CINXE.COM

Search results for: organic acid response surface methodology

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organic acid response surface methodology</title> <meta name="description" content="Search results for: organic acid response surface methodology"> <meta name="keywords" content="organic acid response surface methodology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organic acid response surface methodology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organic acid response surface methodology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20038</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organic acid response surface methodology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20038</span> Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotchanaphan%20Hengaroonprasan">Rotchanaphan Hengaroonprasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Sriariyanun"> Malinee Sriariyanun</a>, <a href="https://publications.waset.org/abstracts/search?q=Prapakorn%20Tantayotai"> Prapakorn Tantayotai</a>, <a href="https://publications.waset.org/abstracts/search?q=Supacharee%20Roddecha"> Supacharee Roddecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraipat%20Cheenkachorn"> Kraipat Cheenkachorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellolusic%20biomass" title="lignocellolusic biomass">lignocellolusic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology" title=" organic acid response surface methodology"> organic acid response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title=" biorefinery"> biorefinery</a> </p> <a href="https://publications.waset.org/abstracts/21515/optimization-of-diluted-organic-acid-pretreatment-on-rice-straw-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">654</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20037</span> Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Thakur">A. Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Panesar"> P. S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Saini"> M. S. Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion%20liquid%20membrane" title="emulsion liquid membrane">emulsion liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=n-trioctylamine" title=" n-trioctylamine"> n-trioctylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/12234/response-surface-modeling-of-lactic-acid-extraction-by-emulsion-liquid-membrane-box-behnken-experimental-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20036</span> Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Thakur">Avinash Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manohar%20Singh"> Manohar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Distribution%20coefficient" title="Distribution coefficient">Distribution coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=tri-n-octylamine" title=" tri-n-octylamine"> tri-n-octylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/29876/statistical-optimization-of-distribution-coefficient-for-reactive-extraction-of-lactic-acid-using-tri-n-octyl-amine-in-oleyl-alcohol-and-n-hexane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20035</span> Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sajeena%20Beevi">B. Sajeena Beevi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20P.%20Jose"> P. P. Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Madhu"> G. Madhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/2717/optimization-of-process-parameters-affecting-biogas-production-from-organic-fraction-of-municipal-solid-waste-via-anaerobic-digestion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20034</span> Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20F.%20Ejim">I. F. Ejim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20L.%20Kamen"> F. L. Kamen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae%20oil" title="algae oil">algae oil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Bohnken" title=" Box-Bohnken"> Box-Bohnken</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/5831/modeling-and-optimization-of-algae-oil-extraction-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20033</span> Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shepherd%20Manhokwe">Shepherd Manhokwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheron%20Shoko"> Sheron Shoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuthbert%20Zvidzai"> Cuthbert Zvidzai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COD%20reduction" title="COD reduction">COD reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20processing%20wastewater" title=" yeast processing wastewater"> yeast processing wastewater</a> </p> <a href="https://publications.waset.org/abstracts/69508/optimisation-of-wastewater-treatment-for-yeast-processing-effluent-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20032</span> Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Hui%20Chen">Yen-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Walker"> Terry Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20protothecoides" title="Chlorella protothecoides">Chlorella protothecoides</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipids" title=" microalgal lipids"> microalgal lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide%20extraction" title=" supercritical carbon dioxide extraction"> supercritical carbon dioxide extraction</a> </p> <a href="https://publications.waset.org/abstracts/65325/response-surface-methodology-to-supercritical-carbon-dioxide-extraction-of-microalgal-lipids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20031</span> Optimization of NaOH Thermo-Chemical Pretreatment to Enhance Solubilisation of Organic Food Waste by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafizan%20Junoh">Hafizan Junoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumaran%20Palanisamy"> Kumaran Palanisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yip%20Chan%20Heng"> Yip Chan Heng</a>, <a href="https://publications.waset.org/abstracts/search?q=Pua%20Fei%20Ling"> Pua Fei Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the influence of low temperature thermo-chemical pretreatment of organic food waste on the performance of COD solubilisation. Both temperature and alkaline agent were reported to have an effect on solubilizing any possible biomass including organic food waste. The three independent variables considered in this pretreatment were temperature (50-90oC), pretreatment time (30-120 minutes) and alkaline concentration, sodium hydroxide, NaOH (0.7-15 g/L). The optimal condition obtained were 90oC, 15 g/L NaOH for 2 hours. Solubilisation has potential in enhancing methane production by providing a high amount of soluble components at an early stage during anaerobic digestion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title="food waste">food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatments" title=" pretreatments"> pretreatments</a>, <a href="https://publications.waset.org/abstracts/search?q=respond%20surface%20methodology" title=" respond surface methodology"> respond surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/36354/optimization-of-naoh-thermo-chemical-pretreatment-to-enhance-solubilisation-of-organic-food-waste-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20030</span> Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payman%20Davoodi-Nasab">Payman Davoodi-Nasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahbar-Kelishami"> Ahmad Rahbar-Kelishami</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Safdari"> Jaber Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Abolghasemi"> Hossein Abolghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium&ndash;iron&ndash;boron (Nd&ndash;Fe&ndash;B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion%20liquid%20membrane" title="emulsion liquid membrane">emulsion liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20of%20neodymium" title=" extraction of neodymium"> extraction of neodymium</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20method" title=" response surface method"> response surface method</a> </p> <a href="https://publications.waset.org/abstracts/66254/performance-study-of-neodymium-extraction-by-carbon-nanotubes-assisted-emulsion-liquid-membrane-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20029</span> Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mat%20Radzi">S. Mat Radzi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Abd%20Rahman"> N. J. Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohd%20Noor"> H. Mohd Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ariffin"> N. Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title="ferulic acid">ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20synthesis" title=" enzymatic synthesis"> enzymatic synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=esters" title=" esters"> esters</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a> </p> <a href="https://publications.waset.org/abstracts/11186/enzymatic-synthesis-of-olive-based-ferulate-esters-optimization-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20028</span> The Effect of Acid Treatment of PEDOT: PSS Anode for Organic Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Borazan">Ismail Borazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Celik%20Bedeloglu"> Ayse Celik Bedeloglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Demir"> Ali Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Carroll"> David Carroll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this project, PEDOT:PSS layer was treated with formic acid, sulphuric acid, and hydrochloric acid, methanol, acetone, and dichlorobenzene:methanol. The resistivity measurements with 2-probes were carried out and the best-chosen method was employed to make an organic solar cell device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title="organic solar cells">organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT%3APSS" title=" PEDOT:PSS"> PEDOT:PSS</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrodes" title=" polymer electrodes"> polymer electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity "> resistivity </a> </p> <a href="https://publications.waset.org/abstracts/27067/the-effect-of-acid-treatment-of-pedot-pss-anode-for-organic-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">814</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20027</span> Modeling of Austenitic Stainless Steel during Face Milling Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Selaimia">A. A. Selaimia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bensouilah"> H. Bensouilah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Yallese"> M. A. Yallese</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Meddour"> I. Meddour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Belhadi"> S. Belhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Mabrouki"> T. Mabrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to model the output responses namely; surface roughness (Ra), cutting force (Fc), during the face milling of the austenitic stainless steel X2CrNi18-9 with coated carbide tools (GC4040). For raison, response surface methodology (RMS) is used to determine the influence of each technological parameter. A full factorial design (L27) is chosen for the experiments, and the ANOVA is used in order to evaluate the influence of the technological cutting parameters namely; cutting speed (Vc), feed per tooth, and depth of cut (ap) on the out-put responses. The results reveal that (Ra) is mostly influenced by (fz) and (Fc) is found considerably affected by (ap). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=coated%20carbide" title=" coated carbide"> coated carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a> </p> <a href="https://publications.waset.org/abstracts/75643/modeling-of-austenitic-stainless-steel-during-face-milling-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20026</span> Optimization of Wear during Dry Sliding Wear of AISI 1042 Steel Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukant%20Mehra">Sukant Mehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Gupta"> Parth Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Arora"> Varun Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvoday%20Singh"> Sarvoday Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kohli"> Amit Kohli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was emphasised on dry sliding wear behavior of AISI 1042 steel. Dry sliding wear tests were performed using pin-on-disk apparatus under normal loads of 5, 7.5 and 10 kgf and at speeds 600, 750 and 900 rpm. Response surface methodology (RSM) was utilized for finding optimal values of process parameter and experiment was based on rotatable, central composite design (CCD). It was found that the wear followed linear pattern with the load and rpm. The obtained optimal process parameters have been predicted and verified by confirmation experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design%20%28CCD%29" title="central composite design (CCD)">central composite design (CCD)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/14478/optimization-of-wear-during-dry-sliding-wear-of-aisi-1042-steel-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20025</span> Statistical Optimization of Vanillin Production by Pycnoporus Cinnabarinus 1181</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swarali%20Hingse">Swarali Hingse</a>, <a href="https://publications.waset.org/abstracts/search?q=Shraddha%20Digole"> Shraddha Digole</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20Annapure"> Uday Annapure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the biotransformation of ferulic acid to vanillin by Pycnoporus cinnabarinus and its optimization using one-factor-at-a-time method as well as statistical approach. Effect of various physicochemical parameters and medium components was studied using one-factor-at-a-time method. Screening of the significant factors was carried out using L25 Taguchi orthogonal array and then these selected significant factors were further optimized using response surface methodology (RSM). Significant media components obtained using Taguchi L25 orthogonal array were glucose, KH2PO4 and yeast extract. Further, a Box Behnken design was used to investigate the interactive effects of the three most significant media components. The final medium obtained after optimization using RSM containing glucose (34.89 g/L), diammonium tartrate (1 g/L), yeast extract (1.47 g/L), MgSO4•7H2O (0.5 g/L), KH2PO4 (0.15 g/L), and CaCl2•2H2O (20 mg/L) resulted in amplification of vanillin production from 30.88 mg/L to 187.63 mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title="ferulic acid">ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=pycnoporus%20cinnabarinus" title=" pycnoporus cinnabarinus"> pycnoporus cinnabarinus</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a> </p> <a href="https://publications.waset.org/abstracts/20013/statistical-optimization-of-vanillin-production-by-pycnoporus-cinnabarinus-1181" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20024</span> Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Mahamallik">Prateeksha Mahamallik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Pal"> Anjali Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsolubilization" title="adsolubilization">adsolubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-fenton%20process" title=" photo-fenton process"> photo-fenton process</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/55686/photo-fenton-decolorization-of-methylene-blue-adsolubilized-on-co2-embedded-alumina-surface-comparison-of-process-modeling-through-response-surface-methodology-and-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20023</span> Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maliheh%20Raji">Maliheh Raji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Abolghasemi"> Hossein Abolghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Safdari"> Jaber Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kargari"> Ali Kargari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyanex%20272" title="Cyanex 272">Cyanex 272</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20liquid%20membrane" title=" emulsion liquid membrane"> emulsion liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT%20nanofluid" title=" MWCNT nanofluid"> MWCNT nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methology" title=" response surface methology"> response surface methology</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarium" title=" Samarium"> Samarium</a> </p> <a href="https://publications.waset.org/abstracts/66257/optimization-of-samarium-extraction-via-nanofluid-based-emulsion-liquid-membrane-using-cyanex-272-as-mobile-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20022</span> Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak">Deepak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA-6063" title="AA-6063">AA-6063</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=WEDM" title=" WEDM"> WEDM</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/119358/effect-of-process-variables-of-wire-electrical-discharge-machining-on-surface-roughness-for-aa-6063-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20021</span> Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Mahdian">Elham Mahdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karazhian"> Reza Karazhian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahele%20Dehghan%20Tanha"> Rahele Dehghan Tanha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title="carotenoids">carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper" title=" pepper"> pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/32193/effect-of-ultrasound-on-carotenoids-extraction-from-pepper-and-process-optimization-using-response-surface-methodology-rsm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20020</span> Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasu%20Velagapudi">Vasu Velagapudi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Suresh"> G. Suresh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PTFE%2FHNT" title="PTFE/HNT">PTFE/HNT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20wear%20rate" title=" specific wear rate"> specific wear rate</a> </p> <a href="https://publications.waset.org/abstracts/67177/multi-objective-optimization-of-wear-parameters-of-tube-like-clay-mineral-filled-thermoplastic-polymer-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20019</span> The Ability of Organic Acids Production by Lactic Acid Bacteria in M17 Broth and Squid, Shrimp, Octopus, Eel Infusion Broth </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20%C3%96zogul">Fatih Özogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sezen%20%C3%96z%C3%A7eli%CC%87k"> Sezen Özçeli̇k</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20%C3%96zogul"> Yesim Özogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactic, acetic, succinic, propionic, formic and butyric acid production by lactic acid bacteria (LAB) were monitored in M17 broth (the control) and some fish (squid, shrimp, octopus, and eel) infusion broth by using HPLC method. There were significant differences in terms of lactic, acetic, succinic, propionic, formic and butyric acid production (p < 0.005) among bacterial strains. Acetic acid production was the lowest by LAB while succinic acid followed by propionic acid was synthesized at the highest levels. Lactic acid production ranged from 0 to 938 mg/L by all LAB strains in different infusion broth. The highest acetic acid production was found by Lb. acidophilus and Lb. delbrueckii subsp. lactic in octopus and shrimp infusion broth, with values of 872 and 674 mg/L, respectively while formic acid formation ranged from 1747 mg/L by Lb. acidophilus in octopus infusion broth to 69 mg/L by Lb. delbrueckii subsp. lactis in shrimp infusion broth. Propionic acid and butyric acid productions by St. thermophilus were 9852 and 3999 mg/L in shrimp infusion broth while Leu. mes. subsp. cremoris synthesized 312 and 9 mg/L of those organic acid in European squid infusion broth, respectively. Apparently, LAB strains had a great capability to generate succinic acid followed by propionic and butyric acid. In addition, other organic acid production differed significantly depending on bacterial strains and growth medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactic%20acid%20bacteria" title="Lactic acid bacteria ">Lactic acid bacteria </a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20acid" title=" organic acid"> organic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC%20analysis" title=" HPLC analysis"> HPLC analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20medium" title=" growth medium"> growth medium</a> </p> <a href="https://publications.waset.org/abstracts/72696/the-ability-of-organic-acids-production-by-lactic-acid-bacteria-in-m17-broth-and-squid-shrimp-octopus-eel-infusion-broth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20018</span> Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bangphan">S. Bangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bangphan"> P. Bangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ketsombun"> C. Ketsombun</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sammana"> T. Sammana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20rice" title="brown rice">brown rice</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=peeling%20machine" title=" peeling machine"> peeling machine</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy%20husker" title=" paddy husker"> paddy husker</a> </p> <a href="https://publications.waset.org/abstracts/17663/response-surface-methodology-for-the-optimization-of-paddy-husker-by-medium-brown-rice-peeling-machine-6-rubber-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20017</span> Application of Response Surface Methodology (RSM) for Optimization of Fluoride Removal by Using Banana Peel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20N.">Pallavi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Jadhav"> Gayatri Jadhav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Good quality water is of prime importance for a healthy living. Fluoride is one such mineral present in water which causes many health problems in humans and specially children. Fluoride is said to be a double edge sword because lesser and higher concentration of fluoride in drinking water can cause both dental and skeletal fluorosis. Fluoride is one of the important mineral usually present at a higher concentration in ground water. There are many researches being carried out for defluoridation method. In the present research, fluoride removal is demonstrated using banana peel which is a biowaste as a biocoagulant. Response Surface Methodology (RSM) is a statistical design tool which is used to design the experiment. Central Composite Design (CCD) was used to determine the influence of the pH and dosage of the coagulant on the optimal removal of fluoride from a simulated water sample. 895 of fluoride removal were obtained in a acidic pH range of 4 – 9 and bio coagulant dosage of dosage of 18 – 20mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fluoride" title="Fluoride">Fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=Response%20Surface%20Methodology" title=" Response Surface Methodology"> Response Surface Methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=Dosage" title=" Dosage"> Dosage</a>, <a href="https://publications.waset.org/abstracts/search?q=banana%20peel" title=" banana peel"> banana peel</a> </p> <a href="https://publications.waset.org/abstracts/122011/application-of-response-surface-methodology-rsm-for-optimization-of-fluoride-removal-by-using-banana-peel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20016</span> Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Joseph%20Raviselvan">R. Joseph Raviselvan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramanathan"> K. Ramanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Perumal"> P. Perumal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Thansekhar"> M. R. Thansekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN%20XRD" title=" TiN XRD"> TiN XRD</a> </p> <a href="https://publications.waset.org/abstracts/42534/response-surface-methodology-for-optimum-hardness-of-tin-on-steel-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20015</span> An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Sanjo%20Aruwajoye">Gabriel Sanjo Aruwajoye</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Gueguim%20Kana"> E. B. Gueguim Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feedstock%20pretreatment" title="feedstock pretreatment">feedstock pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava%20peels" title=" cassava peels"> cassava peels</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentable%20sugar" title=" fermentable sugar"> fermentable sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/64193/an-efficient-hybrid-feedstock-pretreatment-technique-for-the-release-of-fermentable-sugar-from-cassava-peels-for-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20014</span> Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Busra%20Balli">Busra Balli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuncay%20Dikici"> Tuncay Dikici</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Toparli"> Mustafa Toparli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title="dental implant">dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=etching" title=" etching"> etching</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modifications" title=" surface modifications"> surface modifications</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/17922/enhancement-and-characterization-of-titanium-surfaces-with-sandblasting-and-acid-etching-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20013</span> Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Prabhu">P. R. Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Kulkarni"> S. M. Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sharma"> S. S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagannath"> K. Jagannath</a>, <a href="https://publications.waset.org/abstracts/search?q=Achutha%20Kini%20U."> Achutha Kini U. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20cold%20rolling" title=" deep cold rolling"> deep cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/26087/analysis-of-surface-hardness-surface-roughness-and-near-surface-microstructure-of-aisi-4140-steel-worked-with-turn-assisted-deep-cold-rolling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20012</span> Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Kumari">Shweta Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manab%20B.%20Bera"> Manab B. Bera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-galactosidase" title="β-galactosidase">β-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=permeabilization" title=" permeabilization"> permeabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/7218/statistical-modeling-for-permeabilization-of-a-novel-yeast-isolate-for-v-galactosidase-activity-using-organic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20011</span> Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florencio%20D.%20De%20Los%20Reyes">Florencio D. De Los Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdaleno%20R.%20Vasquez%20Jr."> Magdaleno R. Vasquez Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Daniel%20G.%20De%20Luna"> Mark Daniel G. De Luna</a>, <a href="https://publications.waset.org/abstracts/search?q=Peerasak%20Paoprasert"> Peerasak Paoprasert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardancy" title="flame retardancy">flame retardancy</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticle" title=" silica nanoparticle"> silica nanoparticle</a> </p> <a href="https://publications.waset.org/abstracts/52222/synergistic-studies-of-multi-flame-retarders-using-silica-nanoparticles-and-nitrogen-and-phosphorus-based-compounds-for-polystyrene-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20010</span> Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoseinnezhad">M. Hoseinnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gharanjig"> K. Gharanjig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (<sup>1</sup>HNMR), carbon nuclear magnetic resonance (<sup>13</sup>CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title="dye-sensitized solar cells">dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=indoline%20dye" title=" indoline dye"> indoline dye</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20potential" title=" oxidation potential"> oxidation potential</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/83510/synthesis-and-application-of-an-organic-dye-in-nanostructure-solar-cells-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20009</span> Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Khourshid">A. M. Khourshid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El-Kassas"> A. M. El-Kassas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sabry"> I. Sabry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title=" aluminium alloy"> aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/4259/optimization-of-friction-stir-welding-parameters-for-joining-aluminium-alloys-using-response-surface-methodology-and-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=667">667</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=668">668</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10