CINXE.COM
J. Schmelzer - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>J. Schmelzer - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="TczVy6St6xPyoVsJyGAxkEG+81PP/OpFoMhqgbis3ccWmHPeSx9kvVqxydbqSU26jhGwvmENn+pLynV0OjanhQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="j. schmelzer" /> <meta name="description" content="J. Schmelzer: 10 Followers, 9 Following, 75 Research papers. Research interests: Hydrogen Storage, Nanorod, and Hydrogen Economy." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15268,"monthly_visitors":"113 million","monthly_visitor_count":113758192,"monthly_visitor_count_in_millions":113,"user_count":277659905,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732995230000); window.Aedu.timeDifference = new Date().getTime() - 1732995230000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/JSchmelzer" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":21551,"name":"Hydrogen Storage","url":"https://www.academia.edu/Documents/in/Hydrogen_Storage"},{"id":209101,"name":"Nanorod","url":"https://www.academia.edu/Documents/in/Nanorod"},{"id":939200,"name":"Hydrogen Economy","url":"https://www.academia.edu/Documents/in/Hydrogen_Economy"},{"id":201989,"name":"Fuel Cell Vehicles","url":"https://www.academia.edu/Documents/in/Fuel_Cell_Vehicles"},{"id":939199,"name":"Plug In Hybrid Electric Vehicles","url":"https://www.academia.edu/Documents/in/Plug_In_Hybrid_Electric_Vehicles"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JSchmelzer","location":"/JSchmelzer","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JSchmelzer","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f43bd3d4-807a-47d6-85f6-bf836472b040"></div> <div id="ProfileCheckPaperUpdate-react-component-f43bd3d4-807a-47d6-85f6-bf836472b040"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">J. Schmelzer</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="J." data-follow-user-id="35962046" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="35962046"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">10</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><a href="/JSchmelzer/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35962046" href="https://www.academia.edu/Documents/in/Hydrogen_Storage"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JSchmelzer","location":"/JSchmelzer","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JSchmelzer","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Hydrogen Storage"]}" data-trace="false" data-dom-id="Pill-react-component-b43b357d-fd02-44af-81c4-b867bbcd60e0"></div> <div id="Pill-react-component-b43b357d-fd02-44af-81c4-b867bbcd60e0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35962046" href="https://www.academia.edu/Documents/in/Nanorod"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Nanorod"]}" data-trace="false" data-dom-id="Pill-react-component-af193fee-076a-4626-956f-056e057f2b5b"></div> <div id="Pill-react-component-af193fee-076a-4626-956f-056e057f2b5b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35962046" href="https://www.academia.edu/Documents/in/Hydrogen_Economy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Hydrogen Economy"]}" data-trace="false" data-dom-id="Pill-react-component-c74db8b6-9208-442b-8aac-b252e6fcb873"></div> <div id="Pill-react-component-c74db8b6-9208-442b-8aac-b252e6fcb873"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35962046" href="https://www.academia.edu/Documents/in/Fuel_Cell_Vehicles"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fuel Cell Vehicles"]}" data-trace="false" data-dom-id="Pill-react-component-b87f869d-882d-44b8-a9d4-3b06c8c96cc8"></div> <div id="Pill-react-component-b87f869d-882d-44b8-a9d4-3b06c8c96cc8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35962046" href="https://www.academia.edu/Documents/in/Plug_In_Hybrid_Electric_Vehicles"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Plug In Hybrid Electric Vehicles"]}" data-trace="false" data-dom-id="Pill-react-component-18536e27-9010-407b-b2e4-6e1b94e056d0"></div> <div id="Pill-react-component-18536e27-9010-407b-b2e4-6e1b94e056d0"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by J. Schmelzer</h3></div><div class="js-work-strip profile--work_container" data-work-id="92590385"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92590385/Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry"><img alt="Research paper thumbnail of Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92590385/Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry">Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops has been studied via differential fast scanning calorimetry. The cooling rates employed ranged from 100 to 14,000 K/s. The diameter of the investigated tin drops varied in the range from 7 to 40 μm. The influence of the drop shape on the solidification process could be eliminated due to the nearly spherical shape of the single drop upon heating and cooling and the resultant geometric stability. As a result it became possible to study the effect of both drop size and cooling rate in rapid solidification experimentally. A theoretical description of the experimental results is given by assuming the existence of two different heterogeneous nucleation mechanisms leading to crystal nucleation of the single tin drop. In agreement with the experiment these mechanisms yield a shelf-like dependence of crystal nucleation on undercooling. A dependence of crystal nucleation on the size of the tin drop was observed and is discussed in terms of the mentioned theoretical model, which can possibly also describe the nucleation for other related rapid solidification processes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92590385"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92590385"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92590385; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92590385]").text(description); $(".js-view-count[data-work-id=92590385]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92590385; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92590385']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92590385, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=92590385]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92590385,"title":"Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry","translated_title":"","metadata":{"abstract":"The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops has been studied via differential fast scanning calorimetry. The cooling rates employed ranged from 100 to 14,000 K/s. The diameter of the investigated tin drops varied in the range from 7 to 40 μm. The influence of the drop shape on the solidification process could be eliminated due to the nearly spherical shape of the single drop upon heating and cooling and the resultant geometric stability. As a result it became possible to study the effect of both drop size and cooling rate in rapid solidification experimentally. A theoretical description of the experimental results is given by assuming the existence of two different heterogeneous nucleation mechanisms leading to crystal nucleation of the single tin drop. In agreement with the experiment these mechanisms yield a shelf-like dependence of crystal nucleation on undercooling. A dependence of crystal nucleation on the size of the tin drop was observed and is discussed in terms of the mentioned theoretical model, which can possibly also describe the nucleation for other related rapid solidification processes.","publisher":"AIP Publishing","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Journal of Chemical Physics"},"translated_abstract":"The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops has been studied via differential fast scanning calorimetry. The cooling rates employed ranged from 100 to 14,000 K/s. The diameter of the investigated tin drops varied in the range from 7 to 40 μm. The influence of the drop shape on the solidification process could be eliminated due to the nearly spherical shape of the single drop upon heating and cooling and the resultant geometric stability. As a result it became possible to study the effect of both drop size and cooling rate in rapid solidification experimentally. A theoretical description of the experimental results is given by assuming the existence of two different heterogeneous nucleation mechanisms leading to crystal nucleation of the single tin drop. In agreement with the experiment these mechanisms yield a shelf-like dependence of crystal nucleation on undercooling. A dependence of crystal nucleation on the size of the tin drop was observed and is discussed in terms of the mentioned theoretical model, which can possibly also describe the nucleation for other related rapid solidification processes.","internal_url":"https://www.academia.edu/92590385/Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry","translated_internal_url":"","created_at":"2022-12-10T22:32:24.597-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78753,"name":"Differential scanning calorimetry","url":"https://www.academia.edu/Documents/in/Differential_scanning_calorimetry"},{"id":80693,"name":"Tin","url":"https://www.academia.edu/Documents/in/Tin"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":274522,"name":"Supercooling","url":"https://www.academia.edu/Documents/in/Supercooling"}],"urls":[{"id":26878393,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.4789447"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557591/Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation"><img alt="Research paper thumbnail of Evolution of New Phase Clusters at the Initial Stages of Binary Alloy Decomposition Described in Terms of a Modified Theory of Nucleation" class="work-thumbnail" src="https://attachments.academia-assets.com/90983146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557591/Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation">Evolution of New Phase Clusters at the Initial Stages of Binary Alloy Decomposition Described in Terms of a Modified Theory of Nucleation</a></div><div class="wp-workCard_item"><span>Ukrainian Journal of Physics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The work considers the thermodynamics and the kinetics of initial decomposition stages in a super...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The work considers the thermodynamics and the kinetics of initial decomposition stages in a supersaturated binary solid solution inthe framework of the modified nucleation theory. The specific surface energy is considered as a function of intensive state parameters of both the cluster and the matrix, which allows one to uniformly describe clusters of critical, subcritical, and supercritical size. The analysis was performed in two stages. On the first one, the optimal size dependences of the compositions of new phase clusters were determined by analyzing the macroscopic equations of growth of nuclei. On the second stage, we solved akinetic equation to describe the evolution of the size distribution function of new-phase clusters along this optimal composition line.The effect of various kinetic factors on the behavior of the distribution function and characteristics of new-phase clusters was studied. The obtained distributions demonstrate a possibility of the existence of bimodal size...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45605168503109018e78ebde26d88e5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983146,"asset_id":86557591,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983146/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557591]").text(description); $(".js-view-count[data-work-id=86557591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557591, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45605168503109018e78ebde26d88e5d" } } $('.js-work-strip[data-work-id=86557591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557591,"title":"Evolution of New Phase Clusters at the Initial Stages of Binary Alloy Decomposition Described in Terms of a Modified Theory of Nucleation","translated_title":"","metadata":{"abstract":"The work considers the thermodynamics and the kinetics of initial decomposition stages in a supersaturated binary solid solution inthe framework of the modified nucleation theory. The specific surface energy is considered as a function of intensive state parameters of both the cluster and the matrix, which allows one to uniformly describe clusters of critical, subcritical, and supercritical size. The analysis was performed in two stages. On the first one, the optimal size dependences of the compositions of new phase clusters were determined by analyzing the macroscopic equations of growth of nuclei. On the second stage, we solved akinetic equation to describe the evolution of the size distribution function of new-phase clusters along this optimal composition line.The effect of various kinetic factors on the behavior of the distribution function and characteristics of new-phase clusters was studied. The obtained distributions demonstrate a possibility of the existence of bimodal size...","publisher":"National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Ukrainian Journal of Physics"},"translated_abstract":"The work considers the thermodynamics and the kinetics of initial decomposition stages in a supersaturated binary solid solution inthe framework of the modified nucleation theory. The specific surface energy is considered as a function of intensive state parameters of both the cluster and the matrix, which allows one to uniformly describe clusters of critical, subcritical, and supercritical size. The analysis was performed in two stages. On the first one, the optimal size dependences of the compositions of new phase clusters were determined by analyzing the macroscopic equations of growth of nuclei. On the second stage, we solved akinetic equation to describe the evolution of the size distribution function of new-phase clusters along this optimal composition line.The effect of various kinetic factors on the behavior of the distribution function and characteristics of new-phase clusters was studied. The obtained distributions demonstrate a possibility of the existence of bimodal size...","internal_url":"https://www.academia.edu/86557591/Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation","translated_internal_url":"","created_at":"2022-09-12T22:39:04.409-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983146/thumbnails/1.jpg","file_name":"2409.pdf","download_url":"https://www.academia.edu/attachments/90983146/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_New_Phase_Clusters_at_the_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983146/2409-libre.pdf?1663048810=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_New_Phase_Clusters_at_the_I.pdf\u0026Expires=1732998830\u0026Signature=NyGqnIJ9ruT5kw-CHQQaHAXLk-BjKzZJ7XF6YrzLxowImOjhLFzCfj0wdN0UhLOqu~sx4Iafn5GtgOBU3oELo1xzoAT6NRirtAlLibB8m0DiUp9PrNmlJVMa4p-KOb3PlIemy~TbKa0-0k1AuyrP9UXK~UUobm5YXbmq2Ae4sUbZsuWpPhrnvdvE6Dmz8O4vfh3R3RLO1MnWeuzM2AFowFdK26Kw35FsLIvRY40nUvMqCRCDZxoA3MlCLhdn7503umqeyJtVE3Z6SJKd1OOaw2hCsUc4YyEL8rdcLwML1klNrhdoB4p8IM6W6ed7cCgQltZNbxMR86oe-nlgPPTLpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983146/thumbnails/1.jpg","file_name":"2409.pdf","download_url":"https://www.academia.edu/attachments/90983146/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_New_Phase_Clusters_at_the_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983146/2409-libre.pdf?1663048810=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_New_Phase_Clusters_at_the_I.pdf\u0026Expires=1732998830\u0026Signature=NyGqnIJ9ruT5kw-CHQQaHAXLk-BjKzZJ7XF6YrzLxowImOjhLFzCfj0wdN0UhLOqu~sx4Iafn5GtgOBU3oELo1xzoAT6NRirtAlLibB8m0DiUp9PrNmlJVMa4p-KOb3PlIemy~TbKa0-0k1AuyrP9UXK~UUobm5YXbmq2Ae4sUbZsuWpPhrnvdvE6Dmz8O4vfh3R3RLO1MnWeuzM2AFowFdK26Kw35FsLIvRY40nUvMqCRCDZxoA3MlCLhdn7503umqeyJtVE3Z6SJKd1OOaw2hCsUc4YyEL8rdcLwML1klNrhdoB4p8IM6W6ed7cCgQltZNbxMR86oe-nlgPPTLpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":415783,"name":"Spinodal Decomposition","url":"https://www.academia.edu/Documents/in/Spinodal_Decomposition"},{"id":1181274,"name":"Supercritical Fluid","url":"https://www.academia.edu/Documents/in/Supercritical_Fluid"},{"id":2891350,"name":"Distribution Function","url":"https://www.academia.edu/Documents/in/Distribution_Function-1"}],"urls":[{"id":23806608,"url":"https://ujp.bitp.kiev.ua/index.php/ujp/article/download/2022145/2409"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557590/Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems"><img alt="Research paper thumbnail of Formation and Growth of Babbles in One-Component Closed Isochoric Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/90983170/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557590/Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems">Formation and Growth of Babbles in One-Component Closed Isochoric Systems</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1988</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0ae6046753f51f96e020c9e378f26831" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983170,"asset_id":86557590,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983170/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557590]").text(description); $(".js-view-count[data-work-id=86557590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557590, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0ae6046753f51f96e020c9e378f26831" } } $('.js-work-strip[data-work-id=86557590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557590,"title":"Formation and Growth of Babbles in One-Component Closed Isochoric Systems","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","grobid_abstract":"The formation and growth of bubbles in a one-component closed isochoric system is investigated. It is shown, that the general scenario of first-order phase transitions in finite systems developed earlier is also applicable for this special case and a kinetic description of nucleation and subsequent growth of the bubbles is given.","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie","grobid_abstract_attachment_id":90983170},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557590/Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems","translated_internal_url":"","created_at":"2022-09-12T22:39:04.236-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983170/thumbnails/1.jpg","file_name":"zpch-1988-2696820220913-1-1cijakm.pdf","download_url":"https://www.academia.edu/attachments/90983170/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_and_Growth_of_Babbles_in_One_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983170/zpch-1988-2696820220913-1-1cijakm-libre.pdf?1663061618=\u0026response-content-disposition=attachment%3B+filename%3DFormation_and_Growth_of_Babbles_in_One_C.pdf\u0026Expires=1732998830\u0026Signature=KWI~ASHKn5QvwXJ9nrIvzL6zC1z06yqkQ~xHMgsYe0HdIC-C6SnNktQcGU4NWXxIySZgy8-EZiG5vXyPDNkhAiMZOsXz~d7YQgHOdqk47yWj6ktr1WFfukCNoTJsK9p39zSDj99co~X51XZXwAgZWTI8LbFXaEsl0o43Crs70NXISPmOEPgUA8rvKriZQ6oG-YRtTyP35hWiduDC2~mvW8pZ~0ph-il4L5i8kM~7db-nW5FGaO4abNkR03TSj~ggDiO3IXvA3uOvhwnPejtbeHf9Wzuwnkz5VYOtz0SjWhHpFrrpUje6oParAhw4nuhjroqRtfJYa3-BOzAEkfkAXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983170/thumbnails/1.jpg","file_name":"zpch-1988-2696820220913-1-1cijakm.pdf","download_url":"https://www.academia.edu/attachments/90983170/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_and_Growth_of_Babbles_in_One_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983170/zpch-1988-2696820220913-1-1cijakm-libre.pdf?1663061618=\u0026response-content-disposition=attachment%3B+filename%3DFormation_and_Growth_of_Babbles_in_One_C.pdf\u0026Expires=1732998830\u0026Signature=KWI~ASHKn5QvwXJ9nrIvzL6zC1z06yqkQ~xHMgsYe0HdIC-C6SnNktQcGU4NWXxIySZgy8-EZiG5vXyPDNkhAiMZOsXz~d7YQgHOdqk47yWj6ktr1WFfukCNoTJsK9p39zSDj99co~X51XZXwAgZWTI8LbFXaEsl0o43Crs70NXISPmOEPgUA8rvKriZQ6oG-YRtTyP35hWiduDC2~mvW8pZ~0ph-il4L5i8kM~7db-nW5FGaO4abNkR03TSj~ggDiO3IXvA3uOvhwnPejtbeHf9Wzuwnkz5VYOtz0SjWhHpFrrpUje6oParAhw4nuhjroqRtfJYa3-BOzAEkfkAXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[{"id":23806607,"url":"http://www.degruyter.com/view/j/zpch.1988.269.issue-1/zpch-1988-26968/zpch-1988-26968.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557588/A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets"><img alt="Research paper thumbnail of A New General Formula for the Curvature Dependence of Surface Tension of Droplets" class="work-thumbnail" src="https://attachments.academia-assets.com/90983171/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557588/A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets">A New General Formula for the Curvature Dependence of Surface Tension of Droplets</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cbda82a9438f6ff0208748e5ec6f3fa2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983171,"asset_id":86557588,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983171/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557588]").text(description); $(".js-view-count[data-work-id=86557588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557588, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cbda82a9438f6ff0208748e5ec6f3fa2" } } $('.js-work-strip[data-work-id=86557588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557588,"title":"A New General Formula for the Curvature Dependence of Surface Tension of Droplets","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","grobid_abstract":"Zusammenfassung Auf der Grundlage der Gibbsschen Theorie der Oberflächeneffekte wird eine neue verallgemeinerte Gleichung für die Krümmungsabhängigkeit der Oberflächenspannung hergeleitet. In Übereinstimmung mit früheren Arbeiten von GIBBS, TOLMAN U. a. sind krümmungsabhängige Korrekturen für kleine Tropfen mit Radien rS 6 nm von Bedeutung. Die Oberflächenspannung sinkt bei Verkleinerung des Keimradius. Für spezielle Werte eines Parameters, der die spezifischen Eigenschaften des betrachteten Systems wiederspiegelt, folgen als Spezialfälle die bekannten Formeln von GIBBS, TOLMAN, RAS-MUSSEN und VOGELSBERGER. In his fundamental paper \"On the Equilibrium of Heterogeneous Substances\" (1878) GIBBS [1] pointed out, that the value of the surface tension is independent of the position of the dividing surface when the surface is plane. Measurements of this flat interface surface tension a^ are known for a long time, and at present the experimental data of σ x as function of temperature for various substances are precisely given. If the surface between two homogeneous phases is curved the surface tension σ becomes a function of the curvature in general or for spherical droplets a function of the droplet radius r. Already GIBBS [1] derived the first approximative equation for a = a(r). The investigations of GIBBS were extended by TOLMAN [2] and others. Some of the equations proposed by different authors are listed below, eq. (l)-(4). r is the radius of the surface of tension and δ 0 (TOLMAN coefficient) represents the distance between the surface of tension and the equimolecular dividing surface. In agree","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie","grobid_abstract_attachment_id":90983171},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557588/A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets","translated_internal_url":"","created_at":"2022-09-12T22:39:04.052-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983171/thumbnails/1.jpg","file_name":"zpch-1985-26612520220913-1-yo3x2o.pdf","download_url":"https://www.academia.edu/attachments/90983171/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_General_Formula_for_the_Curvature.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983171/zpch-1985-26612520220913-1-yo3x2o-libre.pdf?1663061586=\u0026response-content-disposition=attachment%3B+filename%3DA_New_General_Formula_for_the_Curvature.pdf\u0026Expires=1732998830\u0026Signature=UV8seE4f1kswpz9AQAqzMLyORcncwfbbyWlEEGRWIUGMGdfFSoVClAZcmgDkuWbpRXQSK~2dJB6oFTHgSZxoSIDl4L71ntSZIhGDQYhlPav0qIUOVQKEInV6DsfhQ5BG16JDz71WB-JPx158QjyRIAKtjeCNnK-UvBfe2pzAPh2Mxnppb-BkR3iRDzlLMLHmZF5BpB458FHooAepFf8Vil3bjhuygDdwiOowsSU8YdfI7hLlqJXlzQtFTkxiZE~uoCRE5u9nFZbg~ml9GrV7cIL2AqYz7yzrpXmzYO7BtraS-kO0A47fjC0b-FgWF0kq-wSGOtukXaQUMfku0ZajCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983171/thumbnails/1.jpg","file_name":"zpch-1985-26612520220913-1-yo3x2o.pdf","download_url":"https://www.academia.edu/attachments/90983171/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_General_Formula_for_the_Curvature.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983171/zpch-1985-26612520220913-1-yo3x2o-libre.pdf?1663061586=\u0026response-content-disposition=attachment%3B+filename%3DA_New_General_Formula_for_the_Curvature.pdf\u0026Expires=1732998830\u0026Signature=UV8seE4f1kswpz9AQAqzMLyORcncwfbbyWlEEGRWIUGMGdfFSoVClAZcmgDkuWbpRXQSK~2dJB6oFTHgSZxoSIDl4L71ntSZIhGDQYhlPav0qIUOVQKEInV6DsfhQ5BG16JDz71WB-JPx158QjyRIAKtjeCNnK-UvBfe2pzAPh2Mxnppb-BkR3iRDzlLMLHmZF5BpB458FHooAepFf8Vil3bjhuygDdwiOowsSU8YdfI7hLlqJXlzQtFTkxiZE~uoCRE5u9nFZbg~ml9GrV7cIL2AqYz7yzrpXmzYO7BtraS-kO0A47fjC0b-FgWF0kq-wSGOtukXaQUMfku0ZajCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[{"id":23806605,"url":"http://www.degruyter.com/view/j/zpch.1985.266.issue-1/zpch-1985-266125/zpch-1985-266125.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557587"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557587/The_curvature_dependence_of_surface_tension_of_small_droplets"><img alt="Research paper thumbnail of The curvature dependence of surface tension of small droplets" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557587/The_curvature_dependence_of_surface_tension_of_small_droplets">The curvature dependence of surface tension of small droplets</a></div><div class="wp-workCard_item"><span>Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The curvature dependence of the surface tension has been calculated via a general thermodynamic r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The curvature dependence of the surface tension has been calculated via a general thermodynamic route from results based on molecular dynamics and density gradient calculations on liquid drops. It is shown that in the region of applicability of thermodynamics, the curvature corrections are small and are described asymptotically by Tolman&#39;s equations. However, in contrast to earlier calculations the decrease in surface tension with decreasing droplet radius is succeeded by a region in which the surface tension increases again to values higher than the asymptotic value of the surface tension of a planar interface. Applications to nucleation theory are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557587"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557587"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557587; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557587]").text(description); $(".js-view-count[data-work-id=86557587]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557587; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557587']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557587, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557587]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557587,"title":"The curvature dependence of surface tension of small droplets","translated_title":"","metadata":{"abstract":"The curvature dependence of the surface tension has been calculated via a general thermodynamic route from results based on molecular dynamics and density gradient calculations on liquid drops. It is shown that in the region of applicability of thermodynamics, the curvature corrections are small and are described asymptotically by Tolman\u0026#39;s equations. However, in contrast to earlier calculations the decrease in surface tension with decreasing droplet radius is succeeded by a region in which the surface tension increases again to values higher than the asymptotic value of the surface tension of a planar interface. Applications to nucleation theory are discussed.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases"},"translated_abstract":"The curvature dependence of the surface tension has been calculated via a general thermodynamic route from results based on molecular dynamics and density gradient calculations on liquid drops. It is shown that in the region of applicability of thermodynamics, the curvature corrections are small and are described asymptotically by Tolman\u0026#39;s equations. However, in contrast to earlier calculations the decrease in surface tension with decreasing droplet radius is succeeded by a region in which the surface tension increases again to values higher than the asymptotic value of the surface tension of a planar interface. Applications to nucleation theory are discussed.","internal_url":"https://www.academia.edu/86557587/The_curvature_dependence_of_surface_tension_of_small_droplets","translated_internal_url":"","created_at":"2022-09-12T22:39:03.870-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_curvature_dependence_of_surface_tension_of_small_droplets","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118428,"name":"Curvature","url":"https://www.academia.edu/Documents/in/Curvature"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"}],"urls":[{"id":23806604,"url":"http://pubs.rsc.org/en/content/articlepdf/1986/F1/F19868201421"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557586"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557586/General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles"><img alt="Research paper thumbnail of General formulae for the curvature dependence of droplets and bubbles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557586/General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles">General formulae for the curvature dependence of droplets and bubbles</a></div><div class="wp-workCard_item"><span>Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">General equations have been developed that describe the curvature dependence of the surface tensi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">General equations have been developed that describe the curvature dependence of the surface tension of droplets in the gas phase and of bubbles in a liquid. These are based on thermodynamic arguments and a special assumption concerning the Tolman parameter, δ. The equations derived by Gibbs, Tolman and Rasmussen are obtained as special cases for particular values of a parameter dependent both on the system considered and the thermodynamic constraints. Although the behaviour of the Tolman coefficient δ as a function of the radius, Rs, of the surface of tension can be quite different, the resulting equations describing the curvature dependence of surface tension are similar, thus confirming Tolman&#39;s equation as a first, but accurate approximation.It is further shown that physically meaningful results for the surface tension of bubbles can be obtained only if the Tolman coefficient changes its sign for a specific value Rs=|b| of the radius of the bubble. Therefore in this case the surface tension has a maximum for a finite value of the radius of the surface of tension and there are two regions in which the surface tension either decreases (Rs |b|) with decreasing size of the bubble.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557586"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557586"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557586; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557586]").text(description); $(".js-view-count[data-work-id=86557586]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557586; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557586']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557586, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557586]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557586,"title":"General formulae for the curvature dependence of droplets and bubbles","translated_title":"","metadata":{"abstract":"General equations have been developed that describe the curvature dependence of the surface tension of droplets in the gas phase and of bubbles in a liquid. These are based on thermodynamic arguments and a special assumption concerning the Tolman parameter, δ. The equations derived by Gibbs, Tolman and Rasmussen are obtained as special cases for particular values of a parameter dependent both on the system considered and the thermodynamic constraints. Although the behaviour of the Tolman coefficient δ as a function of the radius, Rs, of the surface of tension can be quite different, the resulting equations describing the curvature dependence of surface tension are similar, thus confirming Tolman\u0026#39;s equation as a first, but accurate approximation.It is further shown that physically meaningful results for the surface tension of bubbles can be obtained only if the Tolman coefficient changes its sign for a specific value Rs=|b| of the radius of the bubble. Therefore in this case the surface tension has a maximum for a finite value of the radius of the surface of tension and there are two regions in which the surface tension either decreases (Rs |b|) with decreasing size of the bubble.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases"},"translated_abstract":"General equations have been developed that describe the curvature dependence of the surface tension of droplets in the gas phase and of bubbles in a liquid. These are based on thermodynamic arguments and a special assumption concerning the Tolman parameter, δ. The equations derived by Gibbs, Tolman and Rasmussen are obtained as special cases for particular values of a parameter dependent both on the system considered and the thermodynamic constraints. Although the behaviour of the Tolman coefficient δ as a function of the radius, Rs, of the surface of tension can be quite different, the resulting equations describing the curvature dependence of surface tension are similar, thus confirming Tolman\u0026#39;s equation as a first, but accurate approximation.It is further shown that physically meaningful results for the surface tension of bubbles can be obtained only if the Tolman coefficient changes its sign for a specific value Rs=|b| of the radius of the bubble. Therefore in this case the surface tension has a maximum for a finite value of the radius of the surface of tension and there are two regions in which the surface tension either decreases (Rs |b|) with decreasing size of the bubble.","internal_url":"https://www.academia.edu/86557586/General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles","translated_internal_url":"","created_at":"2022-09-12T22:39:03.728-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118428,"name":"Curvature","url":"https://www.academia.edu/Documents/in/Curvature"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":360549,"name":"Radius","url":"https://www.academia.edu/Documents/in/Radius"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557585/Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems"><img alt="Research paper thumbnail of Kinetics of First-Order Phase Transitions in Condensed Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557585/Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems">Kinetics of First-Order Phase Transitions in Condensed Systems</a></div><div class="wp-workCard_item"><span>Physica Status Solidi (a)</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, and Ostwald ripening – in condensed systems is analysed based on the numerical solution of a Fokker-Planck equation for the cluster size distribution function. Particular attention is directed to the investigation of the transition period between independent growth and Ostwald ripening. An unexpected temporary slowing down of the growth rate of the mean cluster size is observed in this region and the parameter range for its occurrence is calculated. Moreover, a new analytic expression for the time evolution of the mean cluster radius for the period of nucleation and independent growth is developed. It is in good agreement with the numerical results.Die Kinetik von thermodynamischen Phasenübergängen 1. Art – Keimbildung, unabhängiges Clusterwachstum und Ostwaldreifung – wird analysiert basierend auf der numerischen Lösung einer Fokker-Planck-Gleichung für die Clustergrößenverteilungsfunktion. Besondere Aufmerksamkeit wird dabei auf die Übergangsperiode zwischen unabhängigem Wachstum und Ostwaldreifung gerichtet. Eine unerwartete Verlangsamung des Wachstums wird hier beobachtet und Abschätzungen für das Parametergebiet, für das ein derartiges Verhalten auftritt, werden vorgenommen. Zusätzlich wird eine analytische Beschreibung für die zeitliche Entwicklung des mittleren Clusterradius für die Phase von simultaner Keimbildung und unabhängigem Wachstum der Cluster vorgeschlagen. Die erhaltene Gleichung ist in guter Übereinstimmung mit den numerischen Ergebnissen.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557585]").text(description); $(".js-view-count[data-work-id=86557585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557585, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557585,"title":"Kinetics of First-Order Phase Transitions in Condensed Systems","translated_title":"","metadata":{"abstract":"ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, and Ostwald ripening – in condensed systems is analysed based on the numerical solution of a Fokker-Planck equation for the cluster size distribution function. Particular attention is directed to the investigation of the transition period between independent growth and Ostwald ripening. An unexpected temporary slowing down of the growth rate of the mean cluster size is observed in this region and the parameter range for its occurrence is calculated. Moreover, a new analytic expression for the time evolution of the mean cluster radius for the period of nucleation and independent growth is developed. It is in good agreement with the numerical results.Die Kinetik von thermodynamischen Phasenübergängen 1. Art – Keimbildung, unabhängiges Clusterwachstum und Ostwaldreifung – wird analysiert basierend auf der numerischen Lösung einer Fokker-Planck-Gleichung für die Clustergrößenverteilungsfunktion. Besondere Aufmerksamkeit wird dabei auf die Übergangsperiode zwischen unabhängigem Wachstum und Ostwaldreifung gerichtet. Eine unerwartete Verlangsamung des Wachstums wird hier beobachtet und Abschätzungen für das Parametergebiet, für das ein derartiges Verhalten auftritt, werden vorgenommen. Zusätzlich wird eine analytische Beschreibung für die zeitliche Entwicklung des mittleren Clusterradius für die Phase von simultaner Keimbildung und unabhängigem Wachstum der Cluster vorgeschlagen. Die erhaltene Gleichung ist in guter Übereinstimmung mit den numerischen Ergebnissen.","publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Physica Status Solidi (a)"},"translated_abstract":"ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, and Ostwald ripening – in condensed systems is analysed based on the numerical solution of a Fokker-Planck equation for the cluster size distribution function. Particular attention is directed to the investigation of the transition period between independent growth and Ostwald ripening. An unexpected temporary slowing down of the growth rate of the mean cluster size is observed in this region and the parameter range for its occurrence is calculated. Moreover, a new analytic expression for the time evolution of the mean cluster radius for the period of nucleation and independent growth is developed. It is in good agreement with the numerical results.Die Kinetik von thermodynamischen Phasenübergängen 1. Art – Keimbildung, unabhängiges Clusterwachstum und Ostwaldreifung – wird analysiert basierend auf der numerischen Lösung einer Fokker-Planck-Gleichung für die Clustergrößenverteilungsfunktion. Besondere Aufmerksamkeit wird dabei auf die Übergangsperiode zwischen unabhängigem Wachstum und Ostwaldreifung gerichtet. Eine unerwartete Verlangsamung des Wachstums wird hier beobachtet und Abschätzungen für das Parametergebiet, für das ein derartiges Verhalten auftritt, werden vorgenommen. Zusätzlich wird eine analytische Beschreibung für die zeitliche Entwicklung des mittleren Clusterradius für die Phase von simultaner Keimbildung und unabhängigem Wachstum der Cluster vorgeschlagen. Die erhaltene Gleichung ist in guter Übereinstimmung mit den numerischen Ergebnissen.","internal_url":"https://www.academia.edu/86557585/Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems","translated_internal_url":"","created_at":"2022-09-12T22:39:03.608-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems","translated_slug":"","page_count":null,"language":"de","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557584/Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts"><img alt="Research paper thumbnail of Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts" class="work-thumbnail" src="https://attachments.academia-assets.com/90983169/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557584/Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts">Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts</a></div><div class="wp-workCard_item"><span>Journal of Non-Crystalline Solids</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="994fa8059b9799ca972f58aa505f6ec2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983169,"asset_id":86557584,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983169/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557584]").text(description); $(".js-view-count[data-work-id=86557584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557584, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "994fa8059b9799ca972f58aa505f6ec2" } } $('.js-work-strip[data-work-id=86557584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557584,"title":"Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Glassforming melts behave, in the vicinity of the temperature of vitrification T g , as viscoelastic bodies. A general theory of nucleation in a viscoelastic body developed elsewhere is applicable to the description of phase formation processes in such systems. The present contribution is directed to the demonstration of the relevance of this proposed general theory to describing phase transformation processes in glassforming melts. The application of the theory is shown to explain a number of experimental results on crystallization of glassforming melts, which have not found a satisfactory interpretation so far.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Journal of Non-Crystalline Solids","grobid_abstract_attachment_id":90983169},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557584/Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts","translated_internal_url":"","created_at":"2022-09-12T22:39:03.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983169/thumbnails/1.jpg","file_name":"s0022-3093_2802_2901428-x20220913-1-11fbhj7.pdf","download_url":"https://www.academia.edu/attachments/90983169/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_nucleation_in_viscoelastic_med.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983169/s0022-3093_2802_2901428-x20220913-1-11fbhj7-libre.pdf?1663061582=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_nucleation_in_viscoelastic_med.pdf\u0026Expires=1732998830\u0026Signature=AHaf1FLioE4cYAZrB8lgm~J6BHGt9zzCOj-XwMtwKdphVDa17~oduCr4KjsYMSpXBAMs-Blh~jhVVh9EGxEynAnNvubI1xntKODf3Onsyv6v5eYqpVc20aegDVmQl3-R6rMWq3Ei0lFyJYTfPiilCEOtj7btykW4zEzYPCUODhKI9K0KC-7ZT9M7f0pKXVbKjgLNV0HbR-VQm0SYFthIo20SNUkKLtcgUvp53X308gn1Iewkye7uWeESQZgtrXoDELwk~xLBlahXcq1dKh31h8y8LIC3vecGVMNs1Q9wpDTWYHzuWPiizCgDRJAokEvOwqw0MhobgyGibNv~BfxLig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983169/thumbnails/1.jpg","file_name":"s0022-3093_2802_2901428-x20220913-1-11fbhj7.pdf","download_url":"https://www.academia.edu/attachments/90983169/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_nucleation_in_viscoelastic_med.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983169/s0022-3093_2802_2901428-x20220913-1-11fbhj7-libre.pdf?1663061582=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_nucleation_in_viscoelastic_med.pdf\u0026Expires=1732998830\u0026Signature=AHaf1FLioE4cYAZrB8lgm~J6BHGt9zzCOj-XwMtwKdphVDa17~oduCr4KjsYMSpXBAMs-Blh~jhVVh9EGxEynAnNvubI1xntKODf3Onsyv6v5eYqpVc20aegDVmQl3-R6rMWq3Ei0lFyJYTfPiilCEOtj7btykW4zEzYPCUODhKI9K0KC-7ZT9M7f0pKXVbKjgLNV0HbR-VQm0SYFthIo20SNUkKLtcgUvp53X308gn1Iewkye7uWeESQZgtrXoDELwk~xLBlahXcq1dKh31h8y8LIC3vecGVMNs1Q9wpDTWYHzuWPiizCgDRJAokEvOwqw0MhobgyGibNv~BfxLig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":150216,"name":"Non crystalline solids","url":"https://www.academia.edu/Documents/in/Non_crystalline_solids"},{"id":308420,"name":"Phase Transformation","url":"https://www.academia.edu/Documents/in/Phase_Transformation"}],"urls":[{"id":23806603,"url":"https://api.elsevier.com/content/article/PII:S002230930201428X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557583/Kinetics_of_first_order_phase_transitions_in_adiabatic_systems"><img alt="Research paper thumbnail of Kinetics of first-order phase transitions in adiabatic systems" class="work-thumbnail" src="https://attachments.academia-assets.com/90983167/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557583/Kinetics_of_first_order_phase_transitions_in_adiabatic_systems">Kinetics of first-order phase transitions in adiabatic systems</a></div><div class="wp-workCard_item"><span>Journal of Colloid and Interface Science</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b122cba0ca405e2637aa589fc9acb538" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983167,"asset_id":86557583,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983167/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557583]").text(description); $(".js-view-count[data-work-id=86557583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b122cba0ca405e2637aa589fc9acb538" } } $('.js-work-strip[data-work-id=86557583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557583,"title":"Kinetics of first-order phase transitions in adiabatic systems","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Based on thermodynamic investigations a general scenario and a kinetic description of the process of first-order phase transitions in adiabatically closed systems, starting from metastable initial states, is developed. It is shown that, in analogy to isothermal constraints, three main stages of the transition may be distinguished: a first stage of dominating nucleation and simultaneous growth of the already formed supercritical clusters, a second stage of independent growth of the clusters, their number being nearly constant, and a third stage of competitive growth, of Ostwald ripening. The change of the temperature of the system due to the latent heat of the transition can be considered hereby as an additional depletion effect. It leads to an increase of the critical size of the clusters and thus to a significant decrease of the nucleation rate, compared with isothermal conditions, especially for relatively large initial supersaturations. Further, it may result also in variations of the stable heterogeneous equilibrium state-that is, configurations of stable clusters in the otherwise homogeneous medium. In particular, for a one-component system under a constant external pressure it makes the existence of such a state possible and results therefore in a qualitative change of the whole course of the phase transition from independent nucleation and growth to the three-stage scenario as characterized above. A theoretical description of the independent growth of the drops and of Ostwald ripening under adiabatic conditions is developed. The results are compared with growth processes in isothermal systems and both quantitative and possible qualitative differences are discussed. Further, they are applied to an interpretation of molecular-dynamics simulations of first-order phase transitions in adsorbed layers.","publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Journal of Colloid and Interface Science","grobid_abstract_attachment_id":90983167},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557583/Kinetics_of_first_order_phase_transitions_in_adiabatic_systems","translated_internal_url":"","created_at":"2022-09-12T22:39:03.177-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983167/thumbnails/1.jpg","file_name":"0021-9797_2889_2990389-520220913-1-1wjvr1k.pdf","download_url":"https://www.academia.edu/attachments/90983167/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Kinetics_of_first_order_phase_transition.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983167/0021-9797_2889_2990389-520220913-1-1wjvr1k-libre.pdf?1663061580=\u0026response-content-disposition=attachment%3B+filename%3DKinetics_of_first_order_phase_transition.pdf\u0026Expires=1732998830\u0026Signature=adwfsPZlbbTqwRHgWGCrF14yDmvo0k7qpI3-ioLbxkG4XaRTNvaySPSzY5T8tyd-f-OdSjuEwZmP0USSN2zkU~P~uO2MPtmPDSHXz2ov2X8sLWL7lcNJAxEe7LdwJ~j27mtO1xkoFpfzxTgCtMRm0~fLTiqSIAVU42yUDPdDwfb6wfb~mFfJ7WP7D5zfCuT059LZ6bs1a88rM3WoBT33iSstNyS2QHC8xlr8i3w09ktGAUJeHdkYQMnwTumGrCuTdg-EYO5A32d1QqHzVgNn9WwgeaqI4YpUcXWukESXmv-S8oFj6Yc3PpjfwwRQ-j3UAd09t9QE23ntfxzT5Slkhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Kinetics_of_first_order_phase_transitions_in_adiabatic_systems","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983167/thumbnails/1.jpg","file_name":"0021-9797_2889_2990389-520220913-1-1wjvr1k.pdf","download_url":"https://www.academia.edu/attachments/90983167/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Kinetics_of_first_order_phase_transition.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983167/0021-9797_2889_2990389-520220913-1-1wjvr1k-libre.pdf?1663061580=\u0026response-content-disposition=attachment%3B+filename%3DKinetics_of_first_order_phase_transition.pdf\u0026Expires=1732998830\u0026Signature=adwfsPZlbbTqwRHgWGCrF14yDmvo0k7qpI3-ioLbxkG4XaRTNvaySPSzY5T8tyd-f-OdSjuEwZmP0USSN2zkU~P~uO2MPtmPDSHXz2ov2X8sLWL7lcNJAxEe7LdwJ~j27mtO1xkoFpfzxTgCtMRm0~fLTiqSIAVU42yUDPdDwfb6wfb~mFfJ7WP7D5zfCuT059LZ6bs1a88rM3WoBT33iSstNyS2QHC8xlr8i3w09ktGAUJeHdkYQMnwTumGrCuTdg-EYO5A32d1QqHzVgNn9WwgeaqI4YpUcXWukESXmv-S8oFj6Yc3PpjfwwRQ-j3UAd09t9QE23ntfxzT5Slkhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":23806602,"url":"https://api.elsevier.com/content/article/PII:0021979789903895?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557582/On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours"><img alt="Research paper thumbnail of On the Kinetic Description of Condensation in Binary Vapours" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557582/On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours">On the Kinetic Description of Condensation in Binary Vapours</a></div><div class="wp-workCard_item"><span>Annalen der Physik</span><span>, 1987</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Based on a thermodynamic analysis and an earlier developed general growth equation for clusters o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Based on a thermodynamic analysis and an earlier developed general growth equation for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under isothermal and isobaric conditions is described. Differential equations for the time development of the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the droplets are obtained. These equations describe the evolution of the system of droplets beginning after the nucleation period has finished. The equations can be easily solved numerically. For long times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly to the mechanism of Ostwald ripening. Zur kinetischen Beschreibung der Kondensation binarer Dampfe Basierend auf einer thermodynamischen Analyse und unter Verwendung einer fruher entwickelten allgemeinen Wachstumsgleichung fur Keime einer neuen Phase wird die Kinetik des Wachstums von Tropfen in einer binaren Gasmischung unter isobar-isothermen Bedingungen mathematisch beschrieben. Es werden Ausdrucke fur die zeitliche Entwicklung des mittleren Tropfenradius, der Tropfenzahl und der Gesamtmenge der flussigen Phase erhalten. Diese Gleichungen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach Abschlus der Keimbildungsphase. Sie sind relativ einfach numerisch losbar, fur grose Zeiten konnen analytische Losungen angegeben werden. Es wird gezeigt, das das Wachstum von Tropfen in der Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557582]").text(description); $(".js-view-count[data-work-id=86557582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557582, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557582,"title":"On the Kinetic Description of Condensation in Binary Vapours","translated_title":"","metadata":{"abstract":"Based on a thermodynamic analysis and an earlier developed general growth equation for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under isothermal and isobaric conditions is described. Differential equations for the time development of the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the droplets are obtained. These equations describe the evolution of the system of droplets beginning after the nucleation period has finished. The equations can be easily solved numerically. For long times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly to the mechanism of Ostwald ripening. Zur kinetischen Beschreibung der Kondensation binarer Dampfe Basierend auf einer thermodynamischen Analyse und unter Verwendung einer fruher entwickelten allgemeinen Wachstumsgleichung fur Keime einer neuen Phase wird die Kinetik des Wachstums von Tropfen in einer binaren Gasmischung unter isobar-isothermen Bedingungen mathematisch beschrieben. Es werden Ausdrucke fur die zeitliche Entwicklung des mittleren Tropfenradius, der Tropfenzahl und der Gesamtmenge der flussigen Phase erhalten. Diese Gleichungen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach Abschlus der Keimbildungsphase. Sie sind relativ einfach numerisch losbar, fur grose Zeiten konnen analytische Losungen angegeben werden. Es wird gezeigt, das das Wachstum von Tropfen in der Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.","publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Annalen der Physik"},"translated_abstract":"Based on a thermodynamic analysis and an earlier developed general growth equation for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under isothermal and isobaric conditions is described. Differential equations for the time development of the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the droplets are obtained. These equations describe the evolution of the system of droplets beginning after the nucleation period has finished. The equations can be easily solved numerically. For long times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly to the mechanism of Ostwald ripening. Zur kinetischen Beschreibung der Kondensation binarer Dampfe Basierend auf einer thermodynamischen Analyse und unter Verwendung einer fruher entwickelten allgemeinen Wachstumsgleichung fur Keime einer neuen Phase wird die Kinetik des Wachstums von Tropfen in einer binaren Gasmischung unter isobar-isothermen Bedingungen mathematisch beschrieben. Es werden Ausdrucke fur die zeitliche Entwicklung des mittleren Tropfenradius, der Tropfenzahl und der Gesamtmenge der flussigen Phase erhalten. Diese Gleichungen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach Abschlus der Keimbildungsphase. Sie sind relativ einfach numerisch losbar, fur grose Zeiten konnen analytische Losungen angegeben werden. Es wird gezeigt, das das Wachstum von Tropfen in der Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.","internal_url":"https://www.academia.edu/86557582/On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours","translated_internal_url":"","created_at":"2022-09-12T22:39:03.018-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours","translated_slug":"","page_count":null,"language":"de","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":38050,"name":"Phase Transitions","url":"https://www.academia.edu/Documents/in/Phase_Transitions"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":254626,"name":"Cluster","url":"https://www.academia.edu/Documents/in/Cluster"},{"id":401240,"name":"Change of State","url":"https://www.academia.edu/Documents/in/Change_of_State"},{"id":634545,"name":"Condensation","url":"https://www.academia.edu/Documents/in/Condensation"},{"id":670651,"name":"Ostwald Ripening","url":"https://www.academia.edu/Documents/in/Ostwald_Ripening"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557581"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557581/Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment"><img alt="Research paper thumbnail of Dependence of crystallization processes of glass-forming melts on melt history: a theoretical approach to a quantitative treatment" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557581/Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment">Dependence of crystallization processes of glass-forming melts on melt history: a theoretical approach to a quantitative treatment</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557581"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557581]").text(description); $(".js-view-count[data-work-id=86557581]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557581']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557581, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557581]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557581,"title":"Dependence of crystallization processes of glass-forming melts on melt history: a theoretical approach to a quantitative treatment","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/86557581/Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment","translated_internal_url":"","created_at":"2022-09-12T22:39:02.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557490/Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions"><img alt="Research paper thumbnail of Ostwald Ripening of Bubbles in Liquid-Gas Solutions" class="work-thumbnail" src="https://attachments.academia-assets.com/90983112/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557490/Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions">Ostwald Ripening of Bubbles in Liquid-Gas Solutions</a></div><div class="wp-workCard_item"><span>Journal of Non-Equilibrium Thermodynamics</span><span>, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ba8f4035b17cecc0b4000b12a42e17f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983112,"asset_id":86557490,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983112/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557490]").text(description); $(".js-view-count[data-work-id=86557490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ba8f4035b17cecc0b4000b12a42e17f" } } $('.js-work-strip[data-work-id=86557490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557490,"title":"Ostwald Ripening of Bubbles in Liquid-Gas Solutions","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","grobid_abstract":"The possibility of a stable coexistence of bubbles in supersaturated liquid-gas solutions is investigated. It is shown that in contrast to the conclusions derived by Ward et al. [1, 2], multi-bubble systems in the otherwise homgeneous medium are thermodynamically unstable. Based on thermodynamic investigations, a theory of Ostwald ripening of gas bubbles in liquid-gas solutions is presented which includes the description of the initial stage of this process. Differential equations describing the time development of the mean radius and the number of bubbles are derived. For the asymptotic region analytic solutions in agreement with the results of Lifshitz and Slyozov [3] are obtained. The results can also be applied to a description of the growth of single droplets and ensembles of droplets in multicomponent vapours, demonstrating the analogy between the time development of ensembles of droplets and bubbles. It was stated by these authors that in a closed volume of a liquid-gas-solution there can exist configurations of a single bubble and a number of bubbles in stable thermodynamic equilibrium within the otherwise homgeneous solution. We would like to show here, that, while the first is true, the second statement is","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Journal of Non-Equilibrium Thermodynamics","grobid_abstract_attachment_id":90983112},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557490/Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions","translated_internal_url":"","created_at":"2022-09-12T22:37:19.806-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983112/thumbnails/1.jpg","file_name":"Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions.pdf","download_url":"https://www.academia.edu/attachments/90983112/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ostwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983112/Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions-libre.pdf?1663048819=\u0026response-content-disposition=attachment%3B+filename%3DOstwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf\u0026Expires=1732998830\u0026Signature=BWF1CVxdR-mzhwpQb2rrlNFy91q1n~faMR5A0jTO5BnMZdq92T5N0VoFXoWlekRTPSi8g2x2ETjtQ4GIBwxUMec6iq1PvGvhJItuHN3eYiZlsNTFM3Kg0CsPOfrJ~Y28PrVI7A7YSne8cnCsF~WPyRfvrQEUoKi3Jq4TICmk8LjA11M-1msmruRV9P8XUUPk5TNYW47jA-ycEFxD9FU8I8d0QBPEAUzwsobZ1XNI5GCpNrAOaPXF1Qtu~EMDrp08NflO1YwDhyE~XSg~AI40MTsNhC~AkP5DznmIje3~uaYnbs5vG1qARr-oFJahA2ApKq1kn86IZQhtgm3UA6XWbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983112/thumbnails/1.jpg","file_name":"Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions.pdf","download_url":"https://www.academia.edu/attachments/90983112/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ostwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983112/Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions-libre.pdf?1663048819=\u0026response-content-disposition=attachment%3B+filename%3DOstwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf\u0026Expires=1732998830\u0026Signature=BWF1CVxdR-mzhwpQb2rrlNFy91q1n~faMR5A0jTO5BnMZdq92T5N0VoFXoWlekRTPSi8g2x2ETjtQ4GIBwxUMec6iq1PvGvhJItuHN3eYiZlsNTFM3Kg0CsPOfrJ~Y28PrVI7A7YSne8cnCsF~WPyRfvrQEUoKi3Jq4TICmk8LjA11M-1msmruRV9P8XUUPk5TNYW47jA-ycEFxD9FU8I8d0QBPEAUzwsobZ1XNI5GCpNrAOaPXF1Qtu~EMDrp08NflO1YwDhyE~XSg~AI40MTsNhC~AkP5DznmIje3~uaYnbs5vG1qARr-oFJahA2ApKq1kn86IZQhtgm3UA6XWbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":38050,"name":"Phase Transitions","url":"https://www.academia.edu/Documents/in/Phase_Transitions"},{"id":54961,"name":"Growth","url":"https://www.academia.edu/Documents/in/Growth"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":93329,"name":"Non-equilibrium thermodynamics","url":"https://www.academia.edu/Documents/in/Non-equilibrium_thermodynamics"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":670651,"name":"Ostwald Ripening","url":"https://www.academia.edu/Documents/in/Ostwald_Ripening"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81136076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81136076/Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates"><img alt="Research paper thumbnail of Dependence of the width of the glass transition interval on cooling and heating rates" class="work-thumbnail" src="https://attachments.academia-assets.com/87286044/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81136076/Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates">Dependence of the width of the glass transition interval on cooling and heating rates</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7fd2e8578004578cd09a5117786e1e4b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87286044,"asset_id":81136076,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87286044/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81136076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81136076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81136076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81136076]").text(description); $(".js-view-count[data-work-id=81136076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81136076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81136076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 81136076, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7fd2e8578004578cd09a5117786e1e4b" } } $('.js-work-strip[data-work-id=81136076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81136076,"title":"Dependence of the width of the glass transition interval on cooling and heating rates","translated_title":"","metadata":{"publisher":"AIP Publishing","grobid_abstract":"In a preceding paper [J. W. P. Schmelzer, J. Chem. Phys. 136, 074512 (2012)], a general kinetic criterion of glass formation has been advanced allowing one to determine theoretically the dependence of the glass transition temperature on cooling and heating rates (or similarly on the rate of change of any appropriate control parameter determining the transition of a stable or metastable equilibrium system into a frozen-in, non-equilibrium state of the system, a glass). In the present paper, this criterion is employed in order to develop analytical expressions for the dependence of the upper and lower boundaries and of the width of the glass transition interval on the rate of change of the external control parameters. It is shown, in addition, that the width of the glass transition range is strongly correlated with the entropy production at the glass transition temperature. The analytical results are supplemented by numerical computations. Analytical results and numerical computations as well as existing experimental data are shown to be in good agreement.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Journal of Chemical Physics","grobid_abstract_attachment_id":87286044},"translated_abstract":null,"internal_url":"https://www.academia.edu/81136076/Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates","translated_internal_url":"","created_at":"2022-06-09T22:32:50.162-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87286044,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87286044/thumbnails/1.jpg","file_name":"1278ac98f2dec0e4a4068c16f4f4dc0c08b7.pdf","download_url":"https://www.academia.edu/attachments/87286044/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dependence_of_the_width_of_the_glass_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87286044/1278ac98f2dec0e4a4068c16f4f4dc0c08b7-libre.pdf?1654840027=\u0026response-content-disposition=attachment%3B+filename%3DDependence_of_the_width_of_the_glass_tra.pdf\u0026Expires=1732998830\u0026Signature=FMaZBza6AIKxzyyBaaqcVf38W9bcw909K~nMbcOMJPZVIa56MzOt6SlFhfKBmJb05H8LB9b2tFc0mQ1oH4EsPeEIcj4ScypTDShFXbmgNr~6Vtyb09z8998jCt0bPxnuUT9Ajr9Nf5uqe7vfGc9CuW0xRjX15oPyxwAxfBo3ycU2N6tlADZiZYDlzKTVyVIsrbp47rAD~yh-7Cn7Dpcn7048MDcLM1GaxF7dM2dwBWBMAXuo451JrjoyeYmasy6l4NvyjQk1KjGQLURU9WkuO3AGi93Q7a54vW5urSI94IthtL0sOih~Vpp4bmv9~jZdec3aRRCTbeurm-brpjn9WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":87286044,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87286044/thumbnails/1.jpg","file_name":"1278ac98f2dec0e4a4068c16f4f4dc0c08b7.pdf","download_url":"https://www.academia.edu/attachments/87286044/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dependence_of_the_width_of_the_glass_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87286044/1278ac98f2dec0e4a4068c16f4f4dc0c08b7-libre.pdf?1654840027=\u0026response-content-disposition=attachment%3B+filename%3DDependence_of_the_width_of_the_glass_tra.pdf\u0026Expires=1732998830\u0026Signature=FMaZBza6AIKxzyyBaaqcVf38W9bcw909K~nMbcOMJPZVIa56MzOt6SlFhfKBmJb05H8LB9b2tFc0mQ1oH4EsPeEIcj4ScypTDShFXbmgNr~6Vtyb09z8998jCt0bPxnuUT9Ajr9Nf5uqe7vfGc9CuW0xRjX15oPyxwAxfBo3ycU2N6tlADZiZYDlzKTVyVIsrbp47rAD~yh-7Cn7Dpcn7048MDcLM1GaxF7dM2dwBWBMAXuo451JrjoyeYmasy6l4NvyjQk1KjGQLURU9WkuO3AGi93Q7a54vW5urSI94IthtL0sOih~Vpp4bmv9~jZdec3aRRCTbeurm-brpjn9WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":21279853,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.4775802"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81135949"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81135949/Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation"><img alt="Research paper thumbnail of Non-Stationary Nucleation and the Johnson-Mehl-Avrami Equation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81135949/Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation">Non-Stationary Nucleation and the Johnson-Mehl-Avrami Equation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81135949"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81135949"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81135949; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81135949]").text(description); $(".js-view-count[data-work-id=81135949]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81135949; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81135949']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 81135949, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=81135949]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81135949,"title":"Non-Stationary Nucleation and the Johnson-Mehl-Avrami Equation","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/81135949/Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation","translated_internal_url":"","created_at":"2022-06-09T22:30:52.565-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961373/On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media"><img alt="Research paper thumbnail of On the Kinetic Description of Ostwald Ripening in Elastic Media" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961373/On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media">On the Kinetic Description of Ostwald Ripening in Elastic Media</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the gro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the growth of a new phase in the rmodynamic phase transit ions of first order was derived. This equat ion is applie¿j here first to an investigation of the t ime development of single clusters of a new phase. Based on the proposed in [12] new theory of Ostwald ripening a general theory describing this process for elastic media is developed. This method leads to a set of differential equat ions for the mean cluster radius, the number of clusters and the total mass of the new phase concentrated in the clusters. These equations are valid and can be solved numerically for the whole ripening process including the initial stage. A criterion is established under which condit ions elastic strains lead to a s top of the growth of the clusters and, therefore, t o a quite different asymptotic behaviour of the solutions as compared with the theory of LIFSHITZ, S&#39;.YOZOV and others. In these cases for long times a stationary relatively monodisperse distribution of clusters is established in the system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961373]").text(description); $(".js-view-count[data-work-id=75961373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75961373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961373,"title":"On the Kinetic Description of Ostwald Ripening in Elastic Media","translated_title":"","metadata":{"abstract":"In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the growth of a new phase in the rmodynamic phase transit ions of first order was derived. This equat ion is applie¿j here first to an investigation of the t ime development of single clusters of a new phase. Based on the proposed in [12] new theory of Ostwald ripening a general theory describing this process for elastic media is developed. This method leads to a set of differential equat ions for the mean cluster radius, the number of clusters and the total mass of the new phase concentrated in the clusters. These equations are valid and can be solved numerically for the whole ripening process including the initial stage. A criterion is established under which condit ions elastic strains lead to a s top of the growth of the clusters and, therefore, t o a quite different asymptotic behaviour of the solutions as compared with the theory of LIFSHITZ, S\u0026#39;.YOZOV and others. In these cases for long times a stationary relatively monodisperse distribution of clusters is established in the system.","publisher":"Walter de Gruyter GmbH","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie"},"translated_abstract":"In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the growth of a new phase in the rmodynamic phase transit ions of first order was derived. This equat ion is applie¿j here first to an investigation of the t ime development of single clusters of a new phase. Based on the proposed in [12] new theory of Ostwald ripening a general theory describing this process for elastic media is developed. This method leads to a set of differential equat ions for the mean cluster radius, the number of clusters and the total mass of the new phase concentrated in the clusters. These equations are valid and can be solved numerically for the whole ripening process including the initial stage. A criterion is established under which condit ions elastic strains lead to a s top of the growth of the clusters and, therefore, t o a quite different asymptotic behaviour of the solutions as compared with the theory of LIFSHITZ, S\u0026#39;.YOZOV and others. In these cases for long times a stationary relatively monodisperse distribution of clusters is established in the system.","internal_url":"https://www.academia.edu/75961373/On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media","translated_internal_url":"","created_at":"2022-04-09T22:28:27.236-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[{"id":19304437,"url":"http://www.degruyter.com/view/j/zpch.1988.269.issue-1/zpch-1988-26982/zpch-1988-26982.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961372"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961372/Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules"><img alt="Research paper thumbnail of Experimental Test of Tammann’s Nuclei Development Approach in Crystallization of Macromolecules" class="work-thumbnail" src="https://attachments.academia-assets.com/83647350/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961372/Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules">Experimental Test of Tammann’s Nuclei Development Approach in Crystallization of Macromolecules</a></div><div class="wp-workCard_item"><span>Crystal Growth & Design</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="182b1b37697502dfd688433c316e6ce7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83647350,"asset_id":75961372,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83647350/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961372"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961372"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961372; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961372]").text(description); $(".js-view-count[data-work-id=75961372]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961372; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961372']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961372, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "182b1b37697502dfd688433c316e6ce7" } } $('.js-work-strip[data-work-id=75961372]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961372,"title":"Experimental Test of Tammann’s Nuclei Development Approach in Crystallization of Macromolecules","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Crystal Growth \u0026 Design"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75961372/Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules","translated_internal_url":"","created_at":"2022-04-09T22:28:27.088-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83647350,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647350/thumbnails/1.jpg","file_name":"MWS_MAR17-2016-002610.pdf","download_url":"https://www.academia.edu/attachments/83647350/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Test_of_Tammann_s_Nuclei_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647350/MWS_MAR17-2016-002610-libre.pdf?1649569150=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Test_of_Tammann_s_Nuclei_De.pdf\u0026Expires=1732998830\u0026Signature=EFGkTKqJGijrCS61W2DeTSwYajIxliMtZqYdyfi8mTkNzEyZrJ8NjX1pOgXEhaO83n5A8QM7mWPy3zJvyCtnx64sEmZKV9IeEgC~scoRCmfujTeOGpYXuQ9T48T5eTG03gWNAI4KsZJLiMqNYn4KnCwpFwK5ApKMn73ahNCoFk2eAXUpfYrVmIZH0O-CJOQ3-wjkVE3~Um8sZX8L8ZqqC9Z5pHSrnA-PHuJ4YYPX2Edk-mlbc52Yxk8sXBOdpBllg8fvTqoaXotmvMl6JNDe~4-f8MzmvPwJ2vIBCfq15nMVJawAcCPZpJbPrlczfstSVu7~2k52m0lqoBP3q0CLEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":83647350,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647350/thumbnails/1.jpg","file_name":"MWS_MAR17-2016-002610.pdf","download_url":"https://www.academia.edu/attachments/83647350/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Test_of_Tammann_s_Nuclei_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647350/MWS_MAR17-2016-002610-libre.pdf?1649569150=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Test_of_Tammann_s_Nuclei_De.pdf\u0026Expires=1732998830\u0026Signature=EFGkTKqJGijrCS61W2DeTSwYajIxliMtZqYdyfi8mTkNzEyZrJ8NjX1pOgXEhaO83n5A8QM7mWPy3zJvyCtnx64sEmZKV9IeEgC~scoRCmfujTeOGpYXuQ9T48T5eTG03gWNAI4KsZJLiMqNYn4KnCwpFwK5ApKMn73ahNCoFk2eAXUpfYrVmIZH0O-CJOQ3-wjkVE3~Um8sZX8L8ZqqC9Z5pHSrnA-PHuJ4YYPX2Edk-mlbc52Yxk8sXBOdpBllg8fvTqoaXotmvMl6JNDe~4-f8MzmvPwJ2vIBCfq15nMVJawAcCPZpJbPrlczfstSVu7~2k52m0lqoBP3q0CLEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":816984,"name":"American Chemical Society","url":"https://www.academia.edu/Documents/in/American_Chemical_Society"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961371"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961371/Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions"><img alt="Research paper thumbnail of Non-stationary nucleation and cluster growth in quasi-binary non-ideal solutions" class="work-thumbnail" src="https://attachments.academia-assets.com/83647349/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961371/Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions">Non-stationary nucleation and cluster growth in quasi-binary non-ideal solutions</a></div><div class="wp-workCard_item"><span>Journal of Non-Crystalline Solids</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="42d1b6241e96a54e49a13f4d84dbe676" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83647349,"asset_id":75961371,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83647349/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961371"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961371"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961371; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961371]").text(description); $(".js-view-count[data-work-id=75961371]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961371; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961371']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961371, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "42d1b6241e96a54e49a13f4d84dbe676" } } $('.js-work-strip[data-work-id=75961371]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961371,"title":"Non-stationary nucleation and cluster growth in quasi-binary non-ideal solutions","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"A kinetic theory of nucleation and cluster growth in non-ideal quasi-binary liquid and solid solutions with, in general, concentration dependent diffusion coefficients of the segregating particles is developed. This theory allows one, in a straightforward way, to account for the influence of elastic strains, evolving in solid solutions as the result of cluster formation and growth, on the kinetics of the phase transformation. Specific properties of the solution or the evolving elastic fields have to be incorporated explicitly only in the final expressions describing nucleation and growth. The theory is applied to special cases demonstrating the consequences of depletion of segregating particles, the non-ideality of the solution and effects due to elastic strains on the kinetics of the segregation process. It is shown that, due to the non-steady character of the nucleation process, resulting from time-lag and depletion effects, the incorporation of the non-ideality of the solution and elastic strains into the description leads not only to a variation of the nucleation rate but changes also a number of other significant characteristics of the phase transformation, e.g., the cluster distribution function and the rate of the decomposition process.","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Journal of Non-Crystalline Solids","grobid_abstract_attachment_id":83647349},"translated_abstract":null,"internal_url":"https://www.academia.edu/75961371/Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions","translated_internal_url":"","created_at":"2022-04-09T22:28:26.936-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83647349,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647349/thumbnails/1.jpg","file_name":"0022-3093_2890_2990331-f20220409-11207-1tenp14.pdf","download_url":"https://www.academia.edu/attachments/83647349/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_stationary_nucleation_and_cluster_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647349/0022-3093_2890_2990331-f20220409-11207-1tenp14-libre.pdf?1649569152=\u0026response-content-disposition=attachment%3B+filename%3DNon_stationary_nucleation_and_cluster_gr.pdf\u0026Expires=1732998830\u0026Signature=KFLsn6tfL7xsqiFVyaddwIigHAFQ7MlOSmZmd~AMviBsnQJbWd1KsdmqBRYazxD-4Tm1rUDMERa8TO0~C4GMzQhVXW4rDYek5Qa9vjx~7isrrpqnN8Q7I1I-uJZl4PnqNu8i6TeK3WB1GJdconyp5ZhIZH2ZJ6xiB1h8P6dBUYIxGW8WJsQMzLhUgJ3sFSpJU~avKhiP0P~AFLbN0nFqT2RSjS0vhuei7FAlZzQU9-Ea84tAvpbc93qCS6-7eIxtaDqtWHxJEwoHvcaZQwX3aI-zY3CNf8JCAxx-~rPWDsOxWTWHVQwz39~1arxshtDRDJhJrjPRbobZ~tKyWJ1b-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":83647349,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647349/thumbnails/1.jpg","file_name":"0022-3093_2890_2990331-f20220409-11207-1tenp14.pdf","download_url":"https://www.academia.edu/attachments/83647349/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_stationary_nucleation_and_cluster_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647349/0022-3093_2890_2990331-f20220409-11207-1tenp14-libre.pdf?1649569152=\u0026response-content-disposition=attachment%3B+filename%3DNon_stationary_nucleation_and_cluster_gr.pdf\u0026Expires=1732998830\u0026Signature=KFLsn6tfL7xsqiFVyaddwIigHAFQ7MlOSmZmd~AMviBsnQJbWd1KsdmqBRYazxD-4Tm1rUDMERa8TO0~C4GMzQhVXW4rDYek5Qa9vjx~7isrrpqnN8Q7I1I-uJZl4PnqNu8i6TeK3WB1GJdconyp5ZhIZH2ZJ6xiB1h8P6dBUYIxGW8WJsQMzLhUgJ3sFSpJU~avKhiP0P~AFLbN0nFqT2RSjS0vhuei7FAlZzQU9-Ea84tAvpbc93qCS6-7eIxtaDqtWHxJEwoHvcaZQwX3aI-zY3CNf8JCAxx-~rPWDsOxWTWHVQwz39~1arxshtDRDJhJrjPRbobZ~tKyWJ1b-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":59051,"name":"Kinetic Theory","url":"https://www.academia.edu/Documents/in/Kinetic_Theory"},{"id":150216,"name":"Non crystalline solids","url":"https://www.academia.edu/Documents/in/Non_crystalline_solids"},{"id":159943,"name":"Nucleation and Growth","url":"https://www.academia.edu/Documents/in/Nucleation_and_Growth"},{"id":308420,"name":"Phase Transformation","url":"https://www.academia.edu/Documents/in/Phase_Transformation"},{"id":309493,"name":"Diffusion Coefficient","url":"https://www.academia.edu/Documents/in/Diffusion_Coefficient"},{"id":1317951,"name":"Solid Solution","url":"https://www.academia.edu/Documents/in/Solid_Solution"},{"id":2796027,"name":"Time lag","url":"https://www.academia.edu/Documents/in/Time_lag"},{"id":2891350,"name":"Distribution Function","url":"https://www.academia.edu/Documents/in/Distribution_Function-1"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961370"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961370/The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates"><img alt="Research paper thumbnail of The Influence of Depletion Effects on Homogeneous Nucleation Rates" class="work-thumbnail" src="https://attachments.academia-assets.com/83647358/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961370/The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates">The Influence of Depletion Effects on Homogeneous Nucleation Rates</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="32c812f29696f97bba6cbcc4bd47d521" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83647358,"asset_id":75961370,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83647358/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961370"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961370"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961370; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961370]").text(description); $(".js-view-count[data-work-id=75961370]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961370; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961370']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961370, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "32c812f29696f97bba6cbcc4bd47d521" } } $('.js-work-strip[data-work-id=75961370]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961370,"title":"The Influence of Depletion Effects on Homogeneous Nucleation Rates","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75961370/The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates","translated_internal_url":"","created_at":"2022-04-09T22:28:26.675-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83647358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647358/thumbnails/1.jpg","file_name":"The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf","download_url":"https://www.academia.edu/attachments/83647358/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Influence_of_Depletion_Effects_on_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647358/The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf?1649568581=\u0026response-content-disposition=attachment%3B+filename%3DThe_Influence_of_Depletion_Effects_on_Ho.pdf\u0026Expires=1732998830\u0026Signature=GswpcFIBbNapKL0dbD-dTFDcEEI~zqN0WR6C13iWOfM2xRGk9~0kNn0s6O8wEYRNbyxvlC6exUptPtIN2f2B7z3PRxanHo4W~L7VDXg5zVJAKvYOn5f8f9tfffudgmdzoBwC5J4VVKGJ~cTxUdsEfOM1uWLXkCxSm1AD2nnhcsRFUEsZLctuv4QCRczGGIAvNOqq6n-V9gBlUwW5z-DyWRK25NoLkxUTRlLQDkiezFRD8CM~Ys4NO77JKr256BfLvTEj8SyDLNp4fe133dhrcYWFlUcs8eHNHZFRlrCTQIyyJWxYu9GY8vr2ltMJTrWoSECLU7Fbt7My1jEO1~qBNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates","translated_slug":"","page_count":6,"language":"fr","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":83647358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647358/thumbnails/1.jpg","file_name":"The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf","download_url":"https://www.academia.edu/attachments/83647358/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Influence_of_Depletion_Effects_on_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647358/The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf?1649568581=\u0026response-content-disposition=attachment%3B+filename%3DThe_Influence_of_Depletion_Effects_on_Ho.pdf\u0026Expires=1732998830\u0026Signature=GswpcFIBbNapKL0dbD-dTFDcEEI~zqN0WR6C13iWOfM2xRGk9~0kNn0s6O8wEYRNbyxvlC6exUptPtIN2f2B7z3PRxanHo4W~L7VDXg5zVJAKvYOn5f8f9tfffudgmdzoBwC5J4VVKGJ~cTxUdsEfOM1uWLXkCxSm1AD2nnhcsRFUEsZLctuv4QCRczGGIAvNOqq6n-V9gBlUwW5z-DyWRK25NoLkxUTRlLQDkiezFRD8CM~Ys4NO77JKr256BfLvTEj8SyDLNp4fe133dhrcYWFlUcs8eHNHZFRlrCTQIyyJWxYu9GY8vr2ltMJTrWoSECLU7Fbt7My1jEO1~qBNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961251/Thermodynamik_und_Keimbildung"><img alt="Research paper thumbnail of Thermodynamik und Keimbildung" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961251/Thermodynamik_und_Keimbildung">Thermodynamik und Keimbildung</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1985</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Based on the Gibbs&#39; theory of surface effects a thermodynamic description of a heterogeneous ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Based on the Gibbs&#39; theory of surface effects a thermodynamic description of a heterogeneous system consisting of s clusters of a new phase in the otherwise homogeneous medium is given. The influence of the finite size of the system or the depletion of the surrounding the clusters medium on the work of formation of critical clusters is determined for different thermodynamic constraints. Besides the variations of the parameters of the critical clusters finite-size effects lead to the existence of additional states obeying the necessary thermodynamic equilibrium conditions and to a correction term AW in the equation for the work of formation of critical clusters. It is shown that AW is always negativ. This term AW is, however, overcompensated by the changes of the nucleation work due to the variations of the parameters of the critical clusters. The general results are illustrated by an analysis of the process of an isochoric condensation of a one-component gas in a closed system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961251]").text(description); $(".js-view-count[data-work-id=75961251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75961251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961251,"title":"Thermodynamik und Keimbildung","translated_title":"","metadata":{"abstract":"Based on the Gibbs\u0026#39; theory of surface effects a thermodynamic description of a heterogeneous system consisting of s clusters of a new phase in the otherwise homogeneous medium is given. The influence of the finite size of the system or the depletion of the surrounding the clusters medium on the work of formation of critical clusters is determined for different thermodynamic constraints. Besides the variations of the parameters of the critical clusters finite-size effects lead to the existence of additional states obeying the necessary thermodynamic equilibrium conditions and to a correction term AW in the equation for the work of formation of critical clusters. It is shown that AW is always negativ. This term AW is, however, overcompensated by the changes of the nucleation work due to the variations of the parameters of the critical clusters. The general results are illustrated by an analysis of the process of an isochoric condensation of a one-component gas in a closed system.","publisher":"Walter de Gruyter GmbH","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie"},"translated_abstract":"Based on the Gibbs\u0026#39; theory of surface effects a thermodynamic description of a heterogeneous system consisting of s clusters of a new phase in the otherwise homogeneous medium is given. The influence of the finite size of the system or the depletion of the surrounding the clusters medium on the work of formation of critical clusters is determined for different thermodynamic constraints. Besides the variations of the parameters of the critical clusters finite-size effects lead to the existence of additional states obeying the necessary thermodynamic equilibrium conditions and to a correction term AW in the equation for the work of formation of critical clusters. It is shown that AW is always negativ. This term AW is, however, overcompensated by the changes of the nucleation work due to the variations of the parameters of the critical clusters. The general results are illustrated by an analysis of the process of an isochoric condensation of a one-component gas in a closed system.","internal_url":"https://www.academia.edu/75961251/Thermodynamik_und_Keimbildung","translated_internal_url":"","created_at":"2022-04-09T22:27:04.401-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermodynamik_und_Keimbildung","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[],"urls":[{"id":19304404,"url":"http://www.degruyter.com/view/j/zpch.1985.266.issue-1/zpch-1985-266116/zpch-1985-266116.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70399405"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70399405/Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter"><img alt="Research paper thumbnail of Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70399405/Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter">Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter</a></div><div class="wp-workCard_item"><span>Polymer Testing</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70399405"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70399405"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70399405; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70399405]").text(description); $(".js-view-count[data-work-id=70399405]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70399405; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70399405']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70399405, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70399405]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70399405,"title":"Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Polymer Testing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/70399405/Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter","translated_internal_url":"","created_at":"2022-02-04T02:50:56.474-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":742212,"name":"Polymer Testing","url":"https://www.academia.edu/Documents/in/Polymer_Testing"},{"id":1330732,"name":"PEEK","url":"https://www.academia.edu/Documents/in/PEEK"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3717647" id="papers"><div class="js-work-strip profile--work_container" data-work-id="92590385"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/92590385/Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry"><img alt="Research paper thumbnail of Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/92590385/Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry">Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops has been studied via differential fast scanning calorimetry. The cooling rates employed ranged from 100 to 14,000 K/s. The diameter of the investigated tin drops varied in the range from 7 to 40 μm. The influence of the drop shape on the solidification process could be eliminated due to the nearly spherical shape of the single drop upon heating and cooling and the resultant geometric stability. As a result it became possible to study the effect of both drop size and cooling rate in rapid solidification experimentally. A theoretical description of the experimental results is given by assuming the existence of two different heterogeneous nucleation mechanisms leading to crystal nucleation of the single tin drop. In agreement with the experiment these mechanisms yield a shelf-like dependence of crystal nucleation on undercooling. A dependence of crystal nucleation on the size of the tin drop was observed and is discussed in terms of the mentioned theoretical model, which can possibly also describe the nucleation for other related rapid solidification processes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="92590385"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="92590385"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 92590385; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=92590385]").text(description); $(".js-view-count[data-work-id=92590385]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 92590385; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='92590385']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 92590385, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=92590385]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":92590385,"title":"Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry","translated_title":"","metadata":{"abstract":"The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops has been studied via differential fast scanning calorimetry. The cooling rates employed ranged from 100 to 14,000 K/s. The diameter of the investigated tin drops varied in the range from 7 to 40 μm. The influence of the drop shape on the solidification process could be eliminated due to the nearly spherical shape of the single drop upon heating and cooling and the resultant geometric stability. As a result it became possible to study the effect of both drop size and cooling rate in rapid solidification experimentally. A theoretical description of the experimental results is given by assuming the existence of two different heterogeneous nucleation mechanisms leading to crystal nucleation of the single tin drop. In agreement with the experiment these mechanisms yield a shelf-like dependence of crystal nucleation on undercooling. A dependence of crystal nucleation on the size of the tin drop was observed and is discussed in terms of the mentioned theoretical model, which can possibly also describe the nucleation for other related rapid solidification processes.","publisher":"AIP Publishing","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Journal of Chemical Physics"},"translated_abstract":"The experimentally accessible degree of undercooling of single micron-sized liquid pure tin drops has been studied via differential fast scanning calorimetry. The cooling rates employed ranged from 100 to 14,000 K/s. The diameter of the investigated tin drops varied in the range from 7 to 40 μm. The influence of the drop shape on the solidification process could be eliminated due to the nearly spherical shape of the single drop upon heating and cooling and the resultant geometric stability. As a result it became possible to study the effect of both drop size and cooling rate in rapid solidification experimentally. A theoretical description of the experimental results is given by assuming the existence of two different heterogeneous nucleation mechanisms leading to crystal nucleation of the single tin drop. In agreement with the experiment these mechanisms yield a shelf-like dependence of crystal nucleation on undercooling. A dependence of crystal nucleation on the size of the tin drop was observed and is discussed in terms of the mentioned theoretical model, which can possibly also describe the nucleation for other related rapid solidification processes.","internal_url":"https://www.academia.edu/92590385/Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry","translated_internal_url":"","created_at":"2022-12-10T22:32:24.597-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Size_and_rate_dependence_of_crystal_nucleation_in_single_tin_drops_by_fast_scanning_calorimetry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78753,"name":"Differential scanning calorimetry","url":"https://www.academia.edu/Documents/in/Differential_scanning_calorimetry"},{"id":80693,"name":"Tin","url":"https://www.academia.edu/Documents/in/Tin"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":274522,"name":"Supercooling","url":"https://www.academia.edu/Documents/in/Supercooling"}],"urls":[{"id":26878393,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.4789447"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557591/Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation"><img alt="Research paper thumbnail of Evolution of New Phase Clusters at the Initial Stages of Binary Alloy Decomposition Described in Terms of a Modified Theory of Nucleation" class="work-thumbnail" src="https://attachments.academia-assets.com/90983146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557591/Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation">Evolution of New Phase Clusters at the Initial Stages of Binary Alloy Decomposition Described in Terms of a Modified Theory of Nucleation</a></div><div class="wp-workCard_item"><span>Ukrainian Journal of Physics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The work considers the thermodynamics and the kinetics of initial decomposition stages in a super...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The work considers the thermodynamics and the kinetics of initial decomposition stages in a supersaturated binary solid solution inthe framework of the modified nucleation theory. The specific surface energy is considered as a function of intensive state parameters of both the cluster and the matrix, which allows one to uniformly describe clusters of critical, subcritical, and supercritical size. The analysis was performed in two stages. On the first one, the optimal size dependences of the compositions of new phase clusters were determined by analyzing the macroscopic equations of growth of nuclei. On the second stage, we solved akinetic equation to describe the evolution of the size distribution function of new-phase clusters along this optimal composition line.The effect of various kinetic factors on the behavior of the distribution function and characteristics of new-phase clusters was studied. The obtained distributions demonstrate a possibility of the existence of bimodal size...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45605168503109018e78ebde26d88e5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983146,"asset_id":86557591,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983146/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557591]").text(description); $(".js-view-count[data-work-id=86557591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557591, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45605168503109018e78ebde26d88e5d" } } $('.js-work-strip[data-work-id=86557591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557591,"title":"Evolution of New Phase Clusters at the Initial Stages of Binary Alloy Decomposition Described in Terms of a Modified Theory of Nucleation","translated_title":"","metadata":{"abstract":"The work considers the thermodynamics and the kinetics of initial decomposition stages in a supersaturated binary solid solution inthe framework of the modified nucleation theory. The specific surface energy is considered as a function of intensive state parameters of both the cluster and the matrix, which allows one to uniformly describe clusters of critical, subcritical, and supercritical size. The analysis was performed in two stages. On the first one, the optimal size dependences of the compositions of new phase clusters were determined by analyzing the macroscopic equations of growth of nuclei. On the second stage, we solved akinetic equation to describe the evolution of the size distribution function of new-phase clusters along this optimal composition line.The effect of various kinetic factors on the behavior of the distribution function and characteristics of new-phase clusters was studied. The obtained distributions demonstrate a possibility of the existence of bimodal size...","publisher":"National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Ukrainian Journal of Physics"},"translated_abstract":"The work considers the thermodynamics and the kinetics of initial decomposition stages in a supersaturated binary solid solution inthe framework of the modified nucleation theory. The specific surface energy is considered as a function of intensive state parameters of both the cluster and the matrix, which allows one to uniformly describe clusters of critical, subcritical, and supercritical size. The analysis was performed in two stages. On the first one, the optimal size dependences of the compositions of new phase clusters were determined by analyzing the macroscopic equations of growth of nuclei. On the second stage, we solved akinetic equation to describe the evolution of the size distribution function of new-phase clusters along this optimal composition line.The effect of various kinetic factors on the behavior of the distribution function and characteristics of new-phase clusters was studied. The obtained distributions demonstrate a possibility of the existence of bimodal size...","internal_url":"https://www.academia.edu/86557591/Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation","translated_internal_url":"","created_at":"2022-09-12T22:39:04.409-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983146/thumbnails/1.jpg","file_name":"2409.pdf","download_url":"https://www.academia.edu/attachments/90983146/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_New_Phase_Clusters_at_the_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983146/2409-libre.pdf?1663048810=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_New_Phase_Clusters_at_the_I.pdf\u0026Expires=1732998830\u0026Signature=NyGqnIJ9ruT5kw-CHQQaHAXLk-BjKzZJ7XF6YrzLxowImOjhLFzCfj0wdN0UhLOqu~sx4Iafn5GtgOBU3oELo1xzoAT6NRirtAlLibB8m0DiUp9PrNmlJVMa4p-KOb3PlIemy~TbKa0-0k1AuyrP9UXK~UUobm5YXbmq2Ae4sUbZsuWpPhrnvdvE6Dmz8O4vfh3R3RLO1MnWeuzM2AFowFdK26Kw35FsLIvRY40nUvMqCRCDZxoA3MlCLhdn7503umqeyJtVE3Z6SJKd1OOaw2hCsUc4YyEL8rdcLwML1klNrhdoB4p8IM6W6ed7cCgQltZNbxMR86oe-nlgPPTLpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolution_of_New_Phase_Clusters_at_the_Initial_Stages_of_Binary_Alloy_Decomposition_Described_in_Terms_of_a_Modified_Theory_of_Nucleation","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983146/thumbnails/1.jpg","file_name":"2409.pdf","download_url":"https://www.academia.edu/attachments/90983146/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_New_Phase_Clusters_at_the_I.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983146/2409-libre.pdf?1663048810=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_New_Phase_Clusters_at_the_I.pdf\u0026Expires=1732998830\u0026Signature=NyGqnIJ9ruT5kw-CHQQaHAXLk-BjKzZJ7XF6YrzLxowImOjhLFzCfj0wdN0UhLOqu~sx4Iafn5GtgOBU3oELo1xzoAT6NRirtAlLibB8m0DiUp9PrNmlJVMa4p-KOb3PlIemy~TbKa0-0k1AuyrP9UXK~UUobm5YXbmq2Ae4sUbZsuWpPhrnvdvE6Dmz8O4vfh3R3RLO1MnWeuzM2AFowFdK26Kw35FsLIvRY40nUvMqCRCDZxoA3MlCLhdn7503umqeyJtVE3Z6SJKd1OOaw2hCsUc4YyEL8rdcLwML1klNrhdoB4p8IM6W6ed7cCgQltZNbxMR86oe-nlgPPTLpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":415783,"name":"Spinodal Decomposition","url":"https://www.academia.edu/Documents/in/Spinodal_Decomposition"},{"id":1181274,"name":"Supercritical Fluid","url":"https://www.academia.edu/Documents/in/Supercritical_Fluid"},{"id":2891350,"name":"Distribution Function","url":"https://www.academia.edu/Documents/in/Distribution_Function-1"}],"urls":[{"id":23806608,"url":"https://ujp.bitp.kiev.ua/index.php/ujp/article/download/2022145/2409"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557590/Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems"><img alt="Research paper thumbnail of Formation and Growth of Babbles in One-Component Closed Isochoric Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/90983170/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557590/Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems">Formation and Growth of Babbles in One-Component Closed Isochoric Systems</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1988</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0ae6046753f51f96e020c9e378f26831" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983170,"asset_id":86557590,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983170/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557590]").text(description); $(".js-view-count[data-work-id=86557590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557590, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0ae6046753f51f96e020c9e378f26831" } } $('.js-work-strip[data-work-id=86557590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557590,"title":"Formation and Growth of Babbles in One-Component Closed Isochoric Systems","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","grobid_abstract":"The formation and growth of bubbles in a one-component closed isochoric system is investigated. It is shown, that the general scenario of first-order phase transitions in finite systems developed earlier is also applicable for this special case and a kinetic description of nucleation and subsequent growth of the bubbles is given.","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie","grobid_abstract_attachment_id":90983170},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557590/Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems","translated_internal_url":"","created_at":"2022-09-12T22:39:04.236-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983170/thumbnails/1.jpg","file_name":"zpch-1988-2696820220913-1-1cijakm.pdf","download_url":"https://www.academia.edu/attachments/90983170/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_and_Growth_of_Babbles_in_One_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983170/zpch-1988-2696820220913-1-1cijakm-libre.pdf?1663061618=\u0026response-content-disposition=attachment%3B+filename%3DFormation_and_Growth_of_Babbles_in_One_C.pdf\u0026Expires=1732998830\u0026Signature=KWI~ASHKn5QvwXJ9nrIvzL6zC1z06yqkQ~xHMgsYe0HdIC-C6SnNktQcGU4NWXxIySZgy8-EZiG5vXyPDNkhAiMZOsXz~d7YQgHOdqk47yWj6ktr1WFfukCNoTJsK9p39zSDj99co~X51XZXwAgZWTI8LbFXaEsl0o43Crs70NXISPmOEPgUA8rvKriZQ6oG-YRtTyP35hWiduDC2~mvW8pZ~0ph-il4L5i8kM~7db-nW5FGaO4abNkR03TSj~ggDiO3IXvA3uOvhwnPejtbeHf9Wzuwnkz5VYOtz0SjWhHpFrrpUje6oParAhw4nuhjroqRtfJYa3-BOzAEkfkAXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formation_and_Growth_of_Babbles_in_One_Component_Closed_Isochoric_Systems","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983170/thumbnails/1.jpg","file_name":"zpch-1988-2696820220913-1-1cijakm.pdf","download_url":"https://www.academia.edu/attachments/90983170/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_and_Growth_of_Babbles_in_One_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983170/zpch-1988-2696820220913-1-1cijakm-libre.pdf?1663061618=\u0026response-content-disposition=attachment%3B+filename%3DFormation_and_Growth_of_Babbles_in_One_C.pdf\u0026Expires=1732998830\u0026Signature=KWI~ASHKn5QvwXJ9nrIvzL6zC1z06yqkQ~xHMgsYe0HdIC-C6SnNktQcGU4NWXxIySZgy8-EZiG5vXyPDNkhAiMZOsXz~d7YQgHOdqk47yWj6ktr1WFfukCNoTJsK9p39zSDj99co~X51XZXwAgZWTI8LbFXaEsl0o43Crs70NXISPmOEPgUA8rvKriZQ6oG-YRtTyP35hWiduDC2~mvW8pZ~0ph-il4L5i8kM~7db-nW5FGaO4abNkR03TSj~ggDiO3IXvA3uOvhwnPejtbeHf9Wzuwnkz5VYOtz0SjWhHpFrrpUje6oParAhw4nuhjroqRtfJYa3-BOzAEkfkAXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[{"id":23806607,"url":"http://www.degruyter.com/view/j/zpch.1988.269.issue-1/zpch-1988-26968/zpch-1988-26968.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557588/A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets"><img alt="Research paper thumbnail of A New General Formula for the Curvature Dependence of Surface Tension of Droplets" class="work-thumbnail" src="https://attachments.academia-assets.com/90983171/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557588/A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets">A New General Formula for the Curvature Dependence of Surface Tension of Droplets</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cbda82a9438f6ff0208748e5ec6f3fa2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983171,"asset_id":86557588,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983171/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557588]").text(description); $(".js-view-count[data-work-id=86557588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557588, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cbda82a9438f6ff0208748e5ec6f3fa2" } } $('.js-work-strip[data-work-id=86557588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557588,"title":"A New General Formula for the Curvature Dependence of Surface Tension of Droplets","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","grobid_abstract":"Zusammenfassung Auf der Grundlage der Gibbsschen Theorie der Oberflächeneffekte wird eine neue verallgemeinerte Gleichung für die Krümmungsabhängigkeit der Oberflächenspannung hergeleitet. In Übereinstimmung mit früheren Arbeiten von GIBBS, TOLMAN U. a. sind krümmungsabhängige Korrekturen für kleine Tropfen mit Radien rS 6 nm von Bedeutung. Die Oberflächenspannung sinkt bei Verkleinerung des Keimradius. Für spezielle Werte eines Parameters, der die spezifischen Eigenschaften des betrachteten Systems wiederspiegelt, folgen als Spezialfälle die bekannten Formeln von GIBBS, TOLMAN, RAS-MUSSEN und VOGELSBERGER. In his fundamental paper \"On the Equilibrium of Heterogeneous Substances\" (1878) GIBBS [1] pointed out, that the value of the surface tension is independent of the position of the dividing surface when the surface is plane. Measurements of this flat interface surface tension a^ are known for a long time, and at present the experimental data of σ x as function of temperature for various substances are precisely given. If the surface between two homogeneous phases is curved the surface tension σ becomes a function of the curvature in general or for spherical droplets a function of the droplet radius r. Already GIBBS [1] derived the first approximative equation for a = a(r). The investigations of GIBBS were extended by TOLMAN [2] and others. Some of the equations proposed by different authors are listed below, eq. (l)-(4). r is the radius of the surface of tension and δ 0 (TOLMAN coefficient) represents the distance between the surface of tension and the equimolecular dividing surface. In agree","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie","grobid_abstract_attachment_id":90983171},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557588/A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets","translated_internal_url":"","created_at":"2022-09-12T22:39:04.052-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983171/thumbnails/1.jpg","file_name":"zpch-1985-26612520220913-1-yo3x2o.pdf","download_url":"https://www.academia.edu/attachments/90983171/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_General_Formula_for_the_Curvature.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983171/zpch-1985-26612520220913-1-yo3x2o-libre.pdf?1663061586=\u0026response-content-disposition=attachment%3B+filename%3DA_New_General_Formula_for_the_Curvature.pdf\u0026Expires=1732998830\u0026Signature=UV8seE4f1kswpz9AQAqzMLyORcncwfbbyWlEEGRWIUGMGdfFSoVClAZcmgDkuWbpRXQSK~2dJB6oFTHgSZxoSIDl4L71ntSZIhGDQYhlPav0qIUOVQKEInV6DsfhQ5BG16JDz71WB-JPx158QjyRIAKtjeCNnK-UvBfe2pzAPh2Mxnppb-BkR3iRDzlLMLHmZF5BpB458FHooAepFf8Vil3bjhuygDdwiOowsSU8YdfI7hLlqJXlzQtFTkxiZE~uoCRE5u9nFZbg~ml9GrV7cIL2AqYz7yzrpXmzYO7BtraS-kO0A47fjC0b-FgWF0kq-wSGOtukXaQUMfku0ZajCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_New_General_Formula_for_the_Curvature_Dependence_of_Surface_Tension_of_Droplets","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983171/thumbnails/1.jpg","file_name":"zpch-1985-26612520220913-1-yo3x2o.pdf","download_url":"https://www.academia.edu/attachments/90983171/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_General_Formula_for_the_Curvature.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983171/zpch-1985-26612520220913-1-yo3x2o-libre.pdf?1663061586=\u0026response-content-disposition=attachment%3B+filename%3DA_New_General_Formula_for_the_Curvature.pdf\u0026Expires=1732998830\u0026Signature=UV8seE4f1kswpz9AQAqzMLyORcncwfbbyWlEEGRWIUGMGdfFSoVClAZcmgDkuWbpRXQSK~2dJB6oFTHgSZxoSIDl4L71ntSZIhGDQYhlPav0qIUOVQKEInV6DsfhQ5BG16JDz71WB-JPx158QjyRIAKtjeCNnK-UvBfe2pzAPh2Mxnppb-BkR3iRDzlLMLHmZF5BpB458FHooAepFf8Vil3bjhuygDdwiOowsSU8YdfI7hLlqJXlzQtFTkxiZE~uoCRE5u9nFZbg~ml9GrV7cIL2AqYz7yzrpXmzYO7BtraS-kO0A47fjC0b-FgWF0kq-wSGOtukXaQUMfku0ZajCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[{"id":23806605,"url":"http://www.degruyter.com/view/j/zpch.1985.266.issue-1/zpch-1985-266125/zpch-1985-266125.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557587"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557587/The_curvature_dependence_of_surface_tension_of_small_droplets"><img alt="Research paper thumbnail of The curvature dependence of surface tension of small droplets" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557587/The_curvature_dependence_of_surface_tension_of_small_droplets">The curvature dependence of surface tension of small droplets</a></div><div class="wp-workCard_item"><span>Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The curvature dependence of the surface tension has been calculated via a general thermodynamic r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The curvature dependence of the surface tension has been calculated via a general thermodynamic route from results based on molecular dynamics and density gradient calculations on liquid drops. It is shown that in the region of applicability of thermodynamics, the curvature corrections are small and are described asymptotically by Tolman&#39;s equations. However, in contrast to earlier calculations the decrease in surface tension with decreasing droplet radius is succeeded by a region in which the surface tension increases again to values higher than the asymptotic value of the surface tension of a planar interface. Applications to nucleation theory are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557587"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557587"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557587; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557587]").text(description); $(".js-view-count[data-work-id=86557587]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557587; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557587']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557587, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557587]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557587,"title":"The curvature dependence of surface tension of small droplets","translated_title":"","metadata":{"abstract":"The curvature dependence of the surface tension has been calculated via a general thermodynamic route from results based on molecular dynamics and density gradient calculations on liquid drops. It is shown that in the region of applicability of thermodynamics, the curvature corrections are small and are described asymptotically by Tolman\u0026#39;s equations. However, in contrast to earlier calculations the decrease in surface tension with decreasing droplet radius is succeeded by a region in which the surface tension increases again to values higher than the asymptotic value of the surface tension of a planar interface. Applications to nucleation theory are discussed.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases"},"translated_abstract":"The curvature dependence of the surface tension has been calculated via a general thermodynamic route from results based on molecular dynamics and density gradient calculations on liquid drops. It is shown that in the region of applicability of thermodynamics, the curvature corrections are small and are described asymptotically by Tolman\u0026#39;s equations. However, in contrast to earlier calculations the decrease in surface tension with decreasing droplet radius is succeeded by a region in which the surface tension increases again to values higher than the asymptotic value of the surface tension of a planar interface. Applications to nucleation theory are discussed.","internal_url":"https://www.academia.edu/86557587/The_curvature_dependence_of_surface_tension_of_small_droplets","translated_internal_url":"","created_at":"2022-09-12T22:39:03.870-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_curvature_dependence_of_surface_tension_of_small_droplets","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118428,"name":"Curvature","url":"https://www.academia.edu/Documents/in/Curvature"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"}],"urls":[{"id":23806604,"url":"http://pubs.rsc.org/en/content/articlepdf/1986/F1/F19868201421"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557586"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557586/General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles"><img alt="Research paper thumbnail of General formulae for the curvature dependence of droplets and bubbles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557586/General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles">General formulae for the curvature dependence of droplets and bubbles</a></div><div class="wp-workCard_item"><span>Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">General equations have been developed that describe the curvature dependence of the surface tensi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">General equations have been developed that describe the curvature dependence of the surface tension of droplets in the gas phase and of bubbles in a liquid. These are based on thermodynamic arguments and a special assumption concerning the Tolman parameter, δ. The equations derived by Gibbs, Tolman and Rasmussen are obtained as special cases for particular values of a parameter dependent both on the system considered and the thermodynamic constraints. Although the behaviour of the Tolman coefficient δ as a function of the radius, Rs, of the surface of tension can be quite different, the resulting equations describing the curvature dependence of surface tension are similar, thus confirming Tolman&#39;s equation as a first, but accurate approximation.It is further shown that physically meaningful results for the surface tension of bubbles can be obtained only if the Tolman coefficient changes its sign for a specific value Rs=|b| of the radius of the bubble. Therefore in this case the surface tension has a maximum for a finite value of the radius of the surface of tension and there are two regions in which the surface tension either decreases (Rs |b|) with decreasing size of the bubble.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557586"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557586"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557586; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557586]").text(description); $(".js-view-count[data-work-id=86557586]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557586; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557586']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557586, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557586]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557586,"title":"General formulae for the curvature dependence of droplets and bubbles","translated_title":"","metadata":{"abstract":"General equations have been developed that describe the curvature dependence of the surface tension of droplets in the gas phase and of bubbles in a liquid. These are based on thermodynamic arguments and a special assumption concerning the Tolman parameter, δ. The equations derived by Gibbs, Tolman and Rasmussen are obtained as special cases for particular values of a parameter dependent both on the system considered and the thermodynamic constraints. Although the behaviour of the Tolman coefficient δ as a function of the radius, Rs, of the surface of tension can be quite different, the resulting equations describing the curvature dependence of surface tension are similar, thus confirming Tolman\u0026#39;s equation as a first, but accurate approximation.It is further shown that physically meaningful results for the surface tension of bubbles can be obtained only if the Tolman coefficient changes its sign for a specific value Rs=|b| of the radius of the bubble. Therefore in this case the surface tension has a maximum for a finite value of the radius of the surface of tension and there are two regions in which the surface tension either decreases (Rs |b|) with decreasing size of the bubble.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases"},"translated_abstract":"General equations have been developed that describe the curvature dependence of the surface tension of droplets in the gas phase and of bubbles in a liquid. These are based on thermodynamic arguments and a special assumption concerning the Tolman parameter, δ. The equations derived by Gibbs, Tolman and Rasmussen are obtained as special cases for particular values of a parameter dependent both on the system considered and the thermodynamic constraints. Although the behaviour of the Tolman coefficient δ as a function of the radius, Rs, of the surface of tension can be quite different, the resulting equations describing the curvature dependence of surface tension are similar, thus confirming Tolman\u0026#39;s equation as a first, but accurate approximation.It is further shown that physically meaningful results for the surface tension of bubbles can be obtained only if the Tolman coefficient changes its sign for a specific value Rs=|b| of the radius of the bubble. Therefore in this case the surface tension has a maximum for a finite value of the radius of the surface of tension and there are two regions in which the surface tension either decreases (Rs |b|) with decreasing size of the bubble.","internal_url":"https://www.academia.edu/86557586/General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles","translated_internal_url":"","created_at":"2022-09-12T22:39:03.728-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"General_formulae_for_the_curvature_dependence_of_droplets_and_bubbles","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118428,"name":"Curvature","url":"https://www.academia.edu/Documents/in/Curvature"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":360549,"name":"Radius","url":"https://www.academia.edu/Documents/in/Radius"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557585/Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems"><img alt="Research paper thumbnail of Kinetics of First-Order Phase Transitions in Condensed Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557585/Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems">Kinetics of First-Order Phase Transitions in Condensed Systems</a></div><div class="wp-workCard_item"><span>Physica Status Solidi (a)</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, and Ostwald ripening – in condensed systems is analysed based on the numerical solution of a Fokker-Planck equation for the cluster size distribution function. Particular attention is directed to the investigation of the transition period between independent growth and Ostwald ripening. An unexpected temporary slowing down of the growth rate of the mean cluster size is observed in this region and the parameter range for its occurrence is calculated. Moreover, a new analytic expression for the time evolution of the mean cluster radius for the period of nucleation and independent growth is developed. It is in good agreement with the numerical results.Die Kinetik von thermodynamischen Phasenübergängen 1. Art – Keimbildung, unabhängiges Clusterwachstum und Ostwaldreifung – wird analysiert basierend auf der numerischen Lösung einer Fokker-Planck-Gleichung für die Clustergrößenverteilungsfunktion. Besondere Aufmerksamkeit wird dabei auf die Übergangsperiode zwischen unabhängigem Wachstum und Ostwaldreifung gerichtet. Eine unerwartete Verlangsamung des Wachstums wird hier beobachtet und Abschätzungen für das Parametergebiet, für das ein derartiges Verhalten auftritt, werden vorgenommen. Zusätzlich wird eine analytische Beschreibung für die zeitliche Entwicklung des mittleren Clusterradius für die Phase von simultaner Keimbildung und unabhängigem Wachstum der Cluster vorgeschlagen. Die erhaltene Gleichung ist in guter Übereinstimmung mit den numerischen Ergebnissen.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557585]").text(description); $(".js-view-count[data-work-id=86557585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557585, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557585,"title":"Kinetics of First-Order Phase Transitions in Condensed Systems","translated_title":"","metadata":{"abstract":"ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, and Ostwald ripening – in condensed systems is analysed based on the numerical solution of a Fokker-Planck equation for the cluster size distribution function. Particular attention is directed to the investigation of the transition period between independent growth and Ostwald ripening. An unexpected temporary slowing down of the growth rate of the mean cluster size is observed in this region and the parameter range for its occurrence is calculated. Moreover, a new analytic expression for the time evolution of the mean cluster radius for the period of nucleation and independent growth is developed. It is in good agreement with the numerical results.Die Kinetik von thermodynamischen Phasenübergängen 1. Art – Keimbildung, unabhängiges Clusterwachstum und Ostwaldreifung – wird analysiert basierend auf der numerischen Lösung einer Fokker-Planck-Gleichung für die Clustergrößenverteilungsfunktion. Besondere Aufmerksamkeit wird dabei auf die Übergangsperiode zwischen unabhängigem Wachstum und Ostwaldreifung gerichtet. Eine unerwartete Verlangsamung des Wachstums wird hier beobachtet und Abschätzungen für das Parametergebiet, für das ein derartiges Verhalten auftritt, werden vorgenommen. Zusätzlich wird eine analytische Beschreibung für die zeitliche Entwicklung des mittleren Clusterradius für die Phase von simultaner Keimbildung und unabhängigem Wachstum der Cluster vorgeschlagen. Die erhaltene Gleichung ist in guter Übereinstimmung mit den numerischen Ergebnissen.","publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Physica Status Solidi (a)"},"translated_abstract":"ABSTRACT The kinetics of first-order phase transitions – nucleation, independent cluster growth, and Ostwald ripening – in condensed systems is analysed based on the numerical solution of a Fokker-Planck equation for the cluster size distribution function. Particular attention is directed to the investigation of the transition period between independent growth and Ostwald ripening. An unexpected temporary slowing down of the growth rate of the mean cluster size is observed in this region and the parameter range for its occurrence is calculated. Moreover, a new analytic expression for the time evolution of the mean cluster radius for the period of nucleation and independent growth is developed. It is in good agreement with the numerical results.Die Kinetik von thermodynamischen Phasenübergängen 1. Art – Keimbildung, unabhängiges Clusterwachstum und Ostwaldreifung – wird analysiert basierend auf der numerischen Lösung einer Fokker-Planck-Gleichung für die Clustergrößenverteilungsfunktion. Besondere Aufmerksamkeit wird dabei auf die Übergangsperiode zwischen unabhängigem Wachstum und Ostwaldreifung gerichtet. Eine unerwartete Verlangsamung des Wachstums wird hier beobachtet und Abschätzungen für das Parametergebiet, für das ein derartiges Verhalten auftritt, werden vorgenommen. Zusätzlich wird eine analytische Beschreibung für die zeitliche Entwicklung des mittleren Clusterradius für die Phase von simultaner Keimbildung und unabhängigem Wachstum der Cluster vorgeschlagen. Die erhaltene Gleichung ist in guter Übereinstimmung mit den numerischen Ergebnissen.","internal_url":"https://www.academia.edu/86557585/Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems","translated_internal_url":"","created_at":"2022-09-12T22:39:03.608-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Kinetics_of_First_Order_Phase_Transitions_in_Condensed_Systems","translated_slug":"","page_count":null,"language":"de","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557584/Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts"><img alt="Research paper thumbnail of Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts" class="work-thumbnail" src="https://attachments.academia-assets.com/90983169/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557584/Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts">Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts</a></div><div class="wp-workCard_item"><span>Journal of Non-Crystalline Solids</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="994fa8059b9799ca972f58aa505f6ec2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983169,"asset_id":86557584,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983169/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557584]").text(description); $(".js-view-count[data-work-id=86557584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557584, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "994fa8059b9799ca972f58aa505f6ec2" } } $('.js-work-strip[data-work-id=86557584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557584,"title":"Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Glassforming melts behave, in the vicinity of the temperature of vitrification T g , as viscoelastic bodies. A general theory of nucleation in a viscoelastic body developed elsewhere is applicable to the description of phase formation processes in such systems. The present contribution is directed to the demonstration of the relevance of this proposed general theory to describing phase transformation processes in glassforming melts. The application of the theory is shown to explain a number of experimental results on crystallization of glassforming melts, which have not found a satisfactory interpretation so far.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Journal of Non-Crystalline Solids","grobid_abstract_attachment_id":90983169},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557584/Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts","translated_internal_url":"","created_at":"2022-09-12T22:39:03.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983169/thumbnails/1.jpg","file_name":"s0022-3093_2802_2901428-x20220913-1-11fbhj7.pdf","download_url":"https://www.academia.edu/attachments/90983169/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_nucleation_in_viscoelastic_med.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983169/s0022-3093_2802_2901428-x20220913-1-11fbhj7-libre.pdf?1663061582=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_nucleation_in_viscoelastic_med.pdf\u0026Expires=1732998830\u0026Signature=AHaf1FLioE4cYAZrB8lgm~J6BHGt9zzCOj-XwMtwKdphVDa17~oduCr4KjsYMSpXBAMs-Blh~jhVVh9EGxEynAnNvubI1xntKODf3Onsyv6v5eYqpVc20aegDVmQl3-R6rMWq3Ei0lFyJYTfPiilCEOtj7btykW4zEzYPCUODhKI9K0KC-7ZT9M7f0pKXVbKjgLNV0HbR-VQm0SYFthIo20SNUkKLtcgUvp53X308gn1Iewkye7uWeESQZgtrXoDELwk~xLBlahXcq1dKh31h8y8LIC3vecGVMNs1Q9wpDTWYHzuWPiizCgDRJAokEvOwqw0MhobgyGibNv~BfxLig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_nucleation_in_viscoelastic_media_application_to_phase_formation_in_glassforming_melts","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983169/thumbnails/1.jpg","file_name":"s0022-3093_2802_2901428-x20220913-1-11fbhj7.pdf","download_url":"https://www.academia.edu/attachments/90983169/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_nucleation_in_viscoelastic_med.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983169/s0022-3093_2802_2901428-x20220913-1-11fbhj7-libre.pdf?1663061582=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_nucleation_in_viscoelastic_med.pdf\u0026Expires=1732998830\u0026Signature=AHaf1FLioE4cYAZrB8lgm~J6BHGt9zzCOj-XwMtwKdphVDa17~oduCr4KjsYMSpXBAMs-Blh~jhVVh9EGxEynAnNvubI1xntKODf3Onsyv6v5eYqpVc20aegDVmQl3-R6rMWq3Ei0lFyJYTfPiilCEOtj7btykW4zEzYPCUODhKI9K0KC-7ZT9M7f0pKXVbKjgLNV0HbR-VQm0SYFthIo20SNUkKLtcgUvp53X308gn1Iewkye7uWeESQZgtrXoDELwk~xLBlahXcq1dKh31h8y8LIC3vecGVMNs1Q9wpDTWYHzuWPiizCgDRJAokEvOwqw0MhobgyGibNv~BfxLig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":150216,"name":"Non crystalline solids","url":"https://www.academia.edu/Documents/in/Non_crystalline_solids"},{"id":308420,"name":"Phase Transformation","url":"https://www.academia.edu/Documents/in/Phase_Transformation"}],"urls":[{"id":23806603,"url":"https://api.elsevier.com/content/article/PII:S002230930201428X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557583/Kinetics_of_first_order_phase_transitions_in_adiabatic_systems"><img alt="Research paper thumbnail of Kinetics of first-order phase transitions in adiabatic systems" class="work-thumbnail" src="https://attachments.academia-assets.com/90983167/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557583/Kinetics_of_first_order_phase_transitions_in_adiabatic_systems">Kinetics of first-order phase transitions in adiabatic systems</a></div><div class="wp-workCard_item"><span>Journal of Colloid and Interface Science</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b122cba0ca405e2637aa589fc9acb538" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983167,"asset_id":86557583,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983167/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557583]").text(description); $(".js-view-count[data-work-id=86557583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b122cba0ca405e2637aa589fc9acb538" } } $('.js-work-strip[data-work-id=86557583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557583,"title":"Kinetics of first-order phase transitions in adiabatic systems","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Based on thermodynamic investigations a general scenario and a kinetic description of the process of first-order phase transitions in adiabatically closed systems, starting from metastable initial states, is developed. It is shown that, in analogy to isothermal constraints, three main stages of the transition may be distinguished: a first stage of dominating nucleation and simultaneous growth of the already formed supercritical clusters, a second stage of independent growth of the clusters, their number being nearly constant, and a third stage of competitive growth, of Ostwald ripening. The change of the temperature of the system due to the latent heat of the transition can be considered hereby as an additional depletion effect. It leads to an increase of the critical size of the clusters and thus to a significant decrease of the nucleation rate, compared with isothermal conditions, especially for relatively large initial supersaturations. Further, it may result also in variations of the stable heterogeneous equilibrium state-that is, configurations of stable clusters in the otherwise homogeneous medium. In particular, for a one-component system under a constant external pressure it makes the existence of such a state possible and results therefore in a qualitative change of the whole course of the phase transition from independent nucleation and growth to the three-stage scenario as characterized above. A theoretical description of the independent growth of the drops and of Ostwald ripening under adiabatic conditions is developed. The results are compared with growth processes in isothermal systems and both quantitative and possible qualitative differences are discussed. Further, they are applied to an interpretation of molecular-dynamics simulations of first-order phase transitions in adsorbed layers.","publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Journal of Colloid and Interface Science","grobid_abstract_attachment_id":90983167},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557583/Kinetics_of_first_order_phase_transitions_in_adiabatic_systems","translated_internal_url":"","created_at":"2022-09-12T22:39:03.177-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983167/thumbnails/1.jpg","file_name":"0021-9797_2889_2990389-520220913-1-1wjvr1k.pdf","download_url":"https://www.academia.edu/attachments/90983167/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Kinetics_of_first_order_phase_transition.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983167/0021-9797_2889_2990389-520220913-1-1wjvr1k-libre.pdf?1663061580=\u0026response-content-disposition=attachment%3B+filename%3DKinetics_of_first_order_phase_transition.pdf\u0026Expires=1732998830\u0026Signature=adwfsPZlbbTqwRHgWGCrF14yDmvo0k7qpI3-ioLbxkG4XaRTNvaySPSzY5T8tyd-f-OdSjuEwZmP0USSN2zkU~P~uO2MPtmPDSHXz2ov2X8sLWL7lcNJAxEe7LdwJ~j27mtO1xkoFpfzxTgCtMRm0~fLTiqSIAVU42yUDPdDwfb6wfb~mFfJ7WP7D5zfCuT059LZ6bs1a88rM3WoBT33iSstNyS2QHC8xlr8i3w09ktGAUJeHdkYQMnwTumGrCuTdg-EYO5A32d1QqHzVgNn9WwgeaqI4YpUcXWukESXmv-S8oFj6Yc3PpjfwwRQ-j3UAd09t9QE23ntfxzT5Slkhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Kinetics_of_first_order_phase_transitions_in_adiabatic_systems","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983167/thumbnails/1.jpg","file_name":"0021-9797_2889_2990389-520220913-1-1wjvr1k.pdf","download_url":"https://www.academia.edu/attachments/90983167/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Kinetics_of_first_order_phase_transition.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983167/0021-9797_2889_2990389-520220913-1-1wjvr1k-libre.pdf?1663061580=\u0026response-content-disposition=attachment%3B+filename%3DKinetics_of_first_order_phase_transition.pdf\u0026Expires=1732998830\u0026Signature=adwfsPZlbbTqwRHgWGCrF14yDmvo0k7qpI3-ioLbxkG4XaRTNvaySPSzY5T8tyd-f-OdSjuEwZmP0USSN2zkU~P~uO2MPtmPDSHXz2ov2X8sLWL7lcNJAxEe7LdwJ~j27mtO1xkoFpfzxTgCtMRm0~fLTiqSIAVU42yUDPdDwfb6wfb~mFfJ7WP7D5zfCuT059LZ6bs1a88rM3WoBT33iSstNyS2QHC8xlr8i3w09ktGAUJeHdkYQMnwTumGrCuTdg-EYO5A32d1QqHzVgNn9WwgeaqI4YpUcXWukESXmv-S8oFj6Yc3PpjfwwRQ-j3UAd09t9QE23ntfxzT5Slkhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":23806602,"url":"https://api.elsevier.com/content/article/PII:0021979789903895?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557582/On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours"><img alt="Research paper thumbnail of On the Kinetic Description of Condensation in Binary Vapours" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557582/On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours">On the Kinetic Description of Condensation in Binary Vapours</a></div><div class="wp-workCard_item"><span>Annalen der Physik</span><span>, 1987</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Based on a thermodynamic analysis and an earlier developed general growth equation for clusters o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Based on a thermodynamic analysis and an earlier developed general growth equation for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under isothermal and isobaric conditions is described. Differential equations for the time development of the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the droplets are obtained. These equations describe the evolution of the system of droplets beginning after the nucleation period has finished. The equations can be easily solved numerically. For long times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly to the mechanism of Ostwald ripening. Zur kinetischen Beschreibung der Kondensation binarer Dampfe Basierend auf einer thermodynamischen Analyse und unter Verwendung einer fruher entwickelten allgemeinen Wachstumsgleichung fur Keime einer neuen Phase wird die Kinetik des Wachstums von Tropfen in einer binaren Gasmischung unter isobar-isothermen Bedingungen mathematisch beschrieben. Es werden Ausdrucke fur die zeitliche Entwicklung des mittleren Tropfenradius, der Tropfenzahl und der Gesamtmenge der flussigen Phase erhalten. Diese Gleichungen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach Abschlus der Keimbildungsphase. Sie sind relativ einfach numerisch losbar, fur grose Zeiten konnen analytische Losungen angegeben werden. Es wird gezeigt, das das Wachstum von Tropfen in der Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557582]").text(description); $(".js-view-count[data-work-id=86557582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557582, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557582,"title":"On the Kinetic Description of Condensation in Binary Vapours","translated_title":"","metadata":{"abstract":"Based on a thermodynamic analysis and an earlier developed general growth equation for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under isothermal and isobaric conditions is described. Differential equations for the time development of the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the droplets are obtained. These equations describe the evolution of the system of droplets beginning after the nucleation period has finished. The equations can be easily solved numerically. For long times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly to the mechanism of Ostwald ripening. Zur kinetischen Beschreibung der Kondensation binarer Dampfe Basierend auf einer thermodynamischen Analyse und unter Verwendung einer fruher entwickelten allgemeinen Wachstumsgleichung fur Keime einer neuen Phase wird die Kinetik des Wachstums von Tropfen in einer binaren Gasmischung unter isobar-isothermen Bedingungen mathematisch beschrieben. Es werden Ausdrucke fur die zeitliche Entwicklung des mittleren Tropfenradius, der Tropfenzahl und der Gesamtmenge der flussigen Phase erhalten. Diese Gleichungen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach Abschlus der Keimbildungsphase. Sie sind relativ einfach numerisch losbar, fur grose Zeiten konnen analytische Losungen angegeben werden. Es wird gezeigt, das das Wachstum von Tropfen in der Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.","publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Annalen der Physik"},"translated_abstract":"Based on a thermodynamic analysis and an earlier developed general growth equation for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under isothermal and isobaric conditions is described. Differential equations for the time development of the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the droplets are obtained. These equations describe the evolution of the system of droplets beginning after the nucleation period has finished. The equations can be easily solved numerically. For long times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly to the mechanism of Ostwald ripening. Zur kinetischen Beschreibung der Kondensation binarer Dampfe Basierend auf einer thermodynamischen Analyse und unter Verwendung einer fruher entwickelten allgemeinen Wachstumsgleichung fur Keime einer neuen Phase wird die Kinetik des Wachstums von Tropfen in einer binaren Gasmischung unter isobar-isothermen Bedingungen mathematisch beschrieben. Es werden Ausdrucke fur die zeitliche Entwicklung des mittleren Tropfenradius, der Tropfenzahl und der Gesamtmenge der flussigen Phase erhalten. Diese Gleichungen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach Abschlus der Keimbildungsphase. Sie sind relativ einfach numerisch losbar, fur grose Zeiten konnen analytische Losungen angegeben werden. Es wird gezeigt, das das Wachstum von Tropfen in der Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.","internal_url":"https://www.academia.edu/86557582/On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours","translated_internal_url":"","created_at":"2022-09-12T22:39:03.018-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_Kinetic_Description_of_Condensation_in_Binary_Vapours","translated_slug":"","page_count":null,"language":"de","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":38050,"name":"Phase Transitions","url":"https://www.academia.edu/Documents/in/Phase_Transitions"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":254626,"name":"Cluster","url":"https://www.academia.edu/Documents/in/Cluster"},{"id":401240,"name":"Change of State","url":"https://www.academia.edu/Documents/in/Change_of_State"},{"id":634545,"name":"Condensation","url":"https://www.academia.edu/Documents/in/Condensation"},{"id":670651,"name":"Ostwald Ripening","url":"https://www.academia.edu/Documents/in/Ostwald_Ripening"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557581"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557581/Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment"><img alt="Research paper thumbnail of Dependence of crystallization processes of glass-forming melts on melt history: a theoretical approach to a quantitative treatment" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557581/Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment">Dependence of crystallization processes of glass-forming melts on melt history: a theoretical approach to a quantitative treatment</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557581"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557581]").text(description); $(".js-view-count[data-work-id=86557581]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557581']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557581, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86557581]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557581,"title":"Dependence of crystallization processes of glass-forming melts on melt history: a theoretical approach to a quantitative treatment","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/86557581/Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment","translated_internal_url":"","created_at":"2022-09-12T22:39:02.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dependence_of_crystallization_processes_of_glass_forming_melts_on_melt_history_a_theoretical_approach_to_a_quantitative_treatment","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86557490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86557490/Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions"><img alt="Research paper thumbnail of Ostwald Ripening of Bubbles in Liquid-Gas Solutions" class="work-thumbnail" src="https://attachments.academia-assets.com/90983112/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86557490/Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions">Ostwald Ripening of Bubbles in Liquid-Gas Solutions</a></div><div class="wp-workCard_item"><span>Journal of Non-Equilibrium Thermodynamics</span><span>, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ba8f4035b17cecc0b4000b12a42e17f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90983112,"asset_id":86557490,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90983112/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86557490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86557490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86557490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86557490]").text(description); $(".js-view-count[data-work-id=86557490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86557490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86557490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86557490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ba8f4035b17cecc0b4000b12a42e17f" } } $('.js-work-strip[data-work-id=86557490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86557490,"title":"Ostwald Ripening of Bubbles in Liquid-Gas Solutions","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","grobid_abstract":"The possibility of a stable coexistence of bubbles in supersaturated liquid-gas solutions is investigated. It is shown that in contrast to the conclusions derived by Ward et al. [1, 2], multi-bubble systems in the otherwise homgeneous medium are thermodynamically unstable. Based on thermodynamic investigations, a theory of Ostwald ripening of gas bubbles in liquid-gas solutions is presented which includes the description of the initial stage of this process. Differential equations describing the time development of the mean radius and the number of bubbles are derived. For the asymptotic region analytic solutions in agreement with the results of Lifshitz and Slyozov [3] are obtained. The results can also be applied to a description of the growth of single droplets and ensembles of droplets in multicomponent vapours, demonstrating the analogy between the time development of ensembles of droplets and bubbles. It was stated by these authors that in a closed volume of a liquid-gas-solution there can exist configurations of a single bubble and a number of bubbles in stable thermodynamic equilibrium within the otherwise homgeneous solution. We would like to show here, that, while the first is true, the second statement is","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Journal of Non-Equilibrium Thermodynamics","grobid_abstract_attachment_id":90983112},"translated_abstract":null,"internal_url":"https://www.academia.edu/86557490/Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions","translated_internal_url":"","created_at":"2022-09-12T22:37:19.806-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90983112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983112/thumbnails/1.jpg","file_name":"Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions.pdf","download_url":"https://www.academia.edu/attachments/90983112/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ostwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983112/Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions-libre.pdf?1663048819=\u0026response-content-disposition=attachment%3B+filename%3DOstwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf\u0026Expires=1732998830\u0026Signature=BWF1CVxdR-mzhwpQb2rrlNFy91q1n~faMR5A0jTO5BnMZdq92T5N0VoFXoWlekRTPSi8g2x2ETjtQ4GIBwxUMec6iq1PvGvhJItuHN3eYiZlsNTFM3Kg0CsPOfrJ~Y28PrVI7A7YSne8cnCsF~WPyRfvrQEUoKi3Jq4TICmk8LjA11M-1msmruRV9P8XUUPk5TNYW47jA-ycEFxD9FU8I8d0QBPEAUzwsobZ1XNI5GCpNrAOaPXF1Qtu~EMDrp08NflO1YwDhyE~XSg~AI40MTsNhC~AkP5DznmIje3~uaYnbs5vG1qARr-oFJahA2ApKq1kn86IZQhtgm3UA6XWbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ostwald_Ripening_of_Bubbles_in_Liquid_Gas_Solutions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":90983112,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90983112/thumbnails/1.jpg","file_name":"Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions.pdf","download_url":"https://www.academia.edu/attachments/90983112/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ostwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90983112/Schmelzer__Schweitzer_-_1987_-_Ostwald_Ripening_of_Bubbles_in_Liquid-Gas_Solutions-libre.pdf?1663048819=\u0026response-content-disposition=attachment%3B+filename%3DOstwald_Ripening_of_Bubbles_in_Liquid_Ga.pdf\u0026Expires=1732998830\u0026Signature=BWF1CVxdR-mzhwpQb2rrlNFy91q1n~faMR5A0jTO5BnMZdq92T5N0VoFXoWlekRTPSi8g2x2ETjtQ4GIBwxUMec6iq1PvGvhJItuHN3eYiZlsNTFM3Kg0CsPOfrJ~Y28PrVI7A7YSne8cnCsF~WPyRfvrQEUoKi3Jq4TICmk8LjA11M-1msmruRV9P8XUUPk5TNYW47jA-ycEFxD9FU8I8d0QBPEAUzwsobZ1XNI5GCpNrAOaPXF1Qtu~EMDrp08NflO1YwDhyE~XSg~AI40MTsNhC~AkP5DznmIje3~uaYnbs5vG1qARr-oFJahA2ApKq1kn86IZQhtgm3UA6XWbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":38050,"name":"Phase Transitions","url":"https://www.academia.edu/Documents/in/Phase_Transitions"},{"id":54961,"name":"Growth","url":"https://www.academia.edu/Documents/in/Growth"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":93329,"name":"Non-equilibrium thermodynamics","url":"https://www.academia.edu/Documents/in/Non-equilibrium_thermodynamics"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":670651,"name":"Ostwald Ripening","url":"https://www.academia.edu/Documents/in/Ostwald_Ripening"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81136076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81136076/Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates"><img alt="Research paper thumbnail of Dependence of the width of the glass transition interval on cooling and heating rates" class="work-thumbnail" src="https://attachments.academia-assets.com/87286044/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81136076/Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates">Dependence of the width of the glass transition interval on cooling and heating rates</a></div><div class="wp-workCard_item"><span>The Journal of Chemical Physics</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7fd2e8578004578cd09a5117786e1e4b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":87286044,"asset_id":81136076,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/87286044/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81136076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81136076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81136076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81136076]").text(description); $(".js-view-count[data-work-id=81136076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81136076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81136076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 81136076, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7fd2e8578004578cd09a5117786e1e4b" } } $('.js-work-strip[data-work-id=81136076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81136076,"title":"Dependence of the width of the glass transition interval on cooling and heating rates","translated_title":"","metadata":{"publisher":"AIP Publishing","grobid_abstract":"In a preceding paper [J. W. P. Schmelzer, J. Chem. Phys. 136, 074512 (2012)], a general kinetic criterion of glass formation has been advanced allowing one to determine theoretically the dependence of the glass transition temperature on cooling and heating rates (or similarly on the rate of change of any appropriate control parameter determining the transition of a stable or metastable equilibrium system into a frozen-in, non-equilibrium state of the system, a glass). In the present paper, this criterion is employed in order to develop analytical expressions for the dependence of the upper and lower boundaries and of the width of the glass transition interval on the rate of change of the external control parameters. It is shown, in addition, that the width of the glass transition range is strongly correlated with the entropy production at the glass transition temperature. The analytical results are supplemented by numerical computations. Analytical results and numerical computations as well as existing experimental data are shown to be in good agreement.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"The Journal of Chemical Physics","grobid_abstract_attachment_id":87286044},"translated_abstract":null,"internal_url":"https://www.academia.edu/81136076/Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates","translated_internal_url":"","created_at":"2022-06-09T22:32:50.162-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87286044,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87286044/thumbnails/1.jpg","file_name":"1278ac98f2dec0e4a4068c16f4f4dc0c08b7.pdf","download_url":"https://www.academia.edu/attachments/87286044/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dependence_of_the_width_of_the_glass_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87286044/1278ac98f2dec0e4a4068c16f4f4dc0c08b7-libre.pdf?1654840027=\u0026response-content-disposition=attachment%3B+filename%3DDependence_of_the_width_of_the_glass_tra.pdf\u0026Expires=1732998830\u0026Signature=FMaZBza6AIKxzyyBaaqcVf38W9bcw909K~nMbcOMJPZVIa56MzOt6SlFhfKBmJb05H8LB9b2tFc0mQ1oH4EsPeEIcj4ScypTDShFXbmgNr~6Vtyb09z8998jCt0bPxnuUT9Ajr9Nf5uqe7vfGc9CuW0xRjX15oPyxwAxfBo3ycU2N6tlADZiZYDlzKTVyVIsrbp47rAD~yh-7Cn7Dpcn7048MDcLM1GaxF7dM2dwBWBMAXuo451JrjoyeYmasy6l4NvyjQk1KjGQLURU9WkuO3AGi93Q7a54vW5urSI94IthtL0sOih~Vpp4bmv9~jZdec3aRRCTbeurm-brpjn9WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dependence_of_the_width_of_the_glass_transition_interval_on_cooling_and_heating_rates","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":87286044,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87286044/thumbnails/1.jpg","file_name":"1278ac98f2dec0e4a4068c16f4f4dc0c08b7.pdf","download_url":"https://www.academia.edu/attachments/87286044/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dependence_of_the_width_of_the_glass_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87286044/1278ac98f2dec0e4a4068c16f4f4dc0c08b7-libre.pdf?1654840027=\u0026response-content-disposition=attachment%3B+filename%3DDependence_of_the_width_of_the_glass_tra.pdf\u0026Expires=1732998830\u0026Signature=FMaZBza6AIKxzyyBaaqcVf38W9bcw909K~nMbcOMJPZVIa56MzOt6SlFhfKBmJb05H8LB9b2tFc0mQ1oH4EsPeEIcj4ScypTDShFXbmgNr~6Vtyb09z8998jCt0bPxnuUT9Ajr9Nf5uqe7vfGc9CuW0xRjX15oPyxwAxfBo3ycU2N6tlADZiZYDlzKTVyVIsrbp47rAD~yh-7Cn7Dpcn7048MDcLM1GaxF7dM2dwBWBMAXuo451JrjoyeYmasy6l4NvyjQk1KjGQLURU9WkuO3AGi93Q7a54vW5urSI94IthtL0sOih~Vpp4bmv9~jZdec3aRRCTbeurm-brpjn9WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":21279853,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.4775802"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="81135949"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/81135949/Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation"><img alt="Research paper thumbnail of Non-Stationary Nucleation and the Johnson-Mehl-Avrami Equation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/81135949/Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation">Non-Stationary Nucleation and the Johnson-Mehl-Avrami Equation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="81135949"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="81135949"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81135949; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81135949]").text(description); $(".js-view-count[data-work-id=81135949]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81135949; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='81135949']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 81135949, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=81135949]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":81135949,"title":"Non-Stationary Nucleation and the Johnson-Mehl-Avrami Equation","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/81135949/Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation","translated_internal_url":"","created_at":"2022-06-09T22:30:52.565-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Non_Stationary_Nucleation_and_the_Johnson_Mehl_Avrami_Equation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961373/On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media"><img alt="Research paper thumbnail of On the Kinetic Description of Ostwald Ripening in Elastic Media" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961373/On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media">On the Kinetic Description of Ostwald Ripening in Elastic Media</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the gro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the growth of a new phase in the rmodynamic phase transit ions of first order was derived. This equat ion is applie¿j here first to an investigation of the t ime development of single clusters of a new phase. Based on the proposed in [12] new theory of Ostwald ripening a general theory describing this process for elastic media is developed. This method leads to a set of differential equat ions for the mean cluster radius, the number of clusters and the total mass of the new phase concentrated in the clusters. These equations are valid and can be solved numerically for the whole ripening process including the initial stage. A criterion is established under which condit ions elastic strains lead to a s top of the growth of the clusters and, therefore, t o a quite different asymptotic behaviour of the solutions as compared with the theory of LIFSHITZ, S&#39;.YOZOV and others. In these cases for long times a stationary relatively monodisperse distribution of clusters is established in the system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961373]").text(description); $(".js-view-count[data-work-id=75961373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75961373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961373,"title":"On the Kinetic Description of Ostwald Ripening in Elastic Media","translated_title":"","metadata":{"abstract":"In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the growth of a new phase in the rmodynamic phase transit ions of first order was derived. This equat ion is applie¿j here first to an investigation of the t ime development of single clusters of a new phase. Based on the proposed in [12] new theory of Ostwald ripening a general theory describing this process for elastic media is developed. This method leads to a set of differential equat ions for the mean cluster radius, the number of clusters and the total mass of the new phase concentrated in the clusters. These equations are valid and can be solved numerically for the whole ripening process including the initial stage. A criterion is established under which condit ions elastic strains lead to a s top of the growth of the clusters and, therefore, t o a quite different asymptotic behaviour of the solutions as compared with the theory of LIFSHITZ, S\u0026#39;.YOZOV and others. In these cases for long times a stationary relatively monodisperse distribution of clusters is established in the system.","publisher":"Walter de Gruyter GmbH","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie"},"translated_abstract":"In a preceding paper [12]: Z. phys. Chemie 266 (1985) 1057 a general equat ion describing the growth of a new phase in the rmodynamic phase transit ions of first order was derived. This equat ion is applie¿j here first to an investigation of the t ime development of single clusters of a new phase. Based on the proposed in [12] new theory of Ostwald ripening a general theory describing this process for elastic media is developed. This method leads to a set of differential equat ions for the mean cluster radius, the number of clusters and the total mass of the new phase concentrated in the clusters. These equations are valid and can be solved numerically for the whole ripening process including the initial stage. A criterion is established under which condit ions elastic strains lead to a s top of the growth of the clusters and, therefore, t o a quite different asymptotic behaviour of the solutions as compared with the theory of LIFSHITZ, S\u0026#39;.YOZOV and others. In these cases for long times a stationary relatively monodisperse distribution of clusters is established in the system.","internal_url":"https://www.academia.edu/75961373/On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media","translated_internal_url":"","created_at":"2022-04-09T22:28:27.236-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_Kinetic_Description_of_Ostwald_Ripening_in_Elastic_Media","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[{"id":19304437,"url":"http://www.degruyter.com/view/j/zpch.1988.269.issue-1/zpch-1988-26982/zpch-1988-26982.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961372"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961372/Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules"><img alt="Research paper thumbnail of Experimental Test of Tammann’s Nuclei Development Approach in Crystallization of Macromolecules" class="work-thumbnail" src="https://attachments.academia-assets.com/83647350/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961372/Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules">Experimental Test of Tammann’s Nuclei Development Approach in Crystallization of Macromolecules</a></div><div class="wp-workCard_item"><span>Crystal Growth & Design</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="182b1b37697502dfd688433c316e6ce7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83647350,"asset_id":75961372,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83647350/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961372"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961372"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961372; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961372]").text(description); $(".js-view-count[data-work-id=75961372]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961372; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961372']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961372, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "182b1b37697502dfd688433c316e6ce7" } } $('.js-work-strip[data-work-id=75961372]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961372,"title":"Experimental Test of Tammann’s Nuclei Development Approach in Crystallization of Macromolecules","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Crystal Growth \u0026 Design"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75961372/Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules","translated_internal_url":"","created_at":"2022-04-09T22:28:27.088-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83647350,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647350/thumbnails/1.jpg","file_name":"MWS_MAR17-2016-002610.pdf","download_url":"https://www.academia.edu/attachments/83647350/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Test_of_Tammann_s_Nuclei_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647350/MWS_MAR17-2016-002610-libre.pdf?1649569150=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Test_of_Tammann_s_Nuclei_De.pdf\u0026Expires=1732998830\u0026Signature=EFGkTKqJGijrCS61W2DeTSwYajIxliMtZqYdyfi8mTkNzEyZrJ8NjX1pOgXEhaO83n5A8QM7mWPy3zJvyCtnx64sEmZKV9IeEgC~scoRCmfujTeOGpYXuQ9T48T5eTG03gWNAI4KsZJLiMqNYn4KnCwpFwK5ApKMn73ahNCoFk2eAXUpfYrVmIZH0O-CJOQ3-wjkVE3~Um8sZX8L8ZqqC9Z5pHSrnA-PHuJ4YYPX2Edk-mlbc52Yxk8sXBOdpBllg8fvTqoaXotmvMl6JNDe~4-f8MzmvPwJ2vIBCfq15nMVJawAcCPZpJbPrlczfstSVu7~2k52m0lqoBP3q0CLEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_Test_of_Tammann_s_Nuclei_Development_Approach_in_Crystallization_of_Macromolecules","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":83647350,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647350/thumbnails/1.jpg","file_name":"MWS_MAR17-2016-002610.pdf","download_url":"https://www.academia.edu/attachments/83647350/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Test_of_Tammann_s_Nuclei_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647350/MWS_MAR17-2016-002610-libre.pdf?1649569150=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Test_of_Tammann_s_Nuclei_De.pdf\u0026Expires=1732998830\u0026Signature=EFGkTKqJGijrCS61W2DeTSwYajIxliMtZqYdyfi8mTkNzEyZrJ8NjX1pOgXEhaO83n5A8QM7mWPy3zJvyCtnx64sEmZKV9IeEgC~scoRCmfujTeOGpYXuQ9T48T5eTG03gWNAI4KsZJLiMqNYn4KnCwpFwK5ApKMn73ahNCoFk2eAXUpfYrVmIZH0O-CJOQ3-wjkVE3~Um8sZX8L8ZqqC9Z5pHSrnA-PHuJ4YYPX2Edk-mlbc52Yxk8sXBOdpBllg8fvTqoaXotmvMl6JNDe~4-f8MzmvPwJ2vIBCfq15nMVJawAcCPZpJbPrlczfstSVu7~2k52m0lqoBP3q0CLEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":816984,"name":"American Chemical Society","url":"https://www.academia.edu/Documents/in/American_Chemical_Society"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961371"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961371/Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions"><img alt="Research paper thumbnail of Non-stationary nucleation and cluster growth in quasi-binary non-ideal solutions" class="work-thumbnail" src="https://attachments.academia-assets.com/83647349/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961371/Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions">Non-stationary nucleation and cluster growth in quasi-binary non-ideal solutions</a></div><div class="wp-workCard_item"><span>Journal of Non-Crystalline Solids</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="42d1b6241e96a54e49a13f4d84dbe676" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83647349,"asset_id":75961371,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83647349/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961371"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961371"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961371; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961371]").text(description); $(".js-view-count[data-work-id=75961371]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961371; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961371']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961371, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "42d1b6241e96a54e49a13f4d84dbe676" } } $('.js-work-strip[data-work-id=75961371]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961371,"title":"Non-stationary nucleation and cluster growth in quasi-binary non-ideal solutions","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"A kinetic theory of nucleation and cluster growth in non-ideal quasi-binary liquid and solid solutions with, in general, concentration dependent diffusion coefficients of the segregating particles is developed. This theory allows one, in a straightforward way, to account for the influence of elastic strains, evolving in solid solutions as the result of cluster formation and growth, on the kinetics of the phase transformation. Specific properties of the solution or the evolving elastic fields have to be incorporated explicitly only in the final expressions describing nucleation and growth. The theory is applied to special cases demonstrating the consequences of depletion of segregating particles, the non-ideality of the solution and effects due to elastic strains on the kinetics of the segregation process. It is shown that, due to the non-steady character of the nucleation process, resulting from time-lag and depletion effects, the incorporation of the non-ideality of the solution and elastic strains into the description leads not only to a variation of the nucleation rate but changes also a number of other significant characteristics of the phase transformation, e.g., the cluster distribution function and the rate of the decomposition process.","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Journal of Non-Crystalline Solids","grobid_abstract_attachment_id":83647349},"translated_abstract":null,"internal_url":"https://www.academia.edu/75961371/Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions","translated_internal_url":"","created_at":"2022-04-09T22:28:26.936-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83647349,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647349/thumbnails/1.jpg","file_name":"0022-3093_2890_2990331-f20220409-11207-1tenp14.pdf","download_url":"https://www.academia.edu/attachments/83647349/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_stationary_nucleation_and_cluster_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647349/0022-3093_2890_2990331-f20220409-11207-1tenp14-libre.pdf?1649569152=\u0026response-content-disposition=attachment%3B+filename%3DNon_stationary_nucleation_and_cluster_gr.pdf\u0026Expires=1732998830\u0026Signature=KFLsn6tfL7xsqiFVyaddwIigHAFQ7MlOSmZmd~AMviBsnQJbWd1KsdmqBRYazxD-4Tm1rUDMERa8TO0~C4GMzQhVXW4rDYek5Qa9vjx~7isrrpqnN8Q7I1I-uJZl4PnqNu8i6TeK3WB1GJdconyp5ZhIZH2ZJ6xiB1h8P6dBUYIxGW8WJsQMzLhUgJ3sFSpJU~avKhiP0P~AFLbN0nFqT2RSjS0vhuei7FAlZzQU9-Ea84tAvpbc93qCS6-7eIxtaDqtWHxJEwoHvcaZQwX3aI-zY3CNf8JCAxx-~rPWDsOxWTWHVQwz39~1arxshtDRDJhJrjPRbobZ~tKyWJ1b-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Non_stationary_nucleation_and_cluster_growth_in_quasi_binary_non_ideal_solutions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":83647349,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647349/thumbnails/1.jpg","file_name":"0022-3093_2890_2990331-f20220409-11207-1tenp14.pdf","download_url":"https://www.academia.edu/attachments/83647349/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_stationary_nucleation_and_cluster_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647349/0022-3093_2890_2990331-f20220409-11207-1tenp14-libre.pdf?1649569152=\u0026response-content-disposition=attachment%3B+filename%3DNon_stationary_nucleation_and_cluster_gr.pdf\u0026Expires=1732998830\u0026Signature=KFLsn6tfL7xsqiFVyaddwIigHAFQ7MlOSmZmd~AMviBsnQJbWd1KsdmqBRYazxD-4Tm1rUDMERa8TO0~C4GMzQhVXW4rDYek5Qa9vjx~7isrrpqnN8Q7I1I-uJZl4PnqNu8i6TeK3WB1GJdconyp5ZhIZH2ZJ6xiB1h8P6dBUYIxGW8WJsQMzLhUgJ3sFSpJU~avKhiP0P~AFLbN0nFqT2RSjS0vhuei7FAlZzQU9-Ea84tAvpbc93qCS6-7eIxtaDqtWHxJEwoHvcaZQwX3aI-zY3CNf8JCAxx-~rPWDsOxWTWHVQwz39~1arxshtDRDJhJrjPRbobZ~tKyWJ1b-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":59051,"name":"Kinetic Theory","url":"https://www.academia.edu/Documents/in/Kinetic_Theory"},{"id":150216,"name":"Non crystalline solids","url":"https://www.academia.edu/Documents/in/Non_crystalline_solids"},{"id":159943,"name":"Nucleation and Growth","url":"https://www.academia.edu/Documents/in/Nucleation_and_Growth"},{"id":308420,"name":"Phase Transformation","url":"https://www.academia.edu/Documents/in/Phase_Transformation"},{"id":309493,"name":"Diffusion Coefficient","url":"https://www.academia.edu/Documents/in/Diffusion_Coefficient"},{"id":1317951,"name":"Solid Solution","url":"https://www.academia.edu/Documents/in/Solid_Solution"},{"id":2796027,"name":"Time lag","url":"https://www.academia.edu/Documents/in/Time_lag"},{"id":2891350,"name":"Distribution Function","url":"https://www.academia.edu/Documents/in/Distribution_Function-1"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961370"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961370/The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates"><img alt="Research paper thumbnail of The Influence of Depletion Effects on Homogeneous Nucleation Rates" class="work-thumbnail" src="https://attachments.academia-assets.com/83647358/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961370/The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates">The Influence of Depletion Effects on Homogeneous Nucleation Rates</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="32c812f29696f97bba6cbcc4bd47d521" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83647358,"asset_id":75961370,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83647358/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961370"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961370"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961370; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961370]").text(description); $(".js-view-count[data-work-id=75961370]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961370; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961370']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961370, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "32c812f29696f97bba6cbcc4bd47d521" } } $('.js-work-strip[data-work-id=75961370]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961370,"title":"The Influence of Depletion Effects on Homogeneous Nucleation Rates","translated_title":"","metadata":{"publisher":"Walter de Gruyter GmbH","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie"},"translated_abstract":null,"internal_url":"https://www.academia.edu/75961370/The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates","translated_internal_url":"","created_at":"2022-04-09T22:28:26.675-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83647358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647358/thumbnails/1.jpg","file_name":"The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf","download_url":"https://www.academia.edu/attachments/83647358/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Influence_of_Depletion_Effects_on_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647358/The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf?1649568581=\u0026response-content-disposition=attachment%3B+filename%3DThe_Influence_of_Depletion_Effects_on_Ho.pdf\u0026Expires=1732998830\u0026Signature=GswpcFIBbNapKL0dbD-dTFDcEEI~zqN0WR6C13iWOfM2xRGk9~0kNn0s6O8wEYRNbyxvlC6exUptPtIN2f2B7z3PRxanHo4W~L7VDXg5zVJAKvYOn5f8f9tfffudgmdzoBwC5J4VVKGJ~cTxUdsEfOM1uWLXkCxSm1AD2nnhcsRFUEsZLctuv4QCRczGGIAvNOqq6n-V9gBlUwW5z-DyWRK25NoLkxUTRlLQDkiezFRD8CM~Ys4NO77JKr256BfLvTEj8SyDLNp4fe133dhrcYWFlUcs8eHNHZFRlrCTQIyyJWxYu9GY8vr2ltMJTrWoSECLU7Fbt7My1jEO1~qBNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Influence_of_Depletion_Effects_on_Homogeneous_Nucleation_Rates","translated_slug":"","page_count":6,"language":"fr","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[{"id":83647358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83647358/thumbnails/1.jpg","file_name":"The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf","download_url":"https://www.academia.edu/attachments/83647358/download_file?st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&st=MTczMjk5NTIzMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Influence_of_Depletion_Effects_on_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83647358/The_Influence_of_Depletion_Effects_on_Ho20220409-5111-fzwhps.pdf?1649568581=\u0026response-content-disposition=attachment%3B+filename%3DThe_Influence_of_Depletion_Effects_on_Ho.pdf\u0026Expires=1732998830\u0026Signature=GswpcFIBbNapKL0dbD-dTFDcEEI~zqN0WR6C13iWOfM2xRGk9~0kNn0s6O8wEYRNbyxvlC6exUptPtIN2f2B7z3PRxanHo4W~L7VDXg5zVJAKvYOn5f8f9tfffudgmdzoBwC5J4VVKGJ~cTxUdsEfOM1uWLXkCxSm1AD2nnhcsRFUEsZLctuv4QCRczGGIAvNOqq6n-V9gBlUwW5z-DyWRK25NoLkxUTRlLQDkiezFRD8CM~Ys4NO77JKr256BfLvTEj8SyDLNp4fe133dhrcYWFlUcs8eHNHZFRlrCTQIyyJWxYu9GY8vr2ltMJTrWoSECLU7Fbt7My1jEO1~qBNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75961251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75961251/Thermodynamik_und_Keimbildung"><img alt="Research paper thumbnail of Thermodynamik und Keimbildung" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75961251/Thermodynamik_und_Keimbildung">Thermodynamik und Keimbildung</a></div><div class="wp-workCard_item"><span>Zeitschrift für Physikalische Chemie</span><span>, 1985</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Based on the Gibbs&#39; theory of surface effects a thermodynamic description of a heterogeneous ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Based on the Gibbs&#39; theory of surface effects a thermodynamic description of a heterogeneous system consisting of s clusters of a new phase in the otherwise homogeneous medium is given. The influence of the finite size of the system or the depletion of the surrounding the clusters medium on the work of formation of critical clusters is determined for different thermodynamic constraints. Besides the variations of the parameters of the critical clusters finite-size effects lead to the existence of additional states obeying the necessary thermodynamic equilibrium conditions and to a correction term AW in the equation for the work of formation of critical clusters. It is shown that AW is always negativ. This term AW is, however, overcompensated by the changes of the nucleation work due to the variations of the parameters of the critical clusters. The general results are illustrated by an analysis of the process of an isochoric condensation of a one-component gas in a closed system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75961251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75961251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75961251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75961251]").text(description); $(".js-view-count[data-work-id=75961251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75961251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75961251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75961251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75961251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75961251,"title":"Thermodynamik und Keimbildung","translated_title":"","metadata":{"abstract":"Based on the Gibbs\u0026#39; theory of surface effects a thermodynamic description of a heterogeneous system consisting of s clusters of a new phase in the otherwise homogeneous medium is given. The influence of the finite size of the system or the depletion of the surrounding the clusters medium on the work of formation of critical clusters is determined for different thermodynamic constraints. Besides the variations of the parameters of the critical clusters finite-size effects lead to the existence of additional states obeying the necessary thermodynamic equilibrium conditions and to a correction term AW in the equation for the work of formation of critical clusters. It is shown that AW is always negativ. This term AW is, however, overcompensated by the changes of the nucleation work due to the variations of the parameters of the critical clusters. The general results are illustrated by an analysis of the process of an isochoric condensation of a one-component gas in a closed system.","publisher":"Walter de Gruyter GmbH","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Zeitschrift für Physikalische Chemie"},"translated_abstract":"Based on the Gibbs\u0026#39; theory of surface effects a thermodynamic description of a heterogeneous system consisting of s clusters of a new phase in the otherwise homogeneous medium is given. The influence of the finite size of the system or the depletion of the surrounding the clusters medium on the work of formation of critical clusters is determined for different thermodynamic constraints. Besides the variations of the parameters of the critical clusters finite-size effects lead to the existence of additional states obeying the necessary thermodynamic equilibrium conditions and to a correction term AW in the equation for the work of formation of critical clusters. It is shown that AW is always negativ. This term AW is, however, overcompensated by the changes of the nucleation work due to the variations of the parameters of the critical clusters. The general results are illustrated by an analysis of the process of an isochoric condensation of a one-component gas in a closed system.","internal_url":"https://www.academia.edu/75961251/Thermodynamik_und_Keimbildung","translated_internal_url":"","created_at":"2022-04-09T22:27:04.401-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermodynamik_und_Keimbildung","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[],"urls":[{"id":19304404,"url":"http://www.degruyter.com/view/j/zpch.1985.266.issue-1/zpch-1985-266116/zpch-1985-266116.xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70399405"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70399405/Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter"><img alt="Research paper thumbnail of Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70399405/Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter">Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter</a></div><div class="wp-workCard_item"><span>Polymer Testing</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70399405"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70399405"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70399405; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70399405]").text(description); $(".js-view-count[data-work-id=70399405]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70399405; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70399405']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70399405, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70399405]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70399405,"title":"Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Polymer Testing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/70399405/Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter","translated_internal_url":"","created_at":"2022-02-04T02:50:56.474-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35962046,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_study_of_crystallization_of_PolyEtherEtherKetone_PEEK_over_a_large_temperature_range_using_a_nano_calorimeter","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35962046,"first_name":"J.","middle_initials":null,"last_name":"Schmelzer","page_name":"JSchmelzer","domain_name":"independent","created_at":"2015-10-10T01:29:28.791-07:00","display_name":"J. Schmelzer","url":"https://independent.academia.edu/JSchmelzer"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":742212,"name":"Polymer Testing","url":"https://www.academia.edu/Documents/in/Polymer_Testing"},{"id":1330732,"name":"PEEK","url":"https://www.academia.edu/Documents/in/PEEK"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "528775df050ef65cfd0e4909d3b426b305517b49971b04eed884f89cba47923f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="RdYLTCq59TKcBezJAjFMkafYoynl+fSzgcxBpmd9XNcegq1ZxQt6nDQVfhYgGDC7aHfgxEsIgRxqzl5T5ecmlQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/JSchmelzer" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="q2Ch0Eze5kfaRAxuo8Jgo37AVN58RSju6hw3NpGTtdzwNAfFo2xp6XJUnrGB6xyJsW8XM9K0XUEBHijDEwnPng==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>