CINXE.COM
(PDF) Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm | rajeev kumar - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="MzlQkPJ53gFX2NZzc11jozkyMSgubKSwMOExDJBBzSbWzzDrdbYcw0fjYJColoZ0aflapaocCZbVlNszy3jaqA==" /> <meta name="citation_title" content="Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm" /> <meta name="citation_publication_date" content="2002" /> <meta name="citation_journal_title" content="Evolutionary Computation" /> <meta name="citation_author" content="Rajeev Kumar" /> <meta name="citation_author" content="Peter Rockett" /> <meta name="citation_volume" content="10" /> <meta name="citation_issue" content="3" /> <meta name="citation_firstpage" content="283-314" /> <meta name="citation_issn" content="1063-6560" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm" /> <meta name="twitter:title" content="Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm" /> <meta name="twitter:description" content="Academia.edu is a platform for academics to share research papers." /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm" /> <meta property="og:title" content="Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm" /> <meta property="article:author" content="https://independent.academia.edu/rajeevkumar69" /> <meta name="description" content="Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm" /> <title>(PDF) Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm | rajeev kumar - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/1188046/Improved_Sampling_of_the_Pareto_Front_In_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_a_Pareto_Converging_Genetic_Algorithm" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = 'b9573001dcf1ecff88440b2e9760c01d4c167ccf'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732729575000); window.Aedu.timeDifference = new Date().getTime() - 1732729575000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":null,"author":[{"@context":"https://schema.org","@type":"Person","name":"rajeev kumar"}],"contributor":[],"dateCreated":"2014-02-24","dateModified":null,"datePublished":"2002-01-01","headline":"Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm","inLanguage":"en","keywords":["Genetics","Algorithms","Evolutionary Computation","Genetic Drift","Population Genetics","Genetic Algorithms","Multiobjective Optimization","Genetic Algorithm","Mutation","Mathematical Sciences","Population Density","Biological evolution","Steady state","Local minima","Pareto front"],"locationCreated":null,"publication":"Evolutionary Computation","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "4c83454037ed554463ae862dee93b24762ad3ea07a9a0a7f0db8d93a1c975a19", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="kvWUyHTJZ8N4G2nPkGVs8Oj0sFNjaA0BVHQg/LwD7sN3A/Sz8walAWgg3yxLroknuD/b3ucYoCexAcrD5zr5TQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="r+/Uhx6wx1pt4ghO98wjpNVdwA4oXU3gmND+6ApaaLVKGbT8mX8FmH3Zvq0sB8ZzhZarg6wt4MZ9pRTXUWN/Ow==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-68aeb1ef1aef1565d873e157d2d062b6c25e45987d206ebd19f7e481aab03137.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 9458355; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F6193626%2FImproved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F6193626%2FImproved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":48975509,"identifier":"Attachment_48975509","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":6193626,"created_at":"2014-02-24T12:52:50.739-08:00","from_world_paper_id":122911369,"updated_at":"2024-11-17T22:26:58.785-08:00","_data":{"grobid_abstract":"Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort.","publication_date":"2002,,","publication_name":"Evolutionary Computation","grobid_abstract_attachment_id":"48975509"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [9458355]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":48975509,"attachmentType":"pdf"}"><img alt="First page of “Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/48975509/mini_magick20190201-2336-1fmjde3.png?1549090599" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="9458355" href="https://independent.academia.edu/rajeevkumar69"><img alt="Profile image of rajeev kumar" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />rajeev kumar</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2002, Evolutionary Computation</p></div><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":48975509,"attachmentType":"pdf","workUrl":"https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":48975509,"attachmentType":"pdf","workUrl":"https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="48975509" data-landing_url="https://www.academia.edu/6193626/Improved_Sampling_of_the_Pareto_Front_in_Multiobjective_Genetic_Optimizations_by_Steady_State_Evolution_A_Pareto_Converging_Genetic_Algorithm" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="102102677" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102102677/Pareto_based_continuous_evolutionary_algorithms_for_multiobjective_optimization">Pareto‐based continuous evolutionary algorithms for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1013807" href="https://independent.academia.edu/MunboShim">Munbo Shim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Engineering Computations, 2002</p><p class="ds-related-work--abstract ds2-5-body-sm">In an attempt to solve multiobjective optimization problems, many traditional methods scalarize an objective vector into a single objective by a weight vector. In these cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands a user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto‐optimal points, instead of a single point. In this paper, Pareto‐based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. These algorithms are based on Continuous Evolutionary Algorithms, which were developed by the authors to solve single‐objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche‐formation method for fitness sharing and a storing process for elitism ...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Pareto‐based continuous evolutionary algorithms for multiobjective optimization","attachmentId":102456221,"attachmentType":"pdf","work_url":"https://www.academia.edu/102102677/Pareto_based_continuous_evolutionary_algorithms_for_multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/102102677/Pareto_based_continuous_evolutionary_algorithms_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="8987889" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8987889/Multiobjective_evolutionary_algorithms_a_comparative_case_study_and_the_strength_Pareto_approach">Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="20109800" href="https://independent.academia.edu/RanDeb">Ran Deb</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Evolutionary Computation, 1999</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach","attachmentId":35301081,"attachmentType":"pdf","work_url":"https://www.academia.edu/8987889/Multiobjective_evolutionary_algorithms_a_comparative_case_study_and_the_strength_Pareto_approach","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/8987889/Multiobjective_evolutionary_algorithms_a_comparative_case_study_and_the_strength_Pareto_approach"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="2863608" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2863608/The_pareto_archived_evolution_strategy_A_new_baseline_algorithm_for_pareto_multiobjective_optimisation">The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="292046" href="https://manchester.academia.edu/JoshuaKnowles">Joshua Knowles</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1999</p><p class="ds-related-work--abstract ds2-5-body-sm">Abstract Most popular evolutionary algorithms for multiobjective optimisation maintain a population of solutions from which individuals are selected for reproduction. In this paper, we introduce a simpler evolution scheme for multiobjective problems, called the Pareto archived evolution strategy (PAES). We argue that PAES may represent the simplest possible non-trivial algorithm capable of generating diverse solutions in the Pareto optimal set.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation","attachmentId":30802743,"attachmentType":"pdf","work_url":"https://www.academia.edu/2863608/The_pareto_archived_evolution_strategy_A_new_baseline_algorithm_for_pareto_multiobjective_optimisation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/2863608/The_pareto_archived_evolution_strategy_A_new_baseline_algorithm_for_pareto_multiobjective_optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="62314488" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62314488/A_niched_Pareto_genetic_algorithm_for_multiobjective_optimization">A niched Pareto genetic algorithm for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31483642" href="https://independent.academia.edu/JeffreyHorn1">Jeffrey Horn</a></div><p class="ds-related-work--metadata ds2-5-body-xs">… Computation, 1994. IEEE …, 1994</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A niched Pareto genetic algorithm for multiobjective optimization","attachmentId":75122769,"attachmentType":"pdf","work_url":"https://www.academia.edu/62314488/A_niched_Pareto_genetic_algorithm_for_multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/62314488/A_niched_Pareto_genetic_algorithm_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="82274581" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82274581/An_evolutionary_algorithm_for_multiobjective_optimization_the_strength_Pareto_approach_Working_Paper">An evolutionary algorithm for multiobjective optimization: the strength Pareto approach Working Paper</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="219058816" href="https://independent.academia.edu/ademusmeal">adem usmeal</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An evolutionary algorithm for multiobjective optimization: the strength Pareto approach Working Paper","attachmentId":88034820,"attachmentType":"pdf","work_url":"https://www.academia.edu/82274581/An_evolutionary_algorithm_for_multiobjective_optimization_the_strength_Pareto_approach_Working_Paper","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/82274581/An_evolutionary_algorithm_for_multiobjective_optimization_the_strength_Pareto_approach_Working_Paper"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="8831727" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8831727/Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front">Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="19212252" href="https://sanata-dharma.academia.edu/AnisRachmawati">Anis Rachmawati</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Evolutionary Computation, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front","attachmentId":47987685,"attachmentType":"pdf","work_url":"https://www.academia.edu/8831727/Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/8831727/Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="49871799" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49871799/A_Simple_Approach_to_Evolutionary_Multiobjective_Optimization">A Simple Approach to Evolutionary Multiobjective Optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="93431394" href="https://cardiff.academia.edu/ChristineMumford">Christine Mumford</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advanced Information and Knowledge Processing, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Simple Approach to Evolutionary Multiobjective Optimization","attachmentId":68068782,"attachmentType":"pdf","work_url":"https://www.academia.edu/49871799/A_Simple_Approach_to_Evolutionary_Multiobjective_Optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/49871799/A_Simple_Approach_to_Evolutionary_Multiobjective_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="9804054" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/9804054/SPEA2_Improving_the_Strength_Pareto_Evolutionary_Algorithm">SPEA2: Improving the Strength Pareto Evolutionary Algorithm</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="23625719" href="https://independent.academia.edu/baltavega">balta vega</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"SPEA2: Improving the Strength Pareto Evolutionary Algorithm","attachmentId":35976325,"attachmentType":"pdf","work_url":"https://www.academia.edu/9804054/SPEA2_Improving_the_Strength_Pareto_Evolutionary_Algorithm","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/9804054/SPEA2_Improving_the_Strength_Pareto_Evolutionary_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="93016582" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93016582/The_Pareto_fitness_genetic_algorithm_Test_function_study">The Pareto fitness genetic algorithm: Test function study</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250141635" href="https://independent.academia.edu/SemyaElaoud">Semya Elaoud</a></div><p class="ds-related-work--metadata ds2-5-body-xs">European Journal of Operational Research, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Pareto fitness genetic algorithm: Test function study","attachmentId":95871229,"attachmentType":"pdf","work_url":"https://www.academia.edu/93016582/The_Pareto_fitness_genetic_algorithm_Test_function_study","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/93016582/The_Pareto_fitness_genetic_algorithm_Test_function_study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="2863855" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2863855/Local_search_multiobjective_optimization_and_the_Pareto_archived_evolution_strategy">Local search, multiobjective optimization and the Pareto archived evolution strategy</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="292046" href="https://manchester.academia.edu/JoshuaKnowles">Joshua Knowles</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1999</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Local search, multiobjective optimization and the Pareto archived evolution strategy","attachmentId":30802721,"attachmentType":"pdf","work_url":"https://www.academia.edu/2863855/Local_search_multiobjective_optimization_and_the_Pareto_archived_evolution_strategy","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/2863855/Local_search_multiobjective_optimization_and_the_Pareto_archived_evolution_strategy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":48975509,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":48975509,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_48975509" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="52057934" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/52057934/Multiobjective_Optimization_Using_The_Niche_Pareto_Genetic_Algorithm">Multiobjective Optimization Using The Niche Pareto Genetic Algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="306012" href="https://nmu.academia.edu/JeffreyHorn">Jeffrey Horn</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multiobjective Optimization Using The Niche Pareto Genetic Algorithm","attachmentId":69497646,"attachmentType":"pdf","work_url":"https://www.academia.edu/52057934/Multiobjective_Optimization_Using_The_Niche_Pareto_Genetic_Algorithm","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/52057934/Multiobjective_Optimization_Using_The_Niche_Pareto_Genetic_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="5206169" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5206169/A_new_multiobjective_evolutionary_algorithm">A new multiobjective evolutionary algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7084081" href="https://independent.academia.edu/charlsnewton">charls newton</a></div><p class="ds-related-work--metadata ds2-5-body-xs">European Journal of Operational Research, 2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A new multiobjective evolutionary algorithm","attachmentId":49403859,"attachmentType":"pdf","work_url":"https://www.academia.edu/5206169/A_new_multiobjective_evolutionary_algorithm","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5206169/A_new_multiobjective_evolutionary_algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="35503603" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/35503603/3_200_110_MILLION_Adaptive_Formation_of_Pareto_Front_in_Evolutionary_Multi_objective_Optimization">3,200+ 110+ MILLION Adaptive Formation of Pareto Front in Evolutionary Multi-objective Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="73129071" href="https://independent.academia.edu/AbidSaleem11">Abid Saleem</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"3,200+ 110+ MILLION Adaptive Formation of Pareto Front in Evolutionary Multi-objective Optimization","attachmentId":55367397,"attachmentType":"pdf","work_url":"https://www.academia.edu/35503603/3_200_110_MILLION_Adaptive_Formation_of_Pareto_Front_in_Evolutionary_Multi_objective_Optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/35503603/3_200_110_MILLION_Adaptive_Formation_of_Pareto_Front_in_Evolutionary_Multi_objective_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="52548326" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/52548326/Finding_Acceptable_Pareto_Optimal_Solutions_using_Multiobjective_Genetic_Algorithms">Finding Acceptable Pareto-Optimal Solutions using Multiobjective Genetic Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="134841" href="https://ucl.academia.edu/PeterJBentley">Peter J Bentley</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Finding Acceptable Pareto-Optimal Solutions using Multiobjective Genetic Algorithms","attachmentId":69763550,"attachmentType":"pdf","work_url":"https://www.academia.edu/52548326/Finding_Acceptable_Pareto_Optimal_Solutions_using_Multiobjective_Genetic_Algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/52548326/Finding_Acceptable_Pareto_Optimal_Solutions_using_Multiobjective_Genetic_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="2509695" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2509695/An_Analysis_of_Multiobjective_Optimization_within_Genetic_Algorithms">An Analysis of Multiobjective Optimization within Genetic Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="134841" href="https://ucl.academia.edu/PeterJBentley">Peter J Bentley</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Division of Computing and Control Systems …, 1996</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An Analysis of Multiobjective Optimization within Genetic Algorithms","attachmentId":30526003,"attachmentType":"pdf","work_url":"https://www.academia.edu/2509695/An_Analysis_of_Multiobjective_Optimization_within_Genetic_Algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2509695/An_Analysis_of_Multiobjective_Optimization_within_Genetic_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="2864076" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2864076/Approximating_the_nondominated_front_using_the_pareto_archived_evolution_strategy">Approximating the nondominated front using the pareto archived evolution strategy</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="292046" href="https://manchester.academia.edu/JoshuaKnowles">Joshua Knowles</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Approximating the nondominated front using the pareto archived evolution strategy","attachmentId":30802707,"attachmentType":"pdf","work_url":"https://www.academia.edu/2864076/Approximating_the_nondominated_front_using_the_pareto_archived_evolution_strategy","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2864076/Approximating_the_nondominated_front_using_the_pareto_archived_evolution_strategy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="1332380" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/1332380/In_Search_of_Proper_Pareto_optimal_Solutions_Using_Multi_objective_Evolutionary_Algorithms">In Search of Proper Pareto-optimal Solutions Using Multi-objective Evolutionary Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1044211" href="https://kit.academia.edu/PradyumnKumarShukla">Pradyumn Kumar Shukla</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computational ScienceICCS 2007, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"In Search of Proper Pareto-optimal Solutions Using Multi-objective Evolutionary Algorithms","attachmentId":8256593,"attachmentType":"pdf","work_url":"https://www.academia.edu/1332380/In_Search_of_Proper_Pareto_optimal_Solutions_Using_Multi_objective_Evolutionary_Algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/1332380/In_Search_of_Proper_Pareto_optimal_Solutions_Using_Multi_objective_Evolutionary_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="5544292" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5544292/A_Fast_and_Elitist_Multiobjective_Genetic_Algorithm_NSGA_II">A Fast and Elitist Multiobjective Genetic Algorithm NSGA-II</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7861009" href="https://unicamp.academia.edu/ManasArora">Manas Arora</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Fast and Elitist Multiobjective Genetic Algorithm NSGA-II","attachmentId":32640472,"attachmentType":"pdf","work_url":"https://www.academia.edu/5544292/A_Fast_and_Elitist_Multiobjective_Genetic_Algorithm_NSGA_II","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5544292/A_Fast_and_Elitist_Multiobjective_Genetic_Algorithm_NSGA_II"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="47616254" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/47616254/PSFGA_a_parallel_genetic_algorithm_for_multiobjective_optimization">PSFGA: a parallel genetic algorithm for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32404117" href="https://granada.academia.edu/JulioOrtega">Julio Ortega</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, 2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"PSFGA: a parallel genetic algorithm for multiobjective optimization","attachmentId":66617849,"attachmentType":"pdf","work_url":"https://www.academia.edu/47616254/PSFGA_a_parallel_genetic_algorithm_for_multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/47616254/PSFGA_a_parallel_genetic_algorithm_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="14884141" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14884141/A_pareto_following_variation_operator_for_fast_converging_multiobjective_evolutionary_algorithms">A pareto following variation operator for fast-converging multiobjective evolutionary algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33860784" href="https://unimelb.academia.edu/MichaelKirley">Michael Kirley</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Genetic and Evolutionary Computation Conference, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A pareto following variation operator for fast-converging multiobjective evolutionary algorithms","attachmentId":43807718,"attachmentType":"pdf","work_url":"https://www.academia.edu/14884141/A_pareto_following_variation_operator_for_fast_converging_multiobjective_evolutionary_algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14884141/A_pareto_following_variation_operator_for_fast_converging_multiobjective_evolutionary_algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="30351002" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/30351002/Treating_Constraints_as_Objectives_in_Multiobjective_Optimization_Problems_Using_Niched_Pareto_Genetic_Algorithm">Treating Constraints as Objectives in Multiobjective Optimization Problems Using Niched Pareto Genetic Algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="46378959" href="https://independent.academia.edu/RicardoAdriano1">Ricardo Adriano</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Magnetics, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Treating Constraints as Objectives in Multiobjective Optimization Problems Using Niched Pareto Genetic Algorithm","attachmentId":50803352,"attachmentType":"pdf","work_url":"https://www.academia.edu/30351002/Treating_Constraints_as_Objectives_in_Multiobjective_Optimization_Problems_Using_Niched_Pareto_Genetic_Algorithm","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/30351002/Treating_Constraints_as_Objectives_in_Multiobjective_Optimization_Problems_Using_Niched_Pareto_Genetic_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="11788895" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/11788895/On_a_multi_objective_evolutionary_algorithm_and_its_convergence_to_the_Pareto_set">On a multi-objective evolutionary algorithm and its convergence to the Pareto set</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="29009872" href="https://independent.academia.edu/G%C3%BCnterRudolph">Günter Rudolph</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Conference on Evolutionary Computation, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On a multi-objective evolutionary algorithm and its convergence to the Pareto set","attachmentId":46524525,"attachmentType":"pdf","work_url":"https://www.academia.edu/11788895/On_a_multi_objective_evolutionary_algorithm_and_its_convergence_to_the_Pareto_set","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/11788895/On_a_multi_objective_evolutionary_algorithm_and_its_convergence_to_the_Pareto_set"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="56234750" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/56234750/Computing_the_Most_Significant_Solution_from_Pareto_Front_obtained_in_Multi_objective_Evolutionary">Computing the Most Significant Solution from Pareto Front obtained in Multi-objective Evolutionary</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32975002" href="https://khwalse.academia.edu/VilasThakare">Vilas Thakare</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advanced Computer Science and Applications, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Computing the Most Significant Solution from Pareto Front obtained in Multi-objective Evolutionary","attachmentId":71720761,"attachmentType":"pdf","work_url":"https://www.academia.edu/56234750/Computing_the_Most_Significant_Solution_from_Pareto_Front_obtained_in_Multi_objective_Evolutionary","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/56234750/Computing_the_Most_Significant_Solution_from_Pareto_Front_obtained_in_Multi_objective_Evolutionary"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="19188291" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/19188291/Efficient_and_Scalable_Pareto_Optimization_by_Evolutionary_Local_Selection_Algorithms">Efficient and Scalable Pareto Optimization by Evolutionary Local Selection Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39402215" href="https://uiowa.academia.edu/NickStreet">Nick Street</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Evolutionary Computation, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Efficient and Scalable Pareto Optimization by Evolutionary Local Selection Algorithms","attachmentId":40480035,"attachmentType":"pdf","work_url":"https://www.academia.edu/19188291/Efficient_and_Scalable_Pareto_Optimization_by_Evolutionary_Local_Selection_Algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/19188291/Efficient_and_Scalable_Pareto_Optimization_by_Evolutionary_Local_Selection_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="92014243" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/92014243/A_steady_performance_stopping_criterion_for_pareto_based_evolutionary_algorithms">A steady performance stopping criterion for pareto-based evolutionary algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="128194598" href="https://independent.academia.edu/MSchoenauer">Marc Schoenauer</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A steady performance stopping criterion for pareto-based evolutionary algorithms","attachmentId":95138190,"attachmentType":"pdf","work_url":"https://www.academia.edu/92014243/A_steady_performance_stopping_criterion_for_pareto_based_evolutionary_algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/92014243/A_steady_performance_stopping_criterion_for_pareto_based_evolutionary_algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="834966" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/834966/Muiltiobjective_optimization_using_nondominated_sorting_in_genetic_algorithms">Muiltiobjective optimization using nondominated sorting in genetic algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="668193" href="https://kalasalingam.academia.edu/Murugeswariananthakumar">Murugeswari anantha kumar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Evolutionary computation, 1994</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Muiltiobjective optimization using nondominated sorting in genetic algorithms","attachmentId":5016551,"attachmentType":"pdf","work_url":"https://www.academia.edu/834966/Muiltiobjective_optimization_using_nondominated_sorting_in_genetic_algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/834966/Muiltiobjective_optimization_using_nondominated_sorting_in_genetic_algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="74133370" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74133370/A_Review_towards_Evolutionary_Multiobjective_optimization_Algorithms">A Review towards Evolutionary Multiobjective optimization Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="148870971" href="https://independent.academia.edu/sunnysharma186">sunny sharma</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Review towards Evolutionary Multiobjective optimization Algorithms","attachmentId":82394377,"attachmentType":"pdf","work_url":"https://www.academia.edu/74133370/A_Review_towards_Evolutionary_Multiobjective_optimization_Algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/74133370/A_Review_towards_Evolutionary_Multiobjective_optimization_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="93397268" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93397268/Enhanced_Version_of_Multi_algorithm_Genetically_Adaptive_for_Multiobjective_optimization">Enhanced Version of Multi-algorithm Genetically Adaptive for Multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250670197" href="https://independent.academia.edu/waliKhan149">wali Khan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advanced Computer Science and Applications, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Enhanced Version of Multi-algorithm Genetically Adaptive for Multiobjective optimization","attachmentId":96146082,"attachmentType":"pdf","work_url":"https://www.academia.edu/93397268/Enhanced_Version_of_Multi_algorithm_Genetically_Adaptive_for_Multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/93397268/Enhanced_Version_of_Multi_algorithm_Genetically_Adaptive_for_Multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="156" href="https://www.academia.edu/Documents/in/Genetics">Genetics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="3523" href="https://www.academia.edu/Documents/in/Evolutionary_Computation">Evolutionary Computation</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="4312" href="https://www.academia.edu/Documents/in/Genetic_Drift">Genetic Drift</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="4480" href="https://www.academia.edu/Documents/in/Population_Genetics">Population Genetics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="5026" href="https://www.academia.edu/Documents/in/Genetic_Algorithms">Genetic Algorithms</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="13445" href="https://www.academia.edu/Documents/in/Multiobjective_Optimization">Multiobjective Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="30329" href="https://www.academia.edu/Documents/in/Genetic_Algorithm">Genetic Algorithm</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="74780" href="https://www.academia.edu/Documents/in/Mutation">Mutation</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="80414" href="https://www.academia.edu/Documents/in/Mathematical_Sciences">Mathematical Sciences</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="162645" href="https://www.academia.edu/Documents/in/Population_Density">Population Density</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="191815" href="https://www.academia.edu/Documents/in/Biological_evolution">Biological evolution</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="234860" href="https://www.academia.edu/Documents/in/Steady_state">Steady state</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="318537" href="https://www.academia.edu/Documents/in/Local_minima">Local minima</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="570997" href="https://www.academia.edu/Documents/in/Pareto_front">Pareto front</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>