CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 108 results for author: <span class="mathjax">Maitra, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Maitra, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Maitra%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Maitra, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08196">arXiv:2501.08196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08196">pdf</a>, <a href="https://arxiv.org/format/2501.08196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The VMC Survey : LI. Classifying extragalactic sources using a probabilistic random forest supervised machine learning algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pennock%2C+C+M">Clara M. Pennock</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Aird%2C+J">James Aird</a>, <a href="/search/?searchtype=author&amp;query=Anih%2C+J+O">Joy. O. Anih</a>, <a href="/search/?searchtype=author&amp;query=Cross%2C+N+J+G">Nicholas J. G. Cross</a>, <a href="/search/?searchtype=author&amp;query=Dresbach%2C+F">Francesca Dresbach</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Groenewegen%2C+M+A+T">Martin A. T. Groenewegen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08196v1-abstract-short" style="display: inline;"> We used a supervised machine learning algorithm (probabilistic random forest) to classify ~130 million sources in the VISTA Survey of the Magellanic Clouds (VMC). We used multi-wavelength photometry from optical to far-infrared as features to be trained on, and spectra of Active Galactic Nuclei (AGN), galaxies and a range of stellar classes including from new observations with the Southern African&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08196v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08196v1-abstract-full" style="display: none;"> We used a supervised machine learning algorithm (probabilistic random forest) to classify ~130 million sources in the VISTA Survey of the Magellanic Clouds (VMC). We used multi-wavelength photometry from optical to far-infrared as features to be trained on, and spectra of Active Galactic Nuclei (AGN), galaxies and a range of stellar classes including from new observations with the Southern African Large Telescope (SALT) and SAAO 1.9m telescope. We also retain a label for sources that remain unknown. This yielded average classifier accuracies of ~79% (SMC) and ~87% (LMC). Restricting to the 56,696,719 sources with class probabilities (P$_{class}$) &gt; 80% yields accuracies of ~90% (SMC) and ~98% (LMC). After removing sources classed as &#39;Unknown&#39;, we classify a total of 707,939 (SMC) and 397,899 (LMC) sources, including &gt; 77,600 extragalactic sources behind the Magellanic Clouds. The extragalactic sources are distributed evenly across the field, whereas the Magellanic sources concentrate at the centres of the Clouds, and both concentrate in optical/IR colour-colour/magnitude diagrams as expected. We also test these classifications using independent datasets, finding that, as expected, the majority of X-ray sources are classified as AGN (554/883) and the majority of radio sources are classed as AGN (1756/2694) or galaxies (659/2694), where the relative AGN-galaxy proportions vary substantially with radio flux density. We have found: &gt; 49,500 hitherto unknown AGN candidates, likely including more AGN dust dominated sources which are in a critical phase of their evolution; &gt; 26,500 new galaxy candidates and &gt; 2800 new Young Stellar Object (YSO) candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08196v1-abstract-full').style.display = 'none'; document.getElementById('2501.08196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07362">arXiv:2501.07362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07362">pdf</a>, <a href="https://arxiv.org/format/2501.07362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2600-3">10.1007/s11433-024-2600-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science objectives of the Einstein Probe mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">Weimin Yuan</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+L">Lixin Dai</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+H">Hua Feng</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">Chichuan Jin</a>, <a href="/search/?searchtype=author&amp;query=Jonker%2C+P">Peter Jonker</a>, <a href="/search/?searchtype=author&amp;query=Kuulkers%2C+E">Erik Kuulkers</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">Kirpal Nandra</a>, <a href="/search/?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/?searchtype=author&amp;query=Piro%2C+L">Luigi Piro</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">Arne Rau</a>, <a href="/search/?searchtype=author&amp;query=Rea%2C+N">Nanda Rea</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J">Jeremy Sanders</a>, <a href="/search/?searchtype=author&amp;query=Tao%2C+L">Lian Tao</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+J">Junfeng Wang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+X">Xuefeng Wu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">Bing Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Shuangnan Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+S">Shunke Ai</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+J">Johannes Buchner</a>, <a href="/search/?searchtype=author&amp;query=Bulbul%2C+E">Esra Bulbul</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H">Hechao Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+M">Minghua Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Yong Chen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Yu-Peng Chen</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07362v1-abstract-short" style="display: inline;"> The Einstein Probe (EP) is an interdisciplinary mission of time-domain and X-ray astronomy. Equipped with a wide-field lobster-eye X-ray focusing imager, EP will discover cosmic X-ray transients and monitor the X-ray variability of known sources in 0.5-4 keV, at a combination of detecting sensitivity and cadence that is not accessible to the previous and current wide-field monitoring missions. EP&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07362v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07362v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07362v1-abstract-full" style="display: none;"> The Einstein Probe (EP) is an interdisciplinary mission of time-domain and X-ray astronomy. Equipped with a wide-field lobster-eye X-ray focusing imager, EP will discover cosmic X-ray transients and monitor the X-ray variability of known sources in 0.5-4 keV, at a combination of detecting sensitivity and cadence that is not accessible to the previous and current wide-field monitoring missions. EP can perform quick characterisation of transients or outbursts with a Wolter-I X-ray telescope onboard. In this paper, the science objectives of the Einstein Probe mission are presented. EP is expected to enlarge the sample of previously known or predicted but rare types of transients with a wide range of timescales. Among them, fast extragalactic transients will be surveyed systematically in soft X-rays, which include 纬-ray bursts and their variants, supernova shock breakouts, and the predicted X-ray transients associated with binary neutron star mergers. EP will detect X-ray tidal disruption events and outbursts from active galactic nuclei, possibly at an early phase of the flares for some. EP will monitor the variability and outbursts of X-rays from white dwarfs, neutron stars and black holes in our and neighbouring galaxies at flux levels fainter than those detectable by the current instruments, and is expected to discover new objects. A large sample of stellar X-ray flares will also be detected and characterised. In the era of multi-messenger astronomy, EP has the potential of detecting the possible X-ray counterparts of gravitational wave events, neutrino sources, and ultra-high energy 纬-ray and cosmic ray sources. EP is expected to help advance the studies of extreme objects/phenomena and their underlying physical processes revealed in the dynamic X-ray universe, as well as studies in other areas of X-ray astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07362v1-abstract-full').style.display = 'none'; document.getElementById('2501.07362v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 24 figures, accepted for publication in SCIENCE CHINA Physics, Mechanics &amp; Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04497">arXiv:2501.04497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04497">pdf</a>, <a href="https://arxiv.org/ps/2501.04497">ps</a>, <a href="https://arxiv.org/format/2501.04497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Searching the non-accreting white dwarf population in eROSITA data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Friedrich%2C+S">S. Friedrich</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Dennerl%2C+K">K. Dennerl</a>, <a href="/search/?searchtype=author&amp;query=Schwope%2C+A">A. Schwope</a>, <a href="/search/?searchtype=author&amp;query=Werner%2C+K">K. Werner</a>, <a href="/search/?searchtype=author&amp;query=Stelzer%2C+B">B. Stelzer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04497v1-abstract-short" style="display: inline;"> eROSITA is the soft X-ray instrument aboard the Spectrum Roentgen Gamma (SRG) satellite that is most sensitive in the energy range between 0.2 and 2.3 keV. Between December 2019 and December 2021, eROSITA completed four all-sky surveys producing all-sky X-ray source lists and sky maps of unprecedented depth. In the energy range between 0.2 keV and 1 keV, we detected about 38,000 sources with a har&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04497v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04497v1-abstract-full" style="display: none;"> eROSITA is the soft X-ray instrument aboard the Spectrum Roentgen Gamma (SRG) satellite that is most sensitive in the energy range between 0.2 and 2.3 keV. Between December 2019 and December 2021, eROSITA completed four all-sky surveys producing all-sky X-ray source lists and sky maps of unprecedented depth. In the energy range between 0.2 keV and 1 keV, we detected about 38,000 sources with a hardness ratio below -0.94, covering a small sample of known white dwarfs found with eROSITA in the dataset to which the German eROSITA consortium has rights (half sky). 264 of these soft sources have a probability of more than 90 % to be a white dwarf. This is more than the 175 white dwarfs ROSAT found in the whole sky. Here we present the results of a pilot study to increase the sensitivity of eROSITA for soft sources by extending the detection threshold down to 0.1 keV. First tests with dedicated sky regions are promising. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04497v1-abstract-full').style.display = 'none'; document.getElementById('2501.04497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11345">arXiv:2412.11345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11345">pdf</a>, <a href="https://arxiv.org/format/2412.11345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> PSR J1631-4722: The Discovery of a Young and Energetic Pulsar in the Supernova Remnant G336.7+0.5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ahmad%2C+A">A. Ahmad</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Lazarevi%C4%87%2C+S">S. Lazarevi膰</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">M. D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/?searchtype=author&amp;query=Kerr%2C+M">M. Kerr</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Manchester%2C+R+N">R. N. Manchester</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11345v1-abstract-short" style="display: inline;"> Detecting a pulsar associated with a supernova remnant (SNR) and/or pulsar wind nebula (PWN) is crucial for unraveling its formation history and pulsar wind dynamics, yet the association with a radio pulsar is observed only in a small fraction of known SNRs and PWNe. In this paper, we report the discovery of a young pulsar J1631$-$4722, associated with the Galactic SNR G336.7$+$0.5 using Murriyang&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11345v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11345v1-abstract-full" style="display: none;"> Detecting a pulsar associated with a supernova remnant (SNR) and/or pulsar wind nebula (PWN) is crucial for unraveling its formation history and pulsar wind dynamics, yet the association with a radio pulsar is observed only in a small fraction of known SNRs and PWNe. In this paper, we report the discovery of a young pulsar J1631$-$4722, associated with the Galactic SNR G336.7$+$0.5 using Murriyang, CSIRO&#39;s Parkes radio telescope. It is also potentially associated with a PWN revealed by the Rapid ASKAP (Australian Square Kilometre Array Pathfinder) Continuum Survey (RACS). This 118 ms pulsar has a high dispersion measure of 873 $\mathrm{pc\,cm^{-3}}$ and a rotation measure of $-$1004 $\mathrm{rad\,m^{-2}}$. Because of such a high DM, at frequencies below 2 GHz, the pulse profile is significantly scattered, making it effectively undetectable in previous pulsar surveys at $\sim$1.4 GHz. Follow-up observations yield a period derivative of $\dot{P} = 3.6 \times 10^{-15}$, implying a characteristic age, $蟿_{c} = 33\,$kyr, and spin-down luminosity, $\dot{E} = 1.3\times10^{36}\,$erg$\,s^{-1}$. PSR$\,$J1631$-$4722, with its high spin-down luminosity and potential link to a PWN, stands out as a promising source of the high-energy $纬$-ray emission observed in the region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11345v1-abstract-full').style.display = 'none'; document.getElementById('2412.11345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00960">arXiv:2412.00960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00960">pdf</a>, <a href="https://arxiv.org/format/2412.00960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae2676">10.1093/mnras/stae2676 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband study of the Be X-ray binary RX J0520.5-6932 during its outburst in 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+H+N">H. N. Yang</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Jenke%2C+P+A">P. A. Jenke</a>, <a href="/search/?searchtype=author&amp;query=Karaferias%2C+A+S">A. S. Karaferias</a>, <a href="/search/?searchtype=author&amp;query=Sharma%2C+R">R. Sharma</a>, <a href="/search/?searchtype=author&amp;query=Beri%2C+A">A. Beri</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+L">L. Ji</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">C. Jin</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y+J">Y. J. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C+Y">C. Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+X+P">X. P. Xu</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+W+D">W. D. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ling%2C+Z+X">Z. X. Ling</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+H+Y">H. Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+H+Q">H. Q. Cheng</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+H+W">H. W. Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00960v1-abstract-short" style="display: inline;"> A new giant outburst of the Be X-ray binary RX J0520.5-6932 was detected and subsequently observed with several space-borne and ground-based instruments. This study presents a comprehensive analysis of the optical and X-ray data, focusing on the spectral and timing characteristics of selected X-ray observations. A joint fit of spectra from simultaneous observations performed by the X-ray telescope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00960v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00960v1-abstract-full" style="display: none;"> A new giant outburst of the Be X-ray binary RX J0520.5-6932 was detected and subsequently observed with several space-borne and ground-based instruments. This study presents a comprehensive analysis of the optical and X-ray data, focusing on the spectral and timing characteristics of selected X-ray observations. A joint fit of spectra from simultaneous observations performed by the X-ray telescope (XRT) on the Neil Gehrels Swift Observatory (Swift) and Nuclear Spectroscopic Telescope ARray (NuSTAR) provides broadband parameter constraints, including a cyclotron resonant scattering feature (CRSF) at 32.2(+0.8/-0.7) keV with no significant energy change since 2014, and a weaker Fe line. Independent spectral analyses of observations by the Lobster Eye Imager for Astronomy (LEIA), Einstein Probe (EP), Swift-XRT, and NuSTAR demonstrate the consistency of parameters across different bands. Luminosity variations during the current outburst were tracked. The light curve of the Optical Gravitational Lensing Experiment (OGLE) aligns with the X-ray data in both 2014 and 2024. Spin evolution over 10 years is studied after adding Fermi Gamma-ray Burst Monitor (GBM) data, improving the orbital parameters, with an estimated orbital period of 24.39 days, slightly differing from OGLE data. Despite intrinsic spin-up during outbursts, a spin-down of ~0.04s over 10.3 years is suggested. For the new outburst, the pulse profiles indicate a complicated energy-dependent shape, with decreases around 15 keV and 25 keV in the pulsed fraction, a first for an extragalactic source. Phase-resolved NuSTAR data indicate variations in parameters such as flux, photon index, and CRSF energy with rotation phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00960v1-abstract-full').style.display = 'none'; document.getElementById('2412.00960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02655">arXiv:2411.02655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02655">pdf</a>, <a href="https://arxiv.org/format/2411.02655">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348708">10.1051/0004-6361/202348708 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiwavelength study of 1eRASS J085039.9-421151 with eROSITA NuSTAR and X-shooter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zainab%2C+A">Aafia Zainab</a>, <a href="/search/?searchtype=author&amp;query=Avakyan%2C+A">Artur Avakyan</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">Victor Doroshenko</a>, <a href="/search/?searchtype=author&amp;query=Thalhammer%2C+P">Philipp Thalhammer</a>, <a href="/search/?searchtype=author&amp;query=Sokolova-Lapa%2C+E">Ekaterina Sokolova-Lapa</a>, <a href="/search/?searchtype=author&amp;query=Ballhausen%2C+R">Ralf Ballhausen</a>, <a href="/search/?searchtype=author&amp;query=Zalot%2C+N">Nicolas Zalot</a>, <a href="/search/?searchtype=author&amp;query=Stierhof%2C+J">Jakob Stierhof</a>, <a href="/search/?searchtype=author&amp;query=Haemmerich%2C+S">Steven Haemmerich</a>, <a href="/search/?searchtype=author&amp;query=Diez%2C+C+M">Camille M. Diez</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+P">Philipp Weber</a>, <a href="/search/?searchtype=author&amp;query=Dauser%2C+T">Thomas Dauser</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+K">Katrin Berger</a>, <a href="/search/?searchtype=author&amp;query=Kretschmar%2C+P">Peter Kretschmar</a>, <a href="/search/?searchtype=author&amp;query=Pottschmidt%2C+K">Katja Pottschmidt</a>, <a href="/search/?searchtype=author&amp;query=Pradhan%2C+P">Pragati Pradhan</a>, <a href="/search/?searchtype=author&amp;query=Islam%2C+N">Nazma Islam</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Coley%2C+J+B">Joel B. Coley</a>, <a href="/search/?searchtype=author&amp;query=Blay%2C+P">Pere Blay</a>, <a href="/search/?searchtype=author&amp;query=Corbet%2C+R+H+D">Robin H. D. Corbet</a>, <a href="/search/?searchtype=author&amp;query=Rothschild%2C+R+E">Richard E. Rothschild</a>, <a href="/search/?searchtype=author&amp;query=Wood%2C+K">Kent Wood</a>, <a href="/search/?searchtype=author&amp;query=Santangelo%2C+A">Andrea Santangelo</a>, <a href="/search/?searchtype=author&amp;query=Heber%2C+U">Ulrich Heber</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02655v1-abstract-short" style="display: inline;"> The eROSITA instrument on board Spectrum-Roentgen-Gamma has completed four scans of the X-ray sky, leading to the detection of almost one million X-ray sources in eRASS1 only, including multiple new X-ray binary candidates. We report on analysis of the X-ray binary 1eRASS J085039.9-421151, using a ~55\,ks long NuSTAR observation, following its detection in each eROSITA scan. Analysis of the eROSIT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02655v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02655v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02655v1-abstract-full" style="display: none;"> The eROSITA instrument on board Spectrum-Roentgen-Gamma has completed four scans of the X-ray sky, leading to the detection of almost one million X-ray sources in eRASS1 only, including multiple new X-ray binary candidates. We report on analysis of the X-ray binary 1eRASS J085039.9-421151, using a ~55\,ks long NuSTAR observation, following its detection in each eROSITA scan. Analysis of the eROSITA and NuSTAR X-ray spectra in combination with X-shooter data of the optical counterpart provide evidence of an X-ray binary with a red supergiant (RSG) companion, confirming previous results, although we determine a cooler spectral type of M2-3, owing to the presence of TiO bands in the optical and near infrared spectra. The X-ray spectrum is well-described by an absorbed power law with a high energy cutoff typically applied for accreting high mass X-ray binaries. In addition, we detect a strong fluorescent neutral iron line with an equivalent width of ~700\,eV and an absorption edge, the latter indicating strong absorption by a partial covering component. It is unclear if the partial absorber is ionised. There is no significant evidence of a cyclotron resonant scattering feature. We do not detect any pulsations in the NuSTAR lightcurves, possibly on account of a large spin period that goes undetected due to insufficient statistics at low frequencies or potentially large absorption that causes pulsations to be smeared out. Even so, the low persistent luminosity, the spectral parameters observed (photon index, $螕&lt;1.0$), and the minuscule likelihood of detection of RSG-black hole systems, suggest that the compact object is a neutron star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02655v1-abstract-full').style.display = 'none'; document.getElementById('2411.02655v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures, accepted by A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 693, A260 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21617">arXiv:2410.21617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21617">pdf</a>, <a href="https://arxiv.org/format/2410.21617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2524-4">10.1007/s11433-024-2524-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Einstein Probe discovery of EP240408a: a peculiar X-ray transient with an intermediate timescale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhang%2C+W">Wenda Zhang</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">Weimin Yuan</a>, <a href="/search/?searchtype=author&amp;query=Ling%2C+Z">Zhixing Ling</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Yong Chen</a>, <a href="/search/?searchtype=author&amp;query=Rea%2C+N">Nanda Rea</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">Arne Rau</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+Z">Zhiming Cai</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+H">Huaqing Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zelati%2C+F+C">Francesco Coti Zelati</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+L">Lixin Dai</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J">Jingwei Hu</a>, <a href="/search/?searchtype=author&amp;query=Jia%2C+S">Shumei Jia</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">Chichuan Jin</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">Dongyue Li</a>, <a href="/search/?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+R">Rongfeng Shen</a>, <a href="/search/?searchtype=author&amp;query=Shu%2C+X">Xinwen Shu</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+S">Shengli Sun</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+X">Xiaojin Sun</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xiaofeng Wang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+L">Lei Yang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">Bing Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Shuang-Nan Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yonghe Zhang</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21617v1-abstract-short" style="display: inline;"> We report the discovery of a peculiar X-ray transient, EP240408a, by Einstein Probe (EP) and follow-up studies made with EP, Swift, NICER, GROND, ATCA and other ground-based multi-wavelength telescopes. The new transient was first detected with Wide-field X-ray Telescope (WXT) on board EP on April 8th, 2024, manifested in an intense yet brief X-ray flare lasting for 12 seconds. The flare reached a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21617v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21617v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21617v1-abstract-full" style="display: none;"> We report the discovery of a peculiar X-ray transient, EP240408a, by Einstein Probe (EP) and follow-up studies made with EP, Swift, NICER, GROND, ATCA and other ground-based multi-wavelength telescopes. The new transient was first detected with Wide-field X-ray Telescope (WXT) on board EP on April 8th, 2024, manifested in an intense yet brief X-ray flare lasting for 12 seconds. The flare reached a peak flux of 3.9x10^(-9) erg/cm2/s in 0.5-4 keV, about 300 times brighter than the underlying X-ray emission detected throughout the observation. Rapid and more precise follow-up observations by EP/FXT, Swift and NICER confirmed the finding of this new transient. Its X-ray spectrum is non-thermal in 0.5-10 keV, with a power-law photon index varying within 1.8-2.5. The X-ray light curve shows a plateau lasting for about 4 days, followed by a steep decay till becoming undetectable about 10 days after the initial detection. Based on its temporal property and constraints from previous EP observations, an unusual timescale in the range of 7-23 days is found for EP240408a, which is intermediate between the commonly found fast and long-term transients. No counterparts have been found in optical and near-infrared, with the earliest observation at 17 hours after the initial X-ray detection, suggestive of intrinsically weak emission in these bands. We demonstrate that the remarkable properties of EP240408a are inconsistent with any of the transient types known so far, by comparison with, in particular, jetted tidal disruption events, gamma-ray bursts, X-ray binaries and fast blue optical transients. The nature of EP240408a thus remains an enigma. We suggest that EP240408a may represent a new type of transients with intermediate timescales of the order of about 10 days. The detection and follow-ups of more of such objects are essential for revealing their origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21617v1-abstract-full').style.display = 'none'; document.getElementById('2410.21617v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in SCIENCE CHINA Physics, Mechanics &amp; Astronomy(SCPMA) (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14223">arXiv:2410.14223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14223">pdf</a>, <a href="https://arxiv.org/format/2410.14223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chayan Maitra</a>, <a href="/search/?searchtype=author&amp;query=De%2C+R+K">Rajat K. De</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14223v1-abstract-short" style="display: inline;"> Visualizing high-dimensional datasets through a generalized embedding has been a challenge for a long time. Several methods have shown up for the same, but still, they have not been able to generate a generalized embedding, which not only can reveal the hidden patterns present in the data but also generate realistic high-dimensional samples from it. Motivated by this aspect, in this study, a novel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14223v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14223v1-abstract-full" style="display: none;"> Visualizing high-dimensional datasets through a generalized embedding has been a challenge for a long time. Several methods have shown up for the same, but still, they have not been able to generate a generalized embedding, which not only can reveal the hidden patterns present in the data but also generate realistic high-dimensional samples from it. Motivated by this aspect, in this study, a novel generative model, called G-NeuroDAVIS, has been developed, which is capable of visualizing high-dimensional data through a generalized embedding, and thereby generating new samples. The model leverages advanced generative techniques to produce high-quality embedding that captures the underlying structure of the data more effectively than existing methods. G-NeuroDAVIS can be trained in both supervised and unsupervised settings. We rigorously evaluated our model through a series of experiments, demonstrating superior performance in classification tasks, which highlights the robustness of the learned representations. Furthermore, the conditional sample generation capability of the model has been described through qualitative assessments, revealing a marked improvement in generating realistic and diverse samples. G-NeuroDAVIS has outperformed the Variational Autoencoder (VAE) significantly in multiple key aspects, including embedding quality, classification performance, and sample generation capability. These results underscore the potential of our generative model to serve as a powerful tool in various applications requiring high-quality data generation and representation learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14223v1-abstract-full').style.display = 'none'; document.getElementById('2410.14223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14171">arXiv:2408.14171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14171">pdf</a>, <a href="https://arxiv.org/format/2408.14171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451195">10.1051/0004-6361/202451195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Soft X-ray emission from the classical nova AT 2018bej </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tavleev%2C+A">A. Tavleev</a>, <a href="/search/?searchtype=author&amp;query=Ducci%2C+L">L. Ducci</a>, <a href="/search/?searchtype=author&amp;query=Suleimanov%2C+V+F">V. F. Suleimanov</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Werner%2C+K">K. Werner</a>, <a href="/search/?searchtype=author&amp;query=Santangelo%2C+A">A. Santangelo</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">V. Doroshenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14171v2-abstract-short" style="display: inline;"> Classical novae are known to demonstrate a supersoft X-ray source (SSS) state following outbursts, which is associated with residual thermonuclear burning on the white dwarf (WD) surface. During its all-sky survey (eRASS1), the eROSITA telescope onboard the Spectrum-Roentgen-Gamma observatory discovered a bright new SSS, whose position is consistent with the known classical nova AT 2018bej in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14171v2-abstract-full').style.display = 'inline'; document.getElementById('2408.14171v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14171v2-abstract-full" style="display: none;"> Classical novae are known to demonstrate a supersoft X-ray source (SSS) state following outbursts, which is associated with residual thermonuclear burning on the white dwarf (WD) surface. During its all-sky survey (eRASS1), the eROSITA telescope onboard the Spectrum-Roentgen-Gamma observatory discovered a bright new SSS, whose position is consistent with the known classical nova AT 2018bej in the Large Magellanic Cloud. There were two eROSITA spectra obtained during eRASS1 and eRASS2 monitoring epochs and one XMM-Newton grating spectrum close to the eRASS1 epoch. We aim to describe the eROSITA and XMM-Newton spectra of AT 2018bej with our local thermodynamic equilibrium (LTE) atmosphere models. We focused on the evolution of the hot WD properties between the eRASS1 and eRASS2 epochs, especially on the change of the carbon abundance. A grid of LTE model atmosphere spectra were calculated for different values of the effective temperature (from $T_{\rm eff}= 525$ to $700\,\rm kK$), surface gravity (six values) and chemical composition with five different values of carbon and nitrogen abundances. Both eRASS1 and XMM $0.3-0.6$ keV spectral analyses yield a temperature of the WD of $T_{\rm eff}{\sim}\,600\, \rm kK$ and a WD radius of $8000-8700\,\rm km$. Simultaneous fitting of the eROSITA spectra for two epochs (eRASS1 and eRASS2) with a common WD mass parameter demonstrates a decrease in $T_{\rm eff}$ accompanied by an increase in the WD radius and a decrease in the carbon abundance. However, these changes are marginal and coincide within errors. The derived WD mass is estimated to be $1.05-1.15\, M_\odot$. We traced a minor evolution of the source on a half-year timescale accompanied by a decrease in carbon abundance and concluded that LTE model atmospheres can be used to analyse the available X-ray spectra of classical novae during their SSS stage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14171v2-abstract-full').style.display = 'none'; document.getElementById('2408.14171v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 16 figures, accepted for publication to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A335 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01965">arXiv:2408.01965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01965">pdf</a>, <a href="https://arxiv.org/format/2408.01965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1897">10.1093/mnras/stae1897 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The TRAPUM Small Magellanic Cloud pulsar survey with MeerKAT -- II. Nine new radio timing solutions and glitches from young pulsars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Carli%2C+E">E. Carli</a>, <a href="/search/?searchtype=author&amp;query=Antonopoulou%2C+D">D. Antonopoulou</a>, <a href="/search/?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a>, <a href="/search/?searchtype=author&amp;query=Keith%2C+M+J">M. J. Keith</a>, <a href="/search/?searchtype=author&amp;query=Levin%2C+L">L. Levin</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/?searchtype=author&amp;query=Stappers%2C+B+W">B. W. Stappers</a>, <a href="/search/?searchtype=author&amp;query=Turner%2C+J+D">J. D. Turner</a>, <a href="/search/?searchtype=author&amp;query=Barr%2C+E+D">E. D. Barr</a>, <a href="/search/?searchtype=author&amp;query=Breton%2C+R+P">R. P. Breton</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+S">S. Buchner</a>, <a href="/search/?searchtype=author&amp;query=Kramer%2C+M">M. Kramer</a>, <a href="/search/?searchtype=author&amp;query=Padmanabh%2C+P+V">P. V. Padmanabh</a>, <a href="/search/?searchtype=author&amp;query=Possenti%2C+A">A. Possenti</a>, <a href="/search/?searchtype=author&amp;query=Krishnan%2C+V+V">V. Venkatraman Krishnan</a>, <a href="/search/?searchtype=author&amp;query=Venter%2C+C">C. Venter</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+W">W. Becker</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Thongmeearkom%2C+T">T. Thongmeearkom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01965v1-abstract-short" style="display: inline;"> We report new radio timing solutions from a three-year observing campaign conducted with the MeerKAT and Murriyang telescopes for nine Small Magellanic Cloud pulsars, increasing the number of characterised rotation-powered extragalactic pulsars by 40 per cent. We can infer from our determined parameters that the pulsars are seemingly all isolated, that six are ordinary pulsars, and that three of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01965v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01965v1-abstract-full" style="display: none;"> We report new radio timing solutions from a three-year observing campaign conducted with the MeerKAT and Murriyang telescopes for nine Small Magellanic Cloud pulsars, increasing the number of characterised rotation-powered extragalactic pulsars by 40 per cent. We can infer from our determined parameters that the pulsars are seemingly all isolated, that six are ordinary pulsars, and that three of the recent MeerKAT discoveries have a young characteristic age of under 100 kyr and have undergone a spin-up glitch. Two of the sources, PSRs J0040$-$7337 and J0048$-$7317, are energetic young pulsars with spin-down luminosities of the order of 10$^{36}$ erg s$^{-1}$. They both experienced a large glitch, with a change in frequency of about 30 $渭$Hz, and a frequency derivative change of order $-10^{-14}$ Hz s$^{-1}$. These glitches, the inferred glitch rate, and the properties of these pulsars (including potentially high inter-glitch braking indices) suggest these neutron stars might be Vela-like repeating glitchers and should be closely monitored in the future. The position and energetics of PSR J0048$-$7317 confirm it is powering a new Pulsar Wind Nebula (PWN) detected as a radio continuum source; and similarly the association of PSR J0040$-$7337 with the PWN of Supernova Remnant (SNR) DEM S5 (for which we present a new Chandra image) is strengthened. Finally, PSR J0040$-$7335 is also contained within the same SNR but is a chance superposition. It has also been seen to glitch with a change of frequency of $10^{-2}$ $渭$Hz. This work more than doubles the characterised population of SMC radio pulsars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01965v1-abstract-full').style.display = 'none'; document.getElementById('2408.01965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21371">arXiv:2407.21371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21371">pdf</a>, <a href="https://arxiv.org/format/2407.21371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Einstein Probe discovery of EP J005245.1-722843: a rare BeWD binary in the Small Magellanic Cloud? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Marino%2C+A">A. Marino</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+H">H. Yang</a>, <a href="/search/?searchtype=author&amp;query=Zelati%2C+F+C">F. Coti Zelati</a>, <a href="/search/?searchtype=author&amp;query=Rea%2C+N">N. Rea</a>, <a href="/search/?searchtype=author&amp;query=Guillot%2C+S">S. Guillot</a>, <a href="/search/?searchtype=author&amp;query=Jaisawal%2C+G+K">G. K. Jaisawal</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Ness%2C+J+-">J. -U. Ness</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Kuulkers%2C+E">E. Kuulkers</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+H">H. Feng</a>, <a href="/search/?searchtype=author&amp;query=Tao%2C+L">L. Tao</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">C. Jin</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+H">H. Sun</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+W">W. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W">W. Chen</a>, <a href="/search/?searchtype=author&amp;query=Heuvel%2C+E+P+J+v+d">E. P. J. van den Heuvel</a>, <a href="/search/?searchtype=author&amp;query=Soria%2C+R">R. Soria</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Weng%2C+S+-">S. -S. Weng</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+L">L. Ji</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+G+B">G. B. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+X">X. Pan</a>, <a href="/search/?searchtype=author&amp;query=Lv%2C+Z">Z. Lv</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21371v2-abstract-short" style="display: inline;"> On May 27 2024, the Wide-field X-ray Telescope onboard the Einstein Probe (EP) mission detected enhanced X-ray emission from a new transient source in the Small Magellanic Cloud (SMC) during its commissioning phase. Prompt follow-up with the EP Follow-up X-ray Telescope, the Swift X-ray Telescope and NICER have revealed a very soft, thermally emitting source (kT$\sim$0.1 keV at the outburst peak)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21371v2-abstract-full').style.display = 'inline'; document.getElementById('2407.21371v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21371v2-abstract-full" style="display: none;"> On May 27 2024, the Wide-field X-ray Telescope onboard the Einstein Probe (EP) mission detected enhanced X-ray emission from a new transient source in the Small Magellanic Cloud (SMC) during its commissioning phase. Prompt follow-up with the EP Follow-up X-ray Telescope, the Swift X-ray Telescope and NICER have revealed a very soft, thermally emitting source (kT$\sim$0.1 keV at the outburst peak) with an X-ray luminosity of $L\sim4\times10^{38}$ erg s$^{-1}$, labelled EP J005245.1-722843. This super-soft outburst faded very quickly in a week time. Several emission lines and absorption edges were present in the X-ray spectrum, including deep Nitrogen (0.67 keV) and Oxygen (0.87 keV) absorption edges. The X-ray emission resembles the SSS phase of typical nova outbursts from an accreting white dwarf (WD) in a binary system, despite the X-ray source being historically associated with an O9-B0e massive star exhibiting a 17.55 days periodicity in the optical band. The discovery of this super-soft outburst suggests that EP J005245.1-722843 is a BeWD X-ray binary: an elusive evolutionary stage where two main-sequence massive stars have undergone a common envelope phase and experienced at least two episodes of mass transfer. In addition, the very short duration of the outburst and the presence of Ne features hint at a rather massive, i.e., close to the Chandrasekhar limit, Ne-O WD in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21371v2-abstract-full').style.display = 'none'; document.getElementById('2407.21371v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures; accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12029">arXiv:2405.12029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12029">pdf</a>, <a href="https://arxiv.org/format/2405.12029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1310">10.1093/mnras/stae1310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The TRAPUM Small Magellanic Cloud pulsar survey with MeerKAT: I. Discovery of seven new pulsars and two Pulsar Wind Nebula associations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Carli%2C+E">E. Carli</a>, <a href="/search/?searchtype=author&amp;query=Levin%2C+L">L. Levin</a>, <a href="/search/?searchtype=author&amp;query=Stappers%2C+B+W">B. W. Stappers</a>, <a href="/search/?searchtype=author&amp;query=Barr%2C+E+D">E. D. Barr</a>, <a href="/search/?searchtype=author&amp;query=Breton%2C+R+P">R. P. Breton</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+S">S. Buchner</a>, <a href="/search/?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a>, <a href="/search/?searchtype=author&amp;query=Geyer%2C+M">M. Geyer</a>, <a href="/search/?searchtype=author&amp;query=Kramer%2C+M">M. Kramer</a>, <a href="/search/?searchtype=author&amp;query=Padmanabh%2C+P+V">P. V. Padmanabh</a>, <a href="/search/?searchtype=author&amp;query=Possenti%2C+A">A. Possenti</a>, <a href="/search/?searchtype=author&amp;query=Krishnan%2C+V+V">V. Venkatraman Krishnan</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+W">W. Becker</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">M. D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Behrend%2C+J">J. Behrend</a>, <a href="/search/?searchtype=author&amp;query=Champion%2C+D+J">D. J. Champion</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W">W. Chen</a>, <a href="/search/?searchtype=author&amp;query=Men%2C+Y+P">Y. P. Men</a>, <a href="/search/?searchtype=author&amp;query=Ridolfi%2C+A">A. Ridolfi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12029v1-abstract-short" style="display: inline;"> The sensitivity of the MeerKAT radio interferometer is an opportunity to probe deeper into the population of rare and faint extragalactic pulsars. The TRAPUM (TRAnsients and PUlsars with MeerKAT) collaboration has conducted a radio-domain search for accelerated pulsars and transients in the Small Magellanic Cloud (SMC). This partially targeted survey, performed at L-band (856-1712 MHz) with the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12029v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12029v1-abstract-full" style="display: none;"> The sensitivity of the MeerKAT radio interferometer is an opportunity to probe deeper into the population of rare and faint extragalactic pulsars. The TRAPUM (TRAnsients and PUlsars with MeerKAT) collaboration has conducted a radio-domain search for accelerated pulsars and transients in the Small Magellanic Cloud (SMC). This partially targeted survey, performed at L-band (856-1712 MHz) with the core array of the MeerKAT telescope in 2-h integrations, is twice as sensitive as the latest SMC radio pulsar survey. We report the discovery of seven new SMC pulsars, doubling this galaxy&#39;s radio pulsar population and increasing the total extragalactic population by nearly a quarter. We also carried out a search for accelerated millisecond pulsars in the SMC Globular Cluster NGC 121 using the full array of MeerKAT. This improved the previous upper limit on pulsed radio emission from this cluster by a factor of six. Our discoveries reveal the first radio pulsar-PWN systems in the SMC, with only one such system previously known outside our galaxy (the &#34;Crab pulsar twin&#34; in the Large Magellanic Cloud, PSR J0540$-$6919). We associate the 59 ms pulsar discovery PSR J0040$-$7337, now the fastest spinning radio pulsar in the SMC, with the bow-shock Pulsar Wind Nebula (PWN) of Supernova Remnant DEM S5. We also present a new young pulsar with a 79 ms period, PSR J0048$-$7317, in a PWN recently discovered in a MeerKAT radio continuum image. Using the multi-beam capability of MeerKAT, we localised our pulsar discoveries, and two previous Murriyang discoveries, to a positional uncertainty of a few arcseconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12029v1-abstract-full').style.display = 'none'; document.getElementById('2405.12029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures, 10 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18175">arXiv:2404.18175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18175">pdf</a>, <a href="https://arxiv.org/ps/2404.18175">ps</a>, <a href="https://arxiv.org/format/2404.18175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> New quasars behind the Magellanic Clouds. II. Spectroscopic confirmation of 136 near-infrared selected candidates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Dennefeld%2C+M">Michel Dennefeld</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Pennock%2C+C">Clara Pennock</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18175v1-abstract-short" style="display: inline;"> Quasi-stellar objects (QSOs) are a basis for an absolute reference system for astrometric studies. There is a need for creating such system behind nearby galaxies, to facilitate the measuring of the proper motions of these galaxies. However, the foreground contamination from the galaxies themselves is a problem for the QSO identification. We search for new QSOs behind both Magellanic Clouds, the M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18175v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18175v1-abstract-full" style="display: none;"> Quasi-stellar objects (QSOs) are a basis for an absolute reference system for astrometric studies. There is a need for creating such system behind nearby galaxies, to facilitate the measuring of the proper motions of these galaxies. However, the foreground contamination from the galaxies themselves is a problem for the QSO identification. We search for new QSOs behind both Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream. We identify QSO candidates with a combination of near-infrared colors and variability criteria from the public ESO Visual and Infrared Survey Telescope for Astronomy (VISTA) Magellanic Clouds (VMC) survey. We confirm their nature from broad emission lines with low-resolution optical spectroscopy. We confirmed the QSO nature of 136 objects. They are distributed as follows: 12 behind the LMC, 37 behind the SMC, 63 behind the Bridge, and 24 behind the Stream. The QSOs span a redshift range from z~0.1 to z~2.9. A comparison of our quasar selection with the Quaia quasar catalog, based on Gaia low-resolution spectra, yields a selection and confirmation success rate of 6-19%, depending on whether the quality of the photometry, the magnitude ranges and the colors are considered. Our candidate list is rather incomplete, but the objects in it are likely to be confirmed as quasars with ~90% probability. Finally, we report a list of 3609 objects across the entire VMC survey that match our color and variability selection criteria; only 1249 of them have Gaia counterparts. Our combined infrared color and variability criteria for QSO selection prove to be efficient - ~90% of the observed candidates are bona fide QSOs and allow to generate a list of new high-probability quasar candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18175v1-abstract-full').style.display = 'none'; document.getElementById('2404.18175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12367">arXiv:2402.12367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12367">pdf</a>, <a href="https://arxiv.org/format/2402.12367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449593">10.1051/0004-6361/202449593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The first all-sky survey of star-forming galaxies with eROSITA: Scaling relations and a population of X-ray luminous starbursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kyritsis%2C+E">E. Kyritsis</a>, <a href="/search/?searchtype=author&amp;query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+P">P. Weber</a>, <a href="/search/?searchtype=author&amp;query=Basu-Zych%2C+A">A. Basu-Zych</a>, <a href="/search/?searchtype=author&amp;query=Vulic%2C+N">N. Vulic</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=H%C3%A4mmerich%2C+S">S. H盲mmerich</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">J. Wilms</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Hornschemeier%2C+A">A. Hornschemeier</a>, <a href="/search/?searchtype=author&amp;query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">A. Merloni</a>, <a href="/search/?searchtype=author&amp;query=Comparat%2C+J">J. Comparat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12367v1-abstract-short" style="display: inline;"> We present a study of X-ray normal galaxies using data from the first all-sky scan of the eROSITA X-ray survey. eRASS1 provides the first unbiased X-ray census of normal galaxies allowing us to study the X-ray emission from XRBs and the hot ISM in the full range of stellar population parameters present in the local Universe. By combining the HECATE value-added galaxy catalogue with the eRASS1, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12367v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12367v1-abstract-full" style="display: none;"> We present a study of X-ray normal galaxies using data from the first all-sky scan of the eROSITA X-ray survey. eRASS1 provides the first unbiased X-ray census of normal galaxies allowing us to study the X-ray emission from XRBs and the hot ISM in the full range of stellar population parameters present in the local Universe. By combining the HECATE value-added galaxy catalogue with the eRASS1, we study the X-ray emission from normal galaxies as a function of their SFR, M$_{*}$, Metallicity, and stellar population age. After applying optical and mid-IR activity classification criteria, we constructed a sample of 18790 star-forming galaxies with measurements of their L$_{X}$. By stacking the X-ray data in SFR-M$_{*}$-distance bins we study the correlation between the average L$_{X}$ and stellar population parameters. We also present updated L$_{\rm{X}}$-SFR and L$_{\rm{X}}$/SFR-Metallicity scaling relations accounting for the scatter dependence on the SFR. We find that the integrated L$_{X}$ of the HEC-eR1 star-forming galaxies is significantly elevated with respect to that expected from the current scaling relations. The observed scatter is also significantly larger. This excess persists even when we measure the average L$_{X}$ of galaxies in SFR-M$_{*}$-distance and metallicity bins and it is stronger in lower SFRs. The excess is not the result of hot gas, LMXBs, background AGN, LLAGN (including TDEs), or stochastic sampling of the XRB XLF. We find that while the excess correlates with lower metallicity, its primary driver is the age of the stellar populations. Our analysis reveals a sub-population of X-ray luminous starbursts with high sSFRs, low metallicities, and young stellar populations. This population drives upwards the X-ray scaling relations for star-forming galaxies, and has important implications for understanding the population of XRBs in the local and high-z Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12367v1-abstract-full').style.display = 'none'; document.getElementById('2402.12367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 694, A128 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08458">arXiv:2402.08458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08458">pdf</a>, <a href="https://arxiv.org/format/2402.08458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348852">10.1051/0004-6361/202348852 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SRG/eROSITA all-sky survey: Cosmology constraints from cluster abundances in the western Galactic hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ghirardini%2C+V">V. Ghirardini</a>, <a href="/search/?searchtype=author&amp;query=Bulbul%2C+E">E. Bulbul</a>, <a href="/search/?searchtype=author&amp;query=Artis%2C+E">E. Artis</a>, <a href="/search/?searchtype=author&amp;query=Clerc%2C+N">N. Clerc</a>, <a href="/search/?searchtype=author&amp;query=Garrel%2C+C">C. Garrel</a>, <a href="/search/?searchtype=author&amp;query=Grandis%2C+S">S. Grandis</a>, <a href="/search/?searchtype=author&amp;query=Kluge%2C+M">M. Kluge</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+A">A. Liu</a>, <a href="/search/?searchtype=author&amp;query=Bahar%2C+Y+E">Y. E. Bahar</a>, <a href="/search/?searchtype=author&amp;query=Balzer%2C+F">F. Balzer</a>, <a href="/search/?searchtype=author&amp;query=Chiu%2C+I">I. Chiu</a>, <a href="/search/?searchtype=author&amp;query=Comparat%2C+J">J. Comparat</a>, <a href="/search/?searchtype=author&amp;query=Gruen%2C+D">D. Gruen</a>, <a href="/search/?searchtype=author&amp;query=Kleinebreil%2C+F">F. Kleinebreil</a>, <a href="/search/?searchtype=author&amp;query=Krippendorf%2C+S">S. Krippendorf</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">A. Merloni</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">K. Nandra</a>, <a href="/search/?searchtype=author&amp;query=Okabe%2C+N">N. Okabe</a>, <a href="/search/?searchtype=author&amp;query=Pacaud%2C+F">F. Pacaud</a>, <a href="/search/?searchtype=author&amp;query=Predehl%2C+P">P. Predehl</a>, <a href="/search/?searchtype=author&amp;query=Ramos-Ceja%2C+M+E">M. E. Ramos-Ceja</a>, <a href="/search/?searchtype=author&amp;query=Reiprich%2C+T+H">T. H. Reiprich</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J+S">J. S. Sanders</a>, <a href="/search/?searchtype=author&amp;query=Schrabback%2C+T">T. Schrabback</a>, <a href="/search/?searchtype=author&amp;query=Seppi%2C+R">R. Seppi</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08458v2-abstract-short" style="display: inline;"> The cluster mass function traces the growth of linear density perturbations and provides valuable insights into the growth of structures, the nature of dark matter, and the cosmological parameters governing the Universe. The primary science goal of eROSITA, on board the {\it Spectrum Roentgen Gamma (SRG)} mission, launched in 2019, is to constrain cosmology through the evolution of cluster mass fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08458v2-abstract-full').style.display = 'inline'; document.getElementById('2402.08458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08458v2-abstract-full" style="display: none;"> The cluster mass function traces the growth of linear density perturbations and provides valuable insights into the growth of structures, the nature of dark matter, and the cosmological parameters governing the Universe. The primary science goal of eROSITA, on board the {\it Spectrum Roentgen Gamma (SRG)} mission, launched in 2019, is to constrain cosmology through the evolution of cluster mass function. In this paper, we present the cosmological constraints obtained from 5259 clusters of galaxies detected over an area of 12791~deg$^2$ in the Western Galactic Hemisphere of the eROSITA&#39;s first All-Sky Survey (eRASS1). The common footprint region between the eROSITA Survey and DES, KiDS, and HSC surveys is used for calibration of the scaling between X-ray count rate and their total mass through measurements of their weak gravitational lensing signal. eRASS1 cluster abundances constrain the $螞$CDM parameters, which are the energy density of the total matter to $惟_{\mathrm{m}}=0.29^{+0.01}_{-0.02}$, and the normalization of the density fluctuations to $蟽_8=0.88\pm0.02$ and their combination yields $S_8=蟽_8 (惟_\mathrm{m} / 0.3)^{0.5}=0.86\pm0.01$, consistent and at a similar precision with the state-of-the-art CMB measurements. eRASS1 cosmological experiment places a most stringent upper limit on the summed masses of left-handed light neutrinos to $\sum m_谓&lt; 0.22\mathrm{~eV}$ (95\% confidence interval). Combining eRASS1 cluster abundance measurements with CMB and ground-based neutrino oscillation experiments, we measure the summed neutrino masses to be $\sum m_谓=0.08_{-0.02}^{+0.03}\mathrm{~eV}$ or $\sum m_谓=0.12_{-0.01}^{+0.03}\mathrm{~eV}$ depending on the mass hierarchy scenario for neutrino eigenstates. eRASS1 cluster abundances significantly improve the constraints on the dark energy equation of state parameter to $w=-1.12\pm0.12$. (ABRIDGED) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08458v2-abstract-full').style.display = 'none'; document.getElementById('2402.08458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 22 figures, Accepted for publication by A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A298 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17310">arXiv:2401.17310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17310">pdf</a>, <a href="https://arxiv.org/format/2401.17310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449398">10.1051/0004-6361/202449398 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> eROSITA narrowband maps at the energies of soft X-ray emission lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xueying Zheng</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/?searchtype=author&amp;query=Locatelli%2C+N">Nicola Locatelli</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J">Jeremy Sanders</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">Andrea Merloni</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+W">Werner Becker</a>, <a href="/search/?searchtype=author&amp;query=Comparat%2C+J">Johan Comparat</a>, <a href="/search/?searchtype=author&amp;query=Dennerl%2C+K">Konrad Dennerl</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M">Michael Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">Manami Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Strong%2C+A">Andrew Strong</a>, <a href="/search/?searchtype=author&amp;query=Yeung%2C+M+C+H">Michael C. H. Yeung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17310v3-abstract-short" style="display: inline;"> [abridged] Hot plasma plays a crucial role in regulating the baryon cycle within the Milky Way, flowing from the energetic sources in the Galactic center and disc, to the corona and the halo. This hot plasma represents an important fraction of the Galactic baryons, plays a key role in galactic outflows and is an important ingredient in galaxy evolution models. Taking advantage of the Spectrum-Roen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17310v3-abstract-full').style.display = 'inline'; document.getElementById('2401.17310v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17310v3-abstract-full" style="display: none;"> [abridged] Hot plasma plays a crucial role in regulating the baryon cycle within the Milky Way, flowing from the energetic sources in the Galactic center and disc, to the corona and the halo. This hot plasma represents an important fraction of the Galactic baryons, plays a key role in galactic outflows and is an important ingredient in galaxy evolution models. Taking advantage of the Spectrum-Roentgen-Gamma (SRG))/eROSITA first all-sky survey (eRASS1), in this work, we aim to provide a panoramic view of the hot circumgalactic medium (CGM) of the Milky Way. Here we present the eROSITA eRASS1 half sky maps in narrow energy bands corresponding to the most prominent soft X-ray lines: OVII and OVIII, which allow us to constrain the distribution of the hot plasma within and surrounding the Milky Way. We corrected the maps by removing the expected contribution associated with the cosmic X-ray background, the time-variable solar wind charge exchange, and the local hot bubble. We applied corrections to mitigate the effect of absorption, therefore highlighting the emission from the CGM of the Milky Way. We use the line ratio of the oxygen lines as a proxy to constrain the temperature of the warm-hot CGM, and we define a pseudo-temperature $\mathcal{T}$ map. The map highlights how different regions are dominated by different thermal components. Towards the outer halo, the temperature distribution of the CGM on angular scales of 2-20 deg is consistent with being constant $螖\mathcal{T} / \langle \mathcal{T}\rangle \leq 4\%$, with a marginal detection of $螖\mathcal{T} / \langle \mathcal{T}\rangle = 2.7 \% \pm 0.2\%$ (statistical) $\pm 0.6\%$ (systematic) in the southern hemisphere. Instead, significant variations $\sim 12\%$ are observed on many tens of degrees scales when comparing the northern and southern hemispheres. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17310v3-abstract-full').style.display = 'none'; document.getElementById('2401.17310v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures, 1 table, A&amp;A in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A328 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17307">arXiv:2401.17307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17307">pdf</a>, <a href="https://arxiv.org/format/2401.17307">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348868">10.1051/0004-6361/202348868 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Study of the Supernova Remnant Population in the Large Magellanic Cloud with eROSITA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zangrandi%2C+F">Federico Zangrandi</a>, <a href="/search/?searchtype=author&amp;query=Jurk%2C+K">Katharina Jurk</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">Manami Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Knies%2C+J">Jonathan Knies</a>, <a href="/search/?searchtype=author&amp;query=Filipovic%2C+M+D">Miroslav D. Filipovic</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P">Patrick Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">Pierre Maggi</a>, <a href="/search/?searchtype=author&amp;query=Saeedi%2C+S">Sara Saeedi</a>, <a href="/search/?searchtype=author&amp;query=Bernreuther%2C+D">Dominic Bernreuther</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B">Baerbel Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Points%2C+S">Sean Points</a>, <a href="/search/?searchtype=author&amp;query=Staveley-Smith%2C+L">Lister Staveley-Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17307v3-abstract-short" style="display: inline;"> The study of the entire population of SNRs in a galaxy helps us to understand the underlying stellar populations, the environments, in which the SNRs are evolving, and the stellar feedback on the ISM. The all-sky survey carried out by the extended Roentgen Survey with an Imaging Telescope Array (eROSITA) on board Spektrum-Roentgen-Gamma (Spektr-RG, SRG) has provided us with spatially and spectrall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17307v3-abstract-full').style.display = 'inline'; document.getElementById('2401.17307v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17307v3-abstract-full" style="display: none;"> The study of the entire population of SNRs in a galaxy helps us to understand the underlying stellar populations, the environments, in which the SNRs are evolving, and the stellar feedback on the ISM. The all-sky survey carried out by the extended Roentgen Survey with an Imaging Telescope Array (eROSITA) on board Spektrum-Roentgen-Gamma (Spektr-RG, SRG) has provided us with spatially and spectrally resolved X-ray data of the entire Large Magellanic Cloud (LMC) and its immediate surroundings in the soft X-ray band down to 0.2 keV. We performed a multiwavelength analysis of previously known SNR candidates and newly detected SNRs and SNR candidates. We applied the Gaussian gradient magnitude (GGM) filter to the eROSITA images of the LMC to highlight the edges of the shocked gas in order to find new SNRs. We compared the X-ray images with those of their optical and radio counterparts to investigate the true nature of the extended emission. We used the Magellanic Cloud Emission Line Survey (MCELS) for the optical data. For the radio comparison, we used data from the Australian Square Kilometre Array Pathfinder (ASKAP) survey of the LMC. Using the VISTA survey of the Magellanic Clouds (VMC) we have investigated the possible progenitors of the new SNRs and SNR candidates in our sample. We present the most updated catalogue of SNRs in the LMC. The eROSITA data have allowed us to confirm 1 of the previous SNR candidates and discover 16 new extended sources. We confirm 3 of them as new SNRs, while we propose the remaining 13 as new X-ray SNR candidates. We also present the first analysis of the follow-up XMM-Newton observation of MCSNR J0456-6533 discovered with eROSITA. Among the new candidates, we propose J0614-7251 (4eRASSU J061438.1-725112) as the first X-ray SNR candidate in the outskirts of the LMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17307v3-abstract-full').style.display = 'none'; document.getElementById('2401.17307v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper accepted on 03.10.2024 in A&amp;A journal. Paper in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 692, A237 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17304">arXiv:2401.17304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17304">pdf</a>, <a href="https://arxiv.org/format/2401.17304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348426">10.1051/0004-6361/202348426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compact white-dwarf binaries in the combined SRG/eROSITA/SDSS eFEDS survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schwope%2C+A">A. Schwope</a>, <a href="/search/?searchtype=author&amp;query=Kurpas%2C+J">J. Kurpas</a>, <a href="/search/?searchtype=author&amp;query=Baecke%2C+P">P. Baecke</a>, <a href="/search/?searchtype=author&amp;query=Knauff%2C+K">K. Knauff</a>, <a href="/search/?searchtype=author&amp;query=St%C3%BCtz%2C+L">L. St眉tz</a>, <a href="/search/?searchtype=author&amp;query=Tubin-Arenas%2C+D">D. Tubin-Arenas</a>, <a href="/search/?searchtype=author&amp;query=Standke%2C+A">A. Standke</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+S+F">S. F. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+F">F. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Brandt%2C+N">N. Brandt</a>, <a href="/search/?searchtype=author&amp;query=Covey%2C+K">K. Covey</a>, <a href="/search/?searchtype=author&amp;query=Demasi%2C+S">S. Demasi</a>, <a href="/search/?searchtype=author&amp;query=Dwelly%2C+T">T. Dwelly</a>, <a href="/search/?searchtype=author&amp;query=Freund%2C+S">S. Freund</a>, <a href="/search/?searchtype=author&amp;query=Friedrich%2C+S">S. Friedrich</a>, <a href="/search/?searchtype=author&amp;query=G%C3%A4nsicke%2C+B+T">B. T. G盲nsicke</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">A. Merloni</a>, <a href="/search/?searchtype=author&amp;query=Munoz-Giraldo%2C+D">D. Munoz-Giraldo</a>, <a href="/search/?searchtype=author&amp;query=Rodriguez%2C+A">A. Rodriguez</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">M. Salvato</a>, <a href="/search/?searchtype=author&amp;query=Stassun%2C+K">K. Stassun</a>, <a href="/search/?searchtype=author&amp;query=Stelzer%2C+B">B. Stelzer</a>, <a href="/search/?searchtype=author&amp;query=Strong%2C+A">A. Strong</a>, <a href="/search/?searchtype=author&amp;query=Morrison%2C+S">S. Morrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17304v1-abstract-short" style="display: inline;"> Aims. Compact white-dwarf binaries are selected from spectra obtained in the early SDSS-V plate program. A dedicated set of SDSS plate observations were carried out in the eFEDS field, providing spectroscopic classifications for a significant fraction of the optically bright end (r &lt; 22.5) of the X-ray sample. The identification and subclassification rests on visual inspections of the SDSS spectra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17304v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17304v1-abstract-full" style="display: none;"> Aims. Compact white-dwarf binaries are selected from spectra obtained in the early SDSS-V plate program. A dedicated set of SDSS plate observations were carried out in the eFEDS field, providing spectroscopic classifications for a significant fraction of the optically bright end (r &lt; 22.5) of the X-ray sample. The identification and subclassification rests on visual inspections of the SDSS spectra, spectral variability, color-magnitude and color-color diagrams involving optical and X-ray fluxes, optical variability and literature work. Results. Upon visual inspection of SDSS spectra and various auxiliary data products we have identified 26 accreting compact white-dwarf binaries (aCWDBs) in eFEDS, of which 24 are proven X-ray emitters. Among those 26 objects are 12 dwarf novae, three WZ Sge-like disk-accreting non-magnetic CVs with low accretion rates, five likely non-magnetic high accretion rate novalike CVs, two magnetic CVs of the polar subcategory, and three double degenerates (AM CVn objects). Period bouncing candidates and magnetic systems are rarer than expected in this sample, but it is too small for a thorough statistical analysis. Fourteen of the systems are new discoveries, of which five are fainter than the Gaia magnitude limit. Thirteen aCWDBs have measured or estimated orbital periods, of which five were presented here. Through a Zeeman analysis we revise the magnetic field estimate of the polar system J0926+0105, which is likely a low-field polar at B = 16 MG. We quantify the success of X-ray versus optical/UV selection of compact white-dwarf binaries which will be relevant for the full SDSS-V survey. We also identify six white-dwarf main-sequence (WDMS) systems, among them one confirmed pre-CV at an orbital period of 17.6 hours and another pre-CV candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17304v1-abstract-full').style.display = 'none'; document.getElementById('2401.17304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version, submitted to A&amp;A, original submitted Oct 30, 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A110 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17293">arXiv:2401.17293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17293">pdf</a>, <a href="https://arxiv.org/format/2401.17293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> eRASSUJ060839.5-704014: A double degenerate ultra-compact binary in the direction of the LMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/?searchtype=author&amp;query=Schwope%2C+A">A. Schwope</a>, <a href="/search/?searchtype=author&amp;query=Friedrich%2C+S">S. Friedrich</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/?searchtype=author&amp;query=Valdes%2C+F">F. Valdes</a>, <a href="/search/?searchtype=author&amp;query=Lang%2C+D">D. Lang</a>, <a href="/search/?searchtype=author&amp;query=Macfarlane%2C+S+A">S. A. Macfarlane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17293v1-abstract-short" style="display: inline;"> Context. During four all-sky surveys (eRASS1--4), eROSITA, the soft X-ray instrument aboard Spektrum-Roentgen-Gamma (SRG) detected a new supersoft X-ray source, eRASSU J060839.5-704014, in the direction of the Large Magellanic Cloud (LMC). Methods. We arranged follow-up observations in the X-ray and optical wavelengths and further searched in archival observations to reveal the nature of the objec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17293v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17293v1-abstract-full" style="display: none;"> Context. During four all-sky surveys (eRASS1--4), eROSITA, the soft X-ray instrument aboard Spektrum-Roentgen-Gamma (SRG) detected a new supersoft X-ray source, eRASSU J060839.5-704014, in the direction of the Large Magellanic Cloud (LMC). Methods. We arranged follow-up observations in the X-ray and optical wavelengths and further searched in archival observations to reveal the nature of the object. Results. We discover pulsations at ~374 s with a pulse profile consistent with 100% modulation. We identify two other periodicities in the eROSITA data, which we establish as aliases due to the sampling of the eROSITA light curve. We identify a multi-wavelength counterpart to the X-ray source in UVW1 and g, r, i, and z images obtained by the optical/UV monitor on XMM-Newton and the Dark Energy Camera at the Cerro Tololo Inter-American Observatory. The timing and spectral characteristics of the source are consistent with a double degenerate ultra-compact binary system in the foreground of the LMC. eRASSU J060839.5-704014 belongs to a rare class of AM CVns, which are important to study in the context of progenitors of SN Ia and for persistent gravitational wave detection. Conclusions. We identify eRASSU J060839.5-704014 as a new double degenerate ultra-compact binary located in the foreground of the LMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17293v1-abstract-full').style.display = 'none'; document.getElementById('2401.17293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures, accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17291">arXiv:2401.17291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17291">pdf</a>, <a href="https://arxiv.org/format/2401.17291">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449356">10.1051/0004-6361/202449356 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of the Goat Horn complex: a $\sim 1000$ deg$^2$ diffuse X-ray source connected to radio loop XII </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Locatelli%2C+N">Nicola Locatelli</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">Andrea Merloni</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xueying Zheng</a>, <a href="/search/?searchtype=author&amp;query=Dennerl%2C+K">Konrad Dennerl</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J">Jeremy Sanders</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">Manami Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+H">Heshou Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17291v1-abstract-short" style="display: inline;"> A dozen of patches of polarized radio emission spanning tens of degrees in the form of coherent and stationary loops are observed at radio frequencies across the sky. Their origin is usually associated to nearby shocks, possibly arising from close supernovae explosions. The origin of the radio Loop XII remains so far unknown. We report an anti-correlation of the radio polarized emission of loop XI&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17291v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17291v1-abstract-full" style="display: none;"> A dozen of patches of polarized radio emission spanning tens of degrees in the form of coherent and stationary loops are observed at radio frequencies across the sky. Their origin is usually associated to nearby shocks, possibly arising from close supernovae explosions. The origin of the radio Loop XII remains so far unknown. We report an anti-correlation of the radio polarized emission of loop XII with a large patch of soft X-ray emission found with SRG/eROSITA in excess of the background surface brightness, in the same region. The soft X-ray seemingly coherent patch in excess of the background emission, which we dub as the Goat Horn complex, extends over a remarkable area of $\sim 1000$ deg$^2$ and includes an arc-shaped enhancement potentially tracing a cold front. An anti-correlation of the X-ray intensity with the temperature of the plasma responsible for the X-ray emission is also observed. The X-ray bright arc seems to anticipate the radio loop XII by some degrees on the sky. This behavior can be recast in terms of a correlation between X-ray surface brightness and radio depolarization. We explore and discuss different possible scenarios for the source of the diffuse emission in the Goat Horn complex: a large supernova remnant; an outflow from active star formation regions in nearby Galactic spiral arms; a hot atmosphere around the Large Magellanic Cloud. In order to probe these scenarios further, a more detailed characterization on the velocity of the hot gas is required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17291v1-abstract-full').style.display = 'none'; document.getElementById('2401.17291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 688, A85 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17280">arXiv:2401.17280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17280">pdf</a>, <a href="https://arxiv.org/format/2401.17280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The eROSITA DR1 variability catalogue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Boller%2C+T">Th. Boller</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M">M. Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+J">J. Buchner</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Schwope%2C+A">A. Schwope</a>, <a href="/search/?searchtype=author&amp;query=Robrade%2C+J">J. Robrade</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/?searchtype=author&amp;query=Grotova%2C+I">I. Grotova</a>, <a href="/search/?searchtype=author&amp;query=Waddell%2C+S">S. Waddell</a>, <a href="/search/?searchtype=author&amp;query=Ni%2C+Q">Q. Ni</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">M. Salvato</a>, <a href="/search/?searchtype=author&amp;query=Krumpe%2C+M">M. Krumpe</a>, <a href="/search/?searchtype=author&amp;query=Georgakakis%2C+A">A. Georgakakis</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">A. Merloni</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">K. Nandra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17280v1-abstract-short" style="display: inline;"> The extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma (SRG) mission with its first All-Sky Survey (eRASS1) has offered an unprecedented, comprehensive view of the variable X-ray sky. With enhanced sensitivity, broader energy coverage, and improved resolution compared to prior surveys, the eRASS1 Data Release 1 (DR1) catalogue underwent a variab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17280v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17280v1-abstract-full" style="display: none;"> The extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma (SRG) mission with its first All-Sky Survey (eRASS1) has offered an unprecedented, comprehensive view of the variable X-ray sky. With enhanced sensitivity, broader energy coverage, and improved resolution compared to prior surveys, the eRASS1 Data Release 1 (DR1) catalogue underwent a variability analysis, focusing on a substantial subset of 128,669 sources. We performed multiple variability tests, utilizing conventional normalized excess variance, maximum amplitude variability, and Bayesian excess variance methods. Among the 128,669 DR1 sources, our research identified 557 objects exhibiting variability through NEV and AMPLMAX tests. After applying suitable thresholds, 108 sources demonstrated significant variability via NEV, while 73 did so through AMPLMAX. The utilization of the bexvar method extended our detection capabilities to lower count rates, unveiling a total of 1307 sources manifesting variability. Furthermore, our comparative analysis spanning 2.5 years encompassed observations from consecutive eROSITA surveys, eRASS2, eRASS3, eRASS4, and eRASS5. Notably, the Gamma-ray burst afterglow GRB 200120A, which was the most variable DR1 source, was as expected absent in subsequent eROSITA survey scans. Observations of the Low-Mass X-ray Binary GX 339-4 across various eROSITA survey scans unveiled substantial variability. These outbursts involve the movement of the inner radius of the accretion disk, fluctuating inward and outward. Combining eROSITA and MAXI data reveals that the most effective tracer for monitoring the onset of the outbursts is the softest eROSITA band. Magnetically active stars are commonly found among the more variable X-ray sources. We analyzed the AGN sample to identify variability patterns and instances of efficiency limit violations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17280v1-abstract-full').style.display = 'none'; document.getElementById('2401.17280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17279">arXiv:2401.17279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17279">pdf</a>, <a href="https://arxiv.org/format/2401.17279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449415">10.1051/0004-6361/202449415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of the X-ray point source variability in the eROSITA south ecliptic pole field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bogensberger%2C+D">David Bogensberger</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">Kirpal Nandra</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">Mara Salvato</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Teng Liu</a>, <a href="/search/?searchtype=author&amp;query=Wolf%2C+J">Julien Wolf</a>, <a href="/search/?searchtype=author&amp;query=Croom%2C+S">Scott Croom</a>, <a href="/search/?searchtype=author&amp;query=Starck%2C+H">Hattie Starck</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+J">Johannes Buchner</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/?searchtype=author&amp;query=Chitham%2C+J+I">Jacob Ider Chitham</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Robrade%2C+J">Jan Robrade</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">Andrea Merloni</a>, <a href="/search/?searchtype=author&amp;query=Krumpe%2C+M">Mirko Krumpe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17279v1-abstract-short" style="display: inline;"> Aims: During the Spectrum Roentgen Gamma (SRG)/ eROSITA all-sky surveys, X-ray sources close to the South Ecliptic Pole (SEP) are observed almost every 4 hours. We aim to identify the sources exhibiting the most significant long-term X-ray variability within 3 degrees of the SEP in the first three surveys, and investigate their properties. Methods: We determined the variability significance of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17279v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17279v1-abstract-full" style="display: none;"> Aims: During the Spectrum Roentgen Gamma (SRG)/ eROSITA all-sky surveys, X-ray sources close to the South Ecliptic Pole (SEP) are observed almost every 4 hours. We aim to identify the sources exhibiting the most significant long-term X-ray variability within 3 degrees of the SEP in the first three surveys, and investigate their properties. Methods: We determined the variability significance of all sources observed by eROSITA within 3 degrees of the SEP by using thresholds on the Bayesian excess variance (SCATT_LO) and the maximum amplitude deviation (AMPL_SIG). Sources exhibiting a variability significance above $3蟽$ were subdivided into likely Galactic and extragalactic sources, by using spectral and photometric information of their optical counterparts. We quantified the X-ray normalised excess variances of all variable sources, and also calculated the periodograms of the brightest ones. Results: Out of more than $10^4$ X-ray sources detected by eROSITA within 3 degrees of the SEP, we identified 453 that exhibit significant X-ray variability. SCATT_LO is significantly more sensitive to detecting variable sources in this field, but AMPL_SIG helps provide a more complete variability sample. Of those variable sources, 168 were classified as likely extragalactic, and 235 as likely Galactic. The periodograms of most bright and variable extragalactic sources are approximately described by an aliased power law ($P\propto谓^{-伪}$) with an index of $伪\approx 1$. We identified a potential tidal disruption event, and long-term transient sources. The stellar X-ray variability was predominantly caused by bright X-ray flares from coronally active stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17279v1-abstract-full').style.display = 'none'; document.getElementById('2401.17279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 687, A37 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17275">arXiv:2401.17275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17275">pdf</a>, <a href="https://arxiv.org/format/2401.17275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The more the merrier: SRG/eROSITA discovers two further galaxies showing X-ray quasi-periodic eruptions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arcodia%2C+R">R. Arcodia</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">A. Merloni</a>, <a href="/search/?searchtype=author&amp;query=Malyali%2C+A">A. Malyali</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/?searchtype=author&amp;query=Chakraborty%2C+J">J. Chakraborty</a>, <a href="/search/?searchtype=author&amp;query=Goodwin%2C+A">A. Goodwin</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D">D. Buckley</a>, <a href="/search/?searchtype=author&amp;query=Brink%2C+J">J. Brink</a>, <a href="/search/?searchtype=author&amp;query=Gromadzki%2C+M">M. Gromadzki</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+Z">Z. Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+J">J. Buchner</a>, <a href="/search/?searchtype=author&amp;query=Kara%2C+E">E. Kara</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">K. Nandra</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">G. Ponti</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">M. Salvato</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+G">G. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Baldini%2C+P">P. Baldini</a>, <a href="/search/?searchtype=author&amp;query=Grotova%2C+I">I. Grotova</a>, <a href="/search/?searchtype=author&amp;query=Krumpe%2C+M">M. Krumpe</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">J. C. A. Miller-Jones</a>, <a href="/search/?searchtype=author&amp;query=Ramos-Ceja%2C+M+E">M. E. Ramos-Ceja</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17275v1-abstract-short" style="display: inline;"> X-ray quasi-periodic eruptions (QPEs) are a novel addition to the group of extragalactic transients. In this work, we report the discovery of two further galaxies showing QPEs, eRO-QPE3 and eRO-QPE4, with the eROSITA X-ray telescope on board the Spectrum Roentgen Gamma observatory. Among the properties in common with those of known QPEs are: the thermal-like spectral shape in eruption (up to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17275v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17275v1-abstract-full" style="display: none;"> X-ray quasi-periodic eruptions (QPEs) are a novel addition to the group of extragalactic transients. In this work, we report the discovery of two further galaxies showing QPEs, eRO-QPE3 and eRO-QPE4, with the eROSITA X-ray telescope on board the Spectrum Roentgen Gamma observatory. Among the properties in common with those of known QPEs are: the thermal-like spectral shape in eruption (up to $kT\sim110-120$ eV) and quiescence ($kT\sim50-90$ eV) and its evolution during the eruptions (with a harder rise than decay); the lack of strong canonical signatures of active nuclei (from current optical, UV, infrared and radio data); and the low-mass nature of the host galaxies ($\log M_*\approx 9-10$) and their massive central black holes ($\log M_{\rm BH}\approx 5-7$). These discoveries also bring several new insights into the QPE population: i) eRO-QPE3 shows eruptions on top of a decaying quiescence flux, providing further evidence for a connection between QPEs and a preceding tidal disruption event; ii) eRO-QPE3 exhibits the longest recurrence times and faintest peak luminosity of QPEs, compared to the known QPE population, excluding a correlation between the two; iii) we find evidence, for the first time, of a transient component that is harder, albeit much fainter, than the thermal QPE spectrum in eRO-QPE4; and iv) eRO-QPE4 displays the appearance (or significant brightening) of the quiescence disk component after the detection of QPEs, supporting its short-lived nature against a preexisting active galactic nucleus. Overall, the newly discovered properties (e.g., recent origin and/or transient nature of the quiescent accretion disk; lack of correlation between eruption recurrence timescales and luminosity) are qualitatively consistent with recent models that identify QPEs as extreme mass-ratio inspirals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17275v1-abstract-full').style.display = 'none'; document.getElementById('2401.17275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17274">arXiv:2401.17274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17274">pdf</a>, <a href="https://arxiv.org/format/2401.17274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347165">10.1051/0004-6361/202347165 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SRG/eROSITA all-sky survey: First X-ray catalogues and data release of the western Galactic hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">A. Merloni</a>, <a href="/search/?searchtype=author&amp;query=Lamer%2C+G">G. Lamer</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">T. Liu</a>, <a href="/search/?searchtype=author&amp;query=Ramos-Ceja%2C+M+E">M. E. Ramos-Ceja</a>, <a href="/search/?searchtype=author&amp;query=Brunner%2C+H">H. Brunner</a>, <a href="/search/?searchtype=author&amp;query=Bulbul%2C+E">E. Bulbul</a>, <a href="/search/?searchtype=author&amp;query=Dennerl%2C+K">K. Dennerl</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">V. Doroshenko</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M+J">M. J. Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Friedrich%2C+S">S. Friedrich</a>, <a href="/search/?searchtype=author&amp;query=Gatuzz%2C+E">E. Gatuzz</a>, <a href="/search/?searchtype=author&amp;query=Georgakakis%2C+A">A. Georgakakis</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Igo%2C+Z">Z. Igo</a>, <a href="/search/?searchtype=author&amp;query=Kreykenbohm%2C+I">I. Kreykenbohm</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+A">A. Liu</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Malyali%2C+A">A. Malyali</a>, <a href="/search/?searchtype=author&amp;query=Mayer%2C+M+G+F">M. G. F. Mayer</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">K. Nandra</a>, <a href="/search/?searchtype=author&amp;query=Predehl%2C+P">P. Predehl</a>, <a href="/search/?searchtype=author&amp;query=Robrade%2C+J">J. Robrade</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">M. Salvato</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J+S">J. S. Sanders</a>, <a href="/search/?searchtype=author&amp;query=Stewart%2C+I">I. Stewart</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17274v1-abstract-short" style="display: inline;"> The eROSITA telescope array aboard the Spektrum Roentgen Gamma (SRG) satellite began surveying the sky in December 2019, with the aim of producing all-sky X-ray source lists and sky maps of an unprecedented depth. Here we present catalogues of both point-like and extended sources using the data acquired in the first six months of survey operations (eRASS1; completed June 2020) over the half sky wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17274v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17274v1-abstract-full" style="display: none;"> The eROSITA telescope array aboard the Spektrum Roentgen Gamma (SRG) satellite began surveying the sky in December 2019, with the aim of producing all-sky X-ray source lists and sky maps of an unprecedented depth. Here we present catalogues of both point-like and extended sources using the data acquired in the first six months of survey operations (eRASS1; completed June 2020) over the half sky whose proprietary data rights lie with the German eROSITA Consortium. We describe the observation process, the data analysis pipelines, and the characteristics of the X-ray sources. With nearly 930000 entries detected in the most sensitive 0.2-2.3 keV energy range, the eRASS1 main catalogue presented here increases the number of known X-ray sources in the published literature by more than 60%, and provides a comprehensive inventory of all classes of X-ray celestial objects, covering a wide range of physical processes. A smaller catalogue of 5466 sources detected in the less sensitive but harder 2.3-5 keV band is the result of the first true imaging survey of the entire sky above 2 keV. We show that the number counts of X-ray sources in eRASS1 are consistent with those derived over narrower fields by past X-ray surveys of a similar depth, and we explore the number counts variation as a function of the location in the sky. Adopting a uniform all-sky flux limit (at 50% completeness) of F_{0.5-2 keV} &gt; 5 \times 10^{-14}$ erg\,s$^{-1}$\,cm$^{-2}$, we estimate that the eROSITA all-sky survey resolves into individual sources about 20% of the cosmic X-ray background in the 1-2 keV range. The catalogues presented here form part of the first data release (DR1) of the SRG/eROSITA all-sky survey. Beyond the X-ray catalogues, DR1 contains all detected and calibrated event files, source products (light curves and spectra), and all-sky maps. Illustrative examples of these are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17274v1-abstract-full').style.display = 'none'; document.getElementById('2401.17274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 23 figures. Accepted for publication in A&amp;A. Accompanying eROSITA-DE Data Release 1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A, vol. 682, A34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06961">arXiv:2312.06961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06961">pdf</a>, <a href="https://arxiv.org/format/2312.06961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2024.13">10.1017/pasa.2024.13 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast as Potoroo: Radio Continuum Detection of a Bow-Shock Pulsar Wind Nebula Powered by Pulsar J1638-4713 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lazarevi%C4%87%2C+S">Sanja Lazarevi膰</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">Shi Dai</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">Roland Kothes</a>, <a href="/search/?searchtype=author&amp;query=Ahmad%2C+A">Adeel Ahmad</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">Rami Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Balzan%2C+J+C+F">Joel C. F. Balzan</a>, <a href="/search/?searchtype=author&amp;query=Barnes%2C+L+A">Luke A. Barnes</a>, <a href="/search/?searchtype=author&amp;query=Cotton%2C+W+D">William D. Cotton</a>, <a href="/search/?searchtype=author&amp;query=Edwards%2C+P+G">Philip G. Edwards</a>, <a href="/search/?searchtype=author&amp;query=Gordon%2C+Y+A">Yjan A. Gordon</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">Andrew M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">B盲rbel S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Mi%C4%87i%C4%87%2C+M">Marko Mi膰i膰</a>, <a href="/search/?searchtype=author&amp;query=Rowell%2C+G">Gavin Rowell</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">Manami Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Tothill%2C+N+F+H">Nicholas F. H. Tothill</a>, <a href="/search/?searchtype=author&amp;query=Umana%2C+G">Grazia Umana</a>, <a href="/search/?searchtype=author&amp;query=Velovi%C4%87%2C+V">Velibor Velovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06961v2-abstract-short" style="display: inline;"> We report the discovery of a bow-shock pulsar wind nebula (PWN), named Potoroo, and the detection of a young pulsar J1638-4713 that powers the nebula. We present a radio continuum study of the PWN based on 20-cm observations obtained from the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. PSR J1638-4713 was identified using Parkes radio telescope observations at frequencies abov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06961v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06961v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06961v2-abstract-full" style="display: none;"> We report the discovery of a bow-shock pulsar wind nebula (PWN), named Potoroo, and the detection of a young pulsar J1638-4713 that powers the nebula. We present a radio continuum study of the PWN based on 20-cm observations obtained from the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. PSR J1638-4713 was identified using Parkes radio telescope observations at frequencies above 3 GHz. The pulsar has the second-highest dispersion measure of all known radio pulsars (1553 pc/cm^3), a spin period of 65.74 ms and a spin-down luminosity of 6.1x10^36 erg/s. The PWN has a cometary morphology and one of the greatest projected lengths among all the observed pulsar radio tails, measuring over 21 pc for an assumed distance of 10 kpc. The remarkably long tail and atypically steep radio spectral index are attributed to the interplay of a supernova reverse shock and the PWN. The originating supernova remnant is not known so far. We estimated the pulsar kick velocity to be in the range of 1000-2000 km/s for ages between 23 and 10 kyr. The X-ray counterpart found in Chandra data, CXOU J163802.6-471358, shows the same tail morphology as the radio source but is shorter by a factor of 10. The peak of the X-ray emission is offset from the peak of the radio total intensity (Stokes I) emission by approximately 4.7&#34;, but coincides well with circularly polarised (Stokes V) emission. No infrared counterpart was found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06961v2-abstract-full').style.display = 'none'; document.getElementById('2312.06961v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, 4 tables; Accepted for publication in PASA on 18 Jan 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06745">arXiv:2312.06745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06745">pdf</a>, <a href="https://arxiv.org/format/2312.06745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Broadband maps of eROSITA and their comparison with the ROSAT survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xueying Zheng</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M">Michael Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J">Jeremy Sanders</a>, <a href="/search/?searchtype=author&amp;query=Locatelli%2C+N">Nicola Locatelli</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">Andrea Merloni</a>, <a href="/search/?searchtype=author&amp;query=Strong%2C+A">Andy Strong</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">Manami Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Comparat%2C+J">Johan Comparat</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+W">Werner Becker</a>, <a href="/search/?searchtype=author&amp;query=Kerp%2C+J">Juergen Kerp</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Teng Liu</a>, <a href="/search/?searchtype=author&amp;query=Predehl%2C+P">Peter Predehl</a>, <a href="/search/?searchtype=author&amp;query=Anastasopoulou%2C+K">Konstantina Anastasopoulou</a>, <a href="/search/?searchtype=author&amp;query=Lamer%2C+G">Georg Lamer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06745v1-abstract-short" style="display: inline;"> By June of 2020, the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum Roentgen Gamma observatory had completed its first of the planned eight X-ray all-sky survey (eRASS1). The large effective area of the X-ray telescope makes it ideal for a survey of the faint X-ray diffuse emission over half of the sky with an unprecedented energy resolution and position a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06745v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06745v1-abstract-full" style="display: none;"> By June of 2020, the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum Roentgen Gamma observatory had completed its first of the planned eight X-ray all-sky survey (eRASS1). The large effective area of the X-ray telescope makes it ideal for a survey of the faint X-ray diffuse emission over half of the sky with an unprecedented energy resolution and position accuracy. In this work, we produce the X-ray diffuse emission maps of the eRASS1 data with a current calibration, covering the energy range from 0.2 to 8.0 keV. We validated these maps by comparison with X-ray background maps derived from the ROSAT All Sky Survey (RASS). We generated X-ray images with a pixel area of 9 arcmin$^2$ using the observations available to the German eROSITA consortium. The contribution of the particle background to the photons was subtracted from the final maps. We also subtracted all the point sources above a flux threshold dependent on the goal of the subtraction, exploiting the eRASS1 catalog that will soon be available. The accuracy of the eRASS1 maps is shown by a flux match to the RASS X-ray maps, obtained by converting the eROSITA rates into equivalent ROSAT count rates in the standard ROSAT energy bands R4, R5, R6, and R7, within 1.25$蟽$. We find small residual deviations in the R4, R5, and R6 bands, where eROSITA tends to observe lower flux than ROSAT (~11%), while a better agreement is achieved in the R7 band (~1%). The eRASS maps exhibit lower noise levels than RASS maps at the same resolution above 0.3 keV. We report the average surface brightness and total flux of different large sky regions as a reference. The detection of faint emission from diffuse hot gas in the Milky Way is corroborated by the consistency of the eRASS1 and RASS maps shown in this paper and by their comparable flux dynamic range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06745v1-abstract-full').style.display = 'none'; document.getElementById('2312.06745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A&amp;A, in press. 27 pages; 26 figures; 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04733">arXiv:2311.04733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04733">pdf</a>, <a href="https://arxiv.org/format/2311.04733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fspas.2023.1289432">10.3389/fspas.2023.1289432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The High Energy X-ray Probe (HEX-P): Studying Extreme Accretion with Ultraluminous X-ray Sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bachetti%2C+M">Matteo Bachetti</a>, <a href="/search/?searchtype=author&amp;query=Middleton%2C+M+J">Matthew J. Middleton</a>, <a href="/search/?searchtype=author&amp;query=Pinto%2C+C">Ciro Pinto</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BArpide%2C+A">Andr茅s G煤rpide</a>, <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">Dominic J. Walton</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">Murray Brightman</a>, <a href="/search/?searchtype=author&amp;query=Lehmer%2C+B">Bret Lehmer</a>, <a href="/search/?searchtype=author&amp;query=Roberts%2C+T+P">Timothy P. Roberts</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">Georgios Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">Jason Alford</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+R">Roberta Amato</a>, <a href="/search/?searchtype=author&amp;query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+L">Lixin Dai</a>, <a href="/search/?searchtype=author&amp;query=Earnshaw%2C+H+P">Hannah P. Earnshaw</a>, <a href="/search/?searchtype=author&amp;query=Byad%2C+H+E">Hamza El Byad</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+J+A">Javier A. Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Israel%2C+G+L">Gian Luca Israel</a>, <a href="/search/?searchtype=author&amp;query=Jaodand%2C+A">Amruta Jaodand</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K">Kristin Madsen</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Mandel%2C+S">Shifra Mandel</a>, <a href="/search/?searchtype=author&amp;query=Mori%2C+K">Kaya Mori</a>, <a href="/search/?searchtype=author&amp;query=Pintore%2C+F">Fabio Pintore</a>, <a href="/search/?searchtype=author&amp;query=Ohsuga%2C+K">Ken Ohsuga</a>, <a href="/search/?searchtype=author&amp;query=Pilia%2C+M">Maura Pilia</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04733v2-abstract-short" style="display: inline;"> Ultraluminous X-ray sources (ULXs) represent an extreme class of accreting compact objects: from the identification of some of the accretors as neutron stars to the detection of powerful winds travelling at 0.1-0.2 c, the increasing evidence points towards ULXs harbouring stellar-mass compact objects undergoing highly super-Eddington accretion. Measuring their intrinsic properties, such as the acc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04733v2-abstract-full').style.display = 'inline'; document.getElementById('2311.04733v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04733v2-abstract-full" style="display: none;"> Ultraluminous X-ray sources (ULXs) represent an extreme class of accreting compact objects: from the identification of some of the accretors as neutron stars to the detection of powerful winds travelling at 0.1-0.2 c, the increasing evidence points towards ULXs harbouring stellar-mass compact objects undergoing highly super-Eddington accretion. Measuring their intrinsic properties, such as the accretion rate onto the compact object, the outflow rate, the masses of accretor/companion -- hence their progenitors, lifetimes, and future evolution -- is challenging due to ULXs being mostly extragalactic and in crowded fields. Yet ULXs represent our best opportunity to understand super-Eddington accretion physics and the paths through binary evolution to eventual double compact object binaries and gravitational wave sources. Through a combination of end-to-end and single-source simulations, we investigate the ability of HEX-P to study ULXs in the context of their host galaxies and compare it to XMM-Newton and NuSTAR, the current instruments with the most similar capabilities. HEX-P&#39;s higher sensitivity, which is driven by its narrow point-spread function and low background, allows it to detect pulsations and broad spectral features from ULXs better than XMM-Newton and NuSTAR. We describe the value of HEX-P in understanding ULXs and their associated key physics, through a combination of broadband sensitivity, timing resolution, and angular resolution, which make the mission ideal for pulsation detection and low-background, broadband spectral studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04733v2-abstract-full').style.display = 'none'; document.getElementById('2311.04733v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 9 figures. Accepted for publication in Frontiers of Astronomy and Space Science. Minor corrections included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04687">arXiv:2311.04687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04687">pdf</a>, <a href="https://arxiv.org/format/2311.04687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The High Energy X-ray Probe (HEX-P): A New Window into Neutron Star Accretion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ludlam%2C+R+M">R. M. Ludlam</a>, <a href="/search/?searchtype=author&amp;query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/?searchtype=author&amp;query=Sokolova-Lapa%2C+E">E. Sokolova-Lapa</a>, <a href="/search/?searchtype=author&amp;query=Fuerst%2C+F">F. Fuerst</a>, <a href="/search/?searchtype=author&amp;query=Pradhan%2C+P">P. Pradhan</a>, <a href="/search/?searchtype=author&amp;query=Shaw%2C+A+W">A. W. Shaw</a>, <a href="/search/?searchtype=author&amp;query=Pottschmidt%2C+K">K. Pottschmidt</a>, <a href="/search/?searchtype=author&amp;query=Pike%2C+S">S. Pike</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">J. Wilms</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa%2C+J+A">J. A. Garc铆a</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K">K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">D. Stern</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Del+Santo%2C+M">M. Del Santo</a>, <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">D. J. Walton</a>, <a href="/search/?searchtype=author&amp;query=Brumback%2C+M+C">M. C. Brumback</a>, <a href="/search/?searchtype=author&amp;query=Eijnden%2C+J+v+d">J. van den Eijnden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04687v1-abstract-short" style="display: inline;"> Accreting neutron stars (NSs) represent a unique laboratory for probing the physics of accretion in the presence of strong magnetic fields ($B\gtrsim 10^8$ G). Additionally, the matter inside the NS itself exists in an ultra-dense, cold state that cannot be reproduced in Earth-based laboratories. Hence, observational studies of these objects are a way to probe the most extreme physical regimes. He&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04687v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04687v1-abstract-full" style="display: none;"> Accreting neutron stars (NSs) represent a unique laboratory for probing the physics of accretion in the presence of strong magnetic fields ($B\gtrsim 10^8$ G). Additionally, the matter inside the NS itself exists in an ultra-dense, cold state that cannot be reproduced in Earth-based laboratories. Hence, observational studies of these objects are a way to probe the most extreme physical regimes. Here we present an overview of the field and discuss the most important outstanding problems related to NS accretion. We show how these open questions regarding accreting NSs in both low-mass and high-mass X-ray binary systems can be addressed with the High-Energy X-ray Probe (HEX-P) via simulated data. In particular, with the broad X-ray passband and improved sensitivity afforded by a low X-ray background, HEX-P will be able to 1) distinguish between competing continuum emission models; 2) provide tighter upper limits on NS radii via reflection modeling techniques that are independent and complementary to other existing methods; 3) constrain magnetic field geometry, plasma parameters, and accretion column emission patterns by characterizing fundamental and harmonic cyclotron lines and exploring their behavior with pulse phase; 4) directly measure the surface magnetic field strength of highly magnetized NSs at the lowest accretion luminosities; as well as 5) detect cyclotron line features in extragalactic sources and probe their dependence on luminosity in the super-Eddington regime in order to distinguish between geometrical evolution and accretion-induced decay of the magnetic field. In these ways HEX-P will provide an essential new tool for exploring the physics of NSs, their magnetic fields, and the physics of extreme accretion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04687v1-abstract-full').style.display = 'none'; document.getElementById('2311.04687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 13 figures, 4 tables, To be published in a special topical issue by Frontiers in Astronomy and Space Sciences on probe-class mission concept HEX-P</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16533">arXiv:2310.16533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16533">pdf</a>, <a href="https://arxiv.org/format/2310.16533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3300">10.1093/mnras/stad3300 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ATCA Study of Small Magellanic Cloud Supernova Remnant 1E 0102.2-7219 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">Rami Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">M. D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Sano%2C+H">H. Sano</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Payne%2C+J+L">J. L. Payne</a>, <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">L. M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/?searchtype=author&amp;query=Collischon%2C+C">C. Collischon</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+T">T. Hill</a>, <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Knies%2C+J">J. Knies</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Macgregor%2C+P+J">P. J. Macgregor</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Manojlovi%C4%87%2C+P">P. Manojlovi膰</a>, <a href="/search/?searchtype=author&amp;query=Mart%C3%ADn%2C+S">S. Mart铆n</a>, <a href="/search/?searchtype=author&amp;query=Matthew%2C+C">C. Matthew</a>, <a href="/search/?searchtype=author&amp;query=Ralph%2C+N+O">N. O. Ralph</a>, <a href="/search/?searchtype=author&amp;query=Rowell%2C+G">G. Rowell</a>, <a href="/search/?searchtype=author&amp;query=Ruiter%2C+A+J">A. J. Ruiter</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16533v1-abstract-short" style="display: inline;"> We present new and archival Australia Telescope Compact Array and Atacama Large Millimeter/submillimeter Array data of the Small Magellanic Cloud supernova remnant 1E 0102.2-7219 at 2100, 5500, 9000, and 108000 MHz; as well as Hi data provided by the Australian Square Kilometre Array Pathfinder. The remnant shows a ring-like morphology with a mean radius of 6.2 pc. The 5500 MHz image reveals a bri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16533v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16533v1-abstract-full" style="display: none;"> We present new and archival Australia Telescope Compact Array and Atacama Large Millimeter/submillimeter Array data of the Small Magellanic Cloud supernova remnant 1E 0102.2-7219 at 2100, 5500, 9000, and 108000 MHz; as well as Hi data provided by the Australian Square Kilometre Array Pathfinder. The remnant shows a ring-like morphology with a mean radius of 6.2 pc. The 5500 MHz image reveals a bridge-like structure, seen for the first time in a radio image. This structure is also visible in both optical and X-ray images. In the 9000 MHz image we detect a central feature that has a flux density of 4.3 mJy but rule out a pulsar wind nebula origin, due to the lack of significant polarisation towards the central feature with an upper limit of 4 per cent. The mean fractional polarisation for 1E 0102.2-7219 is 7 +- 1 and 12 +- 2 per cent for 5500 and 9000 MHz, respectively. The spectral index for the entire remnant is -0.61 +- 0.01. We estimate the line-of-sight magnetic field strength in the direction of 1E 0102.2-7219 of ~44 microG with an equipartition field of 65 +- 5 microG. This latter model, uses the minimum energy of the sum of the magnetic field and cosmic ray electrons only. We detect an Hi cloud towards this remnant at the velocity range of ~160-180 km s-1 and a cavity-like structure at the velocity of 163.7-167.6 km s-1. We do not detect CO emission towards 1E 0102.2-7219. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16533v1-abstract-full').style.display = 'none'; document.getElementById('2310.16533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01222">arXiv:2304.01222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01222">pdf</a>, <a href="https://arxiv.org/format/2304.01222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> NeuroDAVIS: A neural network model for data visualization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chayan Maitra</a>, <a href="/search/?searchtype=author&amp;query=Seal%2C+D+B">Dibyendu B. Seal</a>, <a href="/search/?searchtype=author&amp;query=De%2C+R+K">Rajat K. De</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01222v1-abstract-short" style="display: inline;"> The task of dimensionality reduction and visualization of high-dimensional datasets remains a challenging problem since long. Modern high-throughput technologies produce newer high-dimensional datasets having multiple views with relatively new data types. Visualization of these datasets require proper methodology that can uncover hidden patterns in the data without affecting the local and global s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01222v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01222v1-abstract-full" style="display: none;"> The task of dimensionality reduction and visualization of high-dimensional datasets remains a challenging problem since long. Modern high-throughput technologies produce newer high-dimensional datasets having multiple views with relatively new data types. Visualization of these datasets require proper methodology that can uncover hidden patterns in the data without affecting the local and global structures within the data. To this end, however, very few such methodology exist, which can realise this task. In this work, we have introduced a novel unsupervised deep neural network model, called NeuroDAVIS, for data visualization. NeuroDAVIS is capable of extracting important features from the data, without assuming any data distribution, and visualize effectively in lower dimension. It has been shown theoritically that neighbourhood relationship of the data in high dimension remains preserved in lower dimension. The performance of NeuroDAVIS has been evaluated on a wide variety of synthetic and real high-dimensional datasets including numeric, textual, image and biological data. NeuroDAVIS has been highly competitive against both t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) with respect to visualization quality, and preservation of data size, shape, and both local and global structure. It has outperformed Fast interpolation-based t-SNE (Fit-SNE), a variant of t-SNE, for most of the high-dimensional datasets as well. For the biological datasets, besides t-SNE, UMAP and Fit-SNE, NeuroDAVIS has also performed well compared to other state-of-the-art algorithms, like Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) and the siamese neural network-based method, called IVIS. Downstream classification and clustering analyses have also revealed favourable results for NeuroDAVIS-generated embeddings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01222v1-abstract-full').style.display = 'none'; document.getElementById('2304.01222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13338">arXiv:2303.13338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13338">pdf</a>, <a href="https://arxiv.org/format/2303.13338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05714-4">10.1038/s41586-023-05714-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A helium-burning white dwarf binary as a supersoft X-ray source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Greiner%2C+J">J. Greiner</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Willer%2C+R">R. Willer</a>, <a href="/search/?searchtype=author&amp;query=Burgess%2C+J+M">J. M. Burgess</a>, <a href="/search/?searchtype=author&amp;query=Langer%2C+N">N. Langer</a>, <a href="/search/?searchtype=author&amp;query=Bodensteiner%2C+J">J. Bodensteiner</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/?searchtype=author&amp;query=Monageng%2C+I+M">I. M. Monageng</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Ritter%2C+H">H. Ritter</a>, <a href="/search/?searchtype=author&amp;query=Werner%2C+K">K. Werner</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Jayaraman%2C+R">R. Jayaraman</a>, <a href="/search/?searchtype=author&amp;query=Vanderspek%2C+R">R. Vanderspek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13338v1-abstract-short" style="display: inline;"> Type Ia supernovae are cosmic distance indicators, and the main source of iron in the Universe, but their formation paths are still debated. Several dozen supersoft X-ray sources, in which a white dwarf accretes hydrogen-rich matter from a non-degenerate donor star, have been observed and suggested as Type Ia supernovae progenitors. However, observational evidence for hydrogen, which is expected t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13338v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13338v1-abstract-full" style="display: none;"> Type Ia supernovae are cosmic distance indicators, and the main source of iron in the Universe, but their formation paths are still debated. Several dozen supersoft X-ray sources, in which a white dwarf accretes hydrogen-rich matter from a non-degenerate donor star, have been observed and suggested as Type Ia supernovae progenitors. However, observational evidence for hydrogen, which is expected to be stripped off the donor star during the supernova explosion, is lacking. Helium-accreting white dwarfs, which would circumvent this problem, have been predicted for more than 30 years, also including their appearance as supersoft X-ray sources, but have so far escaped detection. Here we report a supersoft X-ray source with an accretion disk whose optical spectrum is completely dominated by helium, suggesting that the donor star is hydrogen-free. We interpret the luminous and supersoft X-rays as due to helium burning near the surface of the accreting white dwarf. The properties of our system provides evidence for extended pathways towards Chandrasekhar mass explosions based on helium accretion, in particular for stable burning in white dwarfs at lower accretion rates than expected so far. This may allow to recover the population of the sub-energetic so-called Type Iax supernovae, up to 30% of all Type Ia supernovae, within this scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13338v1-abstract-full').style.display = 'none'; document.getElementById('2303.13338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 615 (2023), 605 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07225">arXiv:2303.07225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07225">pdf</a>, <a href="https://arxiv.org/format/2303.07225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad781">10.1093/mnras/stad781 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the cyclotron absorption line and evidence of the spectral transition in SMC X-2 during 2022 giant outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jaisawal%2C+G+K">G. K. Jaisawal</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Naik%2C+S">S. Naik</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/?searchtype=author&amp;query=Chhotaray%2C+B">B. Chhotaray</a>, <a href="/search/?searchtype=author&amp;query=Gendreau%2C+K+C">K. C. Gendreau</a>, <a href="/search/?searchtype=author&amp;query=Guillot%2C+S">S. Guillot</a>, <a href="/search/?searchtype=author&amp;query=Ng%2C+M">M. Ng</a>, <a href="/search/?searchtype=author&amp;query=Sanna%2C+A">A. Sanna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07225v1-abstract-short" style="display: inline;"> We report comprehensive spectral and temporal properties of the Be/X-ray binary pulsar SMC X-2 using X-ray observations during the 2015 and 2022 outbursts. The pulse profile of the pulsar is unique and strongly luminosity dependent. It evolves from a broad-humped into a double-peaked profile above luminosity 3$\times$10$^{38}$ ergs s$^{-1}$. The pulse fraction of the pulsar is found to be a linear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07225v1-abstract-full').style.display = 'inline'; document.getElementById('2303.07225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07225v1-abstract-full" style="display: none;"> We report comprehensive spectral and temporal properties of the Be/X-ray binary pulsar SMC X-2 using X-ray observations during the 2015 and 2022 outbursts. The pulse profile of the pulsar is unique and strongly luminosity dependent. It evolves from a broad-humped into a double-peaked profile above luminosity 3$\times$10$^{38}$ ergs s$^{-1}$. The pulse fraction of the pulsar is found to be a linear function of luminosity as well as energy. We also studied the spectral evolution of the source during the latest 2022 outburst with NICER. The observed photon index shows a negative and positive correlation below and above the critical luminosity, respectively, suggesting evidence of spectral transition from the sub-critical to super-critical regime. The broadband spectroscopy of four sets of NuSTAR and XRT/NICER data from both outbursts can be described using a cutoff power-law model with a blackbody component. In addition to the 6.4 keV iron fluorescence line, an absorption-like feature is clearly detected in the spectra. The cyclotron line energy observed during the 2015 outburst is below 29.5 keV, however latest estimates in the 2022 outburst suggest a value of 31.5 keV. Moreover, an increase of 3.4 keV is detected in the cyclotron line energy at equal levels of luminosity observed in 2022 with respect to 2015. The observed cyclotron line energy variation is explored in terms of accretion induced screening mechanism or geometrical variation in line forming region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07225v1-abstract-full').style.display = 'none'; document.getElementById('2303.07225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages, 11 figures, Accepted for Publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.10939">arXiv:2302.10939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.10939">pdf</a>, <a href="https://arxiv.org/format/2302.10939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb2cb">10.3847/1538-4357/acb2cb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clumpy wind studies and the non-detection of cyclotron line in OAO 1657-415 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pradhan%2C+P">Pragati Pradhan</a>, <a href="/search/?searchtype=author&amp;query=Ferrigno%2C+C">Carlo Ferrigno</a>, <a href="/search/?searchtype=author&amp;query=Paul%2C+B">Biswajit Paul</a>, <a href="/search/?searchtype=author&amp;query=Bozzo%2C+E">Enrico Bozzo</a>, <a href="/search/?searchtype=author&amp;query=Mellah%2C+I+E">Ileyk El Mellah</a>, <a href="/search/?searchtype=author&amp;query=Huenemoerder%2C+D+P">David P. Huenemoerder</a>, <a href="/search/?searchtype=author&amp;query=Steiner%2C+J+F">James F. Steiner</a>, <a href="/search/?searchtype=author&amp;query=Grinberg%2C+V">Victoria Grinberg</a>, <a href="/search/?searchtype=author&amp;query=Furst%2C+F">Felix Furst</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Romano%2C+P">Patrizia Romano</a>, <a href="/search/?searchtype=author&amp;query=Kretschma%2C+P">Peter Kretschma</a>, <a href="/search/?searchtype=author&amp;query=Kennea%2C+J">Jamie Kennea</a>, <a href="/search/?searchtype=author&amp;query=Chakrabarty%2C+D">Deepto Chakrabarty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.10939v1-abstract-short" style="display: inline;"> Winds of massive stars are suspected to be inhomogeneous (or clumpy), which biases the measures of their mass loss rates. In High Mass X-ray Binaries (HMXBs), the compact object can be used as an orbiting X-ray point source to probe the wind and constrain its clumpiness. We perform spectro-timing analysis of the HMXB OAO 1657-415 with non-simultaneous NuSTAR and NICER observations. We compute the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10939v1-abstract-full').style.display = 'inline'; document.getElementById('2302.10939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.10939v1-abstract-full" style="display: none;"> Winds of massive stars are suspected to be inhomogeneous (or clumpy), which biases the measures of their mass loss rates. In High Mass X-ray Binaries (HMXBs), the compact object can be used as an orbiting X-ray point source to probe the wind and constrain its clumpiness. We perform spectro-timing analysis of the HMXB OAO 1657-415 with non-simultaneous NuSTAR and NICER observations. We compute the hardness ratio from the energy-resolved light curves, and using an adaptive rebinning technique, we thus select appropriate time segments to search for rapid spectral variations on timescales of a few hundreds to thousands of seconds. Column density and intensity of Iron K$伪$ line were strongly correlated, and the recorded spectral variations were consistent with accretion from a clumpy wind. We also illustrate a novel framework to measure clump sizes, masses in HMXBs more accurately based on absorption measurements and orbital parameters of the source. We then discuss the limitations posed by current X-ray spacecrafts in such measurements and present prospects with future X-ray missions. We find that the source pulse profiles show a moderate dependence on energy. We identify a previously undetected dip in the pulse profile visible throughout the NuSTAR observation near spin phase 0.15 possibly caused by intrinsic changes in accretion geometry close to the neutron star. We do not find any evidence for the debated cyclotron line at $\sim$ 36\,keV in the time-averaged or the phase-resolved spectra with NuSTAR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10939v1-abstract-full').style.display = 'none'; document.getElementById('2302.10939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 11 figures in main text, 7 figures in Appendix, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01804">arXiv:2302.01804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01804">pdf</a>, <a href="https://arxiv.org/format/2302.01804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245807">10.1051/0004-6361/202245807 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SRG/eROSITA-triggered XMM-Newton observations of three Be/X-ray binaries in the LMC: Discovery of X-ray pulsations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Kaltenbrunner%2C+D">D. Kaltenbrunner</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/?searchtype=author&amp;query=Monageng%2C+I+M">I. M. Monageng</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">V. Doroshenko</a>, <a href="/search/?searchtype=author&amp;query=Ducci%2C+L">L. Ducci</a>, <a href="/search/?searchtype=author&amp;query=Kreykenbohm%2C+I">I. Kreykenbohm</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+P">P. Weber</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">J. Wilms</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01804v1-abstract-short" style="display: inline;"> Using data from eROSITA, the soft X-ray instrument aboard Spectrum-Roentgen-Gamma (SRG), we report the discovery of two new hard transients, eRASSU J050810.4-660653 and eRASSt J044811.1-691318, in the Large Magellanic Cloud. We also report the detection of the Be/X-ray binary RX J0501.6-7034 in a bright state. We initiated follow-up observations to investigate the nature of the new transients and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01804v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01804v1-abstract-full" style="display: none;"> Using data from eROSITA, the soft X-ray instrument aboard Spectrum-Roentgen-Gamma (SRG), we report the discovery of two new hard transients, eRASSU J050810.4-660653 and eRASSt J044811.1-691318, in the Large Magellanic Cloud. We also report the detection of the Be/X-ray binary RX J0501.6-7034 in a bright state. We initiated follow-up observations to investigate the nature of the new transients and to search for X-ray pulsations coming from RX J0501.6-7034. We analysed the X-ray spectra and light curves from our XMM-Newton observations, obtained optical spectra using the South African Large Telescope to look for Balmer emission lines and utilised the archival data from the Optical Gravitational Lensing Experiment (OGLE) for the long-term monitoring of the optical counterparts. We find X-ray pulsations for eRASSU J050810.4-660653, RX J0501.6-7034, and eRASSt J044811.1-691318 of 40.6 s, 17.3 s, and 784 s, respectively. The Halpha emission lines with equivalent widths of -10.4 A (eRASSU J050810.4-660653) and -43.9 A (eRASSt J044811.1-691318) were measured, characteristic for a circumstellar disc around Be stars. The OGLE I- and V-band light curves of all three systems exhibit strong variability. A regular pattern of deep dips in the light curves of RX J0501.6-7034 suggests an orbital period of ~451 days. We identify the two new hard eROSITA transients eRASSU J050810.4-660653 and eRASSt J044811.1-691318 and the known Be/X-ray binary RX J0501.6-7034 as Be/X-ray binary pulsars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01804v1-abstract-full').style.display = 'none'; document.getElementById('2302.01804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 671, A90 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04164">arXiv:2301.04164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04164">pdf</a>, <a href="https://arxiv.org/format/2301.04164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245001">10.1051/0004-6361/202245001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the excess Fe XXV line emission in the central degrees of the Galactic centre using XMM-Newton data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anastasopoulou%2C+K">K. Anastasopoulou</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">G. Ponti</a>, <a href="/search/?searchtype=author&amp;query=Sormani%2C+M+C">M. C. Sormani</a>, <a href="/search/?searchtype=author&amp;query=Locatelli%2C+N">N. Locatelli</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+M+R">M. R. Morris</a>, <a href="/search/?searchtype=author&amp;query=Churazov%2C+E+M">E. M. Churazov</a>, <a href="/search/?searchtype=author&amp;query=Sch%C3%B6del%2C+R">R. Sch枚del</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">C. Jin</a>, <a href="/search/?searchtype=author&amp;query=Khabibullin%2C+I">I. Khabibullin</a>, <a href="/search/?searchtype=author&amp;query=Mondal%2C+S">S. Mondal</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">X. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04164v1-abstract-short" style="display: inline;"> The diffuse Fe XXV (6.7 keV) line emission observed in the Galactic ridge is widely accepted to be produced by a superposition of a large number of unresolved X-ray point sources. In the very central degrees of our Galaxy, however, the existence of an extremely hot ($\sim$7 keV) diffuse plasma is still under debate. In this work we measure the Fe XXV line emission using all available XMM-Newton ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04164v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04164v1-abstract-full" style="display: none;"> The diffuse Fe XXV (6.7 keV) line emission observed in the Galactic ridge is widely accepted to be produced by a superposition of a large number of unresolved X-ray point sources. In the very central degrees of our Galaxy, however, the existence of an extremely hot ($\sim$7 keV) diffuse plasma is still under debate. In this work we measure the Fe XXV line emission using all available XMM-Newton observations of the Galactic centre (GC) and inner disc ($-10^{\circ}$$&lt;\ell&lt;10^{\circ}$, $-2^{\circ}&lt;b&lt;2^{\circ}$). We use recent stellar mass distribution models to estimate the amount of X-ray emission originating from unresolved point sources, and find that within a region of $\ell=\pm1^{\circ}$ and $b=\pm0.25^\circ$ the 6.7 keV emission is 1.3 to 1.5 times in excess of what is expected from unresolved point sources. The excess emission is enhanced towards regions where known supernova remnants are located, suggesting that at least a part of this emission is due to genuine diffuse very hot plasma. If the entire excess is due to very hot plasma, an energy injection rate of at least $\sim6\times10^{40}$ erg s$^{-1}$ is required, which cannot be provided by the measured supernova explosion rate or past Sgr A$^{*}$ activity alone. However, we find that almost the entire excess we observe can be explained by assuming GC stellar populations with iron abundances $\sim$1.9 times higher than those in the bar/bulge, a value that can be reproduced by fitting diffuse X-ray spectra from the corresponding regions. Even in this case, a leftover X-ray excess is concentrated within $\ell=\pm0.3^{\circ}$ and $b=\pm0.15^\circ$, corresponding to a thermal energy of $\sim2\times10^{52}$ erg, which can be reproduced by the estimated supernova explosion rate in the GC. Finally we discuss a possible connection to the observed GC Fermi-LAT excess. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04164v1-abstract-full').style.display = 'none'; document.getElementById('2301.04164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures, 7 tables, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 671, A55 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06698">arXiv:2211.06698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06698">pdf</a>, <a href="https://arxiv.org/format/2211.06698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245015">10.1051/0004-6361/202245015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> eRASSt J040515.6-745202, an X-ray burster in the Magellanic Bridge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Valdes%2C+F">F. Valdes</a>, <a href="/search/?searchtype=author&amp;query=Lang%2C+D">D. Lang</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">V. Doroshenko</a>, <a href="/search/?searchtype=author&amp;query=Ducci%2C+L">L. Ducci</a>, <a href="/search/?searchtype=author&amp;query=Kreykenbohm%2C+I">I. Kreykenbohm</a>, <a href="/search/?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+P">P. Weber</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">J. Wilms</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Bailyn%2C+C+D">C. D. Bailyn</a>, <a href="/search/?searchtype=author&amp;query=Jaisawal%2C+G+K">G. K. Jaisawal</a>, <a href="/search/?searchtype=author&amp;query=Ray%2C+P+S">P. S. Ray</a>, <a href="/search/?searchtype=author&amp;query=Treiber%2C+H">H. Treiber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06698v1-abstract-short" style="display: inline;"> During the third all-sky survey (eRASS3), eROSITA, the soft X-ray instrument aboard Spectrum-Roentgen-Gamma, detected a new hard X-ray transient, eRASSt J040515.6-745202, in the direction of the Magellanic Bridge. We arranged follow-up observations and searched for archival data to reveal the nature of the transient. Using X-ray observations with XMM-Newton, NICER, and Swift, we investigated the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06698v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06698v1-abstract-full" style="display: none;"> During the third all-sky survey (eRASS3), eROSITA, the soft X-ray instrument aboard Spectrum-Roentgen-Gamma, detected a new hard X-ray transient, eRASSt J040515.6-745202, in the direction of the Magellanic Bridge. We arranged follow-up observations and searched for archival data to reveal the nature of the transient. Using X-ray observations with XMM-Newton, NICER, and Swift, we investigated the temporal and spectral behaviour of the source for over about 10 days. The X-ray light curve obtained from the XMM-Newton observation with an 28 ks exposure revealed a type-I X-ray burst with a peak bolometric luminosity of at least 1.4e37 erg/s. The burst energetics are consistent with a location of the burster at the distance of the Magellanic Bridge. The relatively long exponential decay time of the burst of 70 s indicates that it ignited in a H-rich environment. The non-detection of the source during the other eROSITA surveys, twelve and six months before and six months after eRASS3, suggests that the burst was discovered during a moderate outburst which reached 2.6e36 erg/s in persistent emission. During the NICER observations, the source showed alternating flux states with the high level at a similar brightness as during the XMM-Newton observation. This behaviour is likely caused by dips as also seen during the last hour of the XMM-Newton observation. Evidence for a recurrence of the dips with a period of 21.8 hr suggests eRASSt J040515.6-745202 is a low-mass X-ray binary (LMXB) system with an accretion disk seen nearly edge on. We identify a multi-wavelength counterpart to the X-ray source in UVW1 and g, r, i, and z images obtained by the optical/UV monitor on XMM-Newton and the Dark Energy Camera at the Cerro Tololo Inter-American Observatory. (abbreviated) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06698v1-abstract-full').style.display = 'none'; document.getElementById('2211.06698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy &amp; Astrophysics. 10 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 669, A66 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05090">arXiv:2210.05090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05090">pdf</a>, <a href="https://arxiv.org/format/2210.05090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2922">10.1093/mnras/stac2922 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New ASKAP Radio Supernova Remnants and Candidates in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">Luke M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Sano%2C+H">H. Sano</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Barnes%2C+L+A">L. A. Barnes</a>, <a href="/search/?searchtype=author&amp;query=Boji%C4%8Di%C4%87%2C+I+S">I. S. Boji膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/?searchtype=author&amp;query=Chomiuk%2C+L">L. Chomiuk</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Ghavam%2C+M">M. Ghavam</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+T">T. Hill</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Ingallinera%2C+A">A. Ingallinera</a>, <a href="/search/?searchtype=author&amp;query=Jarrett%2C+T">T. Jarrett</a>, <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a>, <a href="/search/?searchtype=author&amp;query=Leonidaki%2C+I">I. Leonidaki</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Matthew%2C+C">C. Matthew</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05090v2-abstract-short" style="display: inline;"> We present a new Australian Square Kilometre Array Pathfinder (ASKAP) sample of 14 radio Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). This new sample is a significant increase to the known number of older, larger and low surface brightness LMC SNRs. We employ a multi-frequency search for each object and found possible traces of optical and occasionally X-ray emission in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05090v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05090v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05090v2-abstract-full" style="display: none;"> We present a new Australian Square Kilometre Array Pathfinder (ASKAP) sample of 14 radio Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). This new sample is a significant increase to the known number of older, larger and low surface brightness LMC SNRs. We employ a multi-frequency search for each object and found possible traces of optical and occasionally X-ray emission in several of these 14 SNR candidates. One of these 14 SNR candidates (MCSNR J0522-6543) has multi-frequency properties that strongly indicate a bona fide SNR. We also investigate a sample of 20 previously suggested LMC SNR candidates and confirm the SNR nature of MCSNR J0506-6815. We detect lower surface brightness SNR candidates which were likely formed by a combination of shock waves and strong stellar winds from massive progenitors (and possibly surrounding OB stars). Some of our new SNR candidates are also found in a lower density environments in which SNe type Ia explode inside a previously excavated interstellar medium (ISM). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05090v2-abstract-full').style.display = 'none'; document.getElementById('2210.05090v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS, this version corrects arXiv metadata only</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01664">arXiv:2209.01664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01664">pdf</a>, <a href="https://arxiv.org/format/2209.01664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244328">10.1051/0004-6361/202244328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband study and the discovery of pulsations from the Be/X-ray binary eRASSU J052914.9-662446 in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Kaltenbrunner%2C+D">D. Kaltenbrunner</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/?searchtype=author&amp;query=Monageng%2C+I+M">I. M. Monageng</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Carpano%2C+S">S. Carpano</a>, <a href="/search/?searchtype=author&amp;query=Coley%2C+J+B">J. B. Coley</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">V. Doroshenko</a>, <a href="/search/?searchtype=author&amp;query=Ducci%2C+L">L. Ducci</a>, <a href="/search/?searchtype=author&amp;query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6nig%2C+O">O. K枚nig</a>, <a href="/search/?searchtype=author&amp;query=Santangelo%2C+A">A. Santangelo</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">J. Wilms</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01664v1-abstract-short" style="display: inline;"> Context. The Magellanic Clouds are our nearest star-forming galaxies. While the population of high-mass X-ray binaries (HMXBs) in the Small Magellanic Cloud (SMC) is relatively well studied, our knowledge about the Large Magellanic Cloud (LMC) is far from complete given its large angular extent and insufficient coverage with X-ray observations. Aims. We conducted a search for new HMXBs in the LMC&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01664v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01664v1-abstract-full" style="display: none;"> Context. The Magellanic Clouds are our nearest star-forming galaxies. While the population of high-mass X-ray binaries (HMXBs) in the Small Magellanic Cloud (SMC) is relatively well studied, our knowledge about the Large Magellanic Cloud (LMC) is far from complete given its large angular extent and insufficient coverage with X-ray observations. Aims. We conducted a search for new HMXBs in the LMC using data from eROSITA, the soft X-ray instrument on board the Spektrum-Roentgen-Gamma (SRG) satellite. Methods. After confirming the nature of eRASSU J052914.9-662446 as a hard X-ray source positionally coincident with an early type star, we followed it up with optical spectroscopic observations from South African Large Telescope (SALT) and a dedicated NuSTAR observation. Results. We study the broadband timing and spectral behaviour of the newly discovered HMXB eRASSU J052914.9-662446 through eROSITA, Swift and NuSTAR data in X-rays and the Optical Gravitational Lensing Experiment (OGLE) and SALT RSS data at optical wavelength. We report on detection of the spin period at 1412 s and suggest an orbital period of the system of ~151 days, and thereby establish eRASSU J052914.9-662446 as an accreting pulsar. Further, through optical spectroscopic observations and the existence of H alpha emission the source is identified as a Be X-ray binary pulsar in the LMC. We also investigate the variability of the source in the optical and X-ray regime over the last decades and provide estimates on the possible magnetic field strength of the neutron star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01664v1-abstract-full').style.display = 'none'; document.getElementById('2209.01664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures, 3 tables, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 669, A30 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07637">arXiv:2208.07637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07637">pdf</a>, <a href="https://arxiv.org/format/2208.07637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244514">10.1051/0004-6361/202244514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XMM-Newton and SRG/eROSITA observations of the isolated neutron star candidate 4XMM J022141.5-735632 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pires%2C+A+M">Adriana M. Pires</a>, <a href="/search/?searchtype=author&amp;query=Motch%2C+C">Christian Motch</a>, <a href="/search/?searchtype=author&amp;query=Kurpas%2C+J">Jan Kurpas</a>, <a href="/search/?searchtype=author&amp;query=Schwope%2C+A+D">Axel D. Schwope</a>, <a href="/search/?searchtype=author&amp;query=Valdes%2C+F">Frank Valdes</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Traulsen%2C+I">Iris Traulsen</a>, <a href="/search/?searchtype=author&amp;query=Tubin%2C+D">Dusan Tubin</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+W">Werner Becker</a>, <a href="/search/?searchtype=author&amp;query=Comparat%2C+J">Johan Comparat</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Meisner%2C+A">Aaron Meisner</a>, <a href="/search/?searchtype=author&amp;query=Moustakas%2C+J">John Moustakas</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">Mara Salvato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07637v1-abstract-short" style="display: inline;"> We report the results of follow-up investigations of a possible new thermally emitting isolated neutron star (INS), 4XMM J022141.5-735632, using observations from XMM-Newton and Spectrum Roentgen Gamma (SRG) eROSITA. The analysis is complemented by Legacy Survey imaging in the optical and near-infrared wavelengths. The X-ray source, the first to be targeted by XMM-Newton in an effort to identify n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07637v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07637v1-abstract-full" style="display: none;"> We report the results of follow-up investigations of a possible new thermally emitting isolated neutron star (INS), 4XMM J022141.5-735632, using observations from XMM-Newton and Spectrum Roentgen Gamma (SRG) eROSITA. The analysis is complemented by Legacy Survey imaging in the optical and near-infrared wavelengths. The X-ray source, the first to be targeted by XMM-Newton in an effort to identify new INS candidates from the fourth generation of the XMM-Newton serendipitous source catalogue Data Release 9 (4XMM-DR9), shows a remarkably soft energy distribution and a lack of catalogued counterparts; the very high X-ray-to-optical flux ratio virtually excludes any other identification than an INS. Within current observational limits, no significant flux variation nor change of spectral state is registered over nearly ten years. Future dedicated observations, particularly to search for pulsations, are crucial to shed further light on the nature of the X-ray source and relations to other Galactic neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07637v1-abstract-full').style.display = 'none'; document.getElementById('2208.07637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 666, A148 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12301">arXiv:2207.12301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12301">pdf</a>, <a href="https://arxiv.org/format/2207.12301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2096">10.1093/mnras/stac2096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VMC Survey -- XLIX. Discovery of a population of quasars dominated by nuclear dust emission behind the Magellanic Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pennock%2C+C+M">Clara M. Pennock</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Anih%2C+J+O">Joy O. Anih</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Sansom%2C+A+E">Anne E. Sansom</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Cowley%2C+M+J">Michael J. Cowley</a>, <a href="/search/?searchtype=author&amp;query=Afonso%2C+J">Jos茅 Afonso</a>, <a href="/search/?searchtype=author&amp;query=Ant%C3%B3n%2C+S">Sonia Ant贸n</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">Andrew M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Nanni%2C+A">Ambra Nanni</a>, <a href="/search/?searchtype=author&amp;query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/?searchtype=author&amp;query=Vardoulaki%2C+E">Eleni Vardoulaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12301v1-abstract-short" style="display: inline;"> Following the discovery of SAGE0536AGN ($z \sim$ 0.14), with the strongest 10-$渭$m silicate emission ever observed for an Active Galactic Nucleus (AGN), we discovered SAGE0534AGN ($z \sim$ 1.01), a similar AGN but with less extreme silicate emission. Both were originally mistaken as evolved stars in the Magellanic Clouds. Lack of far-infrared emission, and therefore star-formation, implies we are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12301v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12301v1-abstract-full" style="display: none;"> Following the discovery of SAGE0536AGN ($z \sim$ 0.14), with the strongest 10-$渭$m silicate emission ever observed for an Active Galactic Nucleus (AGN), we discovered SAGE0534AGN ($z \sim$ 1.01), a similar AGN but with less extreme silicate emission. Both were originally mistaken as evolved stars in the Magellanic Clouds. Lack of far-infrared emission, and therefore star-formation, implies we are seeing the central engine of the AGN without contribution from the host galaxy. They could be a key link in galaxy evolution. We used a dimensionality reduction algorithm, t-SNE (t-distributed Stochastic Neighbourhood Embedding) with multi-wavelength data from Gaia EDR3, VISTA survey of the Magellanic Clouds, AllWISE and the Australian SKA Pathfinder to find these two unusual AGN are grouped with 16 other objects separated from the rest, suggesting a rare class. Our spectroscopy at SAAO/SALT and literature data confirm at least 14 of these objects are extragalactic ($0.13 &lt; z &lt; 1.23$), all hosting AGN. Using spectral energy distribution fitter CIGALE we find that the majority of dust emission ($&gt; 70 \%$) in these sources is due to the AGN. Host galaxies appear to be either in or transitioning into the green valley. There is a trend of a thinning torus, increasing X-ray luminosity and decreasing Eddington ratio as the AGN transition through the green valley, implying that as the accretion supply depletes, the torus depletes and the column density reduces. Also, the near-infrared variability amplitude of these sources correlates with attenuation by the torus, implying the torus plays a role in the variability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12301v1-abstract-full').style.display = 'none'; document.getElementById('2207.12301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06396">arXiv:2206.06396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06396">pdf</a>, <a href="https://arxiv.org/format/2206.06396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243909">10.1051/0004-6361/202243909 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An X-ray view of the 2021 outburst of SXP 15.6: constraints on the binary orbit and magnetic field of the Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Jaisawal%2C+G+K">G. K. Jaisawal</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Karaferias%2C+A+S">A. S. Karaferias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06396v1-abstract-short" style="display: inline;"> We conducted a spectral and temporal analysis of X-ray data from the Be X-ray binary pulsar SXP 15.6 located in the Small Magellanic Cloud based on NuSTAR, NICER and Swift observations during the 2021 outburst. We present for the first time the broadband X-ray spectra of the system based on simultaneous NuSTAR and NICER observations. Moreover we use monitoring data to study the spectral and tempor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06396v1-abstract-full').style.display = 'inline'; document.getElementById('2206.06396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06396v1-abstract-full" style="display: none;"> We conducted a spectral and temporal analysis of X-ray data from the Be X-ray binary pulsar SXP 15.6 located in the Small Magellanic Cloud based on NuSTAR, NICER and Swift observations during the 2021 outburst. We present for the first time the broadband X-ray spectra of the system based on simultaneous NuSTAR and NICER observations. Moreover we use monitoring data to study the spectral and temporal properties of the system during the outburst. Comparison of the evolution of the 2021 outburst with archival data reveals a consistent pattern of variability with multiple peaks occurring at time intervals similar to the orbital period of the system (~36 d). Our spectral analysis indicates that most of the energy is released at high energies above 10 keV while we found no cyclotron absorption line in the spectrum. Analysis of the spectral evolution during the outburst, we find that the spectrum is softer-when-brighter, which in turn reveals that the system is probably in the super-critical regime where the accretion column is formed. This places an upper limit to the magnetic field of the system of the order of 7$\times$10$^{11}$ G. The spin-evolution of the neutron star (NS) during the outburst is consistent with an NS with a low magnetic field ($\sim{5}\times$10$^{11}$ G), while there is evident orbital modulation which we modelled and derived the orbital parameters. We found the orbit to have a moderate eccentricity of ~0.3. Our estimates of the magnetic field are consistent with the lack of an electron cyclotron resonance scattering feature in the broadband X-ray spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06396v1-abstract-full').style.display = 'none'; document.getElementById('2206.06396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, 4 tables. Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 664, A194 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02865">arXiv:2205.02865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02865">pdf</a>, <a href="https://arxiv.org/ps/2205.02865">ps</a>, <a href="https://arxiv.org/format/2205.02865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8743">10.3847/1538-4357/ac8743 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Timing six energetic rotation-powered X-ray pulsars, including the fast-spinning young PSR J0058-7218 and Big Glitcher PSR J0537-6910 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ho%2C+W+C+G">Wynn C. G. Ho</a>, <a href="/search/?searchtype=author&amp;query=Kuiper%2C+L">Lucien Kuiper</a>, <a href="/search/?searchtype=author&amp;query=Espinoza%2C+C+M">Cristobal M. Espinoza</a>, <a href="/search/?searchtype=author&amp;query=Guillot%2C+S">Sebastien Guillot</a>, <a href="/search/?searchtype=author&amp;query=Ray%2C+P+S">Paul S. Ray</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+D+A">D. A. Smith</a>, <a href="/search/?searchtype=author&amp;query=Bogdanov%2C+S">Slavko Bogdanov</a>, <a href="/search/?searchtype=author&amp;query=Antonopoulou%2C+D">Danai Antonopoulou</a>, <a href="/search/?searchtype=author&amp;query=Arzoumanian%2C+Z">Zaven Arzoumanian</a>, <a href="/search/?searchtype=author&amp;query=Bejger%2C+M">Michal Bejger</a>, <a href="/search/?searchtype=author&amp;query=Enoto%2C+T">Teruaki Enoto</a>, <a href="/search/?searchtype=author&amp;query=Esposito%2C+P">Paolo Esposito</a>, <a href="/search/?searchtype=author&amp;query=Harding%2C+A+K">Alice K. Harding</a>, <a href="/search/?searchtype=author&amp;query=Haskell%2C+B">Brynmor Haskell</a>, <a href="/search/?searchtype=author&amp;query=Lewandowska%2C+N">Natalia Lewandowska</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">Georgios Vasilopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02865v2-abstract-short" style="display: inline;"> Measuring a pulsar&#39;s rotational evolution is crucial to understanding the nature of the pulsar. Here we provide updated timing models for the rotational evolution of six pulsars, five of which are rotation phase-connected using primarily NICER X-ray data. For the newly-discovered fast energetic young pulsar, PSR J0058-7218, we increase the baseline of its timing model from 1.4 days to 8 months and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02865v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02865v2-abstract-full" style="display: none;"> Measuring a pulsar&#39;s rotational evolution is crucial to understanding the nature of the pulsar. Here we provide updated timing models for the rotational evolution of six pulsars, five of which are rotation phase-connected using primarily NICER X-ray data. For the newly-discovered fast energetic young pulsar, PSR J0058-7218, we increase the baseline of its timing model from 1.4 days to 8 months and not only measure more precisely its spin-down rate nudot = (-6.2324+/-0.0001)x10^-11 Hz s^-1 but also for the first time the second time derivative of spin rate nuddot = (4.2+/-0.2)x10^-21 Hz s^-2. For the fastest and most energetic young pulsar, PSR J0537-6910 (with 16 ms spin period), we detect 4 more glitches, for a total of 15 glitches over 4.5 years of NICER monitoring, and show that its spin-down behavior continues to set this pulsar apart from all others, including a long-term braking index n = -1.234+/-0.009 and interglitch braking indices that asymptote to &lt;~ 7 for long times after a glitch. For PSR J1101-6101, we measure a much more accurate spin-down rate that agrees with a previous value measured without phase-connection. For PSR J1412+7922 (also known as Calvera), we extend the baseline of its timing model from our previous 1-year model to 4.4 years, and for PSR J1849-0001, we extend the baseline from 1.5 years to 4.7 years. We also present a long-term timing model of the energetic pulsar, PSR J1813-1749, by fitting previous radio and X-ray spin frequencies from 2009-2019 and new ones measured here using 2018 NuSTAR and 2021 Chandra data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02865v2-abstract-full').style.display = 'none'; document.getElementById('2205.02865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 17 figures; accepted for publication in ApJ; very minor edits and no changes to numbers</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. 939, 7 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00625">arXiv:2203.00625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00625">pdf</a>, <a href="https://arxiv.org/format/2203.00625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243301">10.1051/0004-6361/202243301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three new high-mass X-ray binaries in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Monageng%2C+I+M">I. M. Monageng</a>, <a href="/search/?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00625v1-abstract-short" style="display: inline;"> The Magellanic Clouds host a large population of high-mass X-ray binary (HMXB) systems, but although the Large Magellanic Cloud (LMC) is an order of magnitude more massive than the Small Magellanic Cloud, significantly fewer HMXBs are known. We conducted a search for new HMXBs in XMM-Newton observations, which we performed to investigate supernova remnant candidates in the supergiant shells LMC5 a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00625v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00625v1-abstract-full" style="display: none;"> The Magellanic Clouds host a large population of high-mass X-ray binary (HMXB) systems, but although the Large Magellanic Cloud (LMC) is an order of magnitude more massive than the Small Magellanic Cloud, significantly fewer HMXBs are known. We conducted a search for new HMXBs in XMM-Newton observations, which we performed to investigate supernova remnant candidates in the supergiant shells LMC5 and LMC7. The three observed fields are located in regions, which were little explored in X-rays before. We analysed the XMM-Newton data to look for sources with hard X-ray spectrum and counterparts with optical colours and brightness typical for HMXBs. We report the discovery of three new Be/X-ray binaries, two of them showing pulsations in their X-ray flux. With a luminosity of 6.5e34 erg/s, XMMU J045315.1-693242 in LMC7 was relatively X-ray faint. The long-term OGLE I-band light curve of the V = 15.5 mag counterpart suggests a 49.6 day or 24.8 day orbital period for the binary system. XMMU J045736.9-692727, also located in LMC7 was brighter with a luminosity of 5.6e35 erg/s and hard spectrum with a power-law photon index of 0.63. The X-ray flux revealed clear pulsations with a period of 317.7 s. We obtained optical high resolution spectra from the V = 14.2 mag counterpart using the SALT-HRS spectrograph. Halpha and Hbeta were observed in emission with complex line profiles and equivalent widths of -8.0 A and -1.3 A, respectively. The I-band light curve obtained from OGLE shows a series of four strong outbursts followed by a sudden drop in brightness by more than 1 mag within 73-165 days and a recovery to the level before the outbursts. RX J0524.2-6620, previously classified as X-ray binary candidate, is located at the eastern part of LMC5. We report the discovery of 360.7 s pulsations. (abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00625v1-abstract-full').style.display = 'none'; document.getElementById('2203.00625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 22 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 662, A22 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09430">arXiv:2202.09430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09430">pdf</a>, <a href="https://arxiv.org/format/2202.09430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243362">10.1051/0004-6361/202243362 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The eROSITA extragalactic CalPV serendipitous catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Teng Liu</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">Andrea Merloni</a>, <a href="/search/?searchtype=author&amp;query=Wolf%2C+J">Julien Wolf</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">Mara Salvato</a>, <a href="/search/?searchtype=author&amp;query=Reiprich%2C+T">Thomas Reiprich</a>, <a href="/search/?searchtype=author&amp;query=Arcodia%2C+R">Riccardo Arcodia</a>, <a href="/search/?searchtype=author&amp;query=Lamer%2C+G">Georg Lamer</a>, <a href="/search/?searchtype=author&amp;query=Georgakakis%2C+A">Antonis Georgakakis</a>, <a href="/search/?searchtype=author&amp;query=Dwelly%2C+T">Tom Dwelly</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J">Jeremy Sanders</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+J">Johannes Buchner</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Ramos-Ceja%2C+M">Miriam Ramos-Ceja</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">Joern Wilms</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">Kirpal Nandra</a>, <a href="/search/?searchtype=author&amp;query=Brunner%2C+H">Hermann Brunner</a>, <a href="/search/?searchtype=author&amp;query=Brusa%2C+M">Marcella Brusa</a>, <a href="/search/?searchtype=author&amp;query=Schwope%2C+A">Axel Schwope</a>, <a href="/search/?searchtype=author&amp;query=Robrade%2C+J">Jan Robrade</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M+J">Michael J. Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Boller%2C+T">Thomas Boller</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Veronica%2C+A">Angie Veronica</a>, <a href="/search/?searchtype=author&amp;query=Malyali%2C+A">Adam Malyali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09430v2-abstract-short" style="display: inline;"> The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) observatory performed calibration and performance verification (CalPV) observations between September 2019 and December 2019, ahead of the planned four-year all-sky surveys. Most of them were deep, pointing-mode observations. We present here the X-ray catalog detected from the set of extra-galactic CalPV observations released t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09430v2-abstract-full').style.display = 'inline'; document.getElementById('2202.09430v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09430v2-abstract-full" style="display: none;"> The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) observatory performed calibration and performance verification (CalPV) observations between September 2019 and December 2019, ahead of the planned four-year all-sky surveys. Most of them were deep, pointing-mode observations. We present here the X-ray catalog detected from the set of extra-galactic CalPV observations released to the public by the German eROSITA consortium, and the multiband counterparts of these X-ray sources. We developed a source detection method optimized for point-like X-ray sources by including extended X-ray emission in the background measurement. The multiband counterparts were identified using a Bayesian method from the CatWISE catalog. Combining 11 CalPV fields, we present a catalog containing 9515 X-ray sources, whose X-ray fluxes were measured through spectral fitting. CatWISE counterparts are presented for 77% of the sources. Significant variabilities are found in 99 of the sources, which are also presented with this paper. Most of these fields show similar number counts of point sources as typical extragalactic fields, and a few harbor particular stellar populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09430v2-abstract-full').style.display = 'none'; document.getElementById('2202.09430v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in A&amp;A, 23 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 664, A126 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10026">arXiv:2201.10026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10026">pdf</a>, <a href="https://arxiv.org/format/2201.10026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac210">10.1093/mnras/stac210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mysterious Odd Radio Circle near the Large Magellanic Cloud -- An Intergalactic Supernova Remnant? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Payne%2C+J+L">J. L. Payne</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a>, <a href="/search/?searchtype=author&amp;query=Macgregor%2C+P+J">P. J. Macgregor</a>, <a href="/search/?searchtype=author&amp;query=Rudnick%2C+L">L. Rudnick</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Ducci%2C+L">L. Ducci</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Andernach%2C+H">H. Andernach</a>, <a href="/search/?searchtype=author&amp;query=Barnes%2C+L">L. Barnes</a>, <a href="/search/?searchtype=author&amp;query=Boji%C4%8Di%C4%87%2C+I+S">I. S. Boji膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">L. M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Crocker%2C+R+M">R. M. Crocker</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Galvin%2C+T+J">T. J. Galvin</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Heber%2C+U">U. Heber</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+T">T. Hill</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Hurley-Walker%2C+N">N. Hurley-Walker</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10026v1-abstract-short" style="display: inline;"> We report the discovery of J0624-6948, a low-surface brightness radio ring, lying between the Galactic Plane and the Large Magellanic Cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ~196 arcsec. This source has phenomenological similarities to Odd Radio Circles (ORCs). Significant differences to the known ORCs - a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10026v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10026v1-abstract-full" style="display: none;"> We report the discovery of J0624-6948, a low-surface brightness radio ring, lying between the Galactic Plane and the Large Magellanic Cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ~196 arcsec. This source has phenomenological similarities to Odd Radio Circles (ORCs). Significant differences to the known ORCs - a flatter radio spectral index, the lack of a prominent central galaxy as a possible host, and larger apparent size - suggest that J0624-6948 may be a different type of object. We argue that the most plausible explanation for J0624-6948 is an intergalactic supernova remnant due to a star that resided in the LMC outskirts that had undergone a single-degenerate type Ia supernova, and we are seeing its remnant expand into a rarefied, intergalactic environment. We also examine if a massive star or a white dwarf binary ejected from either galaxy could be the supernova progenitor. Finally, we consider several other hypotheses for the nature of the object, including the jets of an active galactic nucleus (AGN) or the remnant of a nearby stellar super-flare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10026v1-abstract-full').style.display = 'none'; document.getElementById('2201.10026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05169">arXiv:2201.05169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05169">pdf</a>, <a href="https://arxiv.org/format/2201.05169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243101">10.1051/0004-6361/202243101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The eROSITA Final Equatorial Depth Survey (eFEDS): X-ray emission around star-forming and quiescent galaxies at $0.05&lt;z&lt;0.3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Comparat%2C+J">Johan Comparat</a>, <a href="/search/?searchtype=author&amp;query=Truong%2C+N">Nhut Truong</a>, <a href="/search/?searchtype=author&amp;query=Merloni%2C+A">Andrea Merloni</a>, <a href="/search/?searchtype=author&amp;query=Pillepich%2C+A">Annalisa Pillepich</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/?searchtype=author&amp;query=Driver%2C+S">Simon Driver</a>, <a href="/search/?searchtype=author&amp;query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/?searchtype=author&amp;query=Liske%2C+J">Joe Liske</a>, <a href="/search/?searchtype=author&amp;query=Aird%2C+J">James Aird</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%BCggen%2C+M">Marcus Br眉ggen</a>, <a href="/search/?searchtype=author&amp;query=Bulbul%2C+E">Esra Bulbul</a>, <a href="/search/?searchtype=author&amp;query=Davies%2C+L">Luke Davies</a>, <a href="/search/?searchtype=author&amp;query=Villalba%2C+J+A+G">Justo Antonio Gonz谩lez Villalba</a>, <a href="/search/?searchtype=author&amp;query=Georgakakis%2C+A">Antonis Georgakakis</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Teng Liu</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Nandra%2C+K">Kirpal Nandra</a>, <a href="/search/?searchtype=author&amp;query=Popesso%2C+P">Paola Popesso</a>, <a href="/search/?searchtype=author&amp;query=Predehl%2C+P">Peter Predehl</a>, <a href="/search/?searchtype=author&amp;query=Robotham%2C+A">Aaron Robotham</a>, <a href="/search/?searchtype=author&amp;query=Salvato%2C+M">Mara Salvato</a>, <a href="/search/?searchtype=author&amp;query=Thorne%2C+J+E">Jessica E. Thorne</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05169v2-abstract-short" style="display: inline;"> We aim at characterizing the hot phase of the Circum-Galactic Medium in a large sample of galaxies. We stack X-ray events from the SRG/eROSITA eFEDS survey around central galaxies in the GAMA 9hr field to construct radially projected soft X-ray luminosity profiles as a function of their stellar mass and specific star formation rate. We consider samples of quiescent (star-forming) galaxies in the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05169v2-abstract-full').style.display = 'inline'; document.getElementById('2201.05169v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05169v2-abstract-full" style="display: none;"> We aim at characterizing the hot phase of the Circum-Galactic Medium in a large sample of galaxies. We stack X-ray events from the SRG/eROSITA eFEDS survey around central galaxies in the GAMA 9hr field to construct radially projected soft X-ray luminosity profiles as a function of their stellar mass and specific star formation rate. We consider samples of quiescent (star-forming) galaxies in the stellar mass range $2\times 10^{10}$ -- $10^{12}$ M$_\odot$ ($3\times 10^9$ -- $6\times10^{11}$ M$_\odot$). For quiescent galaxies, the X-ray profiles are clearly extended throughout the available mass range; however, the measured profile is likely biased high due to projection effects, as these galaxies tend to live in dense and hot environments. For the most massive star forming samples ($\geq10^{11}$ M$_\odot$), there is a hint of detection of extended emission. For star-forming galaxies with $&lt; 10^{11}$ M$_\odot$ the X-ray stacked profiles are compatible with unresolved sources and consistent with the expected emission from faint Active Galactic Nuclei and X-ray binaries. We measure for the first time the mean relation between average X-ray luminosity and stellar mass separately for quiescent and star-forming galaxies. High-mass ($\geq 10^{11}$ M$_\odot$) star-forming or quiescent galaxies follow the expected scaling of virialized hot haloes, while lower mass star-forming galaxies show a less prominent luminosity and a weaker dependence on stellar mass, consistent with empirical models of the weak AGN population. When comparing our results with state-of-the art numerical simulations, we find an overall consistency on large ($&gt;80$ kpc) scales at masses $\geq 10^{11}$ M$_\odot$, but disagreement on the small scales, where brighter than observed compact cores are predicted. Simulations also do not predict the clear differentiation that we observe between quiescent and star-forming galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05169v2-abstract-full').style.display = 'none'; document.getElementById('2201.05169v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures, 4 tables, accepted in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 666, A156 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00446">arXiv:2111.00446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00446">pdf</a>, <a href="https://arxiv.org/format/2111.00446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac813">10.1093/mnras/stac813 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New XMM-Newton observations of faint, evolved supernova remnants in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Filipovic%2C+M+D">M. D. Filipovic</a>, <a href="/search/?searchtype=author&amp;query=Points%2C+S+D">S. D. Points</a>, <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">L. M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00446v3-abstract-short" style="display: inline;"> The Large Magellanic Cloud (LMC) hosts a rich population of supernova remnants (SNRs), our knowledge of which is the most complete of any galaxy. However, there remain many candidate SNRs, identified through optical and radio observations where additional X-ray data can confirm their SNR nature and provide details on their physical properties. In this paper we present XMM-Newton observations that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00446v3-abstract-full').style.display = 'inline'; document.getElementById('2111.00446v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00446v3-abstract-full" style="display: none;"> The Large Magellanic Cloud (LMC) hosts a rich population of supernova remnants (SNRs), our knowledge of which is the most complete of any galaxy. However, there remain many candidate SNRs, identified through optical and radio observations where additional X-ray data can confirm their SNR nature and provide details on their physical properties. In this paper we present XMM-Newton observations that provide the first deep X-ray coverage of ten objects, comprising eight candidates and two previously confirmed SNRs. We perform multi-frequency studies using additional data from the Magellanic Cloud Emission Line Survey (MCELS) to investigate their broadband emission and used Spitzer data to understand the environment in which the objects are evolving. We confirm seven of the eight candidates as bona-fide SNRs. We used a multi-frequency morphological study to determine the position and size of the remnants. We identify two new members of the class of evolved Fe-rich remnants in the Magellanic Clouds (MCs), several SNRs well into their Sedov-phase, one SNR likely projected towards a HII region, and a faint, evolved SNR with a hard X-ray core which could indicate a pulsar wind nebula. Overall, the seven newly confirmed SNRs represent a ~10% increase in the number of LMC remnants, bringing the total number to 71, and provide further insight into the fainter population of X-ray SNRs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00446v3-abstract-full').style.display = 'none'; document.getElementById('2111.00446v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 23 figures, accepted for publication in MNRAS. (Version 3: accepted)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02165">arXiv:2110.02165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.02165">pdf</a>, <a href="https://arxiv.org/ps/2110.02165">ps</a>, <a href="https://arxiv.org/format/2110.02165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142159">10.1051/0004-6361/202142159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of four super-soft X-ray sources in XMM-Newton observations of the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02165v1-abstract-short" style="display: inline;"> Super-soft X-ray sources were established as a heterogeneous class of objects from observations of the Large Magellanic Cloud (LMC). We have searched for new sources of this class in the X-ray images obtained from the XMM-Newton survey of the LMC and additional archival observations. We first selected candidates by visual inspection of the image, and screened out artefacts which can mimic super-so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02165v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02165v1-abstract-full" style="display: none;"> Super-soft X-ray sources were established as a heterogeneous class of objects from observations of the Large Magellanic Cloud (LMC). We have searched for new sources of this class in the X-ray images obtained from the XMM-Newton survey of the LMC and additional archival observations. We first selected candidates by visual inspection of the image, and screened out artefacts which can mimic super-soft X-ray sources as well as bright foreground stars which create optical loading on the CCD image. We finally obtained 4 new super-soft X-ray sources for which we performed detailed X-ray timing and spectral analysis and searched for possible optical counterparts to identify their nature. XMMU J050452.0-683909 is identified as the central star of the planetary nebula SMP LMC21 in the LMC. We suggest XMMU J051854.8-695601 and XMMU J050815.1-691832 as new soft intermediate polars from the nature of their X-ray spectrum. Their estimated absorption-corrected luminosities and the blackbody radii indicate that they are located in our Galaxy, rather than the LMC. We discovered coherent pulsations of 497 s from XMMU J044626.6-692011 which indicates a magnetic cataclysmic variable nature of the source. The location of XMMU J044626.6-692011 in the LMC or our Galaxy is less clear. It could either be a white dwarf in the LMC with nuclear burning on its surface near the Eddington limit, or another soft intermediate polar in our Galaxy. The discovery of new super-soft X-ray sources makes a significant contribution to the known population in our own Galaxy. An observed higher density of sources in the direction of the Magellanic Clouds can likely be explained by the relatively low Galactic column density in their direction as well as a large number of existing observations sensitive at low X-ray energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02165v1-abstract-full').style.display = 'none'; document.getElementById('2110.02165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, 4 tables; accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 657, A26 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.11517">arXiv:2108.11517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.11517">pdf</a>, <a href="https://arxiv.org/format/2108.11517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141878">10.1051/0004-6361/202141878 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> eROSITA calibration and performance verification phase: High-mass X-ray binaries in the Magellanic Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Carpano%2C+S">S. Carpano</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+X">X. Dai</a>, <a href="/search/?searchtype=author&amp;query=Doroshenko%2C+V">V. Doroshenko</a>, <a href="/search/?searchtype=author&amp;query=Dennerl%2C+K">K. Dennerl</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M+J">M. J. Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&amp;query=Postnov%2C+K+A">K. A. Postnov</a>, <a href="/search/?searchtype=author&amp;query=Shakura%2C+N+I">N. I. Shakura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.11517v1-abstract-short" style="display: inline;"> During its performance verification phase, the soft X-ray instrument eROSITA aboard the Spektrum-Roentgen-Gamma(SRG) spacecraft observed large regions in the Magellanic Clouds, where almost 40 known high-mass X-ray binaries (HMXBs, including candidates) are located. We looked for new HMXBs in the eROSITA data, searched for pulsations in HMXB candidates and investigated the long-term behaviour of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11517v1-abstract-full').style.display = 'inline'; document.getElementById('2108.11517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.11517v1-abstract-full" style="display: none;"> During its performance verification phase, the soft X-ray instrument eROSITA aboard the Spektrum-Roentgen-Gamma(SRG) spacecraft observed large regions in the Magellanic Clouds, where almost 40 known high-mass X-ray binaries (HMXBs, including candidates) are located. We looked for new HMXBs in the eROSITA data, searched for pulsations in HMXB candidates and investigated the long-term behaviour of the full sample using archival X-ray and optical data. For sources sufficiently bright, a detailed spectral and temporal analysis of their eROSITA data was performed. A source detection analysis of the eROSITA images in different energy bands provided count rates and upper limits for the remaining sources. We report the discovery of a new Be/X-ray binary in the Large Magellanic Cloud. The transient SRGEt J052829.5-690345 was detected with a 0.2-8.0 keV luminosity of ~10^35 erg/s and exhibits a hard X-ray spectrum, typical for this class of HMXBs. The OGLE I-band light curve of the V~15.7 mag counterpart shows large variations by up to 0.75 mag, which occur quasi periodically with ~511 days. The eROSITA observations of the Small Magellanic Cloud covered 16 Be/X-ray binary pulsars, five of them were bright enough to accurately determine their current pulse period. The pulse periods for SXP 726 and SXP 1323 measured from eROSITA data are ~800 s and ~1006 s, respectively, far away from their discovery periods. Including archival XMM-Newton observations we update the spin-period history of the two long-period pulsars which show nearly linear trends in their period evolution since more than 15 years. The corresponding average spin-down rate for SXP 726 is 4.3 s/yr while SXP 1323 shows spin-up with a rate of -23.2 s/yr. We discuss the spin evolution of the two pulsars in the framework of quasi-spherical accretion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11517v1-abstract-full').style.display = 'none'; document.getElementById('2108.11517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 28 figures, accepted for publication in Astronomy &amp; Astrophysics, First science highlights from SRG/eROSITA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 661, A25 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10967">arXiv:2107.10967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10967">pdf</a>, <a href="https://arxiv.org/format/2107.10967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2249">10.1093/mnras/stab2249 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio Continuum Sources behind the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">M. D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Boji%C4%8Di%C4%87%2C+I+S">I. S. Boji膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Grieve%2C+K+R">K. R. Grieve</a>, <a href="/search/?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a>, <a href="/search/?searchtype=author&amp;query=Tothill%2C+N+F+H">N. F. H. Tothill</a>, <a href="/search/?searchtype=author&amp;query=Shobhana%2C+D">D. Shobhana</a>, <a href="/search/?searchtype=author&amp;query=Rudnick%2C+L">L. Rudnick</a>, <a href="/search/?searchtype=author&amp;query=Prandoni%2C+I">I. Prandoni</a>, <a href="/search/?searchtype=author&amp;query=Andernach%2C+H">H. Andernach</a>, <a href="/search/?searchtype=author&amp;query=Hurley-Walker%2C+N">N. Hurley-Walker</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/?searchtype=author&amp;query=Galvin%2C+T+J">T. J. Galvin</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Ingallinera%2C+A">A. Ingallinera</a>, <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Leverenz%2C+H">H. Leverenz</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10967v1-abstract-short" style="display: inline;"> We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $\sim$144~deg$^2$ at angular resolutions from 45 arcsec to $\sim$3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10967v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10967v1-abstract-full" style="display: none;"> We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $\sim$144~deg$^2$ at angular resolutions from 45 arcsec to $\sim$3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio frequencies. We estimate the median spectral index ($伪$; where $S_{v}\sim谓^伪$) of $伪= -0.89 $ and mean of $-0.88 \pm 0.48$ for 3636 sources detected exclusively at two frequencies (0.843 and 1.384 GHz) with similar resolution (FWHM $\sim$40-45 arcsec). The large frequency range of the surveys makes it an effective tool to investigate Gigahertz Peak Spectrum (GPS), Compact Steep Spectrum (CSS) and Infrared Faint Radio sources populations within our sample. We find 10 GPS candidates with peak frequencies near 5 GHz, from which we estimate their linear size. 1866 sources from our catalogue are (CSS) candidates with $伪&lt;-0.8$. We found six candidates for High Frequency Peaker (HFP) sources, whose radio fluxes peak above 5 GHz and no sources with unconstrained peaks and $伪~&gt;0.5$. We found optical counterparts for 343 of the radio continuum sources, of which 128have a redshift measurement. Finally, we investigate the population of 123 Infrared Faint Radio Sources (IFRSs) found in this study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10967v1-abstract-full').style.display = 'none'; document.getElementById('2107.10967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Maitra%2C+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10