CINXE.COM
Search results for: binary thresholding
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: binary thresholding</title> <meta name="description" content="Search results for: binary thresholding"> <meta name="keywords" content="binary thresholding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="binary thresholding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="binary thresholding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 734</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: binary thresholding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> Empirical Mode Decomposition Based Denoising by Customized Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahiba%20Mohguen">Wahiba Mohguen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%AFs%20El%E2%80%99hadi%20Bekka"> Raïs El’hadi Bekka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customized%20thresholding" title="customized thresholding">customized thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20signal" title=" ECG signal"> ECG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=EMD" title=" EMD"> EMD</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20thresholding" title=" hard thresholding"> hard thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-thresholding" title=" soft-thresholding"> soft-thresholding</a> </p> <a href="https://publications.waset.org/abstracts/67421/empirical-mode-decomposition-based-denoising-by-customized-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Binarization and Recognition of Characters from Historical Degraded Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bency%20Jacob">Bency Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=S.B.%20Waykar"> S.B. Waykar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binarization" title="binarization">binarization</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20thresholding" title=" global thresholding"> global thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20thresholding" title=" local thresholding"> local thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=thresholding" title=" thresholding"> thresholding</a> </p> <a href="https://publications.waset.org/abstracts/33322/binarization-and-recognition-of-characters-from-historical-degraded-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Performance Comparison of Non-Binary RA and QC-LDPC Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni%20Wenli">Ni Wenli</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Jing"> He Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-binary%20RA%20codes" title="non-binary RA codes">non-binary RA codes</a>, <a href="https://publications.waset.org/abstracts/search?q=QC-LDPC%20codes" title=" QC-LDPC codes"> QC-LDPC codes</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20comparison" title=" performance comparison"> performance comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20algorithm" title=" BP algorithm"> BP algorithm</a> </p> <a href="https://publications.waset.org/abstracts/42170/performance-comparison-of-non-binary-ra-and-qc-ldpc-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> Toward Automatic Chest CT Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angely%20Sim%20Jia%20Wun">Angely Sim Jia Wun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasa%20Arsovski"> Sasa Arsovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lung%20segmentation" title="lung segmentation">lung segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20masks" title=" binary masks"> binary masks</a>, <a href="https://publications.waset.org/abstracts/search?q=U-Net" title=" U-Net"> U-Net</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20software%20tools" title=" medical software tools"> medical software tools</a> </p> <a href="https://publications.waset.org/abstracts/168342/toward-automatic-chest-ct-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alsaidi%20M.%20Altaher">Alsaidi M. Altaher</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tahir%20Ismail"> Mohd Tahir Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20correction" title="boundary correction">boundary correction</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20filter" title=" median filter"> median filter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20thresholding" title=" wavelet thresholding"> wavelet thresholding</a> </p> <a href="https://publications.waset.org/abstracts/16883/hybrid-robust-estimation-via-median-filter-and-wavelet-thresholding-with-automatic-boundary-correction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Teaching the Binary System via Beautiful Facts from the Real Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20Ben%20Said">Salem Ben Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times the decimal number system to which we are accustomed has received serious competition from the binary number system. In this note, an approach is suggested to teaching and learning the binary number system using examples from the real world. More precisely, we will demonstrate the utility of the binary system in describing the optimal strategy to win the Chinese Nim game, and in telegraphy by decoding the hidden message on Perseverance’s Mars parachute written in the language of binary system. Finally, we will answer the question, “why do modern computers prefer the ternary number system instead of the binary system?”. All materials are provided in a format that is conductive to classroom presentation and discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20number%20system" title="binary number system">binary number system</a>, <a href="https://publications.waset.org/abstracts/search?q=Nim%20game" title=" Nim game"> Nim game</a>, <a href="https://publications.waset.org/abstracts/search?q=telegraphy" title=" telegraphy"> telegraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=computers%20prefer%20the%20ternary%20system" title=" computers prefer the ternary system"> computers prefer the ternary system</a> </p> <a href="https://publications.waset.org/abstracts/143278/teaching-the-binary-system-via-beautiful-facts-from-the-real-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> Hit-Or-Miss Transform as a Tool for Similar Shape Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Mohamed%20Elrajubi">Osama Mohamed Elrajubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20El-Feghi"> Idris El-Feghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abu%20Baker%20Saghayer"> Mohamed Abu Baker Saghayer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hit-or-miss%20operator%20transform" title="hit-or-miss operator transform">hit-or-miss operator transform</a>, <a href="https://publications.waset.org/abstracts/search?q=HMT" title=" HMT"> HMT</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20morphological%20operation" title=" binary morphological operation"> binary morphological operation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20detection" title=" shape detection"> shape detection</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20images%20processing" title=" binary images processing"> binary images processing</a> </p> <a href="https://publications.waset.org/abstracts/11881/hit-or-miss-transform-as-a-tool-for-similar-shape-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> On the Construction of Some Optimal Binary Linear Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Skezeer%20John%20B.%20Paz">Skezeer John B. Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ederlina%20G.%20Nocon"> Ederlina G. Nocon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounds%20of%20linear%20codes" title="bounds of linear codes">bounds of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=Griesmer%20bound" title=" Griesmer bound"> Griesmer bound</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20of%20linear%20codes" title=" construction of linear codes"> construction of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20binary%20linear%20codes" title=" optimal binary linear codes"> optimal binary linear codes</a> </p> <a href="https://publications.waset.org/abstracts/31628/on-the-construction-of-some-optimal-binary-linear-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">755</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> Soret-Driven Convection in a Binary Fluid with Coriolis Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Z.%20Abidin">N. H. Z. Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20M.%20Mokhtar"> N. F. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20A.%20Gani"> S. S. A. Gani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of diffusion of the thermal or known as Soret effect in a heated Binary fluid model with Coriolis force is investigated theoretically. The linear stability analysis is used, and the eigenvalue is obtained using the Galerkin method. The impact of the Soret and Coriolis force on the onset of stationary convection in a system is analysed with respect to various Binary fluid parameters and presented graphically. It is found that an increase of the Soret values, destabilize the Binary fluid layer system. However, elevating the values of the Coriolis force helps to lag the onset of convection in a system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benard%20convection" title="Benard convection">Benard convection</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20fluid" title=" binary fluid"> binary fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolis" title=" Coriolis"> Coriolis</a>, <a href="https://publications.waset.org/abstracts/search?q=Soret" title=" Soret "> Soret </a> </p> <a href="https://publications.waset.org/abstracts/68076/soret-driven-convection-in-a-binary-fluid-with-coriolis-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Seddiki">A. Seddiki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djebbouri"> M. Djebbouri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Guerchi"> D. Guerchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20thresholding%20transform" title="global thresholding transform">global thresholding transform</a>, <a href="https://publications.waset.org/abstracts/search?q=huffman%20coding" title=" huffman coding"> huffman coding</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIHT%20coding" title=" SPIHT coding"> SPIHT coding</a>, <a href="https://publications.waset.org/abstracts/search?q=scintigraphic%20images" title=" scintigraphic images"> scintigraphic images</a> </p> <a href="https://publications.waset.org/abstracts/17067/scintigraphic-image-coding-of-region-of-interest-based-on-spiht-algorithm-using-global-thresholding-and-huffman-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divyesh%20Patel">Divyesh Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanuja%20Srivastava"> Tanuja Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20tomography" title="discrete tomography">discrete tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=exactly-1-4-adjacency" title=" exactly-1-4-adjacency"> exactly-1-4-adjacency</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20matrices" title=" binary matrices"> binary matrices</a> </p> <a href="https://publications.waset.org/abstracts/8505/reconstruction-of-binary-matrices-satisfying-neighborhood-constraints-by-simulated-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saumya%20Srivastava">Saumya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Maiti"> Rina Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20detection" title=" vehicle detection"> vehicle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=histograms%20of%20oriented%20gradients" title=" histograms of oriented gradients"> histograms of oriented gradients</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/156497/multi-vehicle-detection-using-histogram-of-oriented-gradients-features-and-adaptive-sliding-window-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Remya">R. S. Remya</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Sethulekshmi"> U. S. Sethulekshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title="discrete wavelet transform">discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow%20variation" title=" optical flow variation"> optical flow variation</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20tampering" title=" video tampering"> video tampering</a> </p> <a href="https://publications.waset.org/abstracts/45252/a-passive-digital-video-authentication-technique-using-wavelet-based-optical-flow-variation-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gauthier%20Lefevre">Gauthier Lefevre</a>, <a href="https://publications.waset.org/abstracts/search?q=Holger%20Kohlmann"> Holger Kohlmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Saitzek"> Sebastien Saitzek</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Desfeux"> Rachel Desfeux</a>, <a href="https://publications.waset.org/abstracts/search?q=Adlane%20Sayede"> Adlane Sayede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20systems" title="binary systems">binary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithm" title=" evolutionary algorithm"> evolutionary algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20principles%20study" title=" first principles study"> first principles study</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a> </p> <a href="https://publications.waset.org/abstracts/67827/theoretical-and-experimental-investigations-of-binary-systems-for-hydrogen-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Naimi">Hilal Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amelbahahouda%20Adamou-Mitiche"> Amelbahahouda Adamou-Mitiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Mitiche"> Lahcene Mitiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifting%20wavelet%20transform" title="lifting wavelet transform">lifting wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20tree%20complex%20wavelet%20transform" title=" dual tree complex wavelet transform"> dual tree complex wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20shrinkage" title=" wavelet shrinkage"> wavelet shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20filter" title=" wiener filter"> wiener filter</a> </p> <a href="https://publications.waset.org/abstracts/135374/hybrid-thresholding-lifting-dual-tree-complex-wavelet-transform-with-wiener-filter-for-quality-assurance-of-medical-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Y.%20Mustafa">Adnan A. Y. Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20image" title="binary image">binary image</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilarity%20detection" title=" dissimilarity detection"> dissimilarity detection</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20matching%20model%20for%20binary%20images" title=" probabilistic matching model for binary images"> probabilistic matching model for binary images</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20mapping" title=" image mapping"> image mapping</a> </p> <a href="https://publications.waset.org/abstracts/113778/comparative-analysis-of-dissimilarity-detection-between-binary-images-based-on-equivalency-and-non-equivalency-of-image-inversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Dere">Duygu Dere</a>, <a href="https://publications.waset.org/abstracts/search?q=Mert%20Ergeneci"> Mert Ergeneci</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Gokcesu"> Kaan Gokcesu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20data%20processing" title="adaptive data processing">adaptive data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20finance" title=" behavioral finance "> behavioral finance </a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20optimization" title=" convex optimization"> convex optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20learning" title=" online learning"> online learning</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20minimum%20thresholding" title=" soft minimum thresholding"> soft minimum thresholding</a> </p> <a href="https://publications.waset.org/abstracts/92282/an-online-adaptive-thresholding-method-to-classify-google-trends-data-anomalies-for-investor-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endrick%20Barnacin">Endrick Barnacin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Luc%20Henry"> Jean-Luc Henry</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Nagau"> Jimmy Nagau</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Molinie"> Jack Molinie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=stuck%20particles%20separation" title=" stuck particles separation"> stuck particles separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobel%20operator" title=" Sobel operator"> Sobel operator</a>, <a href="https://publications.waset.org/abstracts/search?q=thresholding" title=" thresholding"> thresholding</a> </p> <a href="https://publications.waset.org/abstracts/148891/segmentation-using-multi-thresholded-sobel-images-application-to-the-separation-of-stuck-pollen-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">716</span> Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Y.%20Mustafa">Adnan A. Y. Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20images" title="big images">big images</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20images" title=" binary images"> binary images</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20matching" title=" image matching"> image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20similarity" title=" image similarity"> image similarity</a> </p> <a href="https://publications.waset.org/abstracts/89963/quick-similarity-measurement-of-binary-images-via-probabilistic-pixel-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">715</span> Ice Load Measurements on Known Structures Using Image Processing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azam%20Fazelpour">Azam Fazelpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20R.%20Dehghani"> Saeed R. Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlastimil%20Masek"> Vlastimil Masek</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Muzychka"> Yuri S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title="camera calibration">camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20detection" title=" ice detection"> ice detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20load%20measurements" title=" ice load measurements"> ice load measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/74768/ice-load-measurements-on-known-structures-using-image-processing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kay%20Thinzar%20Phu">Kay Thinzar Phu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lwin%20Lwin%20Oo"> Lwin Lwin Oo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20thresholding%20based%20on%20RGB%20color" title="adaptive thresholding based on RGB color">adaptive thresholding based on RGB color</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20color%20detection" title=" blue color detection"> blue color detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20color%20detection" title=" yellow color detection"> yellow color detection</a> </p> <a href="https://publications.waset.org/abstracts/77127/rgb-color-based-real-time-traffic-sign-detection-and-feature-extraction-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Mia">Rajib Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoplanetary%20systems" title="exoplanetary systems">exoplanetary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20points" title=" lagrangian points"> lagrangian points</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20orbit" title=" periodic orbit"> periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20three%20body%20problem" title=" restricted three body problem"> restricted three body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/28253/motion-of-an-infinitesimal-particle-in-binary-stellar-systems-kepler-34-kepler-35-kepler-16-kepler-413" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Speckle Noise Reduction Using Anisotropic Filter Based on Wavelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritika%20Bansal">Kritika Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Akwinder%20Kaur"> Akwinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Gujral"> Shruti Gujral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the approach of denoising is solved by using a new hybrid technique which associates the different denoising methods. Wavelet thresholding and anisotropic diffusion filter are the two different filters in our hybrid techniques. The Wavelet thresholding removes the noise by removing the high frequency components with lesser edge preservation, whereas an anisotropic diffusion filters is based on partial differential equation, (PDE) to remove the speckle noise. This PDE approach is used to preserve the edges and provides better smoothing. So our new method proposes a combination of these two filtering methods which performs better results in terms of peak signal to noise ratio (PSNR), coefficient of correlation (COC) and equivalent no of looks (ENL). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=denoising" title="denoising">denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title=" anisotropic diffusion filter"> anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplicative%20noise" title=" multiplicative noise"> multiplicative noise</a>, <a href="https://publications.waset.org/abstracts/search?q=speckle" title=" speckle"> speckle</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/14626/speckle-noise-reduction-using-anisotropic-filter-based-on-wavelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20R%C4%83dulescu"> Dan Rădulescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tag" title="Tag">Tag</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML" title=" HTML"> HTML</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20page" title=" web page"> web page</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20value" title=" similarity value"> similarity value</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a> </p> <a href="https://publications.waset.org/abstracts/50460/approximately-similarity-measurement-of-web-sites-using-genetic-algorithms-and-binary-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Pyramid Binary Pattern for Age Invariant Face Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Bijarnia">Saroj Bijarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Preety%20Singh"> Preety Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20invariant" title=" age invariant"> age invariant</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/64435/pyramid-binary-pattern-for-age-invariant-face-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">709</span> Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolvahab%20Ehsani%20Rad">Abdolvahab Ehsani Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shafry%20Mohd%20Rahim"> Mohd Shafry Mohd Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Norouzi"> Alireza Norouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20production" title="integral production">integral production</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20operation" title=" morphological operation"> morphological operation</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/3681/level-set-and-morphological-operation-techniques-in-application-of-dental-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">708</span> Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ammar">Muhammad Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20Ali"> Talha Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Basit"> Abdul Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtawar%20Rajput"> Bakhtawar Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Zobia%20Sohail"> Zobia Sohail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=music%20note" title="music note">music note</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20music" title=" sheet music"> sheet music</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20music%20recognition" title=" optical music recognition"> optical music recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=blob%20detection" title=" blob detection"> blob detection</a>, <a href="https://publications.waset.org/abstracts/search?q=thresholding" title=" thresholding"> thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=dictionary%20generation" title=" dictionary generation"> dictionary generation</a> </p> <a href="https://publications.waset.org/abstracts/133670/music-note-detection-and-dictionary-generation-from-music-sheet-using-image-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">707</span> Reversible and Adaptive Watermarking for MRI Medical Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisar%20Ahmed%20Memon">Nisar Ahmed Memon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new medical image watermarking scheme delivering high embedding capacity is presented in this paper. Integer Wavelet Transform (IWT), Companding technique and adaptive thresholding are used in this scheme. The proposed scheme implants, recovers the hidden information and restores the input image to its pristine state at the receiving end. Magnetic Resonance Imaging (MRI) images are used for experimental purposes. The scheme first segment the MRI medical image into non-overlapping blocks and then inserts watermark into wavelet coefficients having a high frequency of each block. The scheme uses block-based watermarking adopting iterative optimization of threshold for companding in order to avoid the histogram pre and post processing. Results show that proposed scheme performs better than other reversible medical image watermarking schemes available in literature for MRI medical images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20thresholding" title="adaptive thresholding">adaptive thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=companding%20technique" title=" companding technique"> companding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20authentication" title=" data authentication"> data authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20watermarking" title=" reversible watermarking"> reversible watermarking</a> </p> <a href="https://publications.waset.org/abstracts/57365/reversible-and-adaptive-watermarking-for-mri-medical-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">706</span> Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Broderick%20Crawford">Broderick Crawford</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Soto"> Ricardo Soto</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Berrios"> Natalia Berrios</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Olguin"> Eduardo Olguin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20cat%20swarm%20optimization" title="binary cat swarm optimization">binary cat swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=binarization%20methods" title=" binarization methods"> binarization methods</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=set%20covering%20problem" title=" set covering problem"> set covering problem</a> </p> <a href="https://publications.waset.org/abstracts/47183/solving-the-set-covering-problem-using-the-binary-cat-swarm-optimization-metaheuristic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">705</span> Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alhussein">Fahad Alhussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaping%20Liu"> Huaping Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20reference%20waveform%20receivers" title="correlation reference waveform receivers">correlation reference waveform receivers</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20offset%20carrier" title=" binary offset carrier"> binary offset carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplexed%20binary%20offset%20carrier" title=" multiplexed binary offset carrier"> multiplexed binary offset carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20navigation%20satellite%20systems" title=" global navigation satellite systems"> global navigation satellite systems</a> </p> <a href="https://publications.waset.org/abstracts/116944/variable-vs-fixed-window-width-code-correlation-reference-waveform-receivers-for-multipath-mitigation-in-global-navigation-satellite-systems-with-binary-offset-carrier-and-multiplexed-binary-offset-carrier-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20thresholding&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>