CINXE.COM

Search results for: dipole antenna

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dipole antenna</title> <meta name="description" content="Search results for: dipole antenna"> <meta name="keywords" content="dipole antenna"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dipole antenna" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dipole antenna"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 362</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dipole antenna</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ur%20Rahman">Saeed Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ullah"> Naveed Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Irshad%20Khan"> Muhammad Irshad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Quensheng%20Cao"> Quensheng Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Niaz%20Muhammad%20Khan"> Niaz Muhammad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20antenna%20array" title="linear antenna array">linear antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20side%20lobe%20level" title=" minimum side lobe level"> minimum side lobe level</a>, <a href="https://publications.waset.org/abstracts/search?q=narrow%20half%20power%20beamwidth" title=" narrow half power beamwidth"> narrow half power beamwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/76942/minimum-half-power-beam-width-and-side-lobe-level-reduction-of-linear-antenna-array-using-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Connected Objects with Optical Rectenna for Wireless Information Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayma%20Bahar">Chayma Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Baccouch"> Chokri Baccouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedi%20Sakli"> Hedi Sakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Sakli"> Nizar Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20rectenna" title=" optical rectenna"> optical rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/129451/connected-objects-with-optical-rectenna-for-wireless-information-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Investigation of Utilizing L-Band Horn Antenna in Landmine Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20H.%20Abdelgwad">Ahmad H. Abdelgwad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Nashat"> Ahmed A. Nashat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR. &nbsp;One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full%20wave%20analysis" title="full wave analysis">full wave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=horn%20antenna%20design" title=" horn antenna design"> horn antenna design</a>, <a href="https://publications.waset.org/abstracts/search?q=landmine%20detection" title=" landmine detection"> landmine detection</a> </p> <a href="https://publications.waset.org/abstracts/68435/investigation-of-utilizing-l-band-horn-antenna-in-landmine-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Multiband Fractal Patch Antenna for Small Spacecraft of Earth Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beibit%20Karibayev">Beibit Karibayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Imanbayeva"> Akmaral Imanbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Namazbayev"> Timur Namazbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the small spacecraft (SSC) industry is experiencing a big boom in popularity. This is primarily due to ease of use, low cost and mobility. In addition, these programs can be implemented not only at the state level but also at the level of companies, universities and other organizations. For remote sensing of the Earth (ERS), small spacecraft with an orientation system is used. It is important to take into account here that a remote sensing device, for example, a camera for photographing the Earth's surface, must be directed at the Earth's surface. But this, at first glance, the limitation can be turned into an advantage using a patch antenna. This work proposed to use a patch antenna based on a unidirectional fractal in the SSC. The CST Microwave Studio software package was used for simulation and research. Copper (ε = 1.0) was chosen as the emitting element and reflector. The height of the substrate was 1.6 mm, the type of substrate material was FR-4 (ε = 4.3). The simulation was performed in the frequency range of 0 – 6 GHz. As a result of the research, a patch antenna based on fractal geometry was developed for ERS nanosatellites. The capabilities of these antennas are modeled and investigated. A method for calculating and modeling fractal geometry for patch antennas has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20remote%20sensing" title=" earth remote sensing"> earth remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20spacecraft" title=" small spacecraft"> small spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/135034/multiband-fractal-patch-antenna-for-small-spacecraft-of-earth-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badar%20Muneer">Badar Muneer</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Shabir"> Waseem Shabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Karim%20Shaikh"> Faisal Karim Shaikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feeding%20network" title="feeding network">feeding network</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20waveguide" title=" laminated waveguide"> laminated waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=PIFA" title=" PIFA"> PIFA</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20slots" title=" transverse slots"> transverse slots</a> </p> <a href="https://publications.waset.org/abstracts/63475/plate-laminated-slotted-waveguide-fed-23-planar-inverted-f-antenna-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raoudane%20Bouziyan">Raoudane Bouziyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawser%20Mohammad%20Tawhid"> Kawser Mohammad Tawhid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEKO" title="FEKO">FEKO</a>, <a href="https://publications.waset.org/abstracts/search?q=HFSS" title=" HFSS"> HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20band" title=" dual band"> dual band</a>, <a href="https://publications.waset.org/abstracts/search?q=shorted%20annular%20ring%20patch" title=" shorted annular ring patch"> shorted annular ring patch</a> </p> <a href="https://publications.waset.org/abstracts/12262/investigation-of-a-novel-dual-band-microstripwaveguide-hybrid-antenna-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> A Low-Cost Long-Range 60 GHz Backhaul Wireless Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atabak%20Rashidian">Atabak Rashidian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In duplex backhaul wireless communication systems, two separate transmit and receive high-gain antennas are required if an antenna switch is not implemented. Although the switch loss, which is considerable and in the order of 1.5 dB at 60 GHz, is avoided, the large separate antenna systems make the design bulky and not cost-effective. To avoid two large reflectors for such a system, transmit and receive antenna feeds with a common phase center are required. The phase center should coincide with the focal point of the reflector to maximize the efficiency and gain. In this work, we present an ultra-compact design in which stacked patch antennas are used as the feeds for a 12-inch reflector. The transmit antenna is a 1 × 2 array and the receive antenna is a single element located in the middle of the transmit antenna elements. Antenna elements are designed as stacked patches to provide the required impedance bandwidth for four standard channels of WiGigTM applications. The design includes three metallic layers and three dielectric layers, in which the top dielectric layer is a 100 µm-thick protective layer. The top two metallic layers are specified to the main and parasitic patches. The bottom layer is basically ground plane with two circular openings (0.7 mm in diameter) having a center through via which connects the antennas to a single input/output Si-Ge Bi-CMOS transceiver chip. The reflection coefficient of the stacked patch antenna is fully investigated. The -10 dB impedance bandwidth is about 11%. Although the gap between transmit and receive antenna is very small (g = 0.525 mm), the mutual coupling is less than -12 dB over the desired frequency band. The three dimensional radiation patterns of the transmit and receive reflector antennas at 60 GHz is investigated over the impedance bandwidth. About 39 dBi realized gain is achieved. Considering over 15 dBm of output power of the silicon chip in the transmit side, the EIRP should be over 54 dBm, which is good enough for over one kilometer multi Gbps data communications. The performance of the reflector antenna over the bandwidth shows the peak gain is 39 dBi and 40 dBi for the reflector antenna with 2-element and single element feed, respectively. This type of the system design is cost-effective and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antenna" title="Antenna">Antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20circuit" title=" integrated circuit"> integrated circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave" title=" millimeter-wave"> millimeter-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20center" title=" phase center"> phase center</a> </p> <a href="https://publications.waset.org/abstracts/102960/a-low-cost-long-range-60-ghz-backhaul-wireless-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafqat%20Ullah%20Khan">Shafqat Ullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Nasir"> Ammar Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Planar%20antenna%20array" title="Planar antenna array">Planar antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=Pelican%20optimisation%20Algorithm" title=" Pelican optimisation Algorithm"> Pelican optimisation Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=Faculty%20sensor" title=" Faculty sensor"> Faculty sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Antenna%20arrays" title=" Antenna arrays"> Antenna arrays</a> </p> <a href="https://publications.waset.org/abstracts/186381/faulty-sensors-detection-in-planar-array-antenna-using-pelican-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Quasistationary States and Mean Field Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Curilef">Sergio Curilef</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Atenas"> Boris Atenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipole-type%20interactions" title="dipole-type interactions">dipole-type interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics%20and%20thermodynamics" title=" dynamics and thermodynamics"> dynamics and thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20field%20model" title=" mean field model"> mean field model</a>, <a href="https://publications.waset.org/abstracts/search?q=quasistationary%20states" title=" quasistationary states"> quasistationary states</a> </p> <a href="https://publications.waset.org/abstracts/84759/quasistationary-states-and-mean-field-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Dielectric Thickness Modulation Based Optically Transparent Leaky Wave Antenna Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Ali%20Khan">Waqar Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A leaky-wave antenna design is proposed which is based on the realization of a certain kind of surface impedance profile that allows the existence of a perturbed surface wave (fast wave) that radiates. The antenna is realized by using optically transparent material Plexiglas. Plexiglas behaves as a dielectric at radio frequencies and is transparent at optical frequencies. In order to have a ground plane for the microwave frequencies, metal strips are used parallel to the E field of the operating mode. The microwave wavelength chosen is large enough such that it does not resolve the metal strip ground plane and sees it to be a uniform ground plane. While, at optical frequencies, the metal strips do have some shadowing effect. However still, about 62% of optical power can be transmitted through the antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Plexiglass" title="Plexiglass">Plexiglass</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-wave" title=" surface-wave"> surface-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20transparent" title=" optically transparent"> optically transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20strip" title=" metal strip"> metal strip</a> </p> <a href="https://publications.waset.org/abstracts/143364/dielectric-thickness-modulation-based-optically-transparent-leaky-wave-antenna-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> A Horn Antenna Loaded with FSS of Crossed Dipoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Mostafa%20El-Mongy">Ibrahim Mostafa El-Mongy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmegid%20Allam"> Abdelmegid Allam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article analysis and investigation of the effect of loading a horn antenna with frequency selective surface (FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524 mm and loss tangent 0.004. Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.25 GHz (10.75–11 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=filtenna" title=" filtenna"> filtenna</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29" title=" frequency selective surface (FSS)"> frequency selective surface (FSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=horn" title=" horn"> horn</a> </p> <a href="https://publications.waset.org/abstracts/2804/a-horn-antenna-loaded-with-fss-of-crossed-dipoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Sexual Dimorphism in the Sensorial Structures of the Antenna of Thygater aethiops (Hymenoptera: Apidae) and Its Relation with Some Corporal Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wendy%20Carolina%20Gomez%20Ramirez">Wendy Carolina Gomez Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodulfo%20Ospina%20Torres"> Rodulfo Ospina Torres </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thygater aethiops is a species of solitary bee with a neotropical distribution that has been adapted to live in urban environments. This species of bee presents a marked sexual dimorphism since the males have antenna almost as long as their body different from the females that present antenna with smaller size. In this work, placoid sensilla were studied, which are structures that appear in the antenna and are involved in the detection of substances both, for reproduction and for the search of food. The aim of this study was to evaluate the differences between these sensory structures in the different sexes, for which males and females were captured. Later some body measures were taken such as fresh weight with abdomen and without it, since the weight could be modified by the stomach content; other measures were taken as the total antenna length and length of the flagellum and flagelomere. After negative imprints of the antenna were made using nail polish, the imprint was cut with a microblade and mounted onto a microscope slide. The placoid sensilla were visible on the imprint, so they were counted manually on the 100x objective lens of the optical microscope. Initially, the males presented a specific distribution pattern in two types of sensilla: trichoid and placoid, the trichoid were found aligned in the dorsal face of the antenna and the placoid were distributed along the entire antenna; that was different to the females since they did not present a distribution pattern the sensilla were randomly organized. It was obtained that the males, because they have a longer antenna, have a greater number of sensilla in relation to the females. Additionally, it was found that there was no relationship between the weight and the number of sensilla, but there was a positive relationship between the length of the antenna, the length of the flagellum and the number of sensilla. The relationship between the number of sensilla per unit area in each of the sexes was also calculated, which showed that, on average, males have 4.2 ± 0.38 sensilla per unit area and females present 2.2 ± 0.20 and likewise a significant difference between sexes. This dimorphism found may be related to the sexual behavior of the species, since it has been demonstrated that males are more adapted to the perception of substances related to reproduction than to the search of food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactory%20organ" title=" olfactory organ"> olfactory organ</a>, <a href="https://publications.waset.org/abstracts/search?q=sensilla" title=" sensilla"> sensilla</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20dimorphism" title=" sexual dimorphism"> sexual dimorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20bees" title=" solitary bees"> solitary bees</a> </p> <a href="https://publications.waset.org/abstracts/84798/sexual-dimorphism-in-the-sensorial-structures-of-the-antenna-of-thygater-aethiops-hymenoptera-apidae-and-its-relation-with-some-corporal-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Modelling the Yield Stress of Magnetorheological Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Khajehsaeid">Hesam Khajehsaeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeimeh%20Alagheband"> Naeimeh Alagheband</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20fluids" title="magnetorheological fluids">magnetorheological fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=particles%20concentration" title=" particles concentration"> particles concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole%20model" title=" dipole model"> dipole model</a> </p> <a href="https://publications.waset.org/abstracts/143879/modelling-the-yield-stress-of-magnetorheological-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tijing%20Cai">Tijing Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qimeng%20Xu"> Qimeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daijin%20Zhou"> Daijin Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS-IMU%20%28Micro-Electro-Mechanical%20System%20Inertial%20Measurement%20Unit%29" title="MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)">MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)</a>, <a href="https://publications.waset.org/abstracts/search?q=BDS%20%28BeiDou%20Navigation%20Satellite%20System%29" title=" BDS (BeiDou Navigation Satellite System)"> BDS (BeiDou Navigation Satellite System)</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-antenna" title=" dual-antenna"> dual-antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation" title=" integrated navigation"> integrated navigation</a> </p> <a href="https://publications.waset.org/abstracts/97626/a-short-baseline-dual-antenna-bdsmems-imu-integrated-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chuanzhi">Chen Chuanzhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Yunyun"> Guo Yunyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20array%20feed%20antenna" title="linear array feed antenna">linear array feed antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=truss%20type" title=" truss type"> truss type</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20cylindrical%20antenna" title=" parabolic cylindrical antenna"> parabolic cylindrical antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=spaceborne%20antenna" title=" spaceborne antenna"> spaceborne antenna</a> </p> <a href="https://publications.waset.org/abstracts/108903/research-on-configuration-of-large-scale-linear-array-feeder-truss-parabolic-cylindrical-antenna-of-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Proximity-Inset Fed Triple Band Antenna for Global Position System with High Gain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Nan%20Chang">The Nan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-Tang%20Yu"> Ping-Tang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Ming%20Lin"> Jyun-Ming Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A triple band circularly polarized antenna covering 1.17, 1.22, and 1.57 GHz is presented. To extend to the triple-band operation, we need to add one more ring while maintaining the mechanism to independently control each ring. The inset-part in the feeding scheme is used to excite the band at 1.22 GHz, while the proximate-part of the feeding scheme is used to excite not only the band at 1.57 GHz but also the band at 1.17 GHz. This is achieved by up-vertically coupled with one ring to radiate at 1.57 GHz and down-vertically coupled another ring to radiate at 1.17 GHz. It is also noted that the inset-part in our feeding scheme is by horizontal coupling. Furthermore, to increase the gain at all three bands, three air-layers are added to make the total height of the antenna be 7.8 mm. The total thickness of the three air-layers is 3 mm. The gains of the three bands are all greater than 5 dBiC after adding the air-layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title="circular polarization">circular polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20position%20system" title=" global position system"> global position system</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20gain" title=" high gain"> high gain</a>, <a href="https://publications.waset.org/abstracts/search?q=triband%20antenna" title=" triband antenna"> triband antenna</a> </p> <a href="https://publications.waset.org/abstracts/91482/proximity-inset-fed-triple-band-antenna-for-global-position-system-with-high-gain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Antenna for Energy Harvesting in Wireless Connected Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Sakli">Nizar Sakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Chayma%20Bahar"> Chayma Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Baccouch"> Chokri Baccouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedi%20Sakli"> Hedi Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a> </p> <a href="https://publications.waset.org/abstracts/129453/antenna-for-energy-harvesting-in-wireless-connected-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurkirandeep%20Kaur">Gurkirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Pratap%20Yadav"> Rana Pratap Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20radiation%20characteristics" title="antenna radiation characteristics">antenna radiation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamically%20reconfigurable" title=" dynamically reconfigurable"> dynamically reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20antenna" title=" plasma antenna"> plasma antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20column" title=" plasma column"> plasma column</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20striations" title=" plasma striations"> plasma striations</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wave" title=" surface wave"> surface wave</a> </p> <a href="https://publications.waset.org/abstracts/93278/an-efficient-automated-radiation-measuring-system-for-plasma-monopole-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid%20M.%20Ali">Shahid M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakiullah"> Zakiullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20band" title="dual band">dual band</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=HFSS" title=" HFSS"> HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku%20band" title=" Ku band"> Ku band</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a> </p> <a href="https://publications.waset.org/abstracts/37730/the-design-and-analysis-of-a-novel-type-high-gain-microstrip-patch-antenna-system-for-the-satellite-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adel%20Sennouni">Mohamed Adel Sennouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Zbitou"> Jamal Zbitou</a>, <a href="https://publications.waset.org/abstracts/search?q=Benaissa%20Abboud"> Benaissa Abboud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahed%20Tribak"> Abdelwahed Tribak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bennis"> Hamid Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Latrach"> Mohamed Latrach </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 &#8486; microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna" title="UWB planar antenna">UWB planar antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=L-shaped%20slots" title=" L-shaped slots"> L-shaped slots</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20applications" title=" wireless applications"> wireless applications</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20band-width" title=" impedance band-width"> impedance band-width</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pattern" title=" radiation pattern"> radiation pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=CST" title=" CST"> CST</a> </p> <a href="https://publications.waset.org/abstracts/16119/compact-ultra-wideband-printed-monopole-antenna-with-inverted-l-shaped-slots-for-data-communication-and-rf-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Short-Range and Long-Range Ferrimagnetic Order in Fe(Te₁.₅Se₀.₅)O₅Cl</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Kozlyakova">E. S. Kozlyakova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Eliseev"> A. A. Eliseev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Moskin"> A. V. Moskin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Akhrorov"> A. Y. Akhrorov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Berdonosov"> P. S. Berdonosov</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Dolgikh"> V. A. Dolgikh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Denisova"> K. N. Denisova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Lemmens"> P. Lemmens</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rahaman"> B. Rahaman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Das"> S. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saha-Dasgupta"> T. Saha-Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Vasiliev"> A. N. Vasiliev</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Volkova"> O. S. Volkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable attention has been paid recently to FeTe₂O₅Cl due to reduced dimensionality and frustration in the magnetic subsystem, succession of phase transitions, and multiferroicity. The efforts to grow its selenite sibling resulted in mixed halide compound, Fe(Te₁.₅Se₀.₅)O₅Cl, which was found crystallizing in a new structural type and possessing properties drastically different from those of a parent system. Hereby we report the studies of magnetization M and specific heat Cₚ, combined with Raman spectroscopy and density functional theory calculations in Fe(Te₁.₅Se₀.₅)O₅Cl. Its magnetic subsystem features weakly coupled Fe³⁺ - Fe³⁺ dimers showing the regime of short-range correlations at TM ~ 70 K and long-range order at TN = 22 K. In a magnetically ordered state, sizable spin-orbital interactions lead to a small canting of Fe³⁺ moments. The density functional theory calculations of leading exchange interactions were found in agreement with measurements of thermodynamic properties and Raman spectroscopy. Besides, because of the relatively large magnetic moment of the Fe³⁺ ion, we found that magnetic dipole-dipole interactions contribute significantly to experimentally observed orientation of magnetization easy axis in ac-plane. As a conclusion, we suggest a model of magnetic subsystem in magnetically ordered state of Fe(Te₁.₅Se₀.₅)O₅Cl based on a model of interacting dimers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipole-dipole%20interactions" title="dipole-dipole interactions">dipole-dipole interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20dimensional%20magnetism" title=" low dimensional magnetism"> low dimensional magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=selenite" title=" selenite"> selenite</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20canting" title=" spin canting"> spin canting</a> </p> <a href="https://publications.waset.org/abstracts/130861/short-range-and-long-range-ferrimagnetic-order-in-fete15se05o5cl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Ram">Gopi Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Durbadal%20Mandal"> Durbadal Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Kar"> Rajib Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakti%20Prasad%20Ghoshal"> Sakti Prasad Ghoshal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20arrays" title="circular arrays">circular arrays</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20null%20beam%20width" title=" first null beam width"> first null beam width</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20lobe%20level" title=" side lobe level"> side lobe level</a>, <a href="https://publications.waset.org/abstracts/search?q=FFA" title=" FFA"> FFA</a> </p> <a href="https://publications.waset.org/abstracts/4066/design-of-non-uniform-circular-antenna-arrays-using-firefly-algorithm-for-side-lobe-level-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Komeylian">Somayeh Komeylian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array%20signal%20processing" title="array signal processing">array signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20doppler%20frequency" title=" unbiased doppler frequency"> unbiased doppler frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20phase" title=" carrier phase"> carrier phase</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20slowly%20fluctuating%20point%20target" title=" and slowly fluctuating point target"> and slowly fluctuating point target</a> </p> <a href="https://publications.waset.org/abstracts/129148/investigation-of-the-unbiased-characteristic-of-doppler-frequency-to-different-antenna-array-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Yudhi%20Purba">Raymond Yudhi Purba</a>, <a href="https://publications.waset.org/abstracts/search?q=Levy%20Olivia%20Nur"> Levy Olivia Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Radial%20Anwar"> Radial Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skew%20planar%20wheel" title="skew planar wheel">skew planar wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=cloverleaf" title=" cloverleaf"> cloverleaf</a>, <a href="https://publications.waset.org/abstracts/search?q=first-person%20view" title=" first-person view"> first-person view</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20sweep" title=" parameter sweep"> parameter sweep</a> </p> <a href="https://publications.waset.org/abstracts/139082/skew-planar-wheel-antenna-for-first-person-view-of-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adham%20M.%20Salah">Adham M. Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20A.%20Nagem"> Tariq A. Nagem</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20A.%20Abd-Alhameed"> Raed A. Abd-Alhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20M.%20Noras"> James M. Noras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECC" title="ECC">ECC</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralization%20line" title=" neutralization line"> neutralization line</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO%20antenna" title=" MIMO antenna"> MIMO antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-band" title=" multi-band"> multi-band</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20coupling" title=" mutual coupling"> mutual coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a> </p> <a href="https://publications.waset.org/abstracts/105683/isolation-enhancement-of-compact-dual-band-printed-multiple-input-multiple-output-antenna-for-wlan-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boukabcha">N. Boukabcha</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Megrouss"> Y. Megrouss</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yahiaoui"> S. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title="electron density">electron density</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole%20moment" title=" dipole moment"> dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20potential" title=" electrostatic potential"> electrostatic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Mopro" title=" Mopro"> Mopro</a> </p> <a href="https://publications.waset.org/abstracts/42322/theoretical-and-experimental-electrostatic-parameters-determination-of-4-methyl-n-5-nitrothiophen-2-ylmethylidene-aniline-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khachatur%20V.%20Nerkararyan">Khachatur V. Nerkararyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20I.%20Bozhevolnyi"> Sergey I. Bozhevolnyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20surface%20plasmon" title=" localized surface plasmon"> localized surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dipole%20emitter" title=" quantum dipole emitter"> quantum dipole emitter</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20dynamics" title=" relaxation dynamics"> relaxation dynamics</a> </p> <a href="https://publications.waset.org/abstracts/28289/relaxation-dynamics-of-quantum-emitters-resonantly-coupled-to-a-localized-surface-plasmon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Optimization of a Hand-Fan Shaped Microstrip Patch Antenna by Means of Orthogonal Design Method of Design of Experiments for L-Band and S-Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaswinder%20Kaur">Jaswinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitika"> Nitika</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Khanna"> Rajesh Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hand-fan shaped microstrip patch antenna (MPA) for L-band and S-band applications is designed, and its characteristics have been reconnoitered. The proposed microstrip patch antenna with double U-slot defected ground structure (DGS) is fabricated on an FR4 substrate which is a very readily available and inexpensive material. The suggested antenna is optimized using Orthogonal Design Method (ODM) of Design of Experiments (DOE) to cover the frequency range from 0.91-2.82 GHz for L-band and S-band applications. The L-band covers the frequency range of 1-2 GHz, which is allocated to telemetry, aeronautical, and military systems for passive satellite sensors, weather radars, radio astronomy, and mobile communication. The S-band covers the frequency range of 2-3 GHz, which is used by weather radars, surface ship radars and communication satellites and is also reserved for various wireless applications such as Worldwide Interoperability for Microwave Access (Wi-MAX), super high frequency radio frequency identification (SHF RFID), industrial, scientific and medical bands (ISM), Bluetooth, wireless broadband (Wi-Bro) and wireless local area network (WLAN). The proposed method of optimization is very time efficient and accurate as compared to the conventional evolutionary algorithms due to its statistical strategy. Moreover, the antenna is tested, followed by the comparison of simulated and measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20fan%20shaped%20MPA" title=" hand fan shaped MPA"> hand fan shaped MPA</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Band" title=" L-Band"> L-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20design%20method" title=" orthogonal design method"> orthogonal design method</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Band" title=" S-Band"> S-Band</a> </p> <a href="https://publications.waset.org/abstracts/109582/optimization-of-a-hand-fan-shaped-microstrip-patch-antenna-by-means-of-orthogonal-design-method-of-design-of-experiments-for-l-band-and-s-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mireille%20Vonlanthen">Mireille Vonlanthen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Porcu"> Pasquale Porcu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Rivera"> Ernesto Rivera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendritic%20molecules" title="dendritic molecules">dendritic molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title=" energy transfer"> energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrene" title=" pyrene"> pyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=ru-trisbipyridine%20complex" title=" ru-trisbipyridine complex"> ru-trisbipyridine complex</a> </p> <a href="https://publications.waset.org/abstracts/44622/synthesis-characterization-optical-and-photophysical-properties-of-pyrene-labeled-rutheniumii-trisbipyridine-complex-cored-dendrimers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Performance Assessment of GSO Satellites before and after Enhancing the Pointing Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20Emam">Amr Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Victor"> Joseph Victor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abd%20Elghany"> Mohamed Abd Elghany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined both theoretically and by means of practical measurements, taking also into account all additional sources of pointing errors, such as East-West station keeping, orbit eccentricity and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a tracking 11m and fixed 4.8m transmitting antenna before and after the implementation of the pointing corrections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite" title="satellite">satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20orbit" title=" inclined orbit"> inclined orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=pointing%20errors" title=" pointing errors"> pointing errors</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage%20optimization" title=" coverage optimization"> coverage optimization</a> </p> <a href="https://publications.waset.org/abstracts/39830/performance-assessment-of-gso-satellites-before-and-after-enhancing-the-pointing-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dipole%20antenna&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10