.7V172.4z"/> <path class="st1" d="M88.7,56.8c0,5.5-4.5,10.1-10.1,10.1c-5.6,0-10.1-4.6-10.1-10.1c0-5.6,4.5-10.1,10.1-10.1 C84.2,46.7,88.7,51.3,88.7,56.8z"/> </g> </svg> <a href="https://orcid.org/0000-0002-4491-0650" target="_blank"> https://orcid.org/0000-0002-4491-0650 </a> </span> </li> <li> <span class="name"> Grace Birungi </span> <span class="affiliation"> Department of Chemistry, Mbarara University of Science and Technology, Uganda </span> </li> <li> <span class="name"> Caroline Nakiguli </span> <span class="affiliation"> Department of Chemistry, Mbarara University of Science and Technology, Uganda </span> </li> <li> <span class="name"> Baguma John </span> <span class="affiliation"> Department of Accounting and Finance, Mbarara University of Science and Technology, Uganda </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.47852/bonviewAIA42021388"> https://doi.org/10.47852/bonviewAIA42021388 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> pesticide residues, artificial intelligence and vegetables </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>With increased resistant pests and low crop yields, farmers especially in sub-Saharan Africa have greatly embraced usage of chemicals. These chemicals include pesticides used in gardens for better yields and also in the stalls for longer shelf life by sellers of farm products especially fresh perishables like tomatoes, cabbages, carrots, and green pepper vegetables. This, if not checked, may expose humans and animals to pesticide residues. In this research, a model for detecting the presence of pesticide residues in edible parts of vegetables (tomatoes, cabbages, carrots, and green pepper) was developed. A dataset consisting of 1094 images of both contaminated and uncontaminated vegetables including tomatoes, cabbages, carrots, and green pepper with a scale magnification of 800 × 1276 pixels taken using InfiRay P2 pro Night Vision Go Mini Infrared Thermal camera with a thermal module was taken from different daily markets in Mbarara city, South Western Uganda. Image preprocessing was done by noise removal and grayscale conversion. Both the neural network and median filter were applied on the images. A python script was used to cluster the dataset based on chemical concentrations rates of 0.1–0.8 mg/kg, 0.9–1.3 mg/kg, and 1.4–1.7 mg/kg, and this was done for both training and testing dataset. Feature extraction was done to detect the presence of mancozeb, dioxacarb, and methidathion residues from the cleaned images. To test the developed model, convolutional neural networks transfer learning models, Inception V3, VGG16, VGG19, ResNet50, and the scratch model were used. From the results obtained, Inception V3 achieved better performance compared to other transfer learning models with 96.77% followed by VGG16 at 86.98%, VGG19 at 87.56%, and ResNet50 at 82.11%, whereas the developed scratch model achieved 89.13% classification accuracy.</p> <p> </p> <p><strong>Received: </strong>21 July 2023 <strong>| Revised: </strong>15 November 2023 <strong>| Accepted: </strong>10 January 2024</p> <p> </p> <p><strong>Conflicts of Interest</strong></p> <p>The authors declare that they have no conflicts of interest to this work.</p> <p> </p> <p><strong>Data Availability Statement</strong></p> <p>The data that support the findings of this study are openly available in vegetable chemical residue detection dataset at <a href="https://www.kaggle.com/datasets/vegetabledataset/mancozeb-and-other-chemical-residue">https://www.kaggle.com/datasets/vegetabledataset/mancozeb-and-other-chemical-residue</a>.</p> </section> <br /><div class="separator"></div><div class="item abstract" id="trendmd-suggestions"></div><script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"website_id":"89268", "element":"#trendmd-suggestions"}'></script><div class="item downloads_chart"> <h3 class="label"> Metrics </h3> <div id="paperbuzz"><div id="loading">Metrics Loading ...</div></div> <script type="text/javascript"> window.onload = function () { var options = { paperbuzzStatsJson: JSON.parse('{\"altmetrics_sources\":[{\"events\":null,\"events_count\":233,\"events_count_by_day\":[{\"count\":\"1\",\"date\":\"2024-01-22\"},{\"count\":\"3\",\"date\":\"2024-01-23\"},{\"count\":\"6\",\"date\":\"2024-01-24\"},{\"count\":\"3\",\"date\":\"2024-01-29\"},{\"count\":\"1\",\"date\":\"2024-02-02\"},{\"count\":\"1\",\"date\":\"2024-02-04\"},{\"count\":\"1\",\"date\":\"2024-02-07\"},{\"count\":\"1\",\"date\":\"2024-02-14\"},{\"count\":\"1\",\"date\":\"2024-02-17\"},{\"count\":\"2\",\"date\":\"2024-02-20\"},{\"count\":\"2\",\"date\":\"2024-02-21\"}],\"events_count_by_month\":[{\"count\":\"13\",\"date\":\"2024-01\"},{\"count\":\"11\",\"date\":\"2024-02\"},{\"count\":\"15\",\"date\":\"2024-03\"},{\"count\":\"13\",\"date\":\"2024-04\"},{\"count\":\"17\",\"date\":\"2024-05\"},{\"count\":\"22\",\"date\":\"2024-06\"},{\"count\":\"16\",\"date\":\"2024-07\"},{\"count\":\"25\",\"date\":\"2024-08\"},{\"count\":\"52\",\"date\":\"2024-09\"},{\"count\":\"36\",\"date\":\"2024-10\"},{\"count\":\"13\",\"date\":\"2024-11\"}],\"events_count_by_year\":[{\"count\":\"233\",\"date\":\"2024\"}],\"source\":{\"display_name\":\"File downloads\"},\"source_id\":\"fileDownloads\"}],\"crossref_event_data_url\":\"https:\\/\\/api.eventdata.crossref.org\\/v1\\/events?rows=1000&filter=from-collected-date:1990-01-01,until-collected-date:2099-01-01,obj-id:10.47852\\/bonviewaia42021388\",\"doi\":\"10.47852\\/bonviewaia42021388\",\"metadata\":{\"DOI\":\"10.47852\\/bonviewaia42021388\",\"ISSN\":[\"2811-0854\"],\"URL\":\"http:\\/\\/dx.doi.org\\/10.47852\\/bonviewaia42021388\",\"abstract\":\"<jats:p>With increased resistant pests and low crop yields, farmers especially in sub-Saharan Africa have greatly embraced usage of chemicals. These chemicals include pesticides used in gardens for better yields and also in the stalls for longer shelf life by sellers of farm products especially fresh perishables like tomatoes, cabbages, carrots, and green pepper vegetables. This, if not checked, may expose humans and animals to pesticide residues. In this research, a model for detecting the presence of pesticide residues in edible parts of vegetables (tomatoes, cabbages, carrots, and green pepper) was developed. A dataset consisting of 1094 images of both contaminated and uncontaminated vegetables including tomatoes, cabbages, carrots, and green pepper with a scale magnification of 800 \\u00d7 1276 pixels taken using InfiRay P2 pro Night Vision Go Mini Infrared Thermal camera with a thermal module was taken from different daily markets in Mbarara city, South Western Uganda. Image preprocessing was done by noise removal and grayscale conversion. Both the neural network and median filter were applied on the images. A python script was used to cluster the dataset based on chemical concentrations rates of 0.1\\u20130.8 mg\\/kg, 0.9\\u20131.3 mg\\/kg, and 1.4\\u20131.7 mg\\/kg, and this was done for both training and testing dataset. Feature extraction was done to detect the presence of mancozeb, dioxacarb, and methidathion residues from the cleaned images. To test the developed model, convolutional neural networks transfer learning models, Inception V3, VGG16, VGG19, ResNet50, and the scratch model were used. From the results obtained, Inception V3 achieved better performance compared to other transfer learning models with 96.77% followed by VGG16 at 86.98%, VGG19 at 87.56%, and ResNet50 at 82.11%, whereas the developed scratch model achieved 89.13% classification accuracy.<\\/jats:p>\",\"author\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0002-1722-767X\",\"affiliation\":[],\"authenticated-orcid\":false,\"family\":\"Evarist\",\"given\":\"Nabaasa\",\"sequence\":\"first\"},{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0002-4491-0650\",\"affiliation\":[],\"authenticated-orcid\":false,\"family\":\"Deborah\",\"given\":\"Natumanya\",\"sequence\":\"additional\"},{\"affiliation\":[],\"family\":\"Birungi\",\"given\":\"Grace\",\"sequence\":\"additional\"},{\"affiliation\":[],\"family\":\"Nakiguli\",\"given\":\"Caroline\",\"sequence\":\"additional\"},{\"affiliation\":[],\"family\":\"John\",\"given\":\"Baguma\",\"sequence\":\"additional\"}],\"container-title\":\"Artificial Intelligence and Applications\",\"container-title-short\":\"AIA\",\"content-domain\":{\"crossmark-restriction\":false,\"domain\":[]},\"created\":{\"date-parts\":[[2024,1,22]],\"date-time\":\"2024-01-22T07:02:46Z\",\"timestamp\":1705906966000},\"crossref_url\":\"https:\\/\\/api.crossref.org\\/works\\/10.47852\\/bonviewaia42021388\\/transform\\/application\\/vnd.citationstyles.csl+json\",\"deposited\":{\"date-parts\":[[2024,7,9]],\"date-time\":\"2024-07-09T07:45:54Z\",\"timestamp\":1720511154000},\"indexed\":{\"date-parts\":[[2024,7,9]],\"date-time\":\"2024-07-09T08:10:42Z\",\"timestamp\":1720512642055},\"is-referenced-by-count\":0,\"issue\":\"3\",\"issued\":{\"date-parts\":[[2024,1,22]]},\"journal-issue\":{\"issue\":\"3\",\"published-online\":{\"date-parts\":[[2024,7,8]]}},\"member\":\"27601\",\"original-title\":[],\"page\":\"225-232\",\"prefix\":\"10.47852\",\"published\":{\"date-parts\":[[2024,1,22]]},\"published-online\":{\"date-parts\":[[2024,1,22]]},\"publisher\":\"BON VIEW PUBLISHING PTE\",\"reference-count\":0,\"references-count\":0,\"relation\":[],\"resource\":{\"primary\":{\"URL\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/view\\/1388\"}},\"score\":1,\"short-title\":[],\"source\":\"Crossref\",\"subject\":[],\"subtitle\":[],\"title\":\"A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables\",\"type\":\"journal-article\",\"volume\":\"2\"},\"open_access\":{\"best_oa_location\":{\"endpoint_id\":null,\"evidence\":\"open (via page says license)\",\"host_type\":\"publisher\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2024-01-22\",\"pmh_id\":null,\"repository_institution\":null,\"updated\":\"2024-01-23T04:14:56.215204\",\"url\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/download\\/1388\\/780\",\"url_for_landing_page\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewaia42021388\",\"url_for_pdf\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/download\\/1388\\/780\",\"version\":\"publishedVersion\"},\"data_standard\":2,\"doi\":\"10.47852\\/bonviewaia42021388\",\"doi_url\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewaia42021388\",\"first_oa_location\":{\"endpoint_id\":null,\"evidence\":\"open (via page says license)\",\"host_type\":\"publisher\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2024-01-22\",\"pmh_id\":null,\"repository_institution\":null,\"updated\":\"2024-01-23T04:14:56.215204\",\"url\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/download\\/1388\\/780\",\"url_for_landing_page\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewaia42021388\",\"url_for_pdf\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/download\\/1388\\/780\",\"version\":\"publishedVersion\"},\"genre\":\"journal-article\",\"has_repository_copy\":false,\"is_oa\":true,\"is_paratext\":false,\"journal_is_in_doaj\":false,\"journal_is_oa\":false,\"journal_issn_l\":\"2811-0854\",\"journal_issns\":\"2811-0854\",\"journal_name\":\"Artificial Intelligence and Applications\",\"oa_locations\":[{\"endpoint_id\":null,\"evidence\":\"open (via page says license)\",\"host_type\":\"publisher\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2024-01-22\",\"pmh_id\":null,\"repository_institution\":null,\"updated\":\"2024-01-23T04:14:56.215204\",\"url\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/download\\/1388\\/780\",\"url_for_landing_page\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewaia42021388\",\"url_for_pdf\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/download\\/1388\\/780\",\"version\":\"publishedVersion\"}],\"oa_locations_embargoed\":[],\"oa_status\":\"hybrid\",\"oadoi_url\":\"https:\\/\\/api.oadoi.org\\/v2\\/10.47852\\/bonviewaia42021388\",\"published_date\":\"2024-01-22\",\"publisher\":\"BON VIEW PUBLISHING PTE\",\"title\":\"A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables\",\"updated\":\"2024-09-12T05:21:46.751473\",\"year\":2024,\"z_authors\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0002-1722-767X\",\"authenticated-orcid\":false,\"family\":\"Evarist\",\"given\":\"Nabaasa\",\"sequence\":\"first\"},{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0002-4491-0650\",\"authenticated-orcid\":false,\"family\":\"Deborah\",\"given\":\"Natumanya\",\"sequence\":\"additional\"},{\"family\":\"Birungi\",\"given\":\"Grace\",\"sequence\":\"additional\"},{\"family\":\"Nakiguli\",\"given\":\"Caroline\",\"sequence\":\"additional\"},{\"family\":\"John\",\"given\":\"Baguma\",\"sequence\":\"additional\"}]}}'), minItemsToShowGraph: { minEventsForYearly: 10, minEventsForMonthly: 10, minEventsForDaily: 6, minYearsForYearly: 3, minMonthsForMonthly: 2, minDaysForDaily: 1 //first 30 days only }, graphheight: 150, graphwidth: 300, showTitle: false, showMini: false, published_date: [2024, 1, 22], } var paperbuzzviz = undefined; paperbuzzviz = new PaperbuzzViz(options); paperbuzzviz.initViz(); } </script> </div> </div><!-- .main_entry --> <div class="entry_details"> <div class="item cover_image"> <div class="sub_item"> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/86"> <img src="https://ojs.bonviewpress.com/public/journals/5/cover_issue_86_en_US.png" alt=""> </a> </div> </div> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.bonviewpress.com/index.php/AIA/article/view/1388/780"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2024-01-22</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/86"> Vol. 2 No. 3 (2024) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research Article </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2024 Authors</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Evarist, N., Deborah, N., Birungi, G., Caroline, N. K., & Kule, B. J. M. (2024). A Model for Detecting the Presence of Pesticide Residues in Edible Parts of Tomatoes, Cabbages, Carrots, and Green Pepper Vegetables. <i>Artificial Intelligence and Applications</i>, <i>2</i>(3), 225–232. <a href="https://doi.org/10.47852/bonviewAIA42021388">https://doi.org/10.47852/bonviewAIA42021388</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acm-sig-proceedings?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acm-sig-proceedings?submissionId=1388&publicationId=2563&issueId=86&return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acs-nano?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acs-nano?submissionId=1388&publicationId=2563&issueId=86&return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/apa?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/apa?submissionId=1388&publicationId=2563&issueId=86&return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=1388&publicationId=2563&issueId=86&return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/chicago-author-date?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/chicago-author-date?submissionId=1388&publicationId=2563&issueId=86&return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/harvard-cite-them-right?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/harvard-cite-them-right?submissionId=1388&publicationId=2563&issueId=86&return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ieee?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ieee?submissionId=1388&publicationId=2563&issueId=86&return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/modern-language-association?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/modern-language-association?submissionId=1388&publicationId=2563&issueId=86&return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=1388&publicationId=2563&issueId=86&return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/vancouver?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/vancouver?submissionId=1388&publicationId=2563&issueId=86&return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ama?submissionId=1388&publicationId=2563&issueId=86" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ama?submissionId=1388&publicationId=2563&issueId=86&return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/download/ris?submissionId=1388&publicationId=2563&issueId=86"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/download/bibtex?submissionId=1388&publicationId=2563&issueId=86"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style "> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-journal-information"> <h2 class="title">Journal Information</h2> <div class="content"> <div class="journalcard__metrics border"> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Editor-in-Chief:</strong> Shivakumara Palaiahnakote<span class=" jgG6ef">, </span><span class=" jgG6ef">University of Salford, UK</span></span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Frequency: </strong>Quarterly</span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Submission to First Decision: </strong>46 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Submission to Acceptance:</strong> 66 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Accept to Publish:</strong> 21 days</span></span></div> <div class="journalcard__metrics border"><strong>Acceptance Rate: </strong>17%</div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>eISSN:</strong> 2811-0854</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr">© 2024 Bon View Publishing Pte Ltd.</span></span></div> </div> </div> </div> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://ojs.bonviewpress.com/index.php/AIA/about/submissions"> Make a Submission </a> </div> </div> <style type="text/css"> .block_announcements_article:not(:last-child) { padding-bottom: 1.5em; border-bottom: 1px solid; } .block_announcements_article { text-align: left; } .block_announcements #show-all{ font-style: italic; } </style> <div class="pkp_block block_announcements"> <h2 class="title">Announcements</h2> <div class="content"> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/AIA/announcement/view/93"> AIA Has Been Officially Indexed in EBSCO </a> </h3> <time class="block_announcements_article_date" datetime="2024-11-07"> <strong>November 7, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are delighted to share with you that <em>Artificial Intelligence and Applications</em> (eISSN: 2811-0854) has been officially indexed by EBSCO! The full text ingestion is still in progress and will be completed at January, 2025.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/AIA/announcement/view/87"> AIA Published Volume 2, Issue 4 on October 28, 2024 </a> </h3> <time class="block_announcements_article_date" datetime="2024-10-28"> <strong>October 28, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are excited to announce that <em><strong>Artificial Intelligence and Applications (AIA)</strong></em> published Volume 2 Issue 4 on October 28, 2024!</p> </div> </article> <a id="show-all" href="https://ojs.bonviewpress.com/index.php/AIA/announcement">Show all announcements ...</a> </div> </div> <div class="pkp_block block_keyword_cloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var cores = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return cores[Math.floor(Math.random()*cores.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"text detection","size":1},{"text":"text recognition","size":1},{"text":"text spotting","size":1},{"text":"text classification","size":1},{"text":"scene text","size":1},{"text":"car number plate detection","size":1},{"text":"optical character recognition","size":1},{"text":"supervised machine learning","size":1},{"text":"distributed machine learning","size":1},{"text":"anomaly detection","size":1},{"text":"structural health monitoring","size":1},{"text":"vehicle-bridge collisions","size":1},{"text":"railway bridges","size":1},{"text":"classification model","size":1},{"text":"deep learning","size":1},{"text":"polyp detection","size":1},{"text":"cnn","size":1},{"text":"image classification","size":1},{"text":"colorectal disease","size":1},{"text":"alzheimer's disease","size":1},{"text":"intervention techniques","size":1},{"text":"conventional methods","size":1},{"text":"artificial intelligence","size":1},{"text":"cognitive stimulation","size":1},{"text":"reality orientation","size":1},{"text":"reminiscence therapy","size":1},{"text":"enemy identification","size":1},{"text":" text similarity","size":1},{"text":"sentence transformer models","size":1},{"text":"natural language processing","size":1},{"text":"machine learning","size":1},{"text":"hr demand","size":1},{"text":"business","size":1},{"text":"hr management","size":1},{"text":"m-knn algorithm","size":1},{"text":"origin tool","size":1},{"text":"soliton solutions","size":1},{"text":"modified benjamin-bona-mahony equation","size":1},{"text":"ostrovsky-benjamin-bona-mahony equation","size":1},{"text":"mikhailov-novikov-wang equation","size":1},{"text":"physics informed neural networks","size":1},{"text":"cancer prediction","size":1},{"text":"prostate cancer","size":1},{"text":"unsupervised learning","size":1},{"text":"intelligent system","size":1},{"text":"cybernetics","size":1},{"text":"decision support","size":1},{"text":"baby cry","size":1},{"text":"multiple instance learning","size":1},{"text":"audio classification","size":1}]; var totalWeight = 0; var blockWidth = 300; var blockHeight = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([blockWidth, blockHeight]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + blockWidth + " " + blockHeight) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var width = layout.size()[0], height = layout.size()[1]; scaling = bounds ? Math.min( width / Math.abs(bounds[1].x - width / 2), width / Math.abs(bounds[0].x - width / 2), height / Math.abs(bounds[1].y - height / 2), height / Math.abs(bounds[0].y - height / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [width >> 1, height >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://ojs.bonviewpress.com/index.php/index/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> <div class="pkp_block block_developed_by"> <div class="content"> <span class="title">Most Read</span> <ul class="most_read"> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/391">Real-Time Human Detection and Counting System Using Deep Learning Computer Vision Techniques</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 2076</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/820">Exploring the Capabilities and Limitations of ChatGPT and Alternative Big Language Models</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1770</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/689">A Critical Historic Overview of Artificial Intelligence: Issues, Challenges, Opportunities, and Threats</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1554</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/939">Let’s Have a Chat! A Conversation with ChatGPT: Technology, Applications, and Limitations</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1086</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/297">Applications of Artificial Intelligence in Automatic Detection of Epileptic Seizures Using EEG Signals: A Review</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1010</div> </li> </ul> </div> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img style="border-width: 0;" src="https://ojs.bonviewpress.com/public/site/images/admin/88x31.png" alt="Creative Commons License" width="88" height="31" /></a> All site content, except where otherwise noted, is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> <p>eISSN 2811-0854 | Published by <a href="http://www.bonviewpress.com/">Bon View Publishing Pte Ltd.</a></p> <p><strong>Member of</strong></p> <p><img style="width: 900px; height: 70px;" src="https://bonview.oss-ap-southeast-1.aliyuncs.com/resource/ojs-logo-quanji.png" /> </p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.bonviewpress.com/index.php/AIA/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.bonviewpress.com/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/main.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.7" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/d3-tip/0.9.1/d3-tip.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/paperbuzzviz.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.4.0.7" type="text/javascript"></script><script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtag/js?id=' + i + dl; f.parentNode.insertBefore(j, f); function gtag(){dataLayer.push(arguments)}; gtag('js', new Date()); gtag('config', i); }) (window, document, 'script', 'dataLayer', 'UA-284252596-1'); </script> </body> </html>