CINXE.COM
Search results for: material behavior
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: material behavior</title> <meta name="description" content="Search results for: material behavior"> <meta name="keywords" content="material behavior"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="material behavior" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="material behavior"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12259</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: material behavior</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12259</span> A Guide for Using Viscoelasticity in ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fettahoglu">A. Fettahoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Prony%20series" title=" Prony series"> Prony series</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20material%20curve%20fitting" title=" viscoelastic material curve fitting"> viscoelastic material curve fitting</a> </p> <a href="https://publications.waset.org/abstracts/26863/a-guide-for-using-viscoelasticity-in-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12258</span> Toughness of a Silt-Based Construction Material Reinforced with Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Shamas">Y. Shamas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Imanzadeh"> S. Imanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jarno"> A. Jarno</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taibi"> S. Taibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silt-based%20material" title="silt-based material">silt-based material</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20concrete" title=" raw earth concrete"> raw earth concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20curve" title=" stress-strain curve"> stress-strain curve</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a> </p> <a href="https://publications.waset.org/abstracts/142789/toughness-of-a-silt-based-construction-material-reinforced-with-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12257</span> Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Ngoc%20Hung">Le Ngoc Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Abriak%20Nor%20Edine"> Abriak Nor Edine</a>, <a href="https://publications.waset.org/abstracts/search?q=Binetruy%20Christophe"> Binetruy Christophe</a>, <a href="https://publications.waset.org/abstracts/search?q=Benzerzour%20Mahfoud"> Benzerzour Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrour%20Isam"> Shahrour Isam</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrice%20Rivard"> Patrice Rivard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20material" title=" granular material"> granular material</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohr-Coulomb%20model" title=" Mohr-Coulomb model"> Mohr-Coulomb model</a>, <a href="https://publications.waset.org/abstracts/search?q=CESAR-LCPC" title=" CESAR-LCPC"> CESAR-LCPC</a> </p> <a href="https://publications.waset.org/abstracts/36317/finite-element-modeling-of-the-mechanical-behavior-of-municipal-solid-waste-incineration-bottom-ash-with-the-mohr-coulomb-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12256</span> Localized Analysis of Cellulosic Fibrous Insulation Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chady%20El%20Hachem">Chady El Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan%20Ye"> Pan Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamilia%20Abahri"> Kamilia Abahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Bennacer"> Rachid Bennacer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considered as a building construction material, and regarding its environmental benefits, wood fiber insulation is the material of interest in this work. The definition of adequate elementary representative volume that guarantees reliable understanding of the hygrothermal macroscopic phenomena is very critical. At the microscopic scale, when subjected to hygric solicitations, fibers undergo local dimensionless variations. It is therefore necessary to master this behavior, which affects the global response of the material. This study consists of an experimental procedure using the non-destructive method, X-ray tomography, followed by morphological post-processing analysis using ImageJ software. A refine investigation took place in order to identify the representative elementary volume and the sufficient resolution for accurate structural analysis. The second part of this work was to evaluate the microscopic hygric behavior of the studied material. Many parameters were taken into consideration, like the evolution of the fiber diameters, distribution along the sorption cycle and the porosity, and the water content evolution. In addition, heat transfer simulations based on the energy equation resolution were achieved on the real structure. Further, the problematic of representative elementary volume was elaborated for such heterogeneous material. Moreover, the material’s porosity and its fibers’ thicknesses show very big correlation with the water content. These results provide the literature with very good understanding of wood fiber insulation’s behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygric%20behavior" title="hygric behavior">hygric behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20characterization" title=" morphological characterization"> morphological characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20fiber%20insulation%20material" title=" wood fiber insulation material"> wood fiber insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20tomography" title=" x-ray tomography"> x-ray tomography</a> </p> <a href="https://publications.waset.org/abstracts/44406/localized-analysis-of-cellulosic-fibrous-insulation-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12255</span> Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moudar%20H.%20A.%20Zgoul">Moudar H. A. Zgoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Al%20Zamer"> Amin Al Zamer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20materials" title="adhesive materials">adhesive materials</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20adhesives" title=" hybrid adhesives"> hybrid adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/83532/evaluation-of-the-elastic-mechanical-properties-of-a-hybrid-adhesive-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12254</span> Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amara">M. Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tahar%20Abbes"> M. Tahar Abbes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dokkiche"> A. Dokkiche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benbrike"> M. Benbrike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EHD%20lubricated%20contacts" title="EHD lubricated contacts">EHD lubricated contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20materials" title=" properties of materials"> properties of materials</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20performance" title=" tribological performance"> tribological performance</a> </p> <a href="https://publications.waset.org/abstracts/49879/enhancement-of-tribological-behavior-for-diesel-engine-piston-of-solid-skirt-by-an-optimal-choice-of-interface-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12253</span> Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boudjenane"> N. Boudjenane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhallou"> N. Benhallou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Houjedje"> R. Houjedje</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Reffis"> R. Reffis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadri"> M. Belhadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=clays" title=" clays"> clays</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20kinetic%20model" title=" structural kinetic model"> structural kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=thixotropy" title=" thixotropy"> thixotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/31716/modeling-the-time-dependent-rheological-behavior-of-clays-used-in-fabrication-of-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12252</span> Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Ortes">Faruk Ortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Baris%20Sayin"> Baris Sayin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarik%20Serhat%20Bozkurt"> Tarik Serhat Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Akcay"> Cemil Akcay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title="numerical model">numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam" title=" RC beam"> RC beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NSM%20technique" title=" NSM technique"> NSM technique</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20rod" title=" CFRP rod"> CFRP rod</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20material" title=" filling material"> filling material</a> </p> <a href="https://publications.waset.org/abstracts/38365/numerical-simulation-of-structural-behavior-of-nsm-cfrp-strengthened-rc-beams-using-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12251</span> Response of Solar Updraft Power Plants Incorporating Material Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areeg%20Shermaddo">Areeg Shermaddo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar updraft power plants (SUPP) provide a great potential for green and environmentally friendly renewable power generation. An up to 1000 m high chimney represents one of the major parts of each SUPP, which consist of the main shell structure and the stiffening rings. Including the nonlinear material behavior in a simulation of the chimney is computationally a demanding task. However, allowing the formation of cracking in concrete leads to a more economical design of the structure. In this work, an FE model of a SUPP is presented incorporating the nonlinear material behavior. The effect of wind loading intensity on the structural response is explored. Furthermore, the influence of the stiffness of the ring beams on the global behavior is as well investigated. The obtained results indicate that the minimum reinforcement is capable of carrying the tensile stresses provided that the ring beams are rather stiff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20beams" title=" ring beams"> ring beams</a>, <a href="https://publications.waset.org/abstracts/search?q=SUPP" title=" SUPP"> SUPP</a> </p> <a href="https://publications.waset.org/abstracts/73585/response-of-solar-updraft-power-plants-incorporating-material-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12250</span> Characterization of the Viscoelastic Behavior of Polymeric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Abdessalem">Abir Abdessalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahbi%20Tamboura"> Sahbi Tamboura</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Fitoussi"> J. Fitoussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hachmi%20Ben%20Daly"> Hachmi Ben Daly</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Tcharkhtchi"> Abbas Tcharkhtchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title=" dynamic mechanical analysis"> dynamic mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SMC%20composites" title=" SMC composites"> SMC composites</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20behavior" title=" viscoelastic behavior"> viscoelastic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/82761/characterization-of-the-viscoelastic-behavior-of-polymeric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12249</span> Hydro-Mechanical Behavior of Calcareous Soils in Arid Region </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Goual">I. Goual</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Goual"> M. S. Goual</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Gueddouda"> M. K. Gueddouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ta%C3%AFbi%20Sa%C3%AFd"> Taïbi Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Abou-Bekr%20Nabil"> Abou-Bekr Nabil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferhat"> A. Ferhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the study of hydro mechanical behavior of this optimal mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuff" title="tuff">tuff</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20calcareous" title=" sandy calcareous"> sandy calcareous</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20engineering" title=" road engineering"> road engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20mechanical%20behaviour" title=" hydro mechanical behaviour"> hydro mechanical behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=suction" title=" suction"> suction</a> </p> <a href="https://publications.waset.org/abstracts/15411/hydro-mechanical-behavior-of-calcareous-soils-in-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12248</span> Magneto-Electric Behavior a Couple Aluminum / Steel Xc48</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekroud">A. Mekroud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khemis"> A. Khemis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mecibah"> M. S. Mecibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization%20of%20the%20surfaces" title="structural characterization of the surfaces">structural characterization of the surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides%20and%20wear%20debris" title=" oxides and wear debris"> oxides and wear debris</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction "> X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/28068/magneto-electric-behavior-a-couple-aluminum-steel-xc48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12247</span> Material Chemistry Level Deformation and Failure in Cementitious Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20V.%20Mohan">Ram V. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Rivas-Murillo"> John Rivas-Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohamed"> Ahmed Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20D.%20Hodo"> Wayne D. Hodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title="cementitious materials">cementitious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20chemistry%20modeling" title=" material chemistry modeling"> material chemistry modeling</a> </p> <a href="https://publications.waset.org/abstracts/24900/material-chemistry-level-deformation-and-failure-in-cementitious-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12246</span> Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Goual">I. Goual</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Goual"> M. S. Goual</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Gueddouda"> M. K. Gueddouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ta%C3%AFbi%20Sa%C3%AFd"> Taïbi Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Abou-Bekr%20Nabil"> Abou-Bekr Nabil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferhat"> A. Ferhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuff" title="tuff">tuff</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20calcareous" title=" sandy calcareous"> sandy calcareous</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20engineering" title=" road engineering"> road engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20mechanical%20behaviour" title=" hydro mechanical behaviour"> hydro mechanical behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=suction" title=" suction"> suction</a> </p> <a href="https://publications.waset.org/abstracts/14118/hydro-mechanical-behavior-of-a-tuff-and-calcareous-sand-mixture-for-use-in-pavement-in-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12245</span> New Moment Rotation Model of Single Web Angle Connections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengyi%20Kong">Zhengyi Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Eock%20Kim"> Seung-Eock Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20and%20rotation" title=" moment and rotation"> moment and rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation%20at%20ultimate%20moment" title=" rotation at ultimate moment"> rotation at ultimate moment</a>, <a href="https://publications.waset.org/abstracts/search?q=single-web%20angle%20connections" title=" single-web angle connections "> single-web angle connections </a> </p> <a href="https://publications.waset.org/abstracts/24311/new-moment-rotation-model-of-single-web-angle-connections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12244</span> Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trunal%20Bhujangrao">Trunal Bhujangrao</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Froustey"> Catherine Froustey</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Veiga"> Fernando Veiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Darnis"> Philippe Darnis</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20%20Girot%20Mata"> Franck Girot Mata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA7075%20alloy" title="AA7075 alloy">AA7075 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20effect" title=" edge effect"> edge effect</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20strain" title=" large strain"> large strain</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20tensile%20test" title=" shear tensile test"> shear tensile test</a> </p> <a href="https://publications.waset.org/abstracts/129759/experimental-characterization-of-the-aa7075-aluminum-alloy-using-hot-shear-tensile-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12243</span> Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Djeghader">Djamel Djeghader</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Redjel"> Bachir Redjel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion" title=" immersion"> immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=wohler" title=" wohler"> wohler</a> </p> <a href="https://publications.waset.org/abstracts/36889/effect-of-water-absorption-on-the-fatigue-behavior-of-glasspolyester-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12242</span> Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Marquez">Luis Marquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ge%20Zhu"> Ge Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Srivastava"> Vikas Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanics%20of%20materials" title="mechanics of materials">mechanics of materials</a>, <a href="https://publications.waset.org/abstracts/search?q=physics-based%20modeling" title=" physics-based modeling"> physics-based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a> </p> <a href="https://publications.waset.org/abstracts/137074/modeling-slow-crack-growth-under-thermal-and-chemical-effects-for-fitness-predictions-of-high-density-polyethylene-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12241</span> Container Chaos: The Impact of a Casual Game on Learning and Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lori%20L.%20Scarlatos">Lori L. Scarlatos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Courtney"> Ryan Courtney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=casual%20games" title=" casual games"> casual games</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20sciences" title=" material sciences"> material sciences</a> </p> <a href="https://publications.waset.org/abstracts/117765/container-chaos-the-impact-of-a-casual-game-on-learning-and-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12240</span> Characterization of Stabilized Earth in the Construction Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Chaibeddra">Sihem Chaibeddra</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatoum%20Kharchi"> Fatoum Kharchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/58591/characterization-of-stabilized-earth-in-the-construction-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12239</span> Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fettahoglu">A. Fettahoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title="generalized Maxwell model">generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=prony%20series" title=" prony series"> prony series</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20step%20size" title=" time step size"> time step size</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/26862/error-amount-in-viscoelasticity-analysis-depending-on-time-step-size-and-method-used-in-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12238</span> Material Fracture Dynamic of Vertical Axis Wind Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Lecheb">Samir Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Chellil"> Ahmed Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Mechakra"> Hamza Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi"> Brahim Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Houcine%20Kebir"> Houcine Kebir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=SIF" title=" SIF"> SIF</a> </p> <a href="https://publications.waset.org/abstracts/86134/material-fracture-dynamic-of-vertical-axis-wind-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12237</span> Damage to LCP by the Ratcheting Phenomenon Under Cyclic Motion in Oligocyclic Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboussalih%20Amira">Aboussalih Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarza%20Tahar"> Zarza Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fedaoui%20Kamel"> Fedaoui Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Baroura%20Lazhar"> Baroura Lazhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammoudi%20Salah"> Hammoudi Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 316 L steel is a stainless steel frequently used in orthopedic surgery; in the design of implants (hip, knee, shoulder, ankle, etc.), in dental surgery, cardiology, ophthalmology. Before any use, it is essential to predict the macroscopic phenomenological behavior of the material, and to analyze its response. The behavior of 316 L steel in low cycle fatigue, under uniaxial cyclic loading of tension/compression, producing significant plastic deformations leading to material damage. This investigation allowed us to characterize the behavior of the 316L steel employed in the locking of the compression plates (LCP), of which they are generally used in orthopedics to stabilize the fractured bone parts. And to perceive the phenomenon of Ratcheting leading to the damage of LCP by an excess of plastic deformation under nonsymmetrical alternated imposed constraint in low cycle fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=316L%20SS" title="316L SS">316L SS</a>, <a href="https://publications.waset.org/abstracts/search?q=locking%20compression%20plate" title=" locking compression plate"> locking compression plate</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cycle%20fatigue" title=" low cycle fatigue"> low cycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting" title=" ratcheting"> ratcheting</a> </p> <a href="https://publications.waset.org/abstracts/182140/damage-to-lcp-by-the-ratcheting-phenomenon-under-cyclic-motion-in-oligocyclic-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12236</span> Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Chaibeddra">Sihem Chaibeddra</a>, <a href="https://publications.waset.org/abstracts/search?q=Fattoum%20Kharchi"> Fattoum Kharchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Kahlouche"> Fahim Kahlouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Benna"> Youcef Benna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=compacting" title=" compacting"> compacting</a>, <a href="https://publications.waset.org/abstracts/search?q=manual" title=" manual"> manual</a>, <a href="https://publications.waset.org/abstracts/search?q=SEC" title=" SEC"> SEC</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-automatic" title=" semi-automatic"> semi-automatic</a> </p> <a href="https://publications.waset.org/abstracts/45931/effect-of-manual-compacting-and-semi-automatic-compacting-on-behavior-of-stabilized-earth-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12235</span> Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20May">Abdelghani May</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructural%20investigation" title="microstructural investigation">microstructural investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage%20quantification" title=" fatigue damage quantification"> fatigue damage quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20behavior" title=" anisotropic behavior"> anisotropic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2017%20aluminum%20alloy" title=" AA2017 aluminum alloy"> AA2017 aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallographic%20texture" title=" crystallographic texture"> crystallographic texture</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/165414/microstructural-investigation-and-fatigue-damage-quantification-of-anisotropic-behavior-in-aa2017-aluminum-alloy-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12234</span> Grain Size Effect of Durability of Bio-Clogging Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahani%20Farah">Tahani Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%C3%A8ne%20Souli"> Hanène Souli</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Fleureau"> Jean-Marie Fleureau</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Kermouche"> Guillaume Kermouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Jacques%20Fry"> Jean-Jacques Fry</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Girard"> Benjamin Girard</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Aelbrecht"> Denis Aelbrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-clogging" title="bio-clogging">bio-clogging</a>, <a href="https://publications.waset.org/abstracts/search?q=granulometry" title=" granulometry"> granulometry</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/4807/grain-size-effect-of-durability-of-bio-clogging-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12233</span> Experimental Analysis of the Origins of the Anisotropy Behavior in the 2017 AA Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=May%20Abdelghani">May Abdelghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the study of the microstructural anisotropy in mechanical cyclic behavior of the 2017AA aluminum alloy which is widely used in the aerospace industry. The main purpose of the study is to investigate the microstructural origins of this anisotropy already confirmed in our previous work in 2017AA aluminum alloy. To do this, we have used the microstructural analysis resources such as Scanning Electron Microscope (SEM) to see the differences between breaks from different directions of cyclic loading. Another resource of investigation was used in this study is that the EBSD method, which allows us to obtain a mapping of the crystallographic texture of our material. According to the obtained results in the microscopic analysis, we are able to identify the origins of the anisotropic behavior at the macroscopic scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage" title="fatigue damage">fatigue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behavior" title=" cyclic behavior"> cyclic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title=" anisotropy"> anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20analysis" title=" microstructural analysis"> microstructural analysis</a> </p> <a href="https://publications.waset.org/abstracts/20127/experimental-analysis-of-the-origins-of-the-anisotropy-behavior-in-the-2017-aa-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12232</span> Material Characterization and Numerical Simulation of a Rubber Bumper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Mankovits">Tamás Mankovits</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A1vid%20Huri"> Dávid Huri</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20K%C3%A1llai"> Imre Kállai</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20Kocsis"> Imre Kocsis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Szab%C3%B3"> Tamás Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20bumper" title="rubber bumper">rubber bumper</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title=" compression test"> compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=Mooney-Rivlin%20material%20model" title=" Mooney-Rivlin material model"> Mooney-Rivlin material model</a> </p> <a href="https://publications.waset.org/abstracts/7801/material-characterization-and-numerical-simulation-of-a-rubber-bumper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12231</span> Single-Element Simulations of Wood Material in LS-DYNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Zuo%20Wang">Ren Zuo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to investigate the behavior of the wood structure, the non-linearity of wood material model in LS-DYNA is adopted. It is difficult and less efficient to conduct the experiment of the ancient wood structure, hence LS-DYNA software can be used to simulate nonlinear responses of ancient wood structure. In LS-DYNA software, there is material model called *MAT_WOOD or *MAT_143. This model is to simulate a single-element response of the wood subjected to tension and compression under the parallel and the perpendicular material directions. Comparing with the exact solution and numerical simulations results using LS-DYNA, it demonstrates the accuracy and the efficiency of the proposed simulation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title="LS-DYNA">LS-DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20structure" title=" wood structure"> wood structure</a>, <a href="https://publications.waset.org/abstracts/search?q=single-element%20simulations" title=" single-element simulations"> single-element simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=MAT_143" title=" MAT_143"> MAT_143</a> </p> <a href="https://publications.waset.org/abstracts/66392/single-element-simulations-of-wood-material-in-ls-dyna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">653</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12230</span> Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%C4%9Fit%20G%C3%BCrler">Yiğit Gürler</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0brahim%20%C5%9Eim%C5%9Fek"> İbrahim Şimşek</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCge%20Sava%C5%9Ftaer"> Müge Savaştaer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayberk%20Karaku%C5%9F"> Ayberk Karakuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Ta%C5%9Fdemirci"> Alper Taşdemirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=316L" title="316L">316L</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characterization" title=" mechanical characterization"> mechanical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20forming" title=" metal forming"> metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=Ls-Dyna" title=" Ls-Dyna"> Ls-Dyna</a> </p> <a href="https://publications.waset.org/abstracts/142507/comparison-of-johnson-cook-and-barlat-material-model-for-316l-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=408">408</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=409">409</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=material%20behavior&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>