CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;18 of 18 results for author: <span class="mathjax">Lian, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Lian%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lian, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lian%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lian, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14119">arXiv:2303.14119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/acd561">10.1088/1361-6463/acd561 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An alternative simulation approach for surface flashover in vacuum using a 1D2V continuum and kinetic model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+G">Guang-Yu Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Ru-Hui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M+F">Muhammad Farasat Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bao-Hong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+B">Bai-Peng Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guan-Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14119v3-abstract-short" style="display: inline;"> Surface flashover across insulator in vacuum is a destructive plasma discharge which undermines the behaviors of a range of applications in electrical engineering, particle physics, space engineering, etc. This phenomenon is widely modeled by the particle-in-cell (PIC) simulation, here the continuum and kinetic simulation method is first proposed and implemented as an alternative solution for flas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14119v3-abstract-full').style.display = 'inline'; document.getElementById('2303.14119v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14119v3-abstract-full" style="display: none;"> Surface flashover across insulator in vacuum is a destructive plasma discharge which undermines the behaviors of a range of applications in electrical engineering, particle physics, space engineering, etc. This phenomenon is widely modeled by the particle-in-cell (PIC) simulation, here the continuum and kinetic simulation method is first proposed and implemented as an alternative solution for flashover modeling, aiming for the prevention of the unfavorable particle noises in PIC models. The 1D2V (one dimension in space, two dimensions in velocity) kinetic simulation model is constructed. Modeling setup, physical assumptions, and simulation algorithm are presented in detail, and a comparison with the well-known secondary electron emission avalanche (SEEA) analytical expression and existing PIC simulation is made. Obtained kinetic simulation results are consistent with the analytical prediction, and feature noise-free data of surface charge density as well as particle fluxes of primary and secondary electrons. Discrepancies between the two simulation models and analytical predictions are explained. The code is convenient for updating to include additional physical processes, and possible implementations of outgassing and extra plasma species for final breakdown stage are discussed. The proposed continuum and kinetic approach is expected to inspire future flashover modeling studies for the understanding and mitigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14119v3-abstract-full').style.display = 'none'; document.getElementById('2303.14119v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11717">arXiv:2205.11717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.11717">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of ultra-broadband IR up-conversion imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+H">X. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+P">P. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+H">S. H. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X+Q">X. Q. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+W+J">W. J. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+X+R">X. R. Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">C. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z+W">Z. W. Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+W+Z">W. Z. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+H">Y. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Z+L">Z. L. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+D+X">D. X. Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Z+Y">Z. Y. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J+C">J. C. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+C">C. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G+Y">G. Y. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11717v1-abstract-short" style="display: inline;"> Ultra-broadband imaging devices with high performance are in great demand for a variety of technological applications, including imaging, remote sensing, and communications. An ultra-broadband up-converter is realized based on a p-GaAs homojunction interfacial workfunction internal photoemission (HIWIP) detector-light emitting diode (LED) device. The device demonstrates an ultra-broad response ran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11717v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11717v1-abstract-full" style="display: none;"> Ultra-broadband imaging devices with high performance are in great demand for a variety of technological applications, including imaging, remote sensing, and communications. An ultra-broadband up-converter is realized based on a p-GaAs homojunction interfacial workfunction internal photoemission (HIWIP) detector-light emitting diode (LED) device. The device demonstrates an ultra-broad response ranging from visible to terahertz (THz) with good reproducibility. The peak responsivity in the mid-infrared (MIR) region is 140 mA/W at 10.5 microns. The HIWIP-LED shows enormous potential for ultra-broadband up-conversion covering all infrared atmospheric windows, as well as the THz region, and the pixel-less imaging of the MIR spot from the CO2 laser is further demonstrated. In addition, the proposed up-converter also performs as a near-infrared and visible detector under zero bias by using a bi-functional LED. Thanks to its ultra-wide response, the HIWIP-LED up-converter has great promise for stable, high-performance ultra-broadband pixel-less imaging and multi-functional analysis systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11717v1-abstract-full').style.display = 'none'; document.getElementById('2205.11717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09453">arXiv:2109.09453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09453">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Work-Energy Principle Based Characteristic Mode Theory for Yagi-Uda Array Antennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Ren-Zun Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+M">Ming-Yao Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xing-Yue Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09453v1-abstract-short" style="display: inline;"> Work-energy principle (WEP) governing the work-energy transformation process of Yagi-Uda array antennas is derived. Driving power as the source to sustain a steady work-energy transformation is introduced. Employing WEP and driving power, the essential difference between the working mechanisms of scattering objects and Yagi-Uda array antennas is revealed. The difference exposes that the convention&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09453v1-abstract-full').style.display = 'inline'; document.getElementById('2109.09453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09453v1-abstract-full" style="display: none;"> Work-energy principle (WEP) governing the work-energy transformation process of Yagi-Uda array antennas is derived. Driving power as the source to sustain a steady work-energy transformation is introduced. Employing WEP and driving power, the essential difference between the working mechanisms of scattering objects and Yagi-Uda array antennas is revealed. The difference exposes that the conventional characteristic mode theory (CMT) for scattering objects cannot be directly applied to Yagi-Uda array antennas. Under WEP framework, this paper proposes a generalized CMT for Yagi-Uda antennas. By orthogonalizing driving power operator (DPO), the WEP-based CMT can construct a set of energy-decoupled characteristic modes (CMs) for an objective Yagi-Uda antenna, and then can provide an effective modal analysis for the Yagi-Uda antenna. In addition, a uniform interpretation for the physical meaning of the characteristic values / modal significances (MSs) of metallic, material, and metal-material composite Yagi-Uda antennas is also obtained by employing the WEP-based modal decomposition and the field-current interaction expression of driving power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09453v1-abstract-full').style.display = 'none'; document.getElementById('2109.09453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2103.01853</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03432">arXiv:2108.03432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.03432">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Energy-Viewpoint-Based Electromagnetic Modal Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Ren-Zun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03432v2-abstract-short" style="display: inline;"> In computational physics and mathematical physics, modal analysis method has been one of important study topics. The central purposes of this Post-Doctoral Concluding Report are (1) to reveal the core position of energy viewpoint in the realm of electromagnetic modal analysis; (2) to show how to do energy-viewpoint-based modal analysis for various electromagnetic structures. The major conclusions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03432v2-abstract-full').style.display = 'inline'; document.getElementById('2108.03432v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03432v2-abstract-full" style="display: none;"> In computational physics and mathematical physics, modal analysis method has been one of important study topics. The central purposes of this Post-Doctoral Concluding Report are (1) to reveal the core position of energy viewpoint in the realm of electromagnetic modal analysis; (2) to show how to do energy-viewpoint-based modal analysis for various electromagnetic structures. The major conclusions of this report are that: energy conservation law governs the energy utilization processes of various electromagnetic structures, and its energy source term sustains the steady energy utilization processes; the whole modal space of an electromagnetic structure is spanned by a series of energy-decoupled modes (DMs), which don&#39;t have net energy exchange in any integral period; the DMs can be effectively constructed by orthogonalizing energy source operator, which is just the operator form of the energy source term. Specifically speaking: in classical electromagnetism, energy conservation law has five different manifestation forms, that are power transport theorem (PTT), partial-structure-oriented work-energy theorem (PS-WET), entire-structure-oriented work-energy theorem (ES-WET), Poynting&#39;s theorem (PtT), and Lorentz&#39;s reciprocity theorem (LRT) forms; the energy source terms in the first four forms are formulated as input power operator (IPO), partial-structure-oriented driving power operator (PS-DPO), entire-structure-oriented driving power operator (ES-DPO), and Poynting&#39;s flux operator (PtFO); the DMs of wave-port-fed, lumped-port-driven, externally-incident-field-driven, and energy-dissipating/self-oscillating electromagnetic structures can be constructed by orthogonalizing IPO, PS-DPO, ES-DPO, and PtFO; LRT guarantees that the obtained DMs satisfy some useful Em-Hn orthogonality relations, where the Em and Hn represent the electric field of the m-th DM and the magnetic field of the n-th DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03432v2-abstract-full').style.display = 'none'; document.getElementById('2108.03432v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01853">arXiv:2103.01853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.01853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Research on the Power Transport Theorem Based Decoupling Mode Theory for Transceiving Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Renzun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01853v1-abstract-short" style="display: inline;"> The physical pictures of eigen-mode theory (EMT) and the conventional characteristic mode theory (CMT) reveal a fact that: the EMT and CMT are the modal theories for electromagnetic wave-guiding and scattering (for details, please see the Appendices E, F, G and H) systems respectively, rather than for electromagnetic transceiving systems. This Postdoctoral Research Report is devoted to establishin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01853v1-abstract-full').style.display = 'inline'; document.getElementById('2103.01853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01853v1-abstract-full" style="display: none;"> The physical pictures of eigen-mode theory (EMT) and the conventional characteristic mode theory (CMT) reveal a fact that: the EMT and CMT are the modal theories for electromagnetic wave-guiding and scattering (for details, please see the Appendices E, F, G and H) systems respectively, rather than for electromagnetic transceiving systems. This Postdoctoral Research Report is devoted to establishing a novel modal theory - decoupling mode theory (DMT) - for transceiving systems, and constructing the energy-decoupled modes (DMs) of objective transceiving system. This Postdoctoral Research Report is a companion volume of the author&#39;s Doctoral Dissertation &#34;Research on the Work-Energy Principle Based Characteristic Mode Theory for Scattering Systems&#34; (arXiv:1907.11787). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01853v1-abstract-full').style.display = 'none'; document.getElementById('2103.01853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11787">arXiv:1907.11787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11787">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Research on the Work-Energy Principle Based Characteristic Mode Theory for Scattering Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Renzun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11787v2-abstract-short" style="display: inline;"> Electromagnetic (EM) scattering systems widely exist in EM engineering domain. For a certain objective scattering system, all of its working modes constitute a linear space, i.e. modal space. Characteristic mode theory (CMT) can effectively construct a basis of the space, i.e. characteristic modes (CMs), and the CMs only depend on the inherent physical properties of the objective system, such as t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11787v2-abstract-full').style.display = 'inline'; document.getElementById('1907.11787v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11787v2-abstract-full" style="display: none;"> Electromagnetic (EM) scattering systems widely exist in EM engineering domain. For a certain objective scattering system, all of its working modes constitute a linear space, i.e. modal space. Characteristic mode theory (CMT) can effectively construct a basis of the space, i.e. characteristic modes (CMs), and the CMs only depend on the inherent physical properties of the objective system, such as the topological structure and the material parameter of the objective system. Thus, CMT is very valuable for analyzing and designing the inherent EM scattering characters of the objective system. This work finds out that integral equation (IE) is not the best framework for carrying CMT. This dissertation proposes a completely new framework for carrying CMT, i.e. work-energy principle (WEP) framework, and at the same time proposes a completely new method for constructing CMs, i.e. orthogonalizing driving power operator (DPO) method. In new WEP framework and based on new orthogonalizing DPO method, this work resolves 5 pairs of important unsolved problems existing in CMT domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11787v2-abstract-full').style.display = 'none'; document.getElementById('1907.11787v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.09246">arXiv:1804.09246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.09246">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetic-Power-based Modal Classification, Modal Expansion, and Modal Decomposition for Perfect Electric Conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Renzun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.09246v1-abstract-short" style="display: inline;"> Traditionally, all working modes of a perfect electric conductor are classified into capacitive modes, resonant modes, and inductive modes, and the resonant modes are further classified into internal resonant modes and external resonant modes. In this paper, the capacitive modes are further classified into intrinsically capacitive modes and non-intrinsically capacitive modes; the resonant modes ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09246v1-abstract-full').style.display = 'inline'; document.getElementById('1804.09246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.09246v1-abstract-full" style="display: none;"> Traditionally, all working modes of a perfect electric conductor are classified into capacitive modes, resonant modes, and inductive modes, and the resonant modes are further classified into internal resonant modes and external resonant modes. In this paper, the capacitive modes are further classified into intrinsically capacitive modes and non-intrinsically capacitive modes; the resonant modes are alternatively classified into intrinsically resonant modes and non-intrinsically resonant modes, and the intrinsically resonant modes are further classified into non-radiative intrinsically resonant modes and radiative intrinsically resonant modes; the inductive modes are further classified into intrinsically inductive modes and non-intrinsically inductive modes. Based on the modal expansion corresponding to these new modal classifications, an alternative modal decomposition method is proposed. In addition, it is also proved that: all intrinsically resonant modes and all non-radiative intrinsically resonant modes constitute linear spaces respectively, but other kinds of resonant modes cannot constitute linear spaces; by including the mode 0 into the intrinsically capacitive mode set and the intrinsically inductive mode set, these two modal sets become linear spaces respectively, but other kinds of capacitive modes and inductive modes cannot constitute linear spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09246v1-abstract-full').style.display = 'none'; document.getElementById('1804.09246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.05760">arXiv:1804.05760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.05760">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> On Huygens&#39; Principle, Extinction Theorem, and Equivalence Principle (Metal-Material Combined System in Inhomogeneous Anisotropic Environment) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Renzun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.05760v2-abstract-short" style="display: inline;"> In this paper, we generalize Huygens&#39; principle (HP), extinction theorem (ET), and Franz-Harrington formulation (FHF). In our previous works, the traditional HP, ET, and FHF in homogeneous isotropic environment are generalized to inhomogeneous anisotropic lossy environment; the traditional FHF of homogeneous isotropic material system is generalized to inhomogeneous anisotropic lossy material syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05760v2-abstract-full').style.display = 'inline'; document.getElementById('1804.05760v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.05760v2-abstract-full" style="display: none;"> In this paper, we generalize Huygens&#39; principle (HP), extinction theorem (ET), and Franz-Harrington formulation (FHF). In our previous works, the traditional HP, ET, and FHF in homogeneous isotropic environment are generalized to inhomogeneous anisotropic lossy environment; the traditional FHF of homogeneous isotropic material system is generalized to inhomogeneous anisotropic lossy material system and then to piecewise inhomogeneous anisotropic lossy material system; the traditional HP, ET, and FHF of simply connected material system are generalized to multiply connected system and then to non-connected system; the traditional FHF of external scattering field and internal total field are generalized to internal scattering field and internal incident field. In previous work, it is proved that the generalized HP (GHP) and generalized ET (GET) are equivalent to each other; the GHP, GET, and generalized FHF (GFHF) satisfy so-called topological additivity, i.e., the GHP/GET/GFHF of whole electromagnetic (EM) system equals to the superposition of the GHP/GET/GFHF corresponding to all sub-systems. In this paper, the above results obtained in our previous works, which focuses on the EM system constructed by material bodies, are further generalized to the metal-material combined EM system in inhomogeneous anisotropic lossy environment, and traditional surface equivalence principle is generalized to line-surface equivalence principle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05760v2-abstract-full').style.display = 'none'; document.getElementById('1804.05760v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02096">arXiv:1802.02096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02096">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> On Huygens&#39; Principle, Extinction Theorem, and Equivalence Principle (Inhomogeneous Anisotropic Material System in Inhomogeneous Anisotropic Environment) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Renzun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02096v2-abstract-short" style="display: inline;"> Huygens&#39; principle (HP), extinction theorem (ET), and Franz&#39;s / Franz-Harrington formulation (FHF, which is a mathematical expression of surface equivalence principle) are the important components of electromagnetic (EM) theory, and they are generalized from the following aspects. 1) Traditional HP, ET, and FHF in homogeneous isotropic environment are generalized to inhomogeneous anisotropic los&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02096v2-abstract-full').style.display = 'inline'; document.getElementById('1802.02096v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02096v2-abstract-full" style="display: none;"> Huygens&#39; principle (HP), extinction theorem (ET), and Franz&#39;s / Franz-Harrington formulation (FHF, which is a mathematical expression of surface equivalence principle) are the important components of electromagnetic (EM) theory, and they are generalized from the following aspects. 1) Traditional HP, ET, and FHF in homogeneous isotropic environment are generalized to inhomogeneous anisotropic lossy environment. 2) Traditional FHF for homogeneous isotropic material system is generalized to inhomogeneous anisotropic lossy material system in this paper, and will be further generalized to metal-material combined system in future works. 3) The Huygens&#39; surface in traditional HP and ET is a single closed surface. In this paper, it is generalized to the &#34;Huygens&#39; surface&#34; which is constructed by multiple closed surfaces. In future works, it will be further generalized to the &#34;Huygens&#39; boundary&#34; which includes some lines and open surfaces. 4) For a material body, traditional FHF has only ability to express the external scattering field and the internal total field (the summation of scattering and incident fields) in terms of the equivalent sources on material boundary, and it is generalized to formulating the internal scattering and incident fields in this paper. In addition, the relationships among HP, ET, and FHF are studied, and it is proved that HP and ET are equivalent to each other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02096v2-abstract-full').style.display = 'none'; document.getElementById('1802.02096v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.05099">arXiv:1610.05099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.05099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetic-Power-based Characteristic Mode Theory for Perfect Electric Conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Renzun Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.05099v1-abstract-short" style="display: inline;"> In this paper, an ElectroMagnetic-Power-based Characteristic Mode Theory (CMT) for PEC systems (PEC-EMP-CMT) is built. The PEC-EMP-CMT is valid for the PEC systems which are surrounded by any electromagnetic environment, and it can construct the complex characteristic currents and non-radiative Characteristic Modes (CMs). In this paper, some traditional concepts, such as the system input impedance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.05099v1-abstract-full').style.display = 'inline'; document.getElementById('1610.05099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.05099v1-abstract-full" style="display: none;"> In this paper, an ElectroMagnetic-Power-based Characteristic Mode Theory (CMT) for PEC systems (PEC-EMP-CMT) is built. The PEC-EMP-CMT is valid for the PEC systems which are surrounded by any electromagnetic environment, and it can construct the complex characteristic currents and non-radiative Characteristic Modes (CMs). In this paper, some traditional concepts, such as the system input impedance and modal input impedance etc., are redefined; the traditional characteristic quantity, Modal Significance (MS), is generalized; a series of new power-based CM sets are introduced. It is proven in this paper that various power-based CM sets of a certain objective PEC structure are independent of the external environment and excitation; the non-radiative space constituted by all non-radiative modes is identical to the interior resonance space constituted by all interior resonant modes of closed PEC structures, and the non-radiative CMs constitute a basis of the space. Based on above these, the normal Eigen-Mode Theory (EMT) for closed PEC structures is classified into the PEC-EMP-CMT framework. In addition, a variational formulation for the external scattering problem of PEC structures is provided in this paper, based on the conservation law of energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.05099v1-abstract-full').style.display = 'none'; document.getElementById('1610.05099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0501112">arXiv:physics/0501112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0501112">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jp0610113">10.1021/jp0610113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Photodetachment from Aqueous Anions. III. Dynamics of Geminate Pairs Derived from Photoexcitation of Mono- vs. Poly- atomic Anions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Oulianov%2C+D+A">Dmitri A. Oulianov</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+%3B+X">; Xiyi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Bradforth%2C+S+E">Stephen E. Bradforth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0501112v1-abstract-short" style="display: inline;"> Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer. Here we contrast the behavior of halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS-) and common polyvalent anions (e.g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0501112v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0501112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0501112v1-abstract-full" style="display: none;"> Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer. Here we contrast the behavior of halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS-) and common polyvalent anions (e.g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I-, Br-, OH-, HS-, CNS-, CO32-, SO32-, and Fe(CN)64-) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy (225 nm or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions (including all polyvalent anions studied) the initial electron distribution has a broad component, even at relatively low photoexcitation energy. There seem to be no well-defined threshold energy below which the broadening of the distribution does not occur, as is the case for halide anions. Direct ionization to the conduction band of water is the most likely photoprocess broadening the electron distribution. Our study suggests that halide anions are in the class of their own; electron photodetachment from polyatomic, especially polyvalent, anions follows a different set of rules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0501112v1-abstract-full').style.display = 'none'; document.getElementById('physics/0501112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be submitted to J. Phys. Chem. A; 28 pages, 5 figs + Supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0501098">arXiv:physics/0501098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0501098">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2003.11.062">10.1016/j.cplett.2003.11.062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geminate recombination of hydroxyl radicals generated in 200 nm photodissociation of aqueous hydrogen peroxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">R. A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">R. Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Sauer%2C%2C+M+C">M. C. Sauer, Jr.</a>, <a href="/search/physics?searchtype=author&amp;query=Oulianov%2C+D+A">D. A. Oulianov</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">I. A. Shkrob</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0501098v1-abstract-short" style="display: inline;"> The picosecond dynamics of hydroxyl radicals generated in 200 nm photoinduced dissociation of aqueous hydrogen peroxide have been observed through their transient absorbance at 266 nm. It is shown that these kinetics are nearly exponential, with a decay time of ca. 30 ps. The prompt quantum yield for the decomposition of H2O2 is 0.56, and the fraction of hydroxyl radicals escaping from the solve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0501098v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0501098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0501098v1-abstract-full" style="display: none;"> The picosecond dynamics of hydroxyl radicals generated in 200 nm photoinduced dissociation of aqueous hydrogen peroxide have been observed through their transient absorbance at 266 nm. It is shown that these kinetics are nearly exponential, with a decay time of ca. 30 ps. The prompt quantum yield for the decomposition of H2O2 is 0.56, and the fraction of hydroxyl radicals escaping from the solvent cage to the water bulk is 64-68%. These recombination kinetics suggest strong caging of the geminate hydroxyl radicals by water. Phenomenologically, these kinetics may be rationalized in terms of the diffusion of hydroxide radicals out of a shallow potential well (a solvent cage) with an Onsager radius of 0.24 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0501098v1-abstract-full').style.display = 'none'; document.getElementById('physics/0501098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Phys. Lett. 383 (2004) 481 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0407148">arXiv:physics/0407148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0407148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2004.09.081">10.1016/j.cplett.2004.09.081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geminate recombination of electrons generated by above-the-gap (12.4 eV) photoionization of liquid water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Oulianov%2C+D+A">Dmitri A. Oulianov</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0407148v1-abstract-short" style="display: inline;"> The picosecond geminate recombination kinetics for hydrated electrons generated by 200 nm two photon absorption (12.4 eV total energy) has been measured in both light and heavy water. The geminate kinetics are observed to be almost identical in both H2O and D2O. Kinetic analysis based upon the independent reaction time approximation indicates that the average separation between the electron and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0407148v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0407148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0407148v1-abstract-full" style="display: none;"> The picosecond geminate recombination kinetics for hydrated electrons generated by 200 nm two photon absorption (12.4 eV total energy) has been measured in both light and heavy water. The geminate kinetics are observed to be almost identical in both H2O and D2O. Kinetic analysis based upon the independent reaction time approximation indicates that the average separation between the electron and its geminate partners in D2O is 13% narrower than in H2O (2.1 nm vs. 2.4 nm). These observations suggest that, even at this high ionization energy, autoionization of water competes with direct ionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0407148v1-abstract-full').style.display = 'none'; document.getElementById('physics/0407148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages + 2 figures, submitted to Chem. Phys. Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0405047">arXiv:physics/0405047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0405047">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Solvation, relaxation, and geminate recombination of electrons generated by two 200 nm photon ionization of liquid H2O and D2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0405047v2-abstract-short" style="display: inline;"> Temporal evolution of transient absorption spectra for pre-solvated electron (e-) generated by biphotonic (200 nm) ionization of liquid H2O and D2O has been studied on femto- and pico- second time scales. These spectra were obtained in the intervals of 50 nm between 500 and 1700 nm. Two distinctive regimes of the spectral evolution were observed. In both of these regimes, the spectral profile ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405047v2-abstract-full').style.display = 'inline'; document.getElementById('physics/0405047v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0405047v2-abstract-full" style="display: none;"> Temporal evolution of transient absorption spectra for pre-solvated electron (e-) generated by biphotonic (200 nm) ionization of liquid H2O and D2O has been studied on femto- and pico- second time scales. These spectra were obtained in the intervals of 50 nm between 500 and 1700 nm. Two distinctive regimes of the spectral evolution were observed. In both of these regimes, the spectral profile changes considerably with delay time. For t&lt;1ps, two new features (the 1150 nm band and 1400 nm shoulder) were observed in the spectral region where O-H overtones appear in the spectra of light water. These two features were not observed for the e- in D2O. Vibronic coupling to the modes of water molecules lining the solvation cavity is a possible origin of these features. On the sub-picosecond time scale, the absorption band of e- progressively shifts to the blue. At later delay times (t&gt; 1ps), the position of the band maximum is &#34;locked&#34;, but the spectral profile continues to change by narrowing on the red side and broadening on the blue side; the oscillator strength is constant within 10%. The time constant of this narrowing is ca. 0.56 ps for H2O and 0.64 ps for D2O, respectively. Vibrational relaxation and time-dependent decrease in the size and anisotropy of the solvation cavity are suggested as possible causes for the observed spectral transformations in both of these regimes. The geminate recombination kinetics for hydrated electrons generated by absorption of two 200 nm quanta (12.4 eV total energy) in light and heavy water are almost identical, suggesting that the average separation between the e- and its geminate partners in D2O is 13% narrower than in H2O. We suggest that autoionization of water competes with direct ionization even at this high photoexcitation energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405047v2-abstract-full').style.display = 'none'; document.getElementById('physics/0405047v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 9 figures with a supplement (9 pages + 7 figures); w references &amp; many corrections; to be submitted to J. Phys. Chem. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0405013">arXiv:physics/0405013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0405013">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jp048074a">10.1021/jp048074a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-induced temperature jump causes power-dependent ultrafast kinetics of electrons generated in multiphoton ionization of liquid water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+J">Jun Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Oulianov%2C+D+A">Dmitri A. Oulianov</a>, <a href="/search/physics?searchtype=author&amp;query=Pommeret%2C+S">Stanislas Pommeret</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0405013v1-abstract-short" style="display: inline;"> Picosecond geminate recombination kinetics for electrons generated by multiphoton ionization of liquid water become power dependent when the radiance of the excitation light is greater than 0.3-0.5 TW/cm^2 (the terawatt regime). To elucidate the mechanism of this power dependence, tri- 400 nm photon ionization of water has been studied using pump-probe laser spectroscopy on the pico- and femtose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405013v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0405013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0405013v1-abstract-full" style="display: none;"> Picosecond geminate recombination kinetics for electrons generated by multiphoton ionization of liquid water become power dependent when the radiance of the excitation light is greater than 0.3-0.5 TW/cm^2 (the terawatt regime). To elucidate the mechanism of this power dependence, tri- 400 nm photon ionization of water has been studied using pump-probe laser spectroscopy on the pico- and femtosecond time scales. We suggest that the observed kinetic transformations are caused by a rapid temperature jump in the sample. Such a jump is inherent to multiphoton ionization in the terawatt regime, when the absorption of the pump light along the optical path becomes very nonuniform. The heating of water is substantial (tens of degrees C) because the 3-photon quantum yield of the ionization is relatively low, ca. 0.42, and a large fraction of the excitation energy is released into the solvent bulk as heat. Evidence of the temperature jump is the observation of a red shift in the absorption spectrum of (thermalized) electron and by characteristic &#34;flattening&#34; of the thermalization dynamics in the near infra-red. The temperature jump in the terawatt regime might be ubiquitous in multiphoton ionization in molecular liquids. The implications of these observations for femtosecond pulse radiolysis of water are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405013v1-abstract-full').style.display = 'none'; document.getElementById('physics/0405013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages + 8 figures; supplement of 7 pages + 9 figures; to be submitted to J. Phys. Chem. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0404056">arXiv:physics/0404056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0404056">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jp047435j">10.1021/jp047435j <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Photodetachment from Aqueous Anions. II. Ionic Strength Effect on Geminate Recombination Dynamics and Quantum Yield for Hydrated Electron </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sauer%2C%2C+M+C">Myran C. Sauer, Jr.</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+D+M">David M. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Bradforth%2C+S+E">Stephen E. Bradforth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0404056v1-abstract-short" style="display: inline;"> In concentrated solutions of NaClO4 and Na2SO4, the quantum yield for free electron generated by detachment from photoexcited anions (such as I-, OH-, ClO^4-, and [SO3]^2-) linearly decreases by 6-12% per 1 M ionic strength. In 9 M sodium perchlorate solution, this quantum yield decreases by roughly an order of magnitude. Ultrafast kinetic studies of 200 nm photon induced electron detachment fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404056v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0404056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0404056v1-abstract-full" style="display: none;"> In concentrated solutions of NaClO4 and Na2SO4, the quantum yield for free electron generated by detachment from photoexcited anions (such as I-, OH-, ClO^4-, and [SO3]^2-) linearly decreases by 6-12% per 1 M ionic strength. In 9 M sodium perchlorate solution, this quantum yield decreases by roughly an order of magnitude. Ultrafast kinetic studies of 200 nm photon induced electron detachment from Br-, HO- and [SO3]^2- suggest that the prompt yield of thermalized electron does not change in these solutions; rather, the ionic strength effect originates in more efficient recombination of geminate pairs. Within the framework of the recently proposed mean force potential (MFP) model of charge separation dynamics in such photosystems, the observed changes are interpreted as an increase in the short-range attractive potential between the geminate partners. Association of sodium cation(s) with the electron and the parent anion is suggested as the most likely cause for the observed modification of the MFP. Electron thermalization kinetics suggest that the cation associated with the parent anion (by ion pairing and/or ionic atmosphere interaction) is passed to the detached electron in the course of the photoreaction. The precise atomic-level mechanism for the ionic strength effect is presently unclear; any further advance is likely to require the development of an adequate quantum molecular dynamics model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404056v1-abstract-full').style.display = 'none'; document.getElementById('physics/0404056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 10 figures + supplement 2 pages, 9 figures; will be submitted, in a modified form, to J. Phys. Chem A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0401071">arXiv:physics/0401071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0401071">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1739213">10.1063/1.1739213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Dynamics for Electron Photodetachment from Aqueous Hydroxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+D+M">David M. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiyi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Bradforth%2C+S+E">Stephen E. Bradforth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0401071v1-abstract-short" style="display: inline;"> Charge-transfer-to-solvent (CTTS) reactions of hydroxide induced by 200 nm monophotonic or 337 nm and 389 nm biphotonic excitation of this anion in aqueous solution have been studied by means of pump-probe ultrafast laser spectroscopy. Transient absorption kinetics of the hydrated electron, eaq-, have been observed, from a few hundred femtoseconds out to 600 ps, and studied as function of hydrox&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0401071v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0401071v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0401071v1-abstract-full" style="display: none;"> Charge-transfer-to-solvent (CTTS) reactions of hydroxide induced by 200 nm monophotonic or 337 nm and 389 nm biphotonic excitation of this anion in aqueous solution have been studied by means of pump-probe ultrafast laser spectroscopy. Transient absorption kinetics of the hydrated electron, eaq-, have been observed, from a few hundred femtoseconds out to 600 ps, and studied as function of hydroxide concentration and temperature. The geminate decay kinetics are bimodal, with a fast exponential component (ca. 13 ps) and a slower power &#34;tail&#34; due to the diffusional escape of the electrons. For the biphotonic excitation, the extrapolated fraction of escaped electrons is 1.8 times higher than for the monophotonic 200 nm excitation (31% vs. 17.5% at 25 oC, respectively), due to the broadening of the electron distribution. The biphotonic electron detachment is very inefficient; the corresponding absorption coefficient at 400 nm is &lt; 4 cm TW-1 M-1 (assuming unity quantum efficiency for the photodetachment). For [OH-] between 10 mM and 10 M, almost no concentration dependence of the time profiles of solvated electron kinetics was observed. At higher temperature, the escape fraction of the electrons increases with a slope of 3x10-3 K-1 and the recombination and diffusion-controlled dissociation of the close pairs become faster. Activation energies of 8.3 and 22.3 kJ/mol for these two processes were obtained. The semianalytical theory of Shushin for diffusion controlled reactions in the central force field was used to model the geminate dynamics. The implications of these results for photoionization of water are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0401071v1-abstract-full').style.display = 'none'; document.getElementById('physics/0401071v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 9 figures; supplement: 4 pages, 7 figures; to be submitted to J. Chem. Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0401057">arXiv:physics/0401057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0401057">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2004.03.134">10.1016/j.cplett.2004.03.134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recombination of Geminate (OH,eaq-) Pairs in Concentrated Alkaline Solutions: Lack of Evidence For Hydroxyl Radical Deprotonation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+R">Rui Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+R+A">Robert A. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Shkrob%2C+I+A">Ilya A. Shkrob</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+D+M">David M. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Oulianov%2C+D+A">Dmitri A. Oulianov</a>, <a href="/search/physics?searchtype=author&amp;query=Gosztola%2C+D">David Gosztola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0401057v1-abstract-short" style="display: inline;"> Picosecond dynamics of hydrated electrons and hydroxyl radicals generated in 200 nm photodissociation of aqueous hydroxide and 400 nm (3-photon) ionization of water in concentrated alkaline solutions were obtained. No deprotonation of hydroxyl radicals was observed on sub-nanosecond time scale, even in 1-10 M KOH solutions. This result is completely at odds with the kinetic data for deprotonatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0401057v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0401057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0401057v1-abstract-full" style="display: none;"> Picosecond dynamics of hydrated electrons and hydroxyl radicals generated in 200 nm photodissociation of aqueous hydroxide and 400 nm (3-photon) ionization of water in concentrated alkaline solutions were obtained. No deprotonation of hydroxyl radicals was observed on sub-nanosecond time scale, even in 1-10 M KOH solutions. This result is completely at odds with the kinetic data for deprotonation of OH radical in dilute alkaline solutions. We suggest that the deprotonation of hydroxyl radical is slowed down dramatically in concentrated alkaline solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0401057v1-abstract-full').style.display = 'none'; document.getElementById('physics/0401057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages; 2 figures; submitted to Chem. Phys. Lett</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10