CINXE.COM

Search results for: ungulates

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ungulates</title> <meta name="description" content="Search results for: ungulates"> <meta name="keywords" content="ungulates"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ungulates" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ungulates"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ungulates</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Descriptive Epidemiology of Mortality in Certain Species of Captive Deer in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musadiq%20Idris">Musadiq Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ali"> Sajjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20Khaliq"> Syed A. Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Umer%20Farooq"> Umer Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postmortem record of 217 captive ungulates including Black-buck (n=31), Chinkara (n=20), Hog deer (n=116), Spotted deer (n=35), Red Deer n=(04), and Rusa deer (n=11) submitted to the Veterinary Research Institute, Lahore, Pakistan was analyzed to determine the primary cause of mortality in these animals. The submissions included temporal distribution from Government wildlife captive farms, zoo, and private ownerships, over a three year period (2007-2009). The most common cause of death was found to be trauma (20.27%), followed by parasitic diseases (15.67%), bacterial diseases (11.98%), stillbirths (9.21%), snakebites (2.76%), gut affections (2.30%), neoplasia (1.38%) and starvation (0.92%). The exact cause of death could not be determined in 77 of 217 animals. Pneumonia (8.29%) and tuberculosis (3.69%) were the most common bacterial diseases. Analyses for parasitic infestation revealed tapeworms to be highest (11.05%), followed by roundworms (8.29%) and hemoparasitism (5.07%) (babesiosis and theileriosis). The mortality rate in young ungulates was lower as compared to adults (32.26% and 67.74%). Gender wise data presented higher mortality in females (55.30%) compared to males (44.70%). In conclusion, highest mortality factor in captive ungulates was trauma, followed by parasitic and bacterial infestations/infections of tapeworms and pneumonia, respectively. Furthermore, necropsies provided substantial information on etiology of death and other related epidemiological aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title=" epidemiology"> epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=ungulates" title=" ungulates"> ungulates</a> </p> <a href="https://publications.waset.org/abstracts/24506/descriptive-epidemiology-of-mortality-in-certain-species-of-captive-deer-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Human Use, Season and Habitat on Ungulate Densities in Kanha Tiger Reserve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Awasthi">Neha Awasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujjwal%20Kumar"> Ujjwal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density of large carnivores is primarily dictated by the density of their prey. Therefore, optimal management of ungulates populations permits harbouring of viable large carnivore populations within protected areas. Ungulate density is likely to respond to regimes of protection and vegetation types. This has generated the need among conservation practitioners to obtain strata specific seasonal species densities for habitat management. Kanha Tiger Reserve (KTR) of 2074 km2 area comprises of two distinct management strata: The core (940 km2), devoid of human settlements and buffer (1134 km2) which is a multiple use area. In general, four habitat strata, grassland, sal forest, bamboo-mixed forest and miscellaneous forest are present in the reserve. Stratified sampling approach was used to access a) impact of human use and b) effect of habitat and season on ungulate densities. Since 2013 to 2016, ungulates were surveyed in winter and summer of each year with an effort of 1200 km walk in 200 spatial transects distributed throughout Kanha Tiger Reserve. We used a single detection function for each species within each habitat stratum for each season for estimating species specific seasonal density, using program DISTANCE. Our key results state that the core area had 4.8 times higher wild ungulate biomass compared with the buffer zone, highlighting the importance of undisturbed area. Chital was found to be most abundant, having a density of 30.1(SE 4.34)/km2 and contributing 33% of the biomass with a habitat preference for grassland. Unlike other ungulates, Gaur being mega herbivore, showed a major seasonal shift in density from bamboo-mixed and sal forest in summer to miscellaneous forest in winter. Maximum diversity and ungulate biomass were supported by grassland followed by bamboo-mixed habitat. Our study stresses the importance of inviolate core areas for achieving high wild ungulate densities and for maintaining populations of endangered and rare species. Grasslands accounts for 9% of the core area of KTR maintained in arrested stage of succession, therefore enhancing this habitat would maintain ungulate diversity, density and cater to the needs of only surviving population of the endangered barasingha and grassland specialist the blackbuck. We show the relevance of different habitat types for differential seasonal use by ungulates and attempt to interpret this in the context of nutrition and cover needs by wild ungulates. Management for an optimal habitat mosaic that maintains ungulate diversity and maximizes ungulate biomass is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distance%20sampling" title="distance sampling">distance sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20management" title=" habitat management"> habitat management</a>, <a href="https://publications.waset.org/abstracts/search?q=ungulate%20biomass" title=" ungulate biomass"> ungulate biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a> </p> <a href="https://publications.waset.org/abstracts/60899/effect-of-human-use-season-and-habitat-on-ungulate-densities-in-kanha-tiger-reserve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Coexistence and Conservation of Sympatric Large Carnivores in Gir Protected Area, Gujarat, Western India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazneen%20Zehra">Nazneen Zehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gir Protected Area (PA) is home to two sympatric large carnivores, the Asiatic lion and the common leopard, which share the same habitat. Understanding their interactions and coexistence is crucial for effective conservation management. From 2009 to 2012, we studied the availability and consumption of prey by these two carnivores to understand the dynamics of their interactions and coexistence. Ungulates provided approximately 3634.45 kg/km² of prey biomass, primarily composed of chital (ca. 2711.25 kg/km²), sambar (ca. 411.78 kg/km²), and nilgai (ca. 511.52 kg/km²). Other prey included peafowl (75.76 kg/km²) and langur (ca. 158.72 kg/km²). Both carnivores prioritized chital as their key prey species. The diet of Asiatic lions was predominantly composed of ungulates, with biomass contributions of chital (301.14 kg), sambar (378.75 kg), and nilgai (291.42 kg). Other prey species, such as peafowl and langur, contributed 1.36 kg and 2.40 kg, respectively, to the lions' diet. For leopards, the diet also heavily relied on chital (311.49 kg), followed by sambar (44.03 kg) and nilgai (172.78 kg). The biomass of other prey species in the leopards' diet included peafowl (2.08 kg) and langur (36.07 kg). Both species were found to primarily utilize teak-mixed forest, followed by riverine forest and teak-acacia-zizyphus habitats. The similarities in diet composition and habitat use indicate competition between these sympatric species. This competition may require one predator species to bear certain costs for the benefit of the other, which can influence conservation and management strategies. Effective conservation strategies are necessary to ensure the long-term survival of both the Asiatic lion and the common leopard equally and to maintain ecological balance in Gir PA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20carnivores" title="large carnivores">large carnivores</a>, <a href="https://publications.waset.org/abstracts/search?q=Gir%20PA" title=" Gir PA"> Gir PA</a>, <a href="https://publications.waset.org/abstracts/search?q=coexistence" title=" coexistence"> coexistence</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20utilization" title=" resource utilization"> resource utilization</a> </p> <a href="https://publications.waset.org/abstracts/188489/coexistence-and-conservation-of-sympatric-large-carnivores-in-gir-protected-area-gujarat-western-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Grouping Pattern, Habitat Assessment and Overlap Analysis of Five Ungulates Species in Different Altitudinal Gradients of Western Himalaya, Uttarakhand, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaleem%20Ahmed">Kaleem Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Khan"> Jamal A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grouping patterns, habitat use, and overlap studies were conducted on five sympatric ungulate species sambar (Cervus unicolor), chital (Axis axis), muntjac (Muntiacus muntjac), goral (Nemorhaedus goral), and serow (Capricornis sumatraensis) in the Dabka watershed area within Indian West Himalayan range. Data on age, sex composition, group size, and various ecological and topographical factors governing the presence/absence of species within the study area were collected using a 250 km of a trail walk, 95 permanent circular plots of 10 m radius, and 3 vantage points with 58 scannings. The highest mean group size was recorded for chital (6.35 ± 0.50), followed by sambar (1.35 ± 0.10), goral (1.25 ±0.63), muntjac (1.12 ± 0.05), and serow (1.00 ± 0.00). Grouping pattern significantly varied among sympatric species (F = 85.10, df. = 6, P = 0.000). The highest mean pellet group density (/ha ± SE) was recorded for sambar (41.56 ± 3.51), followed by goral (23.31 ± 3.45), chital (19.21 ± 3.51), muntjac (7.43 ± 1.21), and serow (1.02 ± 0.10). Two-way variance analysis showed a significant difference in the density of the pellet group of all ungulate species across different study area habitats (F = 6.38, df = 4, P = 0.027). The availability-utilization (AU) analysis reveals that goral was mostly sighted in steep slopes, preferred > 2100 m altitudinal range with low shrub understory, avoided dense forest, and relatively more southern aspects were used. Chital had used a wide range of tree and shrub coverings with a preference towards moderate cover range (26-50%), preferred areas with low slope category ( < 25), avoided areas of high altitude > 900 m. Sambar avoided less tree cover (0-25), preferred slope category (26-500), altitudes between 1600-2100 m, and preferred dense forest with northern aspects. Muntjac used all elevation ranges in the study area with a preference towards the dense forest and northern aspects. Serow preferred high tree cover > 75%, avoided low shrub cover (0-25%), preferred high shrub cover 51-75%, utilized higher elevation > 2100 m, avoided low elevation range and northern aspects. All species occupied similar habitat types, forest or scrub, except for the goral, which preferred open spaces. Between muntjac and sambar, the highest overlap was found (65%), and there was no overlap between chital and serow, chital and goral. Aspect, slope, altitude, and vegetation characteristics were found to be important factors for the overlap of ungulate sympatric species. One major reason for their ecological separation at the fine-scale level is the differential use of altitude by ungulates in the present study. This is confirmed by the avoidance by chital of altitudes > 900 m and serow of < 2100 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altitude" title="altitude">altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=grouping%20pattern" title=" grouping pattern"> grouping pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalayas" title=" Himalayas"> Himalayas</a>, <a href="https://publications.waset.org/abstracts/search?q=overlap" title=" overlap"> overlap</a>, <a href="https://publications.waset.org/abstracts/search?q=ungulates" title=" ungulates"> ungulates</a> </p> <a href="https://publications.waset.org/abstracts/128303/grouping-pattern-habitat-assessment-and-overlap-analysis-of-five-ungulates-species-in-different-altitudinal-gradients-of-western-himalaya-uttarakhand-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Genomic Diversity and Relationship among Arabian Peninsula Dromedary Camels Using Full Genome Sequencing Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bahbahani">H. Bahbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Musa"> H. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Al%20Mathen"> F. Al Mathen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dromedary camels (Camelus dromedarius) are single-humped even-toed ungulates populating the African Sahara, Arabian Peninsula, and Southwest Asia. The genome of this desert-adapted species has been minimally investigated using autosomal microsatellite and mitochondrial DNA markers. In this study, the genomes of 33 dromedary camel samples from different parts of the Arabian Peninsula were sequenced using Illumina Next Generation Sequencing (NGS) platform. These data were combined with Genotyping-by-Sequencing (GBS) data from African (Sudanese) dromedaries to investigate the genomic relationship between African and Arabian Peninsula dromedary camels. Principle Component Analysis (PCA) and average genome-wide admixture analysis were be conducted on these data to tackle the objectives of these studies. Both of the two analyses conducted revealed phylogeographic distinction between these two camel populations. However, no breed-wise genetic classification has been revealed among the African (Sudanese) camel breeds. The Arabian Peninsula camel populations also show higher heterozygosity than the Sudanese camels. The results of this study explain the evolutionary history and migration of African dromedary camels from their center of domestication in the southern Arabian Peninsula. These outputs help scientists to further understand the evolutionary history of dromedary camels, which might impact in conserving the favorable genetic of this species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dromedary" title="dromedary">dromedary</a>, <a href="https://publications.waset.org/abstracts/search?q=genotyping-by-sequencing" title=" genotyping-by-sequencing"> genotyping-by-sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabian%20Peninsula" title=" Arabian Peninsula"> Arabian Peninsula</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan" title=" Sudan"> Sudan</a> </p> <a href="https://publications.waset.org/abstracts/102448/genomic-diversity-and-relationship-among-arabian-peninsula-dromedary-camels-using-full-genome-sequencing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Comparative Gross Anatomical Studies of the Long Bones of the Adult Chinkara and in the Adult Beetal Goat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salahud%20Din">Salahud Din</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Masood"> Saima Masood</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafsa%20Zaneb"> Hafsa Zaneb</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20%E2%80%93ur-%20Rehman"> Habib –ur- Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Khan"> Imad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muqader%20Shah"> Muqader Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to examine the osteomorphological differences between the long bones of adult Chinkara and an adult Beetal goat, using visual observation, which has still not studied. The osseous remains of these small-sized ungulates often encountered, but cannot distinguish, because of the lack of literature. Specimens of the adult Chinkara of known age and sex for osteomorphological studies are collected from the Manglot Wildlife Park and Ungulate Breeding Centre, Nizampur, Pakistan, while the bones of adult Beetal goats are obtained after slaughtering in a slaughterhouse. The research is carried out at the University of Veterinary and Animal Sciences, Lahore, Pakistan. In this research, the main morphological features recorded in the long bones of thoracic limb and pelvic limb of the adult Chinkara, by comparing them to those of the Beetal goat. The most important differences between the two species are noted in the scapula, the humerus, the radius and ulna, the metacarpal, femur, tibia metatarsal and phalanges. In conclusion, the present study suggests that the morphology of the long bones of adult Chinkara has different from the Beetal goat in various points of view. Based on these recorded points, long bones of these two species can easily be differentiated. The study is helpful in zooarcheological, comparative osteometric studies, for forensic specialists and veterinary anatomists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beetal%20goat" title="Beetal goat">Beetal goat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinkara" title=" Chinkara"> Chinkara</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20morphological%20features" title=" comparative morphological features"> comparative morphological features</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20bones" title=" long bones"> long bones</a>, <a href="https://publications.waset.org/abstracts/search?q=osteology" title=" osteology"> osteology</a> </p> <a href="https://publications.waset.org/abstracts/111273/comparative-gross-anatomical-studies-of-the-long-bones-of-the-adult-chinkara-and-in-the-adult-beetal-goat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Survey of Free-Range inhabitants of Federal University of Agriculture Abeokuta Zoological Park</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Olanrewaju%20Ibiyomi">Matthew Olanrewaju Ibiyomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the abundance of free-range natural inhabitants of the Federal University of Agriculture, Abeokuta (FUNAAB) Zoo Park. A baseline data of free-ranging inhabitants of the Park is essential to monitor trends and institute conservation plans through unsustainable natural resources exploitation and habitat destruction. Four transects were selected across the study area. Each transect was traversed for a period of four months and observations was carried out twice a day. The Four existing tracks explored during the study were the aviary, reptile, carnivore and primate tracks. Data were analyzed using descriptive statistics. The findings from this study revealed that 8 species of natural inhabitants were identified, which were the Vervet monkey (Chlorocebuspygerythrus), Maxwell duiker(Philantombamaxwellii), Mongoose (Herpestidaespp), Bushbuck(Tragelaphusscriptus), Cobra (Najanaja), Ground squirrel (Marmotinispp), Senegal coucal(Centropus senegalensis), Black kite (Milvus migrans). The result further showed that a total of 115 animals were encountered in the primate transect, 77 animals in the carnivores transect, 46 animals in the aviary transect and 34 animals in the ungulates transect by the representative of 43.3%, 28.3%, 15.8% and 12.5% respectively. Human activities and level of disturbance were observed to have affected the abundance and distribution of animals at Funaab Zoo Park. Continuous field inventory is recommended to ascertain the dynamics of animals observed as free-range inhabitants in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction" title=" extinction"> extinction</a>, <a href="https://publications.waset.org/abstracts/search?q=free-range" title=" free-range"> free-range</a> </p> <a href="https://publications.waset.org/abstracts/164797/survey-of-free-range-inhabitants-of-federal-university-of-agriculture-abeokuta-zoological-park" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Study of Preliminary Findings of Behavioral Patterns under Captive Conditions in Chinkara (Gazella bennettii) with Prospects for Future Conservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Idnan">Muhammad Idnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Javid"> Arshad Javid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem"> Muhammad Nadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted from April 2013 to March 2014 to observe the behavioral parameters of Chinkara (Gazella bennettii) under captive conditions by comparing the captive-born and wild-caught animals for conservation strategies. Understanding the behavioral conformations plays a significant role in captive management. Due to human population explosion and mechanized hunting, the captive breeding seems to be the best way for sports hunting, bush meat, for leather industry and horns for traditional medicinal usage. Primarily, captive management has been used on trial and error basis due to deficiency of ethology of this least concerned species. Behavior of [(20 wild-caught (WC) and 10 captive-bred (CB)] adult Chinkara was observed at captive breeding facilities for ungulates at Ravi Campus, University of Veterinary and Animal Sciences at Kasur district which is situated on southeast side of Lahore. The average annual rainfall is about 650 mm, with frequent raining during monsoon. A focal sample was used to observe the various behavioral patterns for CB and WC chinkara. A similarity was observed in behavioral parameters in WC and CB animals, however, when the differences were considered, WC male deer showed a significantly higher degree of agonistic interaction as compared to the CB male chinkara. These findings suggest that there is no immediate impact of captivity on behavior of chinkara nevertheless 10 generations of captivity. It is suggested that the Chinkara is not suitable for domestication and for successful deer farming, a further study is recommended for ethology of chinkara. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinkara%20%28Gazella%20bennettii%29" title="Chinkara (Gazella bennettii)">Chinkara (Gazella bennettii)</a>, <a href="https://publications.waset.org/abstracts/search?q=domestication" title=" domestication"> domestication</a>, <a href="https://publications.waset.org/abstracts/search?q=deer%20farming" title=" deer farming"> deer farming</a>, <a href="https://publications.waset.org/abstracts/search?q=ex-situ%20conservation" title=" ex-situ conservation"> ex-situ conservation</a> </p> <a href="https://publications.waset.org/abstracts/88746/a-study-of-preliminary-findings-of-behavioral-patterns-under-captive-conditions-in-chinkara-gazella-bennettii-with-prospects-for-future-conservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Evaluation of Effectiveness of Three Common Equine Thrush Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Strait">A. S. Strait</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Bryk-Lucy"> J. A. Bryk-Lucy</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Ritchie"> L. M. Ritchie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thrush is a common disease of ungulates primarily affecting the frog and sulci, caused by the anaerobic bacteria Fusobacterium necrophorum. Thrush accounts for approximately 45.0% of hoof disorders in horses. Prevention and treatment of thrush are essential to prevent horses from developing severe infections and becoming lame. Proper knowledge of hoof care and thrush treatments is crucial to avoid financial costs, unsoundness and lost training time. Research on the effectiveness of numerous commercial and homemade thrush treatments is limited in the equine industry. The objective of this study was to compare the effectiveness of three common thrush treatments for horses: weekly application of Thrush Buster, daily dilute bleach solution spray, or Metronidazole pastes every other day. Cases of thrush diagnosed by a veterinarian or veterinarian-trained researcher were given a score, from 0 to 4, based on the severity of the thrush in each hoof (n=59) and randomly assigned a treatment. Cases were rescored each week of the three-week treatment, and the final and initial scores were compared to determine effectiveness. The thrush treatments were compared with Thrush Buster as the reference at a significance level of α=.05. Binomial Logistic Regression Modeling was performed, finding that the odds of a hoof treated with Metronidazole to be thrush-free was 6.1 times greater than a hoof treated with Thrush Buster (p=0.001), while the odds of a hoof that was treated with bleach to be thrush-free was only 0.97 times greater than a hoof treated with Thrush Buster (p=0.970), after adjustment for treatment week. Of the three treatments utilized in this study, Metronidazole paste applied to the affected areas every other day was the most effective treatment for thrush in horses. There are many other thrush remedies available, and further research is warranted to determine the efficacy of additional treatment options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusobacterium%20necrophorum" title="fusobacterium necrophorum">fusobacterium necrophorum</a>, <a href="https://publications.waset.org/abstracts/search?q=thrush" title=" thrush"> thrush</a>, <a href="https://publications.waset.org/abstracts/search?q=equine" title=" equine"> equine</a>, <a href="https://publications.waset.org/abstracts/search?q=horse" title=" horse"> horse</a>, <a href="https://publications.waset.org/abstracts/search?q=lameness" title=" lameness"> lameness</a> </p> <a href="https://publications.waset.org/abstracts/148562/evaluation-of-effectiveness-of-three-common-equine-thrush-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Importance of Fruit Trees for Prescribed Burning in a South American Savanna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20M.%20Falleiro">Rodrigo M. Falleiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20P.%20L.%20Parime"> Joaquim P. L. Parime</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20C.%20Santos"> Luciano C. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20D.%20Silva"> Rodrigo D. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cerrado biome is the most biodiverse savanna on the planet. Located in central Brazil, its preservation is seriously threatened by the advance of intensive agriculture and livestock. Conservation Units and Indigenous Lands are increasingly isolated and subject to mega wildfires. Among the characteristics of this savanna, we highlight the high rate of primary biomass production and the reduced occurrence of large grazing animals. In this biome, the predominant fauna is more dependent on the fruits produced by the dicotyledonous species in relation to other tropical savannas. Fire is a key element in the balance between mono and dicotyledons or between the arboreal and herbaceous strata. Therefore, applying fire regimes that maintain the balance between these strata without harming fruit production is essential in the conservation strategies of Cerrado's biodiversity. Recently, Integrated Fire Management has started to be implemented in Brazilian protected areas. As a result, management with prescribed burns has increasingly replaced strategies based on fire exclusion, which in practice have resulted in large wildfires, with highly negative impacts on fruit and fauna production. In the Indigenous Lands, these fires were carried out respecting traditional knowledge. The indigenous people showed great concern about the effects of fire on fruit plants and important animals. They recommended that the burns be carried out between April and May, as it would result in a greater production of edible fruits ("fruiting burning"). In other tropical savannas in the southern hemisphere, the preferential period tends to be later, in the middle of the dry season, when the grasses are dormant (June to August). However, in the Cerrado, this late period coincides with the flowering and sprouting of several important fruit species. To verify the best burning season, the present work evaluated the effects of fire on flowering and fruit production of theByrsonima sp., Mouriri pusa, Caryocar brasiliense, Anacardium occidentale, Pouteria ramiflora, Hancornia speciosa, Byrsonima verbascifolia, Anacardium humille and Talisia subalbens. The evaluations were carried out in the field, covering 31 Indigenous Lands that cover 104,241.18 Km², where 3,386 prescribed burns were carried out between 2015 and 2018. The burning periods were divided into early (carried out during the rainy season), modal or “fruiting” (carried out during the transition between seasons) and late (carried out in the middle of the dry season, when the grasses are dormant). The results corroborate the traditional knowledge, demonstrating that the modal burns result in higher rates of reproduction and fruit production. Late burns showed intermediate results, followed by early burns. We conclude that management strategies based mainly on forage production, which are usually applied in savannas populated by grazing ungulates, may not be the best management strategy for South American savannas. The effects of fire on fruit plants, which have a particular phenologicalsynchronization with the fauna cycle, also need to be observed during the prescription of burns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerrado%20biome" title="cerrado biome">cerrado biome</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20regimes" title=" fire regimes"> fire regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20fruits" title=" native fruits"> native fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=prescribed%20burns" title=" prescribed burns"> prescribed burns</a> </p> <a href="https://publications.waset.org/abstracts/136541/the-importance-of-fruit-trees-for-prescribed-burning-in-a-south-american-savanna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10