CINXE.COM

Federico Camia - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Federico Camia - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="6FgxNnRX6YKBjePHKDWon21O07Q0ej4Scp/Gp6oP86c21xvW4qJntqpBL7zYV7ZHO+dKFZXj3VKh2cZXzPCrLA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="federico camia" /> <meta name="description" content="Federico Camia: 10 Followers, 2 Following, 107 Research papers. Research interests: Phase Transitions, Application, and Statistical Physics." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'f465d56e6b7bca0080e7479a0e72520e9aeacec3'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277488846,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732745952000); window.Aedu.timeDifference = new Date().getTime() - 1732745952000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-9eaa790b1139e2d88eb4ac931dcbc6d7cea4403a763db5cc5a695dd2eaa34151.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/FedericoCamia" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-533ab26e53b28997c1064a839643ef40d866d497c665279ed26b743aacb62042.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":38050,"name":"Phase Transitions","url":"https://www.academia.edu/Documents/in/Phase_Transitions"},{"id":263097,"name":"Application","url":"https://www.academia.edu/Documents/in/Application"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":179010,"name":"Natural Sciences","url":"https://www.academia.edu/Documents/in/Natural_Sciences"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/FedericoCamia&quot;,&quot;location&quot;:&quot;/FedericoCamia&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/FedericoCamia&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-e023a8db-1630-42f6-9c01-13532884a552"></div> <div id="ProfileCheckPaperUpdate-react-component-e023a8db-1630-42f6-9c01-13532884a552"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Federico Camia</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Federico" data-follow-user-id="52848710" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="52848710"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">10</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><a href="/FedericoCamia/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52848710" href="https://www.academia.edu/Documents/in/Phase_Transitions"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/FedericoCamia&quot;,&quot;location&quot;:&quot;/FedericoCamia&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/FedericoCamia&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Phase Transitions&quot;]}" data-trace="false" data-dom-id="Pill-react-component-76fad024-94ec-4774-a8a4-6ce89f2c87cc"></div> <div id="Pill-react-component-76fad024-94ec-4774-a8a4-6ce89f2c87cc"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52848710" href="https://www.academia.edu/Documents/in/Application"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Application&quot;]}" data-trace="false" data-dom-id="Pill-react-component-124cb364-b90a-48a8-be6a-a1252e81b681"></div> <div id="Pill-react-component-124cb364-b90a-48a8-be6a-a1252e81b681"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52848710" href="https://www.academia.edu/Documents/in/Statistical_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Statistical Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4a0a1869-0335-43f5-b181-27cac233a6f4"></div> <div id="Pill-react-component-4a0a1869-0335-43f5-b181-27cac233a6f4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52848710" href="https://www.academia.edu/Documents/in/Phase_transition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Phase transition&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9e0fdf46-879e-4648-8026-75b4a196ee4a"></div> <div id="Pill-react-component-9e0fdf46-879e-4648-8026-75b4a196ee4a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52848710" href="https://www.academia.edu/Documents/in/Natural_Sciences"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Natural Sciences&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ac4c003d-d81d-4af4-b96f-ec3dabc22210"></div> <div id="Pill-react-component-ac4c003d-d81d-4af4-b96f-ec3dabc22210"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Federico Camia</h3></div><div class="js-work-strip profile--work_container" data-work-id="122977446"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122977446/On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters"><img alt="Research paper thumbnail of On the density of 2D critical percolation gaskets and anchored clusters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122977446/On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters">On the density of 2D critical percolation gaskets and anchored clusters</a></div><div class="wp-workCard_item"><span>letters in mathematical physics/Letters in mathematical physics</span><span>, Mar 15, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122977446"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122977446"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122977446; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122977446]").text(description); $(".js-view-count[data-work-id=122977446]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122977446; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122977446']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122977446, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122977446]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122977446,"title":"On the density of 2D critical percolation gaskets and anchored clusters","translated_title":"","metadata":{"publication_date":{"day":15,"month":3,"year":2024,"errors":{}},"publication_name":"letters in mathematical physics/Letters in mathematical physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122977446/On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters","translated_internal_url":"","created_at":"2024-08-18T03:57:18.028-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[],"research_interests":[{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":1233815,"name":"Percolation Theory","url":"https://www.academia.edu/Documents/in/Percolation_Theory"},{"id":1247107,"name":"Gasket","url":"https://www.academia.edu/Documents/in/Gasket"}],"urls":[{"id":44076812,"url":"https://doi.org/10.1007/s11005-024-01793-0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122977443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122977443/Cover_Times_of_the_Massive_Random_Walk_Loop_Soup"><img alt="Research paper thumbnail of Cover Times of the Massive Random Walk Loop Soup" class="work-thumbnail" src="https://attachments.academia-assets.com/117521674/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122977443/Cover_Times_of_the_Massive_Random_Walk_Loop_Soup">Cover Times of the Massive Random Walk Loop Soup</a></div><div class="wp-workCard_item"><span>Mathematical physics, analysis and geometry</span><span>, Mar 22, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fa6c6ee14e1d3f6944757c439b460bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117521674,&quot;asset_id&quot;:122977443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117521674/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122977443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122977443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122977443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122977443]").text(description); $(".js-view-count[data-work-id=122977443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122977443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122977443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122977443, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fa6c6ee14e1d3f6944757c439b460bc" } } $('.js-work-strip[data-work-id=122977443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122977443,"title":"Cover Times of the Massive Random Walk Loop Soup","translated_title":"","metadata":{"grobid_abstract":"We study cover times of subsets of Z 2 by a two-dimensional massive random walk loop soup. We consider a sequence of subsets A n ⊂ Z 2 such that |A n | → ∞ and determine the distributional limit of their cover times T (A n). We allow the killing rate κ n (or equivalently the \"mass\") of the loop soup to depend on the size of the set A n to be covered. In particular, we determine the limiting behavior of the cover times for inverse killing rates all the way up to κ −1 n = |A n | 1−8/(log log |A n |) , showing that it can be described by a Gumbel distribution. Since a typical loop in this model will have length at most of order κ −1/2 n = |A n | 1/2 , if κ −1 n exceeded |A n |, the cover times of all points in a tightly packed set A n (i.e., a square or close to a ball) would presumably be heavily correlated, complicating the analysis. Our result comes close to this extreme case.","publication_date":{"day":22,"month":3,"year":2024,"errors":{}},"publication_name":"Mathematical physics, analysis and geometry","grobid_abstract_attachment_id":117521674},"translated_abstract":null,"internal_url":"https://www.academia.edu/122977443/Cover_Times_of_the_Massive_Random_Walk_Loop_Soup","translated_internal_url":"","created_at":"2024-08-18T03:57:05.500-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117521674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117521674/thumbnails/1.jpg","file_name":"s11040-024-09478-9.pdf","download_url":"https://www.academia.edu/attachments/117521674/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Times_of_the_Massive_Random_Walk_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117521674/s11040-024-09478-9-libre.pdf?1723982809=\u0026response-content-disposition=attachment%3B+filename%3DCover_Times_of_the_Massive_Random_Walk_L.pdf\u0026Expires=1732749550\u0026Signature=CrvzXVmaxacLCnXayXRZx8-IL1Cu0NHgKphv2n3dsaoU1WRGmvAxQxkuvGQVmqcZZMtCCxbY7EdOSOd4cVVJ~7VRRqtANy7OxhW4Mq1URV-psnmTpLNpL~jEnEpPzuZ1wMhMLP6qgL0Hkn3Ws1JcpSAmy63W9xque9~5m8IkdryjXT8FxTZ5UQzAnQ2vQXI3hR2oRwjF4kMBr0gsTOMYADzab7XhmTGkByRXyPH1V96~dfNRENEMwm3UU2G9Cn~fLMxDAiLlg9OLDc7TuJq5i0pFcTR6-1AxGIAnFwZiChWGaNbmatfiOj5iSYa5~XJxy38SlH9qCj0zrmkOxJxRoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cover_Times_of_the_Massive_Random_Walk_Loop_Soup","translated_slug":"","page_count":54,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":117521674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117521674/thumbnails/1.jpg","file_name":"s11040-024-09478-9.pdf","download_url":"https://www.academia.edu/attachments/117521674/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Times_of_the_Massive_Random_Walk_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117521674/s11040-024-09478-9-libre.pdf?1723982809=\u0026response-content-disposition=attachment%3B+filename%3DCover_Times_of_the_Massive_Random_Walk_L.pdf\u0026Expires=1732749550\u0026Signature=CrvzXVmaxacLCnXayXRZx8-IL1Cu0NHgKphv2n3dsaoU1WRGmvAxQxkuvGQVmqcZZMtCCxbY7EdOSOd4cVVJ~7VRRqtANy7OxhW4Mq1URV-psnmTpLNpL~jEnEpPzuZ1wMhMLP6qgL0Hkn3Ws1JcpSAmy63W9xque9~5m8IkdryjXT8FxTZ5UQzAnQ2vQXI3hR2oRwjF4kMBr0gsTOMYADzab7XhmTGkByRXyPH1V96~dfNRENEMwm3UU2G9Cn~fLMxDAiLlg9OLDc7TuJq5i0pFcTR6-1AxGIAnFwZiChWGaNbmatfiOj5iSYa5~XJxy38SlH9qCj0zrmkOxJxRoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117521672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117521672/thumbnails/1.jpg","file_name":"s11040-024-09478-9.pdf","download_url":"https://www.academia.edu/attachments/117521672/download_file","bulk_download_file_name":"Cover_Times_of_the_Massive_Random_Walk_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117521672/s11040-024-09478-9-libre.pdf?1723982806=\u0026response-content-disposition=attachment%3B+filename%3DCover_Times_of_the_Massive_Random_Walk_L.pdf\u0026Expires=1732749551\u0026Signature=f1NeKg1UCuGv~CZzAlC1h-FMAT9LMQ1cYH5zZzSD1hCS3OlnPXzngCB~i8Hk5RKujZYqkKKW8ql7W6Xjyf1FMTShvqI1oVqIWulJ-st0Sr3AC0NYy8dkLjkUpluuarlXn-zGHHlp41okXLT4WkuqG5Rxf8Fy9uyHbkXC~Ls5PNULIXl~C67UBBnrcG47VGk0ggSyhB-EdElHauUcvBhgPYIgE9nxzM6j3pva2FDEqh11yMFr0v~dYyZ8apR9htOcn1zJw0H-qnlSdU3h4rFHqAjlZ7ewxLSI3-YyDbNjleQRzmcZEU3CkhIBaf8VbkWzVrlZMHUj87iR1MYYr4je9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"}],"urls":[{"id":44076810,"url":"https://link.springer.com/content/pdf/10.1007/s11040-024-09478-9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115612815"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115612815/Spin_systems_from_loop_soups"><img alt="Research paper thumbnail of Spin systems from loop soups" class="work-thumbnail" src="https://attachments.academia-assets.com/111971336/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115612815/Spin_systems_from_loop_soups">Spin systems from loop soups</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 9, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="022627981ba8ed1a270d0d5a7ea74f44" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111971336,&quot;asset_id&quot;:115612815,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111971336/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115612815"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115612815"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115612815; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115612815]").text(description); $(".js-view-count[data-work-id=115612815]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115612815; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115612815']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115612815, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "022627981ba8ed1a270d0d5a7ea74f44" } } $('.js-work-strip[data-work-id=115612815]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115612815,"title":"Spin systems from loop soups","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We study spin systems defined by the winding of a random walk loop soup. For a particular choice of loop soup intensity, we show that the corresponding spin system is reflection-positive and is dual, in the Kramers-Wannier sense, to the spin system sgn(ϕ) where ϕ is a discrete Gaussian free field. In general, we show that the spin correlation functions have conformally covariant scaling limits corresponding to the one-parameter family of functions studied by Camia, Gandolfi and Kleban (Nuclear Physics B 902, 2016) and defined in terms of the winding of the Brownian loop soup. These functions have properties consistent with the behavior of correlation functions of conformal primaries in a conformal field theory. Here, we prove that they do correspond to correlation functions of continuum fields (random generalized functions) for values of the intensity of the Brownian loop soup that are not too large.","publication_date":{"day":9,"month":3,"year":2018,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":111971336},"translated_abstract":null,"internal_url":"https://www.academia.edu/115612815/Spin_systems_from_loop_soups","translated_internal_url":"","created_at":"2024-02-29T19:02:16.164-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":111971336,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111971336/thumbnails/1.jpg","file_name":"1803.03636.pdf","download_url":"https://www.academia.edu/attachments/111971336/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spin_systems_from_loop_soups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111971336/1803.03636-libre.pdf?1709264864=\u0026response-content-disposition=attachment%3B+filename%3DSpin_systems_from_loop_soups.pdf\u0026Expires=1732749551\u0026Signature=d3Oj5y8ryGplc52IJK9b1GzdUhAu4-ZYQhTBGpdoL1cYfWfA9EjOm0x1BS7vZVJUfIxhKETVnOgxqZy2jvRVD12A04Hhklgh-rJixtbN~aNyEKCdWhnkzUtmVVDw5CbnMI~X7e1My-C6eR-nXRHkgkLCGWY37RvVdEDkNeXDmQHGdiecovpf8aPa3pRF5Febu8WWOh-BYpgNdUDmq~kUUW19yTOe4GbfKWs2~hwXKdf7llF1HwfT08CaU6zDSzPCwO4sdkE-24crgTdaFbxz5zBc5dYdPPgoBZpRQgMuSnDhcrLE2MuTUbSQkLUJWojixvnSP2~7FGZtsDmqovqflw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spin_systems_from_loop_soups","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":111971336,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111971336/thumbnails/1.jpg","file_name":"1803.03636.pdf","download_url":"https://www.academia.edu/attachments/111971336/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spin_systems_from_loop_soups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111971336/1803.03636-libre.pdf?1709264864=\u0026response-content-disposition=attachment%3B+filename%3DSpin_systems_from_loop_soups.pdf\u0026Expires=1732749551\u0026Signature=d3Oj5y8ryGplc52IJK9b1GzdUhAu4-ZYQhTBGpdoL1cYfWfA9EjOm0x1BS7vZVJUfIxhKETVnOgxqZy2jvRVD12A04Hhklgh-rJixtbN~aNyEKCdWhnkzUtmVVDw5CbnMI~X7e1My-C6eR-nXRHkgkLCGWY37RvVdEDkNeXDmQHGdiecovpf8aPa3pRF5Febu8WWOh-BYpgNdUDmq~kUUW19yTOe4GbfKWs2~hwXKdf7llF1HwfT08CaU6zDSzPCwO4sdkE-24crgTdaFbxz5zBc5dYdPPgoBZpRQgMuSnDhcrLE2MuTUbSQkLUJWojixvnSP2~7FGZtsDmqovqflw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":111971335,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111971335/thumbnails/1.jpg","file_name":"1803.03636.pdf","download_url":"https://www.academia.edu/attachments/111971335/download_file","bulk_download_file_name":"Spin_systems_from_loop_soups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111971335/1803.03636-libre.pdf?1709264864=\u0026response-content-disposition=attachment%3B+filename%3DSpin_systems_from_loop_soups.pdf\u0026Expires=1732749551\u0026Signature=D~eXmG8t2x6bToqe71NtTxK9vUERFeqCgAOyV3jarSbVFD2JSE~g0U1-YNSRHlXH0GTDDb3C6cRasylhCTmsueZajbeAxYOjR6eGM7P2cTxhb7mc6dRx7J8uZSxIDObCXF-ocCcFh6VbS9pUWrgMa0im6XOL~SFddWnGJSjCewbksxmDOVxRYvvL3NhEVuH9BJuueCkTXR4TaN0muv1hjgivxlADbtI~17OvH6gJR5h2LtKaisIBoMaP7jmhbXJBSTH7Tc9sT8o4fn1zah2E~v8OJ1KdZBFDB0cc5nd6HQ6dA7H1s0q5Q1Q0JXefxtii~NfSFAzZ3SkqUkf2Z7oOJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"}],"urls":[{"id":39922552,"url":"http://arxiv.org/pdf/1803.03636"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115612814"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115612814/Phase_transitions_Euclidean_fields_and_self_similar_random_fractals"><img alt="Research paper thumbnail of Phase transitions, Euclidean fields and self-similar random fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115612814/Phase_transitions_Euclidean_fields_and_self_similar_random_fractals">Phase transitions, Euclidean fields and self-similar random fractals</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115612814"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115612814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115612814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115612814]").text(description); $(".js-view-count[data-work-id=115612814]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115612814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115612814']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115612814, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115612814]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115612814,"title":"Phase transitions, Euclidean fields and self-similar random fractals","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/115612814/Phase_transitions_Euclidean_fields_and_self_similar_random_fractals","translated_internal_url":"","created_at":"2024-02-29T19:02:15.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Phase_transitions_Euclidean_fields_and_self_similar_random_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"},{"id":730198,"name":"Euclidean Geometry","url":"https://www.academia.edu/Documents/in/Euclidean_Geometry"}],"urls":[{"id":39922551,"url":"https://nyuscholars.nyu.edu/en/publications/phase-transitions-euclidean-fields-and-self-similar-random-fracta"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115612798"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115612798/Arbeitsgemeinschaft_Percolation"><img alt="Research paper thumbnail of Arbeitsgemeinschaft: Percolation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115612798/Arbeitsgemeinschaft_Percolation">Arbeitsgemeinschaft: Percolation</a></div><div class="wp-workCard_item"><span>Oberwolfach Reports</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115612798"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115612798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115612798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115612798]").text(description); $(".js-view-count[data-work-id=115612798]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115612798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115612798']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115612798, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115612798]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115612798,"title":"Arbeitsgemeinschaft: Percolation","translated_title":"","metadata":{"publisher":"EMS Press","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Oberwolfach Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115612798/Arbeitsgemeinschaft_Percolation","translated_internal_url":"","created_at":"2024-02-29T19:01:51.739-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Arbeitsgemeinschaft_Percolation","translated_slug":"","page_count":null,"language":"de","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[],"research_interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":385916,"name":"Percolation threshold","url":"https://www.academia.edu/Documents/in/Percolation_threshold"},{"id":778976,"name":"Scaling Law","url":"https://www.academia.edu/Documents/in/Scaling_Law"}],"urls":[{"id":39922545,"url":"https://doi.org/10.4171/owr/2007/48"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282532/The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions"><img alt="Research paper thumbnail of The effect of free boundary conditions on the Ising model in high dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/108147790/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282532/The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions">The effect of free boundary conditions on the Ising model in high dimensions</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Nov 5, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ead1c0340518addf497414f0e58f2ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147790,&quot;asset_id&quot;:110282532,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147790/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282532]").text(description); $(".js-view-count[data-work-id=110282532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ead1c0340518addf497414f0e58f2ff" } } $('.js-work-strip[data-work-id=110282532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282532,"title":"The effect of free boundary conditions on the Ising model in high dimensions","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We study the critical Ising model with free boundary conditions on finite domains in Z d with d ≥ 4. Under the assumption, so far only proved completely for high d, that the critical infinite volume two-point function is of order |x − y| −(d−2) for large |x − y|, we prove the same is valid on large finite cubes with free boundary conditions, as long as x, y are not too close to the boundary. This confirms a numerical prediction in the physics literature by showing that the critical susceptibility in a finite domain of linear size L with free boundary conditions is of order L 2 as L → ∞. We also prove that the scaling limit of the near-critical (small external field) Ising magnetization field with free boundary conditions is Gaussian with the same covariance as the critical scaling limit, and thus the correlations do not decay exponentially. This is very different from the situation in low d or the expected behavior in high d with bulk boundary conditions.","publication_date":{"day":5,"month":11,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":108147790},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282532/The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions","translated_internal_url":"","created_at":"2023-12-01T03:45:20.495-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147790/thumbnails/1.jpg","file_name":"2011.02814.pdf","download_url":"https://www.academia.edu/attachments/108147790/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_free_boundary_conditions_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147790/2011.02814-libre.pdf?1701433590=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_free_boundary_conditions_o.pdf\u0026Expires=1732749551\u0026Signature=QvCahWvWNVxf~hgzB7t~FR~syJrnKMNknkcT7ByR4t8R15WIH4mxVDtumwJT~fqd8Mo1Xe4yIRK6R-F39WrlbsFzZi9jBjx9GGAEYBX7oRHXQ9i12UjVeK~JZSySgFY8IPITo89oyp9o5vXmkGuM1FNcd6omoWj~ZQPYG7Se3o7ZWnntP5vTdwLyXicawsM0axnZtZgQ1urS~SAkdC5dg5YA2Bsk~Tb8cnYmxOou6hRXnsVTaL1L4c~tpDU5Od7z3aauXmYv1zx0~a-vFkD1trNwxYVVkImQrZA94-xynDDksxf4kDyfUriUbnUmY~E-~NiYLskxnd-rIVGeaZnYcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147790/thumbnails/1.jpg","file_name":"2011.02814.pdf","download_url":"https://www.academia.edu/attachments/108147790/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_free_boundary_conditions_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147790/2011.02814-libre.pdf?1701433590=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_free_boundary_conditions_o.pdf\u0026Expires=1732749551\u0026Signature=QvCahWvWNVxf~hgzB7t~FR~syJrnKMNknkcT7ByR4t8R15WIH4mxVDtumwJT~fqd8Mo1Xe4yIRK6R-F39WrlbsFzZi9jBjx9GGAEYBX7oRHXQ9i12UjVeK~JZSySgFY8IPITo89oyp9o5vXmkGuM1FNcd6omoWj~ZQPYG7Se3o7ZWnntP5vTdwLyXicawsM0axnZtZgQ1urS~SAkdC5dg5YA2Bsk~Tb8cnYmxOou6hRXnsVTaL1L4c~tpDU5Od7z3aauXmYv1zx0~a-vFkD1trNwxYVVkImQrZA94-xynDDksxf4kDyfUriUbnUmY~E-~NiYLskxnd-rIVGeaZnYcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108147789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147789/thumbnails/1.jpg","file_name":"2011.02814.pdf","download_url":"https://www.academia.edu/attachments/108147789/download_file","bulk_download_file_name":"The_effect_of_free_boundary_conditions_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147789/2011.02814-libre.pdf?1701433589=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_free_boundary_conditions_o.pdf\u0026Expires=1732749551\u0026Signature=GooiVTcNySZUgV9IB3rzYCZrkuwUMve1sYidlf~lMQR1hI3gtDlr8bHFxOmSOmtD1CJ0RUhbPkrYhTQkKyeoiPejw~-xgIWYvZzUCjPP9oDUcS3~x7445QsDUVoNX-KT2EItN2VNroMvGVLz60iBBdWxozhKh~pERjzyYMXLfi6MNe6cEsBPgRQmwypmusUMWok-ZgkWrnp~ykOCLBYZJ9R5gx0d9BMuhTF2B3Xj4zZNhexUHdjo8sJsY662g2RSSTlWeilHwqLi6h5iNWzk78dKLM4DDRZK9j1MJkbzzArE5u6nNC9zyVNefeQx4ReXjdNFvGsHO0ScbiMLlXhwNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":939537,"name":"Boundary Value Problem","url":"https://www.academia.edu/Documents/in/Boundary_Value_Problem"}],"urls":[{"id":36224035,"url":"http://arxiv.org/pdf/2011.02814"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282528/Monotonicity_of_Ursell_Functions_in_the_Ising_Model"><img alt="Research paper thumbnail of Monotonicity of Ursell Functions in the Ising Model" class="work-thumbnail" src="https://attachments.academia-assets.com/108147788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282528/Monotonicity_of_Ursell_Functions_in_the_Ising_Model">Monotonicity of Ursell Functions in the Ising Model</a></div><div class="wp-workCard_item"><span>Communications in Mathematical Physics</span><span>, Apr 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f4ce11dd5de7225dbc15aceff6205f52" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147788,&quot;asset_id&quot;:110282528,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147788/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282528]").text(description); $(".js-view-count[data-work-id=110282528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f4ce11dd5de7225dbc15aceff6205f52" } } $('.js-work-strip[data-work-id=110282528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282528,"title":"Monotonicity of Ursell Functions in the Ising Model","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"In this paper, we consider Ising models with ferromagnetic pair interactions. We prove that the Ursell functions u 2k satisfy: (−1) k−1 u 2k is increasing in each interaction. As an application, we prove a 1983 conjecture by Nishimori and Griffiths about the partition function of the Ising model with complex external field h: its closest zero to the origin (in the variable h) moves towards the origin as an arbitrary interaction increases.","publication_date":{"day":1,"month":4,"year":2023,"errors":{}},"publication_name":"Communications in Mathematical Physics","grobid_abstract_attachment_id":108147788},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282528/Monotonicity_of_Ursell_Functions_in_the_Ising_Model","translated_internal_url":"","created_at":"2023-12-01T03:45:19.999-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147788/thumbnails/1.jpg","file_name":"2207.pdf","download_url":"https://www.academia.edu/attachments/108147788/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monotonicity_of_Ursell_Functions_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147788/2207-libre.pdf?1701433599=\u0026response-content-disposition=attachment%3B+filename%3DMonotonicity_of_Ursell_Functions_in_the.pdf\u0026Expires=1732749551\u0026Signature=aFtRTZMPqiZQHuav1tcnrVM8yHhzrMbahSHVOhIQ99nOxsb8CoOcu6-Glz1q0td~pxJrqsHM~vYlY0kA~oOBVukHPylet8nuToGeQl68vOYDIA4nt10I6q~GRK4zDe-ZgXWrkzvzc9PeRu56kYpGg4rqspd~OoHppCDG5SFf8hBf20aX4w1VVP-je6cA43ymWYwv4AFaYpPG03G0OTSkL6osRPzd1jP0g5Ocwywn4JEHzSZ2kv7I9DhaNOnZUEEFtFP8PARpM2uFmdzH40MQfSEJRK17pPkkQ~ZCxFAAVV32fi7dn0Oms69~mD8aGfGNLsg8r28YYezlL5V78h77Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Monotonicity_of_Ursell_Functions_in_the_Ising_Model","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147788/thumbnails/1.jpg","file_name":"2207.pdf","download_url":"https://www.academia.edu/attachments/108147788/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monotonicity_of_Ursell_Functions_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147788/2207-libre.pdf?1701433599=\u0026response-content-disposition=attachment%3B+filename%3DMonotonicity_of_Ursell_Functions_in_the.pdf\u0026Expires=1732749551\u0026Signature=aFtRTZMPqiZQHuav1tcnrVM8yHhzrMbahSHVOhIQ99nOxsb8CoOcu6-Glz1q0td~pxJrqsHM~vYlY0kA~oOBVukHPylet8nuToGeQl68vOYDIA4nt10I6q~GRK4zDe-ZgXWrkzvzc9PeRu56kYpGg4rqspd~OoHppCDG5SFf8hBf20aX4w1VVP-je6cA43ymWYwv4AFaYpPG03G0OTSkL6osRPzd1jP0g5Ocwywn4JEHzSZ2kv7I9DhaNOnZUEEFtFP8PARpM2uFmdzH40MQfSEJRK17pPkkQ~ZCxFAAVV32fi7dn0Oms69~mD8aGfGNLsg8r28YYezlL5V78h77Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108147787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147787/thumbnails/1.jpg","file_name":"2207.pdf","download_url":"https://www.academia.edu/attachments/108147787/download_file","bulk_download_file_name":"Monotonicity_of_Ursell_Functions_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147787/2207-libre.pdf?1701433594=\u0026response-content-disposition=attachment%3B+filename%3DMonotonicity_of_Ursell_Functions_in_the.pdf\u0026Expires=1732749551\u0026Signature=RSI7cPfq5FExmrW8vXdMjvpyznAqiWBw8Z3MBU41OBzus4lCcCMp~-nY-JrCbOVlmYTeoUCyDVOAN9zRoyDhfkF-Oku2un~3Vu3-4PQq6G7fbeQ6gfKNjvuRAd-VF3RY277KzO4box9xGdXHBCc3i-C7mJ39~2hBct99nZ4I6gkyZl-ORc25jdyV1zn5DX-i-nzdDK6lne8Z-WLXJews4-1MXWvtcHmxJA-dp68Wg3guPM2qbV1sxox2kMwFaEkoacJWjIhUGNRNji~PUjbDvqJRU6umijuG8n5PV8i68pahwg9Jmuq1izHzJ3wG2HWGIaGVF7fUb0T4nlKJZSM2dQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":2570814,"name":"conjecture","url":"https://www.academia.edu/Documents/in/conjecture"}],"urls":[{"id":36224032,"url":"http://arxiv.org/pdf/2207.12247"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282524/Ising_Conformal_Fields_and_Cluster_Area_Measures"><img alt="Research paper thumbnail of Ising (Conformal) Fields and Cluster Area Measures" class="work-thumbnail" src="https://attachments.academia-assets.com/108147786/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282524/Ising_Conformal_Fields_and_Cluster_Area_Measures">Ising (Conformal) Fields and Cluster Area Measures</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 21, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f2c532d850eff278d4da24e5b06562e1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147786,&quot;asset_id&quot;:110282524,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147786/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282524]").text(description); $(".js-view-count[data-work-id=110282524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f2c532d850eff278d4da24e5b06562e1" } } $('.js-work-strip[data-work-id=110282524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282524,"title":"Ising (Conformal) Fields and Cluster Area Measures","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":21,"month":12,"year":2008,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282524/Ising_Conformal_Fields_and_Cluster_Area_Measures","translated_internal_url":"","created_at":"2023-12-01T03:45:19.514-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147786/thumbnails/1.jpg","file_name":"0812.4030.pdf","download_url":"https://www.academia.edu/attachments/108147786/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ising_Conformal_Fields_and_Cluster_Area.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147786/0812.4030-libre.pdf?1701433585=\u0026response-content-disposition=attachment%3B+filename%3DIsing_Conformal_Fields_and_Cluster_Area.pdf\u0026Expires=1732749551\u0026Signature=Hdwr3GmHUG59QnGUsOyDP3pP~gs35UJ3TcOcFkv5YsEqCBTVjd~BXXab3TCRRS0W7UkGJt615~Nadxa3irmLrYkZ4WPRb~N1uVf~YmnZIb8oe91x2DUQSbiesbPIJM3vxw89KwRB71pAum0pqdeEXz6JcH9KjSCYdL8S3oOGAiJuZ~LrGpFoNDV77QnyL9EOTVexoD-qMILFlL4GLGVa5ocWECo4r5rCtJUpEB9g8cQUBBX4pOf2lP3uqgj4RLS2b1dtozhUbaaAXmvfVnGp2ZMBp2rJ1kc7IZF~eaEa~7enXJZm~3r3w9aUNtVn8gPnkNyOWIkUASwqiP~p2CBdxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ising_Conformal_Fields_and_Cluster_Area_Measures","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147786/thumbnails/1.jpg","file_name":"0812.4030.pdf","download_url":"https://www.academia.edu/attachments/108147786/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ising_Conformal_Fields_and_Cluster_Area.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147786/0812.4030-libre.pdf?1701433585=\u0026response-content-disposition=attachment%3B+filename%3DIsing_Conformal_Fields_and_Cluster_Area.pdf\u0026Expires=1732749551\u0026Signature=Hdwr3GmHUG59QnGUsOyDP3pP~gs35UJ3TcOcFkv5YsEqCBTVjd~BXXab3TCRRS0W7UkGJt615~Nadxa3irmLrYkZ4WPRb~N1uVf~YmnZIb8oe91x2DUQSbiesbPIJM3vxw89KwRB71pAum0pqdeEXz6JcH9KjSCYdL8S3oOGAiJuZ~LrGpFoNDV77QnyL9EOTVexoD-qMILFlL4GLGVa5ocWECo4r5rCtJUpEB9g8cQUBBX4pOf2lP3uqgj4RLS2b1dtozhUbaaAXmvfVnGp2ZMBp2rJ1kc7IZF~eaEa~7enXJZm~3r3w9aUNtVn8gPnkNyOWIkUASwqiP~p2CBdxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":154823,"name":"Conformal Field Theory","url":"https://www.academia.edu/Documents/in/Conformal_Field_Theory"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":592737,"name":"CLE","url":"https://www.academia.edu/Documents/in/CLE"},{"id":1174261,"name":"Potts Model","url":"https://www.academia.edu/Documents/in/Potts_Model"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2177640,"name":"Random Field","url":"https://www.academia.edu/Documents/in/Random_Field"},{"id":2740863,"name":"Limit (Mathematics)","url":"https://www.academia.edu/Documents/in/Limit_Mathematics_"}],"urls":[{"id":36224029,"url":"https://arxiv.org/pdf/0812.4030.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282519/Cardys_Formula_for_some_Dependent_Percolation_Models"><img alt="Research paper thumbnail of Cardy&#39;s Formula for some Dependent Percolation Models" class="work-thumbnail" src="https://attachments.academia-assets.com/108147781/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282519/Cardys_Formula_for_some_Dependent_Percolation_Models">Cardy&#39;s Formula for some Dependent Percolation Models</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Nov 15, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f1b4087cd21556e3a6b34e7850d9d08f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147781,&quot;asset_id&quot;:110282519,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147781/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282519]").text(description); $(".js-view-count[data-work-id=110282519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f1b4087cd21556e3a6b34e7850d9d08f" } } $('.js-work-strip[data-work-id=110282519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282519,"title":"Cardy's Formula for some Dependent Percolation Models","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We prove Cardy's formula for rectangular crossing probabilities in dependent site percolation models that arise from a deterministic cellular automaton with a random initial state. The cellular automaton corresponds to the zero-temperature case of Domany's stochastic Ising ferromagnet on the hexagonal lattice H (with alternating updates of two sublattices) [7]; it may also be realized on the triangular lattice T with flips when a site disagrees with six, five and sometimes four of its six neighbors.","publication_date":{"day":15,"month":11,"year":2001,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":108147781},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282519/Cardys_Formula_for_some_Dependent_Percolation_Models","translated_internal_url":"","created_at":"2023-12-01T03:45:18.891-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147781/thumbnails/1.jpg","file_name":"0111293.pdf","download_url":"https://www.academia.edu/attachments/108147781/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cardys_Formula_for_some_Dependent_Percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147781/0111293-libre.pdf?1701433587=\u0026response-content-disposition=attachment%3B+filename%3DCardys_Formula_for_some_Dependent_Percol.pdf\u0026Expires=1732749551\u0026Signature=X3GA9MvyKmIDy9cbFba8ADCvyDahoWnjJQMwhxuMbiWkha4oUQX6hac-ONmWaa3tZIKxCd06~Y8K7NL3kYfTgH9ABmpsh~2sXSh7ZwpI8vWoWWwOsYsKkMKyfkTc1mzZ8vcalvLWZTtbttOwEnjqZ1TLbGb4fjDhkStxQHCJnzid6EvlXS3vtvOnoDypJqsYCfKG9j9tdwUTkGJOH3KbHoseNepLi~S9iEew2nKGALgVi5TBguxYouiX5MVneP3cxBdrJEXsGaokvqe6OjqWp0D~e0tlSxbz98itGxK7IWGxmxJYUh4IDIeL0kc4Y3bic1waJjA3bfry4F99hJ76sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cardys_Formula_for_some_Dependent_Percolation_Models","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147781/thumbnails/1.jpg","file_name":"0111293.pdf","download_url":"https://www.academia.edu/attachments/108147781/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cardys_Formula_for_some_Dependent_Percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147781/0111293-libre.pdf?1701433587=\u0026response-content-disposition=attachment%3B+filename%3DCardys_Formula_for_some_Dependent_Percol.pdf\u0026Expires=1732749551\u0026Signature=X3GA9MvyKmIDy9cbFba8ADCvyDahoWnjJQMwhxuMbiWkha4oUQX6hac-ONmWaa3tZIKxCd06~Y8K7NL3kYfTgH9ABmpsh~2sXSh7ZwpI8vWoWWwOsYsKkMKyfkTc1mzZ8vcalvLWZTtbttOwEnjqZ1TLbGb4fjDhkStxQHCJnzid6EvlXS3vtvOnoDypJqsYCfKG9j9tdwUTkGJOH3KbHoseNepLi~S9iEew2nKGALgVi5TBguxYouiX5MVneP3cxBdrJEXsGaokvqe6OjqWp0D~e0tlSxbz98itGxK7IWGxmxJYUh4IDIeL0kc4Y3bic1waJjA3bfry4F99hJ76sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":555663,"name":"Mathematics and Probability","url":"https://www.academia.edu/Documents/in/Mathematics_and_Probability"},{"id":771688,"name":"Hexagonal lattice","url":"https://www.academia.edu/Documents/in/Hexagonal_lattice"},{"id":1745766,"name":"Cellular automaton","url":"https://www.academia.edu/Documents/in/Cellular_automaton"}],"urls":[{"id":36224026,"url":"https://arxiv.org/pdf/cond-mat/0111293"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282453"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282453/Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model"><img alt="Research paper thumbnail of Conformal Measure Ensembles for Percolation and the FK-Ising model" class="work-thumbnail" src="https://attachments.academia-assets.com/108147751/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282453/Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model">Conformal Measure Ensembles for Percolation and the FK-Ising model</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 6, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b1a87ac7adb7221fa279f6f09bca999" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147751,&quot;asset_id&quot;:110282453,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147751/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282453"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282453"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282453; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282453]").text(description); $(".js-view-count[data-work-id=110282453]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282453; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282453']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282453, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b1a87ac7adb7221fa279f6f09bca999" } } $('.js-work-strip[data-work-id=110282453]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282453,"title":"Conformal Measure Ensembles for Percolation and the FK-Ising model","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Under some general assumptions, we construct the scaling limit of open clusters and their associated counting measures in a class of two dimensional percolation models. Our results apply, in particular, to critical Bernoulli site percolation on the triangular lattice and to the critical FK-Ising model on the square lattice. Fundamental properties of the scaling limit, such as conformal covariance, are explored. As an application to Bernoulli percolation, we obtain the scaling limit of the largest cluster in a bounded domain. We also apply our results to the critical, two-dimensional Ising model, obtaining the existence and uniqueness of the scaling limit of the magnetization field, as well as a geometric representation for the continuum magnetization field which can be seen as a continuum analog of the FK representation.","publication_date":{"day":6,"month":7,"year":2015,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":108147751},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282453/Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model","translated_internal_url":"","created_at":"2023-12-01T03:44:38.173-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147751/thumbnails/1.jpg","file_name":"1507.01371.pdf","download_url":"https://www.academia.edu/attachments/108147751/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conformal_Measure_Ensembles_for_Percolat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147751/1507.01371-libre.pdf?1701433607=\u0026response-content-disposition=attachment%3B+filename%3DConformal_Measure_Ensembles_for_Percolat.pdf\u0026Expires=1732749551\u0026Signature=Rgxea62bEieVYCkmOIJUvHEPwOPtgzoWXQw96LGMQJBsgFOas5wuieZkev0tR-IUTNhvVPl8XdyMP10BYtxwpcKpXul42bMUJ4w7hV-uMLRp3Mml54URzS-cecnvCTHq7qb8GERXBYHAP1EVfxwQEJizP6ApdRQczLrJB8P1tzAuKjTYQ7D4W0j5U5Q84Tww9Hc8dz4eXusOWZScLcK64i~egKWYLrzeUT-LaEohIorGwVY5DJUpWd7Z-Gr-swGJM8fdNPmddf~SuZTxN9-dldR58kvK699Tf6KdJqQ~HpKyMj~F-jKkcnQlS9nDQpaiL2JvBy-xvvgdMrGmf~Hk0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model","translated_slug":"","page_count":46,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147751/thumbnails/1.jpg","file_name":"1507.01371.pdf","download_url":"https://www.academia.edu/attachments/108147751/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conformal_Measure_Ensembles_for_Percolat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147751/1507.01371-libre.pdf?1701433607=\u0026response-content-disposition=attachment%3B+filename%3DConformal_Measure_Ensembles_for_Percolat.pdf\u0026Expires=1732749551\u0026Signature=Rgxea62bEieVYCkmOIJUvHEPwOPtgzoWXQw96LGMQJBsgFOas5wuieZkev0tR-IUTNhvVPl8XdyMP10BYtxwpcKpXul42bMUJ4w7hV-uMLRp3Mml54URzS-cecnvCTHq7qb8GERXBYHAP1EVfxwQEJizP6ApdRQczLrJB8P1tzAuKjTYQ7D4W0j5U5Q84Tww9Hc8dz4eXusOWZScLcK64i~egKWYLrzeUT-LaEohIorGwVY5DJUpWd7Z-Gr-swGJM8fdNPmddf~SuZTxN9-dldR58kvK699Tf6KdJqQ~HpKyMj~F-jKkcnQlS9nDQpaiL2JvBy-xvvgdMrGmf~Hk0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108147752,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147752/thumbnails/1.jpg","file_name":"1507.01371.pdf","download_url":"https://www.academia.edu/attachments/108147752/download_file","bulk_download_file_name":"Conformal_Measure_Ensembles_for_Percolat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147752/1507.01371-libre.pdf?1701433597=\u0026response-content-disposition=attachment%3B+filename%3DConformal_Measure_Ensembles_for_Percolat.pdf\u0026Expires=1732749551\u0026Signature=SJfNgceIfjLQaCQpVw3Tey5plS46Kmz7XIiixqVb9Ixp-uniU8nSvbGVfgWR~7mX-s1weGXBIOz608x6zzGe5qDxuQJ5pyjfeNpl2z~cPQtlW3DLcg2m6pWS2pYeN2OZtYO3P376mTia7R26K6srbc2JGF5-SsWTeldwpEGkczFmJfVlq-h1o-ahJSZUeK180WVibrOuC7kmuVvwg-niVKxgQps3SRiXmJh0aSnPElQcOdC4lfWKdvhpi2DiQVFI414gz70Kx0fVwh8Zlggfdt3EnA5o4XuVJ15R~bWWa-b2WMOjnBy~h0Ci8QF7FL2MR0GMUfs4ucIGcM6wsAD1BQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"}],"urls":[{"id":36223975,"url":"http://arxiv.org/pdf/1507.01371"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107170212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107170212/Massive_Brownian_Loop_Soup"><img alt="Research paper thumbnail of Massive Brownian Loop Soup" class="work-thumbnail" src="https://attachments.academia-assets.com/105928964/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107170212/Massive_Brownian_Loop_Soup">Massive Brownian Loop Soup</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="abf8c32206e37fc97e1f6d402aaca43e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105928964,&quot;asset_id&quot;:107170212,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105928964/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107170212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107170212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107170212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107170212]").text(description); $(".js-view-count[data-work-id=107170212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107170212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107170212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107170212, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "abf8c32206e37fc97e1f6d402aaca43e" } } $('.js-work-strip[data-work-id=107170212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107170212,"title":"Massive Brownian Loop Soup","translated_title":"","metadata":{"grobid_abstract":"We introduce a natural \"massive\" version of the Brownian loop soup of Lawler and Werner which displays conformal covariance and exponential decay. We show that this massive Brownian loop soup arises as the near-critical scaling limit of a random walk loop soup with killing and is related to the massive SLE 2 identified by Makarov and Smirnov as the near-critical scaling limit of a loop-erased random walk with killing. We conjecture that the massive Brownian loop soup describes the zero level lines of the massive Gaussian free field, and discuss possible relations to other models, such as Ising, in the offcritical regime.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"grobid_abstract_attachment_id":105928964},"translated_abstract":null,"internal_url":"https://www.academia.edu/107170212/Massive_Brownian_Loop_Soup","translated_internal_url":"","created_at":"2023-09-25T06:14:50.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105928964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105928964/thumbnails/1.jpg","file_name":"1309.6068.pdf","download_url":"https://www.academia.edu/attachments/105928964/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Massive_Brownian_Loop_Soup.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105928964/1309.6068-libre.pdf?1695655883=\u0026response-content-disposition=attachment%3B+filename%3DMassive_Brownian_Loop_Soup.pdf\u0026Expires=1732749551\u0026Signature=Wo8SiNJzaxh9vykA71nQq3Oh1Suv63i9xKilbMA1QtYm9NVP9-0LzQxRVF9ZlZdBhVtYhH3EV2EOLGI97hDSUCbSxnRJLBqXsdpjhyoik0~vs2TnqjoI27iWGsDHzLgxsxg43SUIKn6rQ0qhCMaBS9gD6ZW6UDpa3hGil91ickSz-qOkGKl4cSluqQ2YfVFCmUr8jmXcTEEZ5-xDS0jvo8PIxfasblDqQywPk~2MOAKTN37wgGIT5IPYFvh5Iunh0pslj5URdhuwYIV0mQ0MEe6C1JOE7GNqDFMPUgK-XTYkdtrxzvrpV12yq~dVX0FX8g9OzCIsiKCkT30eNOu6Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Massive_Brownian_Loop_Soup","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":105928964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105928964/thumbnails/1.jpg","file_name":"1309.6068.pdf","download_url":"https://www.academia.edu/attachments/105928964/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Massive_Brownian_Loop_Soup.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105928964/1309.6068-libre.pdf?1695655883=\u0026response-content-disposition=attachment%3B+filename%3DMassive_Brownian_Loop_Soup.pdf\u0026Expires=1732749551\u0026Signature=Wo8SiNJzaxh9vykA71nQq3Oh1Suv63i9xKilbMA1QtYm9NVP9-0LzQxRVF9ZlZdBhVtYhH3EV2EOLGI97hDSUCbSxnRJLBqXsdpjhyoik0~vs2TnqjoI27iWGsDHzLgxsxg43SUIKn6rQ0qhCMaBS9gD6ZW6UDpa3hGil91ickSz-qOkGKl4cSluqQ2YfVFCmUr8jmXcTEEZ5-xDS0jvo8PIxfasblDqQywPk~2MOAKTN37wgGIT5IPYFvh5Iunh0pslj5URdhuwYIV0mQ0MEe6C1JOE7GNqDFMPUgK-XTYkdtrxzvrpV12yq~dVX0FX8g9OzCIsiKCkT30eNOu6Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":192783,"name":"Field","url":"https://www.academia.edu/Documents/in/Field"}],"urls":[{"id":34057693,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.756.3768\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177707"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177707/Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation"><img alt="Research paper thumbnail of Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372633/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177707/Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation">Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation</a></div><div class="wp-workCard_item"><span>Journal of Statistical Physics</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is natural to expect that there are only three possible types of scaling limits for the collec...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b57f2465b82819d8d3e8eb2a81cc2112" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372633,&quot;asset_id&quot;:69177707,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372633/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177707"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177707"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177707; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177707]").text(description); $(".js-view-count[data-work-id=69177707]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177707; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177707']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177707, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b57f2465b82819d8d3e8eb2a81cc2112" } } $('.js-work-strip[data-work-id=69177707]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177707,"title":"Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation","translated_title":"","metadata":{"abstract":"It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Statistical Physics"},"translated_abstract":"It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded","internal_url":"https://www.academia.edu/69177707/Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:24.868-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372633/thumbnails/1.jpg","file_name":"0803.pdf","download_url":"https://www.academia.edu/attachments/79372633/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trivial_Critical_and_Near_critical_Scali.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372633/0803-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DTrivial_Critical_and_Near_critical_Scali.pdf\u0026Expires=1732749551\u0026Signature=Q4CWNhhN1EmrTWaKohLe2JpeK3AMgz4ibziFXIkba0yc1J662LrWG67xxkCmJqIv5xhwgklzANcy8m8-7aXpWmpP3X3fyuTqJ9F-K5h7C0ExzNNPuxeecGdf~iT7Cxr70kM~hmWqAgM8h~lpQ6BFZ6cFI9vBBL9fZQ6TD7XRiK2Xku0kQzZM4q9c6GZklHleChjFijZuIgS35qnsjdfbO09hstsBMb8uZvyj~XNTMxOvBS4yfOcuE4wNjNB~dOrtl1GZinhy-Xh5SMcuGuHgXUsLES3kB~Eumtu8Bozqe0JwtfIIzBMj0jDSG8OPbF~9hfFXaz2gKYBnodvaeFDl4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372633/thumbnails/1.jpg","file_name":"0803.pdf","download_url":"https://www.academia.edu/attachments/79372633/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trivial_Critical_and_Near_critical_Scali.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372633/0803-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DTrivial_Critical_and_Near_critical_Scali.pdf\u0026Expires=1732749551\u0026Signature=Q4CWNhhN1EmrTWaKohLe2JpeK3AMgz4ibziFXIkba0yc1J662LrWG67xxkCmJqIv5xhwgklzANcy8m8-7aXpWmpP3X3fyuTqJ9F-K5h7C0ExzNNPuxeecGdf~iT7Cxr70kM~hmWqAgM8h~lpQ6BFZ6cFI9vBBL9fZQ6TD7XRiK2Xku0kQzZM4q9c6GZklHleChjFijZuIgS35qnsjdfbO09hstsBMb8uZvyj~XNTMxOvBS4yfOcuE4wNjNB~dOrtl1GZinhy-Xh5SMcuGuHgXUsLES3kB~Eumtu8Bozqe0JwtfIIzBMj0jDSG8OPbF~9hfFXaz2gKYBnodvaeFDl4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1432574,"name":"Scale Invariance","url":"https://www.academia.edu/Documents/in/Scale_Invariance"}],"urls":[{"id":16795170,"url":"http://dx.doi.org/10.1007/s10955-009-9841-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177705"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177705/A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics"><img alt="Research paper thumbnail of A note on Edwards&#39; hypothesis for zero-temperature Ising dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/79372632/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177705/A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics">A note on Edwards&#39; hypothesis for zero-temperature Ising dynamics</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="528705810719ec20aa62e99b1bfcf742" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372632,&quot;asset_id&quot;:69177705,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372632/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177705"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177705"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177705; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177705]").text(description); $(".js-view-count[data-work-id=69177705]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177705; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177705']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177705, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "528705810719ec20aa62e99b1bfcf742" } } $('.js-work-strip[data-work-id=69177705]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177705,"title":"A note on Edwards' hypothesis for zero-temperature Ising dynamics","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We give a simple criterion for checking Edwards' hypothesis in certain zerotemperature, ferromagnetic spin-flip dynamics and use it to invalidate the hypothesis in various examples in dimension one and higher.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":79372632},"translated_abstract":null,"internal_url":"https://www.academia.edu/69177705/A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics","translated_internal_url":"","created_at":"2022-01-22T09:14:24.729-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372632/thumbnails/1.jpg","file_name":"581605.pdf","download_url":"https://www.academia.edu/attachments/79372632/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_Edwards_hypothesis_for_zero_te.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372632/581605-libre.pdf?1642873947=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_Edwards_hypothesis_for_zero_te.pdf\u0026Expires=1732749551\u0026Signature=GmSX90LeTcKn6dlXdw9uOpmDdTaFUm8O7RWyikiz856lTQ-IO8VexN-qrEQDiSBsoXj1brydVxtxKJNtEPg-8sqPCbDI6hDvdxpK0bgE~EX3ZbPs2B9JyZdnsFSLuoSmA~1AIJcRiWzoBU3sQmOXFPDkq1tBa74B8EkMLPqVwEzYn4kaKpvGCOcvke4wuDB1R2dgDBYYpOLBnnIuCmdkR3cNA3Y8MkU0iTlYuo5a4K39twPCTP4yiKJeUHg7tMpAbrUDyZ5GQFvZX4tuLdRNr1l-mhKfgcu2nVLq3TcSSl5eX9bns-8O84cFkyUw5YO4Ld6HGr2bnE-yneU2LZKWpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372632/thumbnails/1.jpg","file_name":"581605.pdf","download_url":"https://www.academia.edu/attachments/79372632/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_Edwards_hypothesis_for_zero_te.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372632/581605-libre.pdf?1642873947=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_Edwards_hypothesis_for_zero_te.pdf\u0026Expires=1732749551\u0026Signature=GmSX90LeTcKn6dlXdw9uOpmDdTaFUm8O7RWyikiz856lTQ-IO8VexN-qrEQDiSBsoXj1brydVxtxKJNtEPg-8sqPCbDI6hDvdxpK0bgE~EX3ZbPs2B9JyZdnsFSLuoSmA~1AIJcRiWzoBU3sQmOXFPDkq1tBa74B8EkMLPqVwEzYn4kaKpvGCOcvke4wuDB1R2dgDBYYpOLBnnIuCmdkR3cNA3Y8MkU0iTlYuo5a4K39twPCTP4yiKJeUHg7tMpAbrUDyZ5GQFvZX4tuLdRNr1l-mhKfgcu2nVLq3TcSSl5eX9bns-8O84cFkyUw5YO4Ld6HGr2bnE-yneU2LZKWpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":3648106,"name":"uniform distribution","url":"https://www.academia.edu/Documents/in/uniform_distribution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177704"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177704/Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process"><img alt="Research paper thumbnail of Large-$N$ Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot&#39;s Fractal Percolation Process" class="work-thumbnail" src="https://attachments.academia-assets.com/79372642/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177704/Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process">Large-$N$ Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot&#39;s Fractal Percolation Process</a></div><div class="wp-workCard_item"><span>Electronic Journal of Probability</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d3baa70bd8caa5f63500881c212655e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372642,&quot;asset_id&quot;:69177704,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372642/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177704"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177704"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177704; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177704]").text(description); $(".js-view-count[data-work-id=69177704]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177704; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177704']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177704, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d3baa70bd8caa5f63500881c212655e6" } } $('.js-work-strip[data-work-id=69177704]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177704,"title":"Large-$N$ Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot's Fractal Percolation Process","translated_title":"","metadata":{"publisher":"Institute of Mathematical Statistics","grobid_abstract":"We study Mandelbrot's percolation process in dimension d ≥ 2. The process generates random fractal sets by an iterative procedure which starts by dividing the unit cube [0, 1] d in N d subcubes, and independently retaining or discarding each subcube with probability p or 1 − p respectively. This step is then repeated within the retained subcubes at all scales. As p is varied, there is a percolation phase transition in terms of paths for all d ≥ 2, and in terms of (d − 1)-dimensional \"sheets\" for all d ≥ 3. For any d ≥ 2, we consider the random fractal set produced at the path-percolation critical value p c (N, d), and show that the probability that it contains a path connecting two opposite faces of the cube [0, 1] d tends to one as N → ∞. As an immediate consequence, we obtain that the above probability has a discontinuity, as a function of p, at p c (N, d) for all N sufficiently large. This had previously been proved only for d = 2 (for any N ≥ 2). For d ≥ 3, we prove analogous results for sheet-percolation. In dimension two, Chayes and Chayes proved that p c (N, 2) converges, as N → ∞, to the critical density p c of site percolation on the square lattice. Assuming the existence of","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Electronic Journal of Probability","grobid_abstract_attachment_id":79372642},"translated_abstract":null,"internal_url":"https://www.academia.edu/69177704/Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process","translated_internal_url":"","created_at":"2022-01-22T09:14:24.584-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372642,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372642/thumbnails/1.jpg","file_name":"getdoc2a73.pdf","download_url":"https://www.academia.edu/attachments/79372642/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_N_Limit_of_Crossing_Probabilities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372642/getdoc2a73-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DLarge_N_Limit_of_Crossing_Probabilities.pdf\u0026Expires=1732749551\u0026Signature=Wx4j3VQKykq7skPcft8A7YblR1j41dZB2ZqXlrGXMrXeIlpBbIr6tWccfxb1FsiJK6MPqpaNe8L1DLORPZCD2f6okoWZaZQ-MMTaGs5mgk94a8W-HUdWEERQF4Mabr5orM3cnh4U3igeKIXlrWbwz4phxBoTW8Kjz4nZ5CrwBqlnZJKIY5c8dcS4PfD-Z48707Cae~MvKo4GQxPUtKZipptuHYJYXclBKzftIp6cWp78BbNlJXhkTtK25pa1Vv7-AM7ej1RD8-IXm29uvywQxiusshfWXTByipHWCjAXHkQOMQD4ceWA92IeCQP628Lp3zHcN8p2ZIJl72wltlqZQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372642,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372642/thumbnails/1.jpg","file_name":"getdoc2a73.pdf","download_url":"https://www.academia.edu/attachments/79372642/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_N_Limit_of_Crossing_Probabilities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372642/getdoc2a73-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DLarge_N_Limit_of_Crossing_Probabilities.pdf\u0026Expires=1732749551\u0026Signature=Wx4j3VQKykq7skPcft8A7YblR1j41dZB2ZqXlrGXMrXeIlpBbIr6tWccfxb1FsiJK6MPqpaNe8L1DLORPZCD2f6okoWZaZQ-MMTaGs5mgk94a8W-HUdWEERQF4Mabr5orM3cnh4U3igeKIXlrWbwz4phxBoTW8Kjz4nZ5CrwBqlnZJKIY5c8dcS4PfD-Z48707Cae~MvKo4GQxPUtKZipptuHYJYXclBKzftIp6cWp78BbNlJXhkTtK25pa1Vv7-AM7ej1RD8-IXm29uvywQxiusshfWXTByipHWCjAXHkQOMQD4ceWA92IeCQP628Lp3zHcN8p2ZIJl72wltlqZQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":267802,"name":"Dimensional","url":"https://www.academia.edu/Documents/in/Dimensional"},{"id":901297,"name":"Dimensions","url":"https://www.academia.edu/Documents/in/Dimensions"},{"id":1270323,"name":"Speed of Convergence","url":"https://www.academia.edu/Documents/in/Speed_of_Convergence"},{"id":3735670,"name":"Critical value","url":"https://www.academia.edu/Documents/in/Critical_value"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177703/SLE6_and_CLE6_from_critical_percolation"><img alt="Research paper thumbnail of SLE6 and CLE6 from critical percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372637/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177703/SLE6_and_CLE6_from_critical_percolation">SLE6 and CLE6 from critical percolation</a></div><div class="wp-workCard_item"><span>Probability, geometry and integrable …</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the full scaling limit of cluster interface loops. The results given here on the full scaling ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26c45e229223255e5ab31741abee29a9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372637,&quot;asset_id&quot;:69177703,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372637/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177703]").text(description); $(".js-view-count[data-work-id=69177703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177703, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26c45e229223255e5ab31741abee29a9" } } $('.js-work-strip[data-work-id=69177703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177703,"title":"SLE6 and CLE6 from critical percolation","translated_title":"","metadata":{"abstract":"ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the full scaling limit of cluster interface loops. The results given here on the full scaling ...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Probability, geometry and integrable …"},"translated_abstract":"ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the full scaling limit of cluster interface loops. The results given here on the full scaling ...","internal_url":"https://www.academia.edu/69177703/SLE6_and_CLE6_from_critical_percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:24.426-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372637/thumbnails/1.jpg","file_name":"05camia.pdf","download_url":"https://www.academia.edu/attachments/79372637/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SLE6_and_CLE6_from_critical_percolation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372637/05camia-libre.pdf?1642873949=\u0026response-content-disposition=attachment%3B+filename%3DSLE6_and_CLE6_from_critical_percolation.pdf\u0026Expires=1732749551\u0026Signature=bKI6fOPoUBdOCmg8M-fkIoBmRCcEutDDkz-1rmh2predw0NvhgowxuqRmP6duYv9dDqdj42uF9TjCIOVGntfzM8v3SA3GRO6AOMp3YSigmJgnsgDqhc2nCCkGVcRg0meSCHTN79uAc8P7Gdrzb-fLl-mOGlpfHjJkE7cWeO9YMfTg~BF~hBSVZXHi5RY4CRinfhZnOok7E-y07A2Q0qx9SH-Y~UnJJ0BwliVgJbXFa1OxXdDU5H-ESuC4OX4a2ce3BM7Afmo7B6BLXEadZYG6pTstqrsTtv1MTnpx-aqtyPeqYfYq9yMgemqXWCELDX1QGbXXPAzCuY0XphFfSGb~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SLE6_and_CLE6_from_critical_percolation","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372637/thumbnails/1.jpg","file_name":"05camia.pdf","download_url":"https://www.academia.edu/attachments/79372637/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SLE6_and_CLE6_from_critical_percolation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372637/05camia-libre.pdf?1642873949=\u0026response-content-disposition=attachment%3B+filename%3DSLE6_and_CLE6_from_critical_percolation.pdf\u0026Expires=1732749551\u0026Signature=bKI6fOPoUBdOCmg8M-fkIoBmRCcEutDDkz-1rmh2predw0NvhgowxuqRmP6duYv9dDqdj42uF9TjCIOVGntfzM8v3SA3GRO6AOMp3YSigmJgnsgDqhc2nCCkGVcRg0meSCHTN79uAc8P7Gdrzb-fLl-mOGlpfHjJkE7cWeO9YMfTg~BF~hBSVZXHi5RY4CRinfhZnOok7E-y07A2Q0qx9SH-Y~UnJJ0BwliVgJbXFa1OxXdDU5H-ESuC4OX4a2ce3BM7Afmo7B6BLXEadZYG6pTstqrsTtv1MTnpx-aqtyPeqYfYq9yMgemqXWCELDX1QGbXXPAzCuY0XphFfSGb~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2895246,"name":"Conformal Invariance","url":"https://www.academia.edu/Documents/in/Conformal_Invariance"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177702/Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice"><img alt="Research paper thumbnail of Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice" class="work-thumbnail" src="https://attachments.academia-assets.com/79372645/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177702/Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice">Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice</a></div><div class="wp-workCard_item"><span>Progress In Probability</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferroma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferromagnetic Ising model with zero external magnetic field and a disordered ferromagnetic Ising model with a positive external magnetic field h. We consider both ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78e95e6a16533a00c553422f20e241e3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372645,&quot;asset_id&quot;:69177702,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372645/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177702]").text(description); $(".js-view-count[data-work-id=69177702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78e95e6a16533a00c553422f20e241e3" } } $('.js-work-strip[data-work-id=69177702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177702,"title":"Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice","translated_title":"","metadata":{"abstract":"We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferromagnetic Ising model with zero external magnetic field and a disordered ferromagnetic Ising model with a positive external magnetic field h. We consider both ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Progress In Probability"},"translated_abstract":"We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferromagnetic Ising model with zero external magnetic field and a disordered ferromagnetic Ising model with a positive external magnetic field h. We consider both ...","internal_url":"https://www.academia.edu/69177702/Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice","translated_internal_url":"","created_at":"2022-01-22T09:14:24.285-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372645,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372645/thumbnails/1.jpg","file_name":"0111170v1.pdf","download_url":"https://www.academia.edu/attachments/79372645/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approach_to_fixation_for_zero_temperatur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372645/0111170v1-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DApproach_to_fixation_for_zero_temperatur.pdf\u0026Expires=1732749551\u0026Signature=R--IDjNhvtLK~cBKmyvNa1qJa1wVHR2d6wT~og4wEy9tnfjWw6Ml268D-pp3Nk3G4pZldAy1hYxvRMWfa8JFq5D0idSCrA03ZuzU41Kxhz2RNRr2ztVY3iecVH1L3AK8CTpddIoAudvabD0JJlA5Ie3xIcOsWu2-j3BKsCgDWZDSXL-wzoAGI9wcv6hGGPLZQ49FGi7r08zCuBr4bEC0M6ecOD~AawxEPuYXiFNEk3t-rPveCPJulAE0eW2DssvZC42l8W87r~T75FwiNLdeMSx1evdE21Su0sWvcsMEhk5FF1bL~ePjhCE-X23y-wok2x9YCKroJDYVgv~fWNRebA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372645,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372645/thumbnails/1.jpg","file_name":"0111170v1.pdf","download_url":"https://www.academia.edu/attachments/79372645/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approach_to_fixation_for_zero_temperatur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372645/0111170v1-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DApproach_to_fixation_for_zero_temperatur.pdf\u0026Expires=1732749551\u0026Signature=R--IDjNhvtLK~cBKmyvNa1qJa1wVHR2d6wT~og4wEy9tnfjWw6Ml268D-pp3Nk3G4pZldAy1hYxvRMWfa8JFq5D0idSCrA03ZuzU41Kxhz2RNRr2ztVY3iecVH1L3AK8CTpddIoAudvabD0JJlA5Ie3xIcOsWu2-j3BKsCgDWZDSXL-wzoAGI9wcv6hGGPLZQ49FGi7r08zCuBr4bEC0M6ecOD~AawxEPuYXiFNEk3t-rPveCPJulAE0eW2DssvZC42l8W87r~T75FwiNLdeMSx1evdE21Su0sWvcsMEhk5FF1bL~ePjhCE-X23y-wok2x9YCKroJDYVgv~fWNRebA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space"},{"id":300145,"name":"Fixation","url":"https://www.academia.edu/Documents/in/Fixation"},{"id":771688,"name":"Hexagonal lattice","url":"https://www.academia.edu/Documents/in/Hexagonal_lattice"},{"id":1270323,"name":"Speed of Convergence","url":"https://www.academia.edu/Documents/in/Speed_of_Convergence"},{"id":1745766,"name":"Cellular automaton","url":"https://www.academia.edu/Documents/in/Cellular_automaton"},{"id":2474424,"name":"Glauber Dynamics","url":"https://www.academia.edu/Documents/in/Glauber_Dynamics"},{"id":3115632,"name":"Continuous time","url":"https://www.academia.edu/Documents/in/Continuous_time"},{"id":3115633,"name":"Discrete time","url":"https://www.academia.edu/Documents/in/Discrete_time"}],"urls":[{"id":16795169,"url":"http://direct.bl.uk/research/41/12/RN120950976.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177701/Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model"><img alt="Research paper thumbnail of Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model" class="work-thumbnail" src="https://attachments.academia-assets.com/79372650/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177701/Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model">Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model</a></div><div class="wp-workCard_item"><span>The Annals of Applied …</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of $+ 1$ or $-1$ to each site in $\ mathbf {Z}^ 2$, is the zero-temperature limit ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="758b4dab005c268449b9bfc131f80bf8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372650,&quot;asset_id&quot;:69177701,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372650/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177701]").text(description); $(".js-view-count[data-work-id=69177701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177701, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "758b4dab005c268449b9bfc131f80bf8" } } $('.js-work-strip[data-work-id=69177701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177701,"title":"Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model","translated_title":"","metadata":{"abstract":"We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of $+ 1$ or $-1$ to each site in $\\ mathbf {Z}^ 2$, is the zero-temperature limit ...","publisher":"projecteuclid.org","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"The Annals of Applied …"},"translated_abstract":"We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of $+ 1$ or $-1$ to each site in $\\ mathbf {Z}^ 2$, is the zero-temperature limit ...","internal_url":"https://www.academia.edu/69177701/Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model","translated_internal_url":"","created_at":"2022-01-22T09:14:24.139-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372650/thumbnails/1.jpg","file_name":"0103050v1.pdf","download_url":"https://www.academia.edu/attachments/79372650/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Clusters_and_recurrence_in_the_two_dimen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372650/0103050v1-libre.pdf?1642873945=\u0026response-content-disposition=attachment%3B+filename%3DClusters_and_recurrence_in_the_two_dimen.pdf\u0026Expires=1732749551\u0026Signature=FlJqc5Xou6b5yMNSU7AOESnKW1tYhCALpqXNmIsma8jCcxpR3TcHo5thz2J4S9l20uK7KjvjtK1E6zrokMHXa0uCR66Sfr57bu8jhQrthhng7I22yzzvLhLNswI8AbkoRUySi-uR9iT6F7tK4j3eo2MnphRePfB3~P-1bW3kynmGQOBk1cxzKtZFugre6Bj0DcCGpOSnO1NyiKeAIxeQlhzRHhXE8xUW9tvqS5UXqMB0NRh3odpIrbG91c4mj7W6dZM5GW0FZDQfVT8QnAVmmUNGMc8qTf03e5mYoPcdgeOgIQffXshFFAD~-DVkrP4DzLBv4jnTMlEb-8xnpqTZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372650/thumbnails/1.jpg","file_name":"0103050v1.pdf","download_url":"https://www.academia.edu/attachments/79372650/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Clusters_and_recurrence_in_the_two_dimen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372650/0103050v1-libre.pdf?1642873945=\u0026response-content-disposition=attachment%3B+filename%3DClusters_and_recurrence_in_the_two_dimen.pdf\u0026Expires=1732749551\u0026Signature=FlJqc5Xou6b5yMNSU7AOESnKW1tYhCALpqXNmIsma8jCcxpR3TcHo5thz2J4S9l20uK7KjvjtK1E6zrokMHXa0uCR66Sfr57bu8jhQrthhng7I22yzzvLhLNswI8AbkoRUySi-uR9iT6F7tK4j3eo2MnphRePfB3~P-1bW3kynmGQOBk1cxzKtZFugre6Bj0DcCGpOSnO1NyiKeAIxeQlhzRHhXE8xUW9tvqS5UXqMB0NRh3odpIrbG91c4mj7W6dZM5GW0FZDQfVT8QnAVmmUNGMc8qTf03e5mYoPcdgeOgIQffXshFFAD~-DVkrP4DzLBv4jnTMlEb-8xnpqTZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":37937,"name":"Clusters","url":"https://www.academia.edu/Documents/in/Clusters"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space"},{"id":741671,"name":"Markov Process","url":"https://www.academia.edu/Documents/in/Markov_Process"},{"id":2474424,"name":"Glauber Dynamics","url":"https://www.academia.edu/Documents/in/Glauber_Dynamics"},{"id":2683729,"name":"Local Recurrence","url":"https://www.academia.edu/Documents/in/Local_Recurrence"},{"id":3115632,"name":"Continuous time","url":"https://www.academia.edu/Documents/in/Continuous_time"}],"urls":[{"id":16795168,"url":"http://direct.bl.uk/research/1C/64/RN117078097.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177700"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177700/The_scaling_limit_geometry_of_near_critical_2D_percolation"><img alt="Research paper thumbnail of The scaling limit geometry of near-critical 2D percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372641/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177700/The_scaling_limit_geometry_of_near_critical_2D_percolation">The scaling limit geometry of near-critical 2D percolation</a></div><div class="wp-workCard_item"><span>Journal of statistical physics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν, with ν= 4/3, as the lattice spacing δ→ 0. Our proposed framework extends previous analyses for p= pc, based on SLE 6. It combines the continuum nonsimple loop ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b075f6ca6d5d0600d7b50c8b1368d27" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372641,&quot;asset_id&quot;:69177700,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372641/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177700"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177700"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177700; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177700]").text(description); $(".js-view-count[data-work-id=69177700]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177700; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177700']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177700, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b075f6ca6d5d0600d7b50c8b1368d27" } } $('.js-work-strip[data-work-id=69177700]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177700,"title":"The scaling limit geometry of near-critical 2D percolation","translated_title":"","metadata":{"abstract":"We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν, with ν= 4/3, as the lattice spacing δ→ 0. Our proposed framework extends previous analyses for p= pc, based on SLE 6. It combines the continuum nonsimple loop ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of statistical physics"},"translated_abstract":"We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν, with ν= 4/3, as the lattice spacing δ→ 0. Our proposed framework extends previous analyses for p= pc, based on SLE 6. It combines the continuum nonsimple loop ...","internal_url":"https://www.academia.edu/69177700/The_scaling_limit_geometry_of_near_critical_2D_percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:23.989-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372641/thumbnails/1.jpg","file_name":"0510740.pdf","download_url":"https://www.academia.edu/attachments/79372641/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_scaling_limit_geometry_of_near_criti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372641/0510740-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DThe_scaling_limit_geometry_of_near_criti.pdf\u0026Expires=1732749551\u0026Signature=FxQQdWdkR0phgRUxOZBVMdgkGpI9aFq3pCtYSBz3wGL-64hNQa~L0gnLdgRqC4hlD3qHxJxrcQnhWzmdFLEDnz-9rJ2e3C3rjJ4BAD-efR1wUlitSob9T~wTY~jO665aeEpyj-wnzrlB6khF~gV78L~A83ToK1ArRfJX24WPSePbGw~qQrBSwGEvuAEE97rXyBzi1zgT90DxjUvpEDXpzld2JuE4c0vEk~CUhk6qrWn7JuG82ahksNM0YlWKNiY3fUtF5RpkSgq3nl6-hkuRPOnmDMzRYu6-9auqnl00T3C5kK2Z7kmIpGz0v93Blvb5GgAKv0Q62-0N0-ufcp4xnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_scaling_limit_geometry_of_near_critical_2D_percolation","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372641/thumbnails/1.jpg","file_name":"0510740.pdf","download_url":"https://www.academia.edu/attachments/79372641/download_file?st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_scaling_limit_geometry_of_near_criti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372641/0510740-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DThe_scaling_limit_geometry_of_near_criti.pdf\u0026Expires=1732749551\u0026Signature=FxQQdWdkR0phgRUxOZBVMdgkGpI9aFq3pCtYSBz3wGL-64hNQa~L0gnLdgRqC4hlD3qHxJxrcQnhWzmdFLEDnz-9rJ2e3C3rjJ4BAD-efR1wUlitSob9T~wTY~jO665aeEpyj-wnzrlB6khF~gV78L~A83ToK1ArRfJX24WPSePbGw~qQrBSwGEvuAEE97rXyBzi1zgT90DxjUvpEDXpzld2JuE4c0vEk~CUhk6qrWn7JuG82ahksNM0YlWKNiY3fUtF5RpkSgq3nl6-hkuRPOnmDMzRYu6-9auqnl00T3C5kK2Z7kmIpGz0v93Blvb5GgAKv0Q62-0N0-ufcp4xnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":310813,"name":"Criticality","url":"https://www.academia.edu/Documents/in/Criticality"},{"id":595394,"name":"Continuum","url":"https://www.academia.edu/Documents/in/Continuum"},{"id":1155889,"name":"Minimal Spanning Tree","url":"https://www.academia.edu/Documents/in/Minimal_Spanning_Tree"},{"id":1317328,"name":"Scaling Limits","url":"https://www.academia.edu/Documents/in/Scaling_Limits"},{"id":1495455,"name":"Finite Size Scaling","url":"https://www.academia.edu/Documents/in/Finite_Size_Scaling"},{"id":2248009,"name":"Continuo","url":"https://www.academia.edu/Documents/in/Continuo"}],"urls":[{"id":16795167,"url":"http://direct.bl.uk/research/58/54/RN200090212.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177699/The_full_scaling_limit_of_two_dimensional_critical_percolation"><img alt="Research paper thumbnail of The full scaling limit of two-dimensional critical percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372644/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177699/The_full_scaling_limit_of_two_dimensional_critical_percolation">The full scaling limit of two-dimensional critical percolation</a></div><div class="wp-workCard_item"><span>Arxiv preprint math/0504036</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice--that is, the scaling limit of the set of all interfaces ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="50a75f3367c38b104a488c7ef175df47" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372644,&quot;asset_id&quot;:69177699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372644/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177699]").text(description); $(".js-view-count[data-work-id=69177699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "50a75f3367c38b104a488c7ef175df47" } } $('.js-work-strip[data-work-id=69177699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177699,"title":"The full scaling limit of two-dimensional critical percolation","translated_title":"","metadata":{"abstract":"Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice--that is, the scaling limit of the set of all interfaces ...","publisher":"arxiv.org","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Arxiv preprint math/0504036"},"translated_abstract":"Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice--that is, the scaling limit of the set of all interfaces ...","internal_url":"https://www.academia.edu/69177699/The_full_scaling_limit_of_two_dimensional_critical_percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:23.892-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372644,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372644/thumbnails/1.jpg","file_name":"0504036.pdf","download_url":"https://www.academia.edu/attachments/79372644/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_full_scaling_limit_of_two_dimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372644/0504036-libre.pdf?1642873955=\u0026response-content-disposition=attachment%3B+filename%3DThe_full_scaling_limit_of_two_dimensiona.pdf\u0026Expires=1732749552\u0026Signature=EnS2lrnByc22aUS6ogvie6668T8dUez1~gEhrS6T9wFuf5DnPm~ge5F0HC5RijUn2dsWK8tdGnZz8s0L9LmI6BMmwCNL3VOD45up9~kLV26RVBpLeEUM19jnCTGeel4TMGkSbuGCNgP1fsAMM7u4cIpPAA8ABVOylzztSD~5aehGH1vYdlCDhiTQEotpE~CEdg842HI7crgAMp40vqp1nOD0gwelIizIiVrL~VzQfDP4F5A09KhXUoriYf5l3Mb~YpH9V8kKws7GqiW-FhXhLSl4efSCPDyBUnvLqa4bJfBkyCmgQb-L9~81EDRvLrnJ8D-NCAsUUMqaOKal1V767Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_full_scaling_limit_of_two_dimensional_critical_percolation","translated_slug":"","page_count":67,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372644,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372644/thumbnails/1.jpg","file_name":"0504036.pdf","download_url":"https://www.academia.edu/attachments/79372644/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_full_scaling_limit_of_two_dimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372644/0504036-libre.pdf?1642873955=\u0026response-content-disposition=attachment%3B+filename%3DThe_full_scaling_limit_of_two_dimensiona.pdf\u0026Expires=1732749552\u0026Signature=EnS2lrnByc22aUS6ogvie6668T8dUez1~gEhrS6T9wFuf5DnPm~ge5F0HC5RijUn2dsWK8tdGnZz8s0L9LmI6BMmwCNL3VOD45up9~kLV26RVBpLeEUM19jnCTGeel4TMGkSbuGCNgP1fsAMM7u4cIpPAA8ABVOylzztSD~5aehGH1vYdlCDhiTQEotpE~CEdg842HI7crgAMp40vqp1nOD0gwelIizIiVrL~VzQfDP4F5A09KhXUoriYf5l3Mb~YpH9V8kKws7GqiW-FhXhLSl4efSCPDyBUnvLqa4bJfBkyCmgQb-L9~81EDRvLrnJ8D-NCAsUUMqaOKal1V767Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2895246,"name":"Conformal Invariance","url":"https://www.academia.edu/Documents/in/Conformal_Invariance"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177698"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177698/Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence"><img alt="Research paper thumbnail of Critical percolation exploration path and SLE 6: a proof of convergence" class="work-thumbnail" src="https://attachments.academia-assets.com/79372646/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177698/Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence">Critical percolation exploration path and SLE 6: a proof of convergence</a></div><div class="wp-workCard_item"><span>Probability theory and related fields</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It was argued by Schramm and Smirnov that the critical site percolation exploration path on the t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov&amp;#x27;s theorem that crossing ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e67fc63533ef26e91159928e71afb810" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372646,&quot;asset_id&quot;:69177698,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372646/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177698"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177698"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177698; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177698]").text(description); $(".js-view-count[data-work-id=69177698]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177698; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177698']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177698, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e67fc63533ef26e91159928e71afb810" } } $('.js-work-strip[data-work-id=69177698]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177698,"title":"Critical percolation exploration path and SLE 6: a proof of convergence","translated_title":"","metadata":{"abstract":"It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov\u0026#x27;s theorem that crossing ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Probability theory and related fields"},"translated_abstract":"It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov\u0026#x27;s theorem that crossing ...","internal_url":"https://www.academia.edu/69177698/Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence","translated_internal_url":"","created_at":"2022-01-22T09:14:23.744-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372646,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372646/thumbnails/1.jpg","file_name":"s00440-006-0049-7.pdf","download_url":"https://www.academia.edu/attachments/79372646/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_percolation_exploration_path_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372646/s00440-006-0049-7-libre.pdf?1642873952=\u0026response-content-disposition=attachment%3B+filename%3DCritical_percolation_exploration_path_an.pdf\u0026Expires=1732749552\u0026Signature=GSXvAxTY7gPJIyp5s1PY1f9MJBz1mTZOBrwKg5szJa~ucCWamPeGNYXKjSFDsH2929kGivdHjxcPSbB2s9Eg2KAyvSHjR7g7-1DB9vyoKbYMC9P83xHGk23wl5Wv~xWoeLHSuPrN67sMM4ZeWKBqD1S2cWxUG76kSCKAV~gOeDnCkyryNq-MRcqr0LCLp3Xj-QTRG7lcU1qZMXgeevqI9f7BEil476wwGloKj8HWEYP4B3cmMXmezeYMb4~mvnXbjYrp3DAo1UgJ12qonb2Vg23svrgeKe-Tx6UIWnG02llOU0sbNYklyeBXJzY6jQIbW3-4ISdBESMdigZBpEk5rQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence","translated_slug":"","page_count":47,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372646,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372646/thumbnails/1.jpg","file_name":"s00440-006-0049-7.pdf","download_url":"https://www.academia.edu/attachments/79372646/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_percolation_exploration_path_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372646/s00440-006-0049-7-libre.pdf?1642873952=\u0026response-content-disposition=attachment%3B+filename%3DCritical_percolation_exploration_path_an.pdf\u0026Expires=1732749552\u0026Signature=GSXvAxTY7gPJIyp5s1PY1f9MJBz1mTZOBrwKg5szJa~ucCWamPeGNYXKjSFDsH2929kGivdHjxcPSbB2s9Eg2KAyvSHjR7g7-1DB9vyoKbYMC9P83xHGk23wl5Wv~xWoeLHSuPrN67sMM4ZeWKBqD1S2cWxUG76kSCKAV~gOeDnCkyryNq-MRcqr0LCLp3Xj-QTRG7lcU1qZMXgeevqI9f7BEil476wwGloKj8HWEYP4B3cmMXmezeYMb4~mvnXbjYrp3DAo1UgJ12qonb2Vg23svrgeKe-Tx6UIWnG02llOU0sbNYklyeBXJzY6jQIbW3-4ISdBESMdigZBpEk5rQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":230427,"name":"Lattice","url":"https://www.academia.edu/Documents/in/Lattice"},{"id":410032,"name":"Invariant","url":"https://www.academia.edu/Documents/in/Invariant"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2814568,"name":"Probability Distribution","url":"https://www.academia.edu/Documents/in/Probability_Distribution"},{"id":2891350,"name":"Distribution Function","url":"https://www.academia.edu/Documents/in/Distribution_Function-1"},{"id":2895246,"name":"Conformal Invariance","url":"https://www.academia.edu/Documents/in/Conformal_Invariance"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[{"id":16795166,"url":"http://direct.bl.uk/research/39/5C/RN212343958.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5744333" id="papers"><div class="js-work-strip profile--work_container" data-work-id="122977446"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122977446/On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters"><img alt="Research paper thumbnail of On the density of 2D critical percolation gaskets and anchored clusters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122977446/On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters">On the density of 2D critical percolation gaskets and anchored clusters</a></div><div class="wp-workCard_item"><span>letters in mathematical physics/Letters in mathematical physics</span><span>, Mar 15, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122977446"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122977446"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122977446; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122977446]").text(description); $(".js-view-count[data-work-id=122977446]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122977446; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122977446']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122977446, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122977446]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122977446,"title":"On the density of 2D critical percolation gaskets and anchored clusters","translated_title":"","metadata":{"publication_date":{"day":15,"month":3,"year":2024,"errors":{}},"publication_name":"letters in mathematical physics/Letters in mathematical physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122977446/On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters","translated_internal_url":"","created_at":"2024-08-18T03:57:18.028-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_density_of_2D_critical_percolation_gaskets_and_anchored_clusters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[],"research_interests":[{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":1233815,"name":"Percolation Theory","url":"https://www.academia.edu/Documents/in/Percolation_Theory"},{"id":1247107,"name":"Gasket","url":"https://www.academia.edu/Documents/in/Gasket"}],"urls":[{"id":44076812,"url":"https://doi.org/10.1007/s11005-024-01793-0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122977443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122977443/Cover_Times_of_the_Massive_Random_Walk_Loop_Soup"><img alt="Research paper thumbnail of Cover Times of the Massive Random Walk Loop Soup" class="work-thumbnail" src="https://attachments.academia-assets.com/117521674/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122977443/Cover_Times_of_the_Massive_Random_Walk_Loop_Soup">Cover Times of the Massive Random Walk Loop Soup</a></div><div class="wp-workCard_item"><span>Mathematical physics, analysis and geometry</span><span>, Mar 22, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fa6c6ee14e1d3f6944757c439b460bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117521674,&quot;asset_id&quot;:122977443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117521674/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122977443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122977443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122977443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122977443]").text(description); $(".js-view-count[data-work-id=122977443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122977443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122977443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122977443, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fa6c6ee14e1d3f6944757c439b460bc" } } $('.js-work-strip[data-work-id=122977443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122977443,"title":"Cover Times of the Massive Random Walk Loop Soup","translated_title":"","metadata":{"grobid_abstract":"We study cover times of subsets of Z 2 by a two-dimensional massive random walk loop soup. We consider a sequence of subsets A n ⊂ Z 2 such that |A n | → ∞ and determine the distributional limit of their cover times T (A n). We allow the killing rate κ n (or equivalently the \"mass\") of the loop soup to depend on the size of the set A n to be covered. In particular, we determine the limiting behavior of the cover times for inverse killing rates all the way up to κ −1 n = |A n | 1−8/(log log |A n |) , showing that it can be described by a Gumbel distribution. Since a typical loop in this model will have length at most of order κ −1/2 n = |A n | 1/2 , if κ −1 n exceeded |A n |, the cover times of all points in a tightly packed set A n (i.e., a square or close to a ball) would presumably be heavily correlated, complicating the analysis. Our result comes close to this extreme case.","publication_date":{"day":22,"month":3,"year":2024,"errors":{}},"publication_name":"Mathematical physics, analysis and geometry","grobid_abstract_attachment_id":117521674},"translated_abstract":null,"internal_url":"https://www.academia.edu/122977443/Cover_Times_of_the_Massive_Random_Walk_Loop_Soup","translated_internal_url":"","created_at":"2024-08-18T03:57:05.500-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117521674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117521674/thumbnails/1.jpg","file_name":"s11040-024-09478-9.pdf","download_url":"https://www.academia.edu/attachments/117521674/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Times_of_the_Massive_Random_Walk_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117521674/s11040-024-09478-9-libre.pdf?1723982809=\u0026response-content-disposition=attachment%3B+filename%3DCover_Times_of_the_Massive_Random_Walk_L.pdf\u0026Expires=1732749550\u0026Signature=CrvzXVmaxacLCnXayXRZx8-IL1Cu0NHgKphv2n3dsaoU1WRGmvAxQxkuvGQVmqcZZMtCCxbY7EdOSOd4cVVJ~7VRRqtANy7OxhW4Mq1URV-psnmTpLNpL~jEnEpPzuZ1wMhMLP6qgL0Hkn3Ws1JcpSAmy63W9xque9~5m8IkdryjXT8FxTZ5UQzAnQ2vQXI3hR2oRwjF4kMBr0gsTOMYADzab7XhmTGkByRXyPH1V96~dfNRENEMwm3UU2G9Cn~fLMxDAiLlg9OLDc7TuJq5i0pFcTR6-1AxGIAnFwZiChWGaNbmatfiOj5iSYa5~XJxy38SlH9qCj0zrmkOxJxRoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cover_Times_of_the_Massive_Random_Walk_Loop_Soup","translated_slug":"","page_count":54,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":117521674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117521674/thumbnails/1.jpg","file_name":"s11040-024-09478-9.pdf","download_url":"https://www.academia.edu/attachments/117521674/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Times_of_the_Massive_Random_Walk_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117521674/s11040-024-09478-9-libre.pdf?1723982809=\u0026response-content-disposition=attachment%3B+filename%3DCover_Times_of_the_Massive_Random_Walk_L.pdf\u0026Expires=1732749550\u0026Signature=CrvzXVmaxacLCnXayXRZx8-IL1Cu0NHgKphv2n3dsaoU1WRGmvAxQxkuvGQVmqcZZMtCCxbY7EdOSOd4cVVJ~7VRRqtANy7OxhW4Mq1URV-psnmTpLNpL~jEnEpPzuZ1wMhMLP6qgL0Hkn3Ws1JcpSAmy63W9xque9~5m8IkdryjXT8FxTZ5UQzAnQ2vQXI3hR2oRwjF4kMBr0gsTOMYADzab7XhmTGkByRXyPH1V96~dfNRENEMwm3UU2G9Cn~fLMxDAiLlg9OLDc7TuJq5i0pFcTR6-1AxGIAnFwZiChWGaNbmatfiOj5iSYa5~XJxy38SlH9qCj0zrmkOxJxRoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117521672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117521672/thumbnails/1.jpg","file_name":"s11040-024-09478-9.pdf","download_url":"https://www.academia.edu/attachments/117521672/download_file","bulk_download_file_name":"Cover_Times_of_the_Massive_Random_Walk_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117521672/s11040-024-09478-9-libre.pdf?1723982806=\u0026response-content-disposition=attachment%3B+filename%3DCover_Times_of_the_Massive_Random_Walk_L.pdf\u0026Expires=1732749551\u0026Signature=f1NeKg1UCuGv~CZzAlC1h-FMAT9LMQ1cYH5zZzSD1hCS3OlnPXzngCB~i8Hk5RKujZYqkKKW8ql7W6Xjyf1FMTShvqI1oVqIWulJ-st0Sr3AC0NYy8dkLjkUpluuarlXn-zGHHlp41okXLT4WkuqG5Rxf8Fy9uyHbkXC~Ls5PNULIXl~C67UBBnrcG47VGk0ggSyhB-EdElHauUcvBhgPYIgE9nxzM6j3pva2FDEqh11yMFr0v~dYyZ8apR9htOcn1zJw0H-qnlSdU3h4rFHqAjlZ7ewxLSI3-YyDbNjleQRzmcZEU3CkhIBaf8VbkWzVrlZMHUj87iR1MYYr4je9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"}],"urls":[{"id":44076810,"url":"https://link.springer.com/content/pdf/10.1007/s11040-024-09478-9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115612815"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115612815/Spin_systems_from_loop_soups"><img alt="Research paper thumbnail of Spin systems from loop soups" class="work-thumbnail" src="https://attachments.academia-assets.com/111971336/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115612815/Spin_systems_from_loop_soups">Spin systems from loop soups</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 9, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="022627981ba8ed1a270d0d5a7ea74f44" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111971336,&quot;asset_id&quot;:115612815,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111971336/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115612815"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115612815"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115612815; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115612815]").text(description); $(".js-view-count[data-work-id=115612815]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115612815; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115612815']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115612815, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "022627981ba8ed1a270d0d5a7ea74f44" } } $('.js-work-strip[data-work-id=115612815]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115612815,"title":"Spin systems from loop soups","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We study spin systems defined by the winding of a random walk loop soup. For a particular choice of loop soup intensity, we show that the corresponding spin system is reflection-positive and is dual, in the Kramers-Wannier sense, to the spin system sgn(ϕ) where ϕ is a discrete Gaussian free field. In general, we show that the spin correlation functions have conformally covariant scaling limits corresponding to the one-parameter family of functions studied by Camia, Gandolfi and Kleban (Nuclear Physics B 902, 2016) and defined in terms of the winding of the Brownian loop soup. These functions have properties consistent with the behavior of correlation functions of conformal primaries in a conformal field theory. Here, we prove that they do correspond to correlation functions of continuum fields (random generalized functions) for values of the intensity of the Brownian loop soup that are not too large.","publication_date":{"day":9,"month":3,"year":2018,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":111971336},"translated_abstract":null,"internal_url":"https://www.academia.edu/115612815/Spin_systems_from_loop_soups","translated_internal_url":"","created_at":"2024-02-29T19:02:16.164-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":111971336,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111971336/thumbnails/1.jpg","file_name":"1803.03636.pdf","download_url":"https://www.academia.edu/attachments/111971336/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spin_systems_from_loop_soups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111971336/1803.03636-libre.pdf?1709264864=\u0026response-content-disposition=attachment%3B+filename%3DSpin_systems_from_loop_soups.pdf\u0026Expires=1732749551\u0026Signature=d3Oj5y8ryGplc52IJK9b1GzdUhAu4-ZYQhTBGpdoL1cYfWfA9EjOm0x1BS7vZVJUfIxhKETVnOgxqZy2jvRVD12A04Hhklgh-rJixtbN~aNyEKCdWhnkzUtmVVDw5CbnMI~X7e1My-C6eR-nXRHkgkLCGWY37RvVdEDkNeXDmQHGdiecovpf8aPa3pRF5Febu8WWOh-BYpgNdUDmq~kUUW19yTOe4GbfKWs2~hwXKdf7llF1HwfT08CaU6zDSzPCwO4sdkE-24crgTdaFbxz5zBc5dYdPPgoBZpRQgMuSnDhcrLE2MuTUbSQkLUJWojixvnSP2~7FGZtsDmqovqflw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spin_systems_from_loop_soups","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":111971336,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111971336/thumbnails/1.jpg","file_name":"1803.03636.pdf","download_url":"https://www.academia.edu/attachments/111971336/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spin_systems_from_loop_soups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111971336/1803.03636-libre.pdf?1709264864=\u0026response-content-disposition=attachment%3B+filename%3DSpin_systems_from_loop_soups.pdf\u0026Expires=1732749551\u0026Signature=d3Oj5y8ryGplc52IJK9b1GzdUhAu4-ZYQhTBGpdoL1cYfWfA9EjOm0x1BS7vZVJUfIxhKETVnOgxqZy2jvRVD12A04Hhklgh-rJixtbN~aNyEKCdWhnkzUtmVVDw5CbnMI~X7e1My-C6eR-nXRHkgkLCGWY37RvVdEDkNeXDmQHGdiecovpf8aPa3pRF5Febu8WWOh-BYpgNdUDmq~kUUW19yTOe4GbfKWs2~hwXKdf7llF1HwfT08CaU6zDSzPCwO4sdkE-24crgTdaFbxz5zBc5dYdPPgoBZpRQgMuSnDhcrLE2MuTUbSQkLUJWojixvnSP2~7FGZtsDmqovqflw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":111971335,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111971335/thumbnails/1.jpg","file_name":"1803.03636.pdf","download_url":"https://www.academia.edu/attachments/111971335/download_file","bulk_download_file_name":"Spin_systems_from_loop_soups.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111971335/1803.03636-libre.pdf?1709264864=\u0026response-content-disposition=attachment%3B+filename%3DSpin_systems_from_loop_soups.pdf\u0026Expires=1732749551\u0026Signature=D~eXmG8t2x6bToqe71NtTxK9vUERFeqCgAOyV3jarSbVFD2JSE~g0U1-YNSRHlXH0GTDDb3C6cRasylhCTmsueZajbeAxYOjR6eGM7P2cTxhb7mc6dRx7J8uZSxIDObCXF-ocCcFh6VbS9pUWrgMa0im6XOL~SFddWnGJSjCewbksxmDOVxRYvvL3NhEVuH9BJuueCkTXR4TaN0muv1hjgivxlADbtI~17OvH6gJR5h2LtKaisIBoMaP7jmhbXJBSTH7Tc9sT8o4fn1zah2E~v8OJ1KdZBFDB0cc5nd6HQ6dA7H1s0q5Q1Q0JXefxtii~NfSFAzZ3SkqUkf2Z7oOJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"}],"urls":[{"id":39922552,"url":"http://arxiv.org/pdf/1803.03636"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115612814"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115612814/Phase_transitions_Euclidean_fields_and_self_similar_random_fractals"><img alt="Research paper thumbnail of Phase transitions, Euclidean fields and self-similar random fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115612814/Phase_transitions_Euclidean_fields_and_self_similar_random_fractals">Phase transitions, Euclidean fields and self-similar random fractals</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115612814"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115612814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115612814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115612814]").text(description); $(".js-view-count[data-work-id=115612814]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115612814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115612814']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115612814, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115612814]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115612814,"title":"Phase transitions, Euclidean fields and self-similar random fractals","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/115612814/Phase_transitions_Euclidean_fields_and_self_similar_random_fractals","translated_internal_url":"","created_at":"2024-02-29T19:02:15.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Phase_transitions_Euclidean_fields_and_self_similar_random_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"},{"id":730198,"name":"Euclidean Geometry","url":"https://www.academia.edu/Documents/in/Euclidean_Geometry"}],"urls":[{"id":39922551,"url":"https://nyuscholars.nyu.edu/en/publications/phase-transitions-euclidean-fields-and-self-similar-random-fracta"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115612798"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115612798/Arbeitsgemeinschaft_Percolation"><img alt="Research paper thumbnail of Arbeitsgemeinschaft: Percolation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115612798/Arbeitsgemeinschaft_Percolation">Arbeitsgemeinschaft: Percolation</a></div><div class="wp-workCard_item"><span>Oberwolfach Reports</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115612798"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115612798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115612798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115612798]").text(description); $(".js-view-count[data-work-id=115612798]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115612798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115612798']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115612798, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115612798]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115612798,"title":"Arbeitsgemeinschaft: Percolation","translated_title":"","metadata":{"publisher":"EMS Press","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Oberwolfach Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115612798/Arbeitsgemeinschaft_Percolation","translated_internal_url":"","created_at":"2024-02-29T19:01:51.739-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Arbeitsgemeinschaft_Percolation","translated_slug":"","page_count":null,"language":"de","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[],"research_interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":385916,"name":"Percolation threshold","url":"https://www.academia.edu/Documents/in/Percolation_threshold"},{"id":778976,"name":"Scaling Law","url":"https://www.academia.edu/Documents/in/Scaling_Law"}],"urls":[{"id":39922545,"url":"https://doi.org/10.4171/owr/2007/48"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282532/The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions"><img alt="Research paper thumbnail of The effect of free boundary conditions on the Ising model in high dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/108147790/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282532/The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions">The effect of free boundary conditions on the Ising model in high dimensions</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Nov 5, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ead1c0340518addf497414f0e58f2ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147790,&quot;asset_id&quot;:110282532,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147790/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282532]").text(description); $(".js-view-count[data-work-id=110282532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ead1c0340518addf497414f0e58f2ff" } } $('.js-work-strip[data-work-id=110282532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282532,"title":"The effect of free boundary conditions on the Ising model in high dimensions","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We study the critical Ising model with free boundary conditions on finite domains in Z d with d ≥ 4. Under the assumption, so far only proved completely for high d, that the critical infinite volume two-point function is of order |x − y| −(d−2) for large |x − y|, we prove the same is valid on large finite cubes with free boundary conditions, as long as x, y are not too close to the boundary. This confirms a numerical prediction in the physics literature by showing that the critical susceptibility in a finite domain of linear size L with free boundary conditions is of order L 2 as L → ∞. We also prove that the scaling limit of the near-critical (small external field) Ising magnetization field with free boundary conditions is Gaussian with the same covariance as the critical scaling limit, and thus the correlations do not decay exponentially. This is very different from the situation in low d or the expected behavior in high d with bulk boundary conditions.","publication_date":{"day":5,"month":11,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":108147790},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282532/The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions","translated_internal_url":"","created_at":"2023-12-01T03:45:20.495-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147790/thumbnails/1.jpg","file_name":"2011.02814.pdf","download_url":"https://www.academia.edu/attachments/108147790/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_free_boundary_conditions_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147790/2011.02814-libre.pdf?1701433590=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_free_boundary_conditions_o.pdf\u0026Expires=1732749551\u0026Signature=QvCahWvWNVxf~hgzB7t~FR~syJrnKMNknkcT7ByR4t8R15WIH4mxVDtumwJT~fqd8Mo1Xe4yIRK6R-F39WrlbsFzZi9jBjx9GGAEYBX7oRHXQ9i12UjVeK~JZSySgFY8IPITo89oyp9o5vXmkGuM1FNcd6omoWj~ZQPYG7Se3o7ZWnntP5vTdwLyXicawsM0axnZtZgQ1urS~SAkdC5dg5YA2Bsk~Tb8cnYmxOou6hRXnsVTaL1L4c~tpDU5Od7z3aauXmYv1zx0~a-vFkD1trNwxYVVkImQrZA94-xynDDksxf4kDyfUriUbnUmY~E-~NiYLskxnd-rIVGeaZnYcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_effect_of_free_boundary_conditions_on_the_Ising_model_in_high_dimensions","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147790/thumbnails/1.jpg","file_name":"2011.02814.pdf","download_url":"https://www.academia.edu/attachments/108147790/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_effect_of_free_boundary_conditions_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147790/2011.02814-libre.pdf?1701433590=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_free_boundary_conditions_o.pdf\u0026Expires=1732749551\u0026Signature=QvCahWvWNVxf~hgzB7t~FR~syJrnKMNknkcT7ByR4t8R15WIH4mxVDtumwJT~fqd8Mo1Xe4yIRK6R-F39WrlbsFzZi9jBjx9GGAEYBX7oRHXQ9i12UjVeK~JZSySgFY8IPITo89oyp9o5vXmkGuM1FNcd6omoWj~ZQPYG7Se3o7ZWnntP5vTdwLyXicawsM0axnZtZgQ1urS~SAkdC5dg5YA2Bsk~Tb8cnYmxOou6hRXnsVTaL1L4c~tpDU5Od7z3aauXmYv1zx0~a-vFkD1trNwxYVVkImQrZA94-xynDDksxf4kDyfUriUbnUmY~E-~NiYLskxnd-rIVGeaZnYcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108147789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147789/thumbnails/1.jpg","file_name":"2011.02814.pdf","download_url":"https://www.academia.edu/attachments/108147789/download_file","bulk_download_file_name":"The_effect_of_free_boundary_conditions_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147789/2011.02814-libre.pdf?1701433589=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_free_boundary_conditions_o.pdf\u0026Expires=1732749551\u0026Signature=GooiVTcNySZUgV9IB3rzYCZrkuwUMve1sYidlf~lMQR1hI3gtDlr8bHFxOmSOmtD1CJ0RUhbPkrYhTQkKyeoiPejw~-xgIWYvZzUCjPP9oDUcS3~x7445QsDUVoNX-KT2EItN2VNroMvGVLz60iBBdWxozhKh~pERjzyYMXLfi6MNe6cEsBPgRQmwypmusUMWok-ZgkWrnp~ykOCLBYZJ9R5gx0d9BMuhTF2B3Xj4zZNhexUHdjo8sJsY662g2RSSTlWeilHwqLi6h5iNWzk78dKLM4DDRZK9j1MJkbzzArE5u6nNC9zyVNefeQx4ReXjdNFvGsHO0ScbiMLlXhwNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":939537,"name":"Boundary Value Problem","url":"https://www.academia.edu/Documents/in/Boundary_Value_Problem"}],"urls":[{"id":36224035,"url":"http://arxiv.org/pdf/2011.02814"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282528/Monotonicity_of_Ursell_Functions_in_the_Ising_Model"><img alt="Research paper thumbnail of Monotonicity of Ursell Functions in the Ising Model" class="work-thumbnail" src="https://attachments.academia-assets.com/108147788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282528/Monotonicity_of_Ursell_Functions_in_the_Ising_Model">Monotonicity of Ursell Functions in the Ising Model</a></div><div class="wp-workCard_item"><span>Communications in Mathematical Physics</span><span>, Apr 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f4ce11dd5de7225dbc15aceff6205f52" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147788,&quot;asset_id&quot;:110282528,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147788/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282528]").text(description); $(".js-view-count[data-work-id=110282528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f4ce11dd5de7225dbc15aceff6205f52" } } $('.js-work-strip[data-work-id=110282528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282528,"title":"Monotonicity of Ursell Functions in the Ising Model","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"In this paper, we consider Ising models with ferromagnetic pair interactions. We prove that the Ursell functions u 2k satisfy: (−1) k−1 u 2k is increasing in each interaction. As an application, we prove a 1983 conjecture by Nishimori and Griffiths about the partition function of the Ising model with complex external field h: its closest zero to the origin (in the variable h) moves towards the origin as an arbitrary interaction increases.","publication_date":{"day":1,"month":4,"year":2023,"errors":{}},"publication_name":"Communications in Mathematical Physics","grobid_abstract_attachment_id":108147788},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282528/Monotonicity_of_Ursell_Functions_in_the_Ising_Model","translated_internal_url":"","created_at":"2023-12-01T03:45:19.999-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147788/thumbnails/1.jpg","file_name":"2207.pdf","download_url":"https://www.academia.edu/attachments/108147788/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monotonicity_of_Ursell_Functions_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147788/2207-libre.pdf?1701433599=\u0026response-content-disposition=attachment%3B+filename%3DMonotonicity_of_Ursell_Functions_in_the.pdf\u0026Expires=1732749551\u0026Signature=aFtRTZMPqiZQHuav1tcnrVM8yHhzrMbahSHVOhIQ99nOxsb8CoOcu6-Glz1q0td~pxJrqsHM~vYlY0kA~oOBVukHPylet8nuToGeQl68vOYDIA4nt10I6q~GRK4zDe-ZgXWrkzvzc9PeRu56kYpGg4rqspd~OoHppCDG5SFf8hBf20aX4w1VVP-je6cA43ymWYwv4AFaYpPG03G0OTSkL6osRPzd1jP0g5Ocwywn4JEHzSZ2kv7I9DhaNOnZUEEFtFP8PARpM2uFmdzH40MQfSEJRK17pPkkQ~ZCxFAAVV32fi7dn0Oms69~mD8aGfGNLsg8r28YYezlL5V78h77Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Monotonicity_of_Ursell_Functions_in_the_Ising_Model","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147788/thumbnails/1.jpg","file_name":"2207.pdf","download_url":"https://www.academia.edu/attachments/108147788/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monotonicity_of_Ursell_Functions_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147788/2207-libre.pdf?1701433599=\u0026response-content-disposition=attachment%3B+filename%3DMonotonicity_of_Ursell_Functions_in_the.pdf\u0026Expires=1732749551\u0026Signature=aFtRTZMPqiZQHuav1tcnrVM8yHhzrMbahSHVOhIQ99nOxsb8CoOcu6-Glz1q0td~pxJrqsHM~vYlY0kA~oOBVukHPylet8nuToGeQl68vOYDIA4nt10I6q~GRK4zDe-ZgXWrkzvzc9PeRu56kYpGg4rqspd~OoHppCDG5SFf8hBf20aX4w1VVP-je6cA43ymWYwv4AFaYpPG03G0OTSkL6osRPzd1jP0g5Ocwywn4JEHzSZ2kv7I9DhaNOnZUEEFtFP8PARpM2uFmdzH40MQfSEJRK17pPkkQ~ZCxFAAVV32fi7dn0Oms69~mD8aGfGNLsg8r28YYezlL5V78h77Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108147787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147787/thumbnails/1.jpg","file_name":"2207.pdf","download_url":"https://www.academia.edu/attachments/108147787/download_file","bulk_download_file_name":"Monotonicity_of_Ursell_Functions_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147787/2207-libre.pdf?1701433594=\u0026response-content-disposition=attachment%3B+filename%3DMonotonicity_of_Ursell_Functions_in_the.pdf\u0026Expires=1732749551\u0026Signature=RSI7cPfq5FExmrW8vXdMjvpyznAqiWBw8Z3MBU41OBzus4lCcCMp~-nY-JrCbOVlmYTeoUCyDVOAN9zRoyDhfkF-Oku2un~3Vu3-4PQq6G7fbeQ6gfKNjvuRAd-VF3RY277KzO4box9xGdXHBCc3i-C7mJ39~2hBct99nZ4I6gkyZl-ORc25jdyV1zn5DX-i-nzdDK6lne8Z-WLXJews4-1MXWvtcHmxJA-dp68Wg3guPM2qbV1sxox2kMwFaEkoacJWjIhUGNRNji~PUjbDvqJRU6umijuG8n5PV8i68pahwg9Jmuq1izHzJ3wG2HWGIaGVF7fUb0T4nlKJZSM2dQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":2570814,"name":"conjecture","url":"https://www.academia.edu/Documents/in/conjecture"}],"urls":[{"id":36224032,"url":"http://arxiv.org/pdf/2207.12247"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282524/Ising_Conformal_Fields_and_Cluster_Area_Measures"><img alt="Research paper thumbnail of Ising (Conformal) Fields and Cluster Area Measures" class="work-thumbnail" src="https://attachments.academia-assets.com/108147786/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282524/Ising_Conformal_Fields_and_Cluster_Area_Measures">Ising (Conformal) Fields and Cluster Area Measures</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 21, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f2c532d850eff278d4da24e5b06562e1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147786,&quot;asset_id&quot;:110282524,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147786/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282524]").text(description); $(".js-view-count[data-work-id=110282524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f2c532d850eff278d4da24e5b06562e1" } } $('.js-work-strip[data-work-id=110282524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282524,"title":"Ising (Conformal) Fields and Cluster Area Measures","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":21,"month":12,"year":2008,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282524/Ising_Conformal_Fields_and_Cluster_Area_Measures","translated_internal_url":"","created_at":"2023-12-01T03:45:19.514-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147786/thumbnails/1.jpg","file_name":"0812.4030.pdf","download_url":"https://www.academia.edu/attachments/108147786/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ising_Conformal_Fields_and_Cluster_Area.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147786/0812.4030-libre.pdf?1701433585=\u0026response-content-disposition=attachment%3B+filename%3DIsing_Conformal_Fields_and_Cluster_Area.pdf\u0026Expires=1732749551\u0026Signature=Hdwr3GmHUG59QnGUsOyDP3pP~gs35UJ3TcOcFkv5YsEqCBTVjd~BXXab3TCRRS0W7UkGJt615~Nadxa3irmLrYkZ4WPRb~N1uVf~YmnZIb8oe91x2DUQSbiesbPIJM3vxw89KwRB71pAum0pqdeEXz6JcH9KjSCYdL8S3oOGAiJuZ~LrGpFoNDV77QnyL9EOTVexoD-qMILFlL4GLGVa5ocWECo4r5rCtJUpEB9g8cQUBBX4pOf2lP3uqgj4RLS2b1dtozhUbaaAXmvfVnGp2ZMBp2rJ1kc7IZF~eaEa~7enXJZm~3r3w9aUNtVn8gPnkNyOWIkUASwqiP~p2CBdxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ising_Conformal_Fields_and_Cluster_Area_Measures","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147786/thumbnails/1.jpg","file_name":"0812.4030.pdf","download_url":"https://www.academia.edu/attachments/108147786/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ising_Conformal_Fields_and_Cluster_Area.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147786/0812.4030-libre.pdf?1701433585=\u0026response-content-disposition=attachment%3B+filename%3DIsing_Conformal_Fields_and_Cluster_Area.pdf\u0026Expires=1732749551\u0026Signature=Hdwr3GmHUG59QnGUsOyDP3pP~gs35UJ3TcOcFkv5YsEqCBTVjd~BXXab3TCRRS0W7UkGJt615~Nadxa3irmLrYkZ4WPRb~N1uVf~YmnZIb8oe91x2DUQSbiesbPIJM3vxw89KwRB71pAum0pqdeEXz6JcH9KjSCYdL8S3oOGAiJuZ~LrGpFoNDV77QnyL9EOTVexoD-qMILFlL4GLGVa5ocWECo4r5rCtJUpEB9g8cQUBBX4pOf2lP3uqgj4RLS2b1dtozhUbaaAXmvfVnGp2ZMBp2rJ1kc7IZF~eaEa~7enXJZm~3r3w9aUNtVn8gPnkNyOWIkUASwqiP~p2CBdxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":154823,"name":"Conformal Field Theory","url":"https://www.academia.edu/Documents/in/Conformal_Field_Theory"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":592737,"name":"CLE","url":"https://www.academia.edu/Documents/in/CLE"},{"id":1174261,"name":"Potts Model","url":"https://www.academia.edu/Documents/in/Potts_Model"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2177640,"name":"Random Field","url":"https://www.academia.edu/Documents/in/Random_Field"},{"id":2740863,"name":"Limit (Mathematics)","url":"https://www.academia.edu/Documents/in/Limit_Mathematics_"}],"urls":[{"id":36224029,"url":"https://arxiv.org/pdf/0812.4030.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282519/Cardys_Formula_for_some_Dependent_Percolation_Models"><img alt="Research paper thumbnail of Cardy&#39;s Formula for some Dependent Percolation Models" class="work-thumbnail" src="https://attachments.academia-assets.com/108147781/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282519/Cardys_Formula_for_some_Dependent_Percolation_Models">Cardy&#39;s Formula for some Dependent Percolation Models</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Nov 15, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f1b4087cd21556e3a6b34e7850d9d08f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147781,&quot;asset_id&quot;:110282519,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147781/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282519]").text(description); $(".js-view-count[data-work-id=110282519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f1b4087cd21556e3a6b34e7850d9d08f" } } $('.js-work-strip[data-work-id=110282519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282519,"title":"Cardy's Formula for some Dependent Percolation Models","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We prove Cardy's formula for rectangular crossing probabilities in dependent site percolation models that arise from a deterministic cellular automaton with a random initial state. The cellular automaton corresponds to the zero-temperature case of Domany's stochastic Ising ferromagnet on the hexagonal lattice H (with alternating updates of two sublattices) [7]; it may also be realized on the triangular lattice T with flips when a site disagrees with six, five and sometimes four of its six neighbors.","publication_date":{"day":15,"month":11,"year":2001,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":108147781},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282519/Cardys_Formula_for_some_Dependent_Percolation_Models","translated_internal_url":"","created_at":"2023-12-01T03:45:18.891-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147781/thumbnails/1.jpg","file_name":"0111293.pdf","download_url":"https://www.academia.edu/attachments/108147781/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cardys_Formula_for_some_Dependent_Percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147781/0111293-libre.pdf?1701433587=\u0026response-content-disposition=attachment%3B+filename%3DCardys_Formula_for_some_Dependent_Percol.pdf\u0026Expires=1732749551\u0026Signature=X3GA9MvyKmIDy9cbFba8ADCvyDahoWnjJQMwhxuMbiWkha4oUQX6hac-ONmWaa3tZIKxCd06~Y8K7NL3kYfTgH9ABmpsh~2sXSh7ZwpI8vWoWWwOsYsKkMKyfkTc1mzZ8vcalvLWZTtbttOwEnjqZ1TLbGb4fjDhkStxQHCJnzid6EvlXS3vtvOnoDypJqsYCfKG9j9tdwUTkGJOH3KbHoseNepLi~S9iEew2nKGALgVi5TBguxYouiX5MVneP3cxBdrJEXsGaokvqe6OjqWp0D~e0tlSxbz98itGxK7IWGxmxJYUh4IDIeL0kc4Y3bic1waJjA3bfry4F99hJ76sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cardys_Formula_for_some_Dependent_Percolation_Models","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147781/thumbnails/1.jpg","file_name":"0111293.pdf","download_url":"https://www.academia.edu/attachments/108147781/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cardys_Formula_for_some_Dependent_Percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147781/0111293-libre.pdf?1701433587=\u0026response-content-disposition=attachment%3B+filename%3DCardys_Formula_for_some_Dependent_Percol.pdf\u0026Expires=1732749551\u0026Signature=X3GA9MvyKmIDy9cbFba8ADCvyDahoWnjJQMwhxuMbiWkha4oUQX6hac-ONmWaa3tZIKxCd06~Y8K7NL3kYfTgH9ABmpsh~2sXSh7ZwpI8vWoWWwOsYsKkMKyfkTc1mzZ8vcalvLWZTtbttOwEnjqZ1TLbGb4fjDhkStxQHCJnzid6EvlXS3vtvOnoDypJqsYCfKG9j9tdwUTkGJOH3KbHoseNepLi~S9iEew2nKGALgVi5TBguxYouiX5MVneP3cxBdrJEXsGaokvqe6OjqWp0D~e0tlSxbz98itGxK7IWGxmxJYUh4IDIeL0kc4Y3bic1waJjA3bfry4F99hJ76sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":555663,"name":"Mathematics and Probability","url":"https://www.academia.edu/Documents/in/Mathematics_and_Probability"},{"id":771688,"name":"Hexagonal lattice","url":"https://www.academia.edu/Documents/in/Hexagonal_lattice"},{"id":1745766,"name":"Cellular automaton","url":"https://www.academia.edu/Documents/in/Cellular_automaton"}],"urls":[{"id":36224026,"url":"https://arxiv.org/pdf/cond-mat/0111293"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110282453"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110282453/Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model"><img alt="Research paper thumbnail of Conformal Measure Ensembles for Percolation and the FK-Ising model" class="work-thumbnail" src="https://attachments.academia-assets.com/108147751/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110282453/Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model">Conformal Measure Ensembles for Percolation and the FK-Ising model</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 6, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b1a87ac7adb7221fa279f6f09bca999" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108147751,&quot;asset_id&quot;:110282453,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108147751/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110282453"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110282453"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110282453; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110282453]").text(description); $(".js-view-count[data-work-id=110282453]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110282453; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110282453']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110282453, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b1a87ac7adb7221fa279f6f09bca999" } } $('.js-work-strip[data-work-id=110282453]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110282453,"title":"Conformal Measure Ensembles for Percolation and the FK-Ising model","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Under some general assumptions, we construct the scaling limit of open clusters and their associated counting measures in a class of two dimensional percolation models. Our results apply, in particular, to critical Bernoulli site percolation on the triangular lattice and to the critical FK-Ising model on the square lattice. Fundamental properties of the scaling limit, such as conformal covariance, are explored. As an application to Bernoulli percolation, we obtain the scaling limit of the largest cluster in a bounded domain. We also apply our results to the critical, two-dimensional Ising model, obtaining the existence and uniqueness of the scaling limit of the magnetization field, as well as a geometric representation for the continuum magnetization field which can be seen as a continuum analog of the FK representation.","publication_date":{"day":6,"month":7,"year":2015,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":108147751},"translated_abstract":null,"internal_url":"https://www.academia.edu/110282453/Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model","translated_internal_url":"","created_at":"2023-12-01T03:44:38.173-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108147751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147751/thumbnails/1.jpg","file_name":"1507.01371.pdf","download_url":"https://www.academia.edu/attachments/108147751/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conformal_Measure_Ensembles_for_Percolat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147751/1507.01371-libre.pdf?1701433607=\u0026response-content-disposition=attachment%3B+filename%3DConformal_Measure_Ensembles_for_Percolat.pdf\u0026Expires=1732749551\u0026Signature=Rgxea62bEieVYCkmOIJUvHEPwOPtgzoWXQw96LGMQJBsgFOas5wuieZkev0tR-IUTNhvVPl8XdyMP10BYtxwpcKpXul42bMUJ4w7hV-uMLRp3Mml54URzS-cecnvCTHq7qb8GERXBYHAP1EVfxwQEJizP6ApdRQczLrJB8P1tzAuKjTYQ7D4W0j5U5Q84Tww9Hc8dz4eXusOWZScLcK64i~egKWYLrzeUT-LaEohIorGwVY5DJUpWd7Z-Gr-swGJM8fdNPmddf~SuZTxN9-dldR58kvK699Tf6KdJqQ~HpKyMj~F-jKkcnQlS9nDQpaiL2JvBy-xvvgdMrGmf~Hk0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Conformal_Measure_Ensembles_for_Percolation_and_the_FK_Ising_model","translated_slug":"","page_count":46,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":108147751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147751/thumbnails/1.jpg","file_name":"1507.01371.pdf","download_url":"https://www.academia.edu/attachments/108147751/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conformal_Measure_Ensembles_for_Percolat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147751/1507.01371-libre.pdf?1701433607=\u0026response-content-disposition=attachment%3B+filename%3DConformal_Measure_Ensembles_for_Percolat.pdf\u0026Expires=1732749551\u0026Signature=Rgxea62bEieVYCkmOIJUvHEPwOPtgzoWXQw96LGMQJBsgFOas5wuieZkev0tR-IUTNhvVPl8XdyMP10BYtxwpcKpXul42bMUJ4w7hV-uMLRp3Mml54URzS-cecnvCTHq7qb8GERXBYHAP1EVfxwQEJizP6ApdRQczLrJB8P1tzAuKjTYQ7D4W0j5U5Q84Tww9Hc8dz4eXusOWZScLcK64i~egKWYLrzeUT-LaEohIorGwVY5DJUpWd7Z-Gr-swGJM8fdNPmddf~SuZTxN9-dldR58kvK699Tf6KdJqQ~HpKyMj~F-jKkcnQlS9nDQpaiL2JvBy-xvvgdMrGmf~Hk0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108147752,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108147752/thumbnails/1.jpg","file_name":"1507.01371.pdf","download_url":"https://www.academia.edu/attachments/108147752/download_file","bulk_download_file_name":"Conformal_Measure_Ensembles_for_Percolat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108147752/1507.01371-libre.pdf?1701433597=\u0026response-content-disposition=attachment%3B+filename%3DConformal_Measure_Ensembles_for_Percolat.pdf\u0026Expires=1732749551\u0026Signature=SJfNgceIfjLQaCQpVw3Tey5plS46Kmz7XIiixqVb9Ixp-uniU8nSvbGVfgWR~7mX-s1weGXBIOz608x6zzGe5qDxuQJ5pyjfeNpl2z~cPQtlW3DLcg2m6pWS2pYeN2OZtYO3P376mTia7R26K6srbc2JGF5-SsWTeldwpEGkczFmJfVlq-h1o-ahJSZUeK180WVibrOuC7kmuVvwg-niVKxgQps3SRiXmJh0aSnPElQcOdC4lfWKdvhpi2DiQVFI414gz70Kx0fVwh8Zlggfdt3EnA5o4XuVJ15R~bWWa-b2WMOjnBy~h0Ci8QF7FL2MR0GMUfs4ucIGcM6wsAD1BQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"}],"urls":[{"id":36223975,"url":"http://arxiv.org/pdf/1507.01371"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107170212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107170212/Massive_Brownian_Loop_Soup"><img alt="Research paper thumbnail of Massive Brownian Loop Soup" class="work-thumbnail" src="https://attachments.academia-assets.com/105928964/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107170212/Massive_Brownian_Loop_Soup">Massive Brownian Loop Soup</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="abf8c32206e37fc97e1f6d402aaca43e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105928964,&quot;asset_id&quot;:107170212,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105928964/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107170212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107170212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107170212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107170212]").text(description); $(".js-view-count[data-work-id=107170212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107170212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107170212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107170212, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "abf8c32206e37fc97e1f6d402aaca43e" } } $('.js-work-strip[data-work-id=107170212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107170212,"title":"Massive Brownian Loop Soup","translated_title":"","metadata":{"grobid_abstract":"We introduce a natural \"massive\" version of the Brownian loop soup of Lawler and Werner which displays conformal covariance and exponential decay. We show that this massive Brownian loop soup arises as the near-critical scaling limit of a random walk loop soup with killing and is related to the massive SLE 2 identified by Makarov and Smirnov as the near-critical scaling limit of a loop-erased random walk with killing. We conjecture that the massive Brownian loop soup describes the zero level lines of the massive Gaussian free field, and discuss possible relations to other models, such as Ising, in the offcritical regime.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"grobid_abstract_attachment_id":105928964},"translated_abstract":null,"internal_url":"https://www.academia.edu/107170212/Massive_Brownian_Loop_Soup","translated_internal_url":"","created_at":"2023-09-25T06:14:50.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105928964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105928964/thumbnails/1.jpg","file_name":"1309.6068.pdf","download_url":"https://www.academia.edu/attachments/105928964/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Massive_Brownian_Loop_Soup.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105928964/1309.6068-libre.pdf?1695655883=\u0026response-content-disposition=attachment%3B+filename%3DMassive_Brownian_Loop_Soup.pdf\u0026Expires=1732749551\u0026Signature=Wo8SiNJzaxh9vykA71nQq3Oh1Suv63i9xKilbMA1QtYm9NVP9-0LzQxRVF9ZlZdBhVtYhH3EV2EOLGI97hDSUCbSxnRJLBqXsdpjhyoik0~vs2TnqjoI27iWGsDHzLgxsxg43SUIKn6rQ0qhCMaBS9gD6ZW6UDpa3hGil91ickSz-qOkGKl4cSluqQ2YfVFCmUr8jmXcTEEZ5-xDS0jvo8PIxfasblDqQywPk~2MOAKTN37wgGIT5IPYFvh5Iunh0pslj5URdhuwYIV0mQ0MEe6C1JOE7GNqDFMPUgK-XTYkdtrxzvrpV12yq~dVX0FX8g9OzCIsiKCkT30eNOu6Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Massive_Brownian_Loop_Soup","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":105928964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105928964/thumbnails/1.jpg","file_name":"1309.6068.pdf","download_url":"https://www.academia.edu/attachments/105928964/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Massive_Brownian_Loop_Soup.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105928964/1309.6068-libre.pdf?1695655883=\u0026response-content-disposition=attachment%3B+filename%3DMassive_Brownian_Loop_Soup.pdf\u0026Expires=1732749551\u0026Signature=Wo8SiNJzaxh9vykA71nQq3Oh1Suv63i9xKilbMA1QtYm9NVP9-0LzQxRVF9ZlZdBhVtYhH3EV2EOLGI97hDSUCbSxnRJLBqXsdpjhyoik0~vs2TnqjoI27iWGsDHzLgxsxg43SUIKn6rQ0qhCMaBS9gD6ZW6UDpa3hGil91ickSz-qOkGKl4cSluqQ2YfVFCmUr8jmXcTEEZ5-xDS0jvo8PIxfasblDqQywPk~2MOAKTN37wgGIT5IPYFvh5Iunh0pslj5URdhuwYIV0mQ0MEe6C1JOE7GNqDFMPUgK-XTYkdtrxzvrpV12yq~dVX0FX8g9OzCIsiKCkT30eNOu6Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":192783,"name":"Field","url":"https://www.academia.edu/Documents/in/Field"}],"urls":[{"id":34057693,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.756.3768\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177707"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177707/Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation"><img alt="Research paper thumbnail of Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372633/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177707/Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation">Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation</a></div><div class="wp-workCard_item"><span>Journal of Statistical Physics</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is natural to expect that there are only three possible types of scaling limits for the collec...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b57f2465b82819d8d3e8eb2a81cc2112" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372633,&quot;asset_id&quot;:69177707,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372633/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177707"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177707"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177707; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177707]").text(description); $(".js-view-count[data-work-id=69177707]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177707; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177707']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177707, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b57f2465b82819d8d3e8eb2a81cc2112" } } $('.js-work-strip[data-work-id=69177707]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177707,"title":"Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation","translated_title":"","metadata":{"abstract":"It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Statistical Physics"},"translated_abstract":"It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded","internal_url":"https://www.academia.edu/69177707/Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:24.868-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372633/thumbnails/1.jpg","file_name":"0803.pdf","download_url":"https://www.academia.edu/attachments/79372633/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trivial_Critical_and_Near_critical_Scali.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372633/0803-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DTrivial_Critical_and_Near_critical_Scali.pdf\u0026Expires=1732749551\u0026Signature=Q4CWNhhN1EmrTWaKohLe2JpeK3AMgz4ibziFXIkba0yc1J662LrWG67xxkCmJqIv5xhwgklzANcy8m8-7aXpWmpP3X3fyuTqJ9F-K5h7C0ExzNNPuxeecGdf~iT7Cxr70kM~hmWqAgM8h~lpQ6BFZ6cFI9vBBL9fZQ6TD7XRiK2Xku0kQzZM4q9c6GZklHleChjFijZuIgS35qnsjdfbO09hstsBMb8uZvyj~XNTMxOvBS4yfOcuE4wNjNB~dOrtl1GZinhy-Xh5SMcuGuHgXUsLES3kB~Eumtu8Bozqe0JwtfIIzBMj0jDSG8OPbF~9hfFXaz2gKYBnodvaeFDl4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trivial_Critical_and_Near_critical_Scaling_Limits_of_Two_dimensional_Percolation","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372633/thumbnails/1.jpg","file_name":"0803.pdf","download_url":"https://www.academia.edu/attachments/79372633/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trivial_Critical_and_Near_critical_Scali.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372633/0803-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DTrivial_Critical_and_Near_critical_Scali.pdf\u0026Expires=1732749551\u0026Signature=Q4CWNhhN1EmrTWaKohLe2JpeK3AMgz4ibziFXIkba0yc1J662LrWG67xxkCmJqIv5xhwgklzANcy8m8-7aXpWmpP3X3fyuTqJ9F-K5h7C0ExzNNPuxeecGdf~iT7Cxr70kM~hmWqAgM8h~lpQ6BFZ6cFI9vBBL9fZQ6TD7XRiK2Xku0kQzZM4q9c6GZklHleChjFijZuIgS35qnsjdfbO09hstsBMb8uZvyj~XNTMxOvBS4yfOcuE4wNjNB~dOrtl1GZinhy-Xh5SMcuGuHgXUsLES3kB~Eumtu8Bozqe0JwtfIIzBMj0jDSG8OPbF~9hfFXaz2gKYBnodvaeFDl4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1432574,"name":"Scale Invariance","url":"https://www.academia.edu/Documents/in/Scale_Invariance"}],"urls":[{"id":16795170,"url":"http://dx.doi.org/10.1007/s10955-009-9841-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177705"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177705/A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics"><img alt="Research paper thumbnail of A note on Edwards&#39; hypothesis for zero-temperature Ising dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/79372632/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177705/A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics">A note on Edwards&#39; hypothesis for zero-temperature Ising dynamics</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="528705810719ec20aa62e99b1bfcf742" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372632,&quot;asset_id&quot;:69177705,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372632/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177705"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177705"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177705; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177705]").text(description); $(".js-view-count[data-work-id=69177705]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177705; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177705']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177705, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "528705810719ec20aa62e99b1bfcf742" } } $('.js-work-strip[data-work-id=69177705]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177705,"title":"A note on Edwards' hypothesis for zero-temperature Ising dynamics","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We give a simple criterion for checking Edwards' hypothesis in certain zerotemperature, ferromagnetic spin-flip dynamics and use it to invalidate the hypothesis in various examples in dimension one and higher.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":79372632},"translated_abstract":null,"internal_url":"https://www.academia.edu/69177705/A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics","translated_internal_url":"","created_at":"2022-01-22T09:14:24.729-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372632/thumbnails/1.jpg","file_name":"581605.pdf","download_url":"https://www.academia.edu/attachments/79372632/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_Edwards_hypothesis_for_zero_te.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372632/581605-libre.pdf?1642873947=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_Edwards_hypothesis_for_zero_te.pdf\u0026Expires=1732749551\u0026Signature=GmSX90LeTcKn6dlXdw9uOpmDdTaFUm8O7RWyikiz856lTQ-IO8VexN-qrEQDiSBsoXj1brydVxtxKJNtEPg-8sqPCbDI6hDvdxpK0bgE~EX3ZbPs2B9JyZdnsFSLuoSmA~1AIJcRiWzoBU3sQmOXFPDkq1tBa74B8EkMLPqVwEzYn4kaKpvGCOcvke4wuDB1R2dgDBYYpOLBnnIuCmdkR3cNA3Y8MkU0iTlYuo5a4K39twPCTP4yiKJeUHg7tMpAbrUDyZ5GQFvZX4tuLdRNr1l-mhKfgcu2nVLq3TcSSl5eX9bns-8O84cFkyUw5YO4Ld6HGr2bnE-yneU2LZKWpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_Edwards_hypothesis_for_zero_temperature_Ising_dynamics","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372632/thumbnails/1.jpg","file_name":"581605.pdf","download_url":"https://www.academia.edu/attachments/79372632/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_Edwards_hypothesis_for_zero_te.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372632/581605-libre.pdf?1642873947=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_Edwards_hypothesis_for_zero_te.pdf\u0026Expires=1732749551\u0026Signature=GmSX90LeTcKn6dlXdw9uOpmDdTaFUm8O7RWyikiz856lTQ-IO8VexN-qrEQDiSBsoXj1brydVxtxKJNtEPg-8sqPCbDI6hDvdxpK0bgE~EX3ZbPs2B9JyZdnsFSLuoSmA~1AIJcRiWzoBU3sQmOXFPDkq1tBa74B8EkMLPqVwEzYn4kaKpvGCOcvke4wuDB1R2dgDBYYpOLBnnIuCmdkR3cNA3Y8MkU0iTlYuo5a4K39twPCTP4yiKJeUHg7tMpAbrUDyZ5GQFvZX4tuLdRNr1l-mhKfgcu2nVLq3TcSSl5eX9bns-8O84cFkyUw5YO4Ld6HGr2bnE-yneU2LZKWpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":3648106,"name":"uniform distribution","url":"https://www.academia.edu/Documents/in/uniform_distribution"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177704"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177704/Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process"><img alt="Research paper thumbnail of Large-$N$ Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot&#39;s Fractal Percolation Process" class="work-thumbnail" src="https://attachments.academia-assets.com/79372642/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177704/Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process">Large-$N$ Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot&#39;s Fractal Percolation Process</a></div><div class="wp-workCard_item"><span>Electronic Journal of Probability</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d3baa70bd8caa5f63500881c212655e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372642,&quot;asset_id&quot;:69177704,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372642/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177704"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177704"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177704; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177704]").text(description); $(".js-view-count[data-work-id=69177704]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177704; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177704']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177704, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d3baa70bd8caa5f63500881c212655e6" } } $('.js-work-strip[data-work-id=69177704]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177704,"title":"Large-$N$ Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot's Fractal Percolation Process","translated_title":"","metadata":{"publisher":"Institute of Mathematical Statistics","grobid_abstract":"We study Mandelbrot's percolation process in dimension d ≥ 2. The process generates random fractal sets by an iterative procedure which starts by dividing the unit cube [0, 1] d in N d subcubes, and independently retaining or discarding each subcube with probability p or 1 − p respectively. This step is then repeated within the retained subcubes at all scales. As p is varied, there is a percolation phase transition in terms of paths for all d ≥ 2, and in terms of (d − 1)-dimensional \"sheets\" for all d ≥ 3. For any d ≥ 2, we consider the random fractal set produced at the path-percolation critical value p c (N, d), and show that the probability that it contains a path connecting two opposite faces of the cube [0, 1] d tends to one as N → ∞. As an immediate consequence, we obtain that the above probability has a discontinuity, as a function of p, at p c (N, d) for all N sufficiently large. This had previously been proved only for d = 2 (for any N ≥ 2). For d ≥ 3, we prove analogous results for sheet-percolation. In dimension two, Chayes and Chayes proved that p c (N, 2) converges, as N → ∞, to the critical density p c of site percolation on the square lattice. Assuming the existence of","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Electronic Journal of Probability","grobid_abstract_attachment_id":79372642},"translated_abstract":null,"internal_url":"https://www.academia.edu/69177704/Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process","translated_internal_url":"","created_at":"2022-01-22T09:14:24.584-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372642,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372642/thumbnails/1.jpg","file_name":"getdoc2a73.pdf","download_url":"https://www.academia.edu/attachments/79372642/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_N_Limit_of_Crossing_Probabilities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372642/getdoc2a73-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DLarge_N_Limit_of_Crossing_Probabilities.pdf\u0026Expires=1732749551\u0026Signature=Wx4j3VQKykq7skPcft8A7YblR1j41dZB2ZqXlrGXMrXeIlpBbIr6tWccfxb1FsiJK6MPqpaNe8L1DLORPZCD2f6okoWZaZQ-MMTaGs5mgk94a8W-HUdWEERQF4Mabr5orM3cnh4U3igeKIXlrWbwz4phxBoTW8Kjz4nZ5CrwBqlnZJKIY5c8dcS4PfD-Z48707Cae~MvKo4GQxPUtKZipptuHYJYXclBKzftIp6cWp78BbNlJXhkTtK25pa1Vv7-AM7ej1RD8-IXm29uvywQxiusshfWXTByipHWCjAXHkQOMQD4ceWA92IeCQP628Lp3zHcN8p2ZIJl72wltlqZQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Large_N_Limit_of_Crossing_Probabilities_Discontinuity_and_Asymptotic_Behavior_of_Threshold_Values_in_Mandelbrots_Fractal_Percolation_Process","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372642,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372642/thumbnails/1.jpg","file_name":"getdoc2a73.pdf","download_url":"https://www.academia.edu/attachments/79372642/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Large_N_Limit_of_Crossing_Probabilities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372642/getdoc2a73-libre.pdf?1642873948=\u0026response-content-disposition=attachment%3B+filename%3DLarge_N_Limit_of_Crossing_Probabilities.pdf\u0026Expires=1732749551\u0026Signature=Wx4j3VQKykq7skPcft8A7YblR1j41dZB2ZqXlrGXMrXeIlpBbIr6tWccfxb1FsiJK6MPqpaNe8L1DLORPZCD2f6okoWZaZQ-MMTaGs5mgk94a8W-HUdWEERQF4Mabr5orM3cnh4U3igeKIXlrWbwz4phxBoTW8Kjz4nZ5CrwBqlnZJKIY5c8dcS4PfD-Z48707Cae~MvKo4GQxPUtKZipptuHYJYXclBKzftIp6cWp78BbNlJXhkTtK25pa1Vv7-AM7ej1RD8-IXm29uvywQxiusshfWXTByipHWCjAXHkQOMQD4ceWA92IeCQP628Lp3zHcN8p2ZIJl72wltlqZQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":267802,"name":"Dimensional","url":"https://www.academia.edu/Documents/in/Dimensional"},{"id":901297,"name":"Dimensions","url":"https://www.academia.edu/Documents/in/Dimensions"},{"id":1270323,"name":"Speed of Convergence","url":"https://www.academia.edu/Documents/in/Speed_of_Convergence"},{"id":3735670,"name":"Critical value","url":"https://www.academia.edu/Documents/in/Critical_value"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177703/SLE6_and_CLE6_from_critical_percolation"><img alt="Research paper thumbnail of SLE6 and CLE6 from critical percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372637/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177703/SLE6_and_CLE6_from_critical_percolation">SLE6 and CLE6 from critical percolation</a></div><div class="wp-workCard_item"><span>Probability, geometry and integrable …</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the full scaling limit of cluster interface loops. The results given here on the full scaling ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26c45e229223255e5ab31741abee29a9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372637,&quot;asset_id&quot;:69177703,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372637/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177703]").text(description); $(".js-view-count[data-work-id=69177703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177703, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26c45e229223255e5ab31741abee29a9" } } $('.js-work-strip[data-work-id=69177703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177703,"title":"SLE6 and CLE6 from critical percolation","translated_title":"","metadata":{"abstract":"ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the full scaling limit of cluster interface loops. The results given here on the full scaling ...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Probability, geometry and integrable …"},"translated_abstract":"ABSTRACT. We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the full scaling limit of cluster interface loops. The results given here on the full scaling ...","internal_url":"https://www.academia.edu/69177703/SLE6_and_CLE6_from_critical_percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:24.426-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372637/thumbnails/1.jpg","file_name":"05camia.pdf","download_url":"https://www.academia.edu/attachments/79372637/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SLE6_and_CLE6_from_critical_percolation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372637/05camia-libre.pdf?1642873949=\u0026response-content-disposition=attachment%3B+filename%3DSLE6_and_CLE6_from_critical_percolation.pdf\u0026Expires=1732749551\u0026Signature=bKI6fOPoUBdOCmg8M-fkIoBmRCcEutDDkz-1rmh2predw0NvhgowxuqRmP6duYv9dDqdj42uF9TjCIOVGntfzM8v3SA3GRO6AOMp3YSigmJgnsgDqhc2nCCkGVcRg0meSCHTN79uAc8P7Gdrzb-fLl-mOGlpfHjJkE7cWeO9YMfTg~BF~hBSVZXHi5RY4CRinfhZnOok7E-y07A2Q0qx9SH-Y~UnJJ0BwliVgJbXFa1OxXdDU5H-ESuC4OX4a2ce3BM7Afmo7B6BLXEadZYG6pTstqrsTtv1MTnpx-aqtyPeqYfYq9yMgemqXWCELDX1QGbXXPAzCuY0XphFfSGb~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SLE6_and_CLE6_from_critical_percolation","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372637/thumbnails/1.jpg","file_name":"05camia.pdf","download_url":"https://www.academia.edu/attachments/79372637/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SLE6_and_CLE6_from_critical_percolation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372637/05camia-libre.pdf?1642873949=\u0026response-content-disposition=attachment%3B+filename%3DSLE6_and_CLE6_from_critical_percolation.pdf\u0026Expires=1732749551\u0026Signature=bKI6fOPoUBdOCmg8M-fkIoBmRCcEutDDkz-1rmh2predw0NvhgowxuqRmP6duYv9dDqdj42uF9TjCIOVGntfzM8v3SA3GRO6AOMp3YSigmJgnsgDqhc2nCCkGVcRg0meSCHTN79uAc8P7Gdrzb-fLl-mOGlpfHjJkE7cWeO9YMfTg~BF~hBSVZXHi5RY4CRinfhZnOok7E-y07A2Q0qx9SH-Y~UnJJ0BwliVgJbXFa1OxXdDU5H-ESuC4OX4a2ce3BM7Afmo7B6BLXEadZYG6pTstqrsTtv1MTnpx-aqtyPeqYfYq9yMgemqXWCELDX1QGbXXPAzCuY0XphFfSGb~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2895246,"name":"Conformal Invariance","url":"https://www.academia.edu/Documents/in/Conformal_Invariance"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177702/Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice"><img alt="Research paper thumbnail of Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice" class="work-thumbnail" src="https://attachments.academia-assets.com/79372645/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177702/Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice">Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice</a></div><div class="wp-workCard_item"><span>Progress In Probability</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferroma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferromagnetic Ising model with zero external magnetic field and a disordered ferromagnetic Ising model with a positive external magnetic field h. We consider both ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78e95e6a16533a00c553422f20e241e3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372645,&quot;asset_id&quot;:69177702,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372645/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177702]").text(description); $(".js-view-count[data-work-id=69177702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78e95e6a16533a00c553422f20e241e3" } } $('.js-work-strip[data-work-id=69177702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177702,"title":"Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice","translated_title":"","metadata":{"abstract":"We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferromagnetic Ising model with zero external magnetic field and a disordered ferromagnetic Ising model with a positive external magnetic field h. We consider both ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Progress In Probability"},"translated_abstract":"We investigate zero-temperature dynamics on the hexagonal lattice lHI for the homogeneous ferromagnetic Ising model with zero external magnetic field and a disordered ferromagnetic Ising model with a positive external magnetic field h. We consider both ...","internal_url":"https://www.academia.edu/69177702/Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice","translated_internal_url":"","created_at":"2022-01-22T09:14:24.285-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372645,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372645/thumbnails/1.jpg","file_name":"0111170v1.pdf","download_url":"https://www.academia.edu/attachments/79372645/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approach_to_fixation_for_zero_temperatur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372645/0111170v1-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DApproach_to_fixation_for_zero_temperatur.pdf\u0026Expires=1732749551\u0026Signature=R--IDjNhvtLK~cBKmyvNa1qJa1wVHR2d6wT~og4wEy9tnfjWw6Ml268D-pp3Nk3G4pZldAy1hYxvRMWfa8JFq5D0idSCrA03ZuzU41Kxhz2RNRr2ztVY3iecVH1L3AK8CTpddIoAudvabD0JJlA5Ie3xIcOsWu2-j3BKsCgDWZDSXL-wzoAGI9wcv6hGGPLZQ49FGi7r08zCuBr4bEC0M6ecOD~AawxEPuYXiFNEk3t-rPveCPJulAE0eW2DssvZC42l8W87r~T75FwiNLdeMSx1evdE21Su0sWvcsMEhk5FF1bL~ePjhCE-X23y-wok2x9YCKroJDYVgv~fWNRebA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approach_to_fixation_for_zero_temperature_stochastic_Ising_models_on_the_hexagonal_lattice","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372645,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372645/thumbnails/1.jpg","file_name":"0111170v1.pdf","download_url":"https://www.academia.edu/attachments/79372645/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approach_to_fixation_for_zero_temperatur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372645/0111170v1-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DApproach_to_fixation_for_zero_temperatur.pdf\u0026Expires=1732749551\u0026Signature=R--IDjNhvtLK~cBKmyvNa1qJa1wVHR2d6wT~og4wEy9tnfjWw6Ml268D-pp3Nk3G4pZldAy1hYxvRMWfa8JFq5D0idSCrA03ZuzU41Kxhz2RNRr2ztVY3iecVH1L3AK8CTpddIoAudvabD0JJlA5Ie3xIcOsWu2-j3BKsCgDWZDSXL-wzoAGI9wcv6hGGPLZQ49FGi7r08zCuBr4bEC0M6ecOD~AawxEPuYXiFNEk3t-rPveCPJulAE0eW2DssvZC42l8W87r~T75FwiNLdeMSx1evdE21Su0sWvcsMEhk5FF1bL~ePjhCE-X23y-wok2x9YCKroJDYVgv~fWNRebA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space"},{"id":300145,"name":"Fixation","url":"https://www.academia.edu/Documents/in/Fixation"},{"id":771688,"name":"Hexagonal lattice","url":"https://www.academia.edu/Documents/in/Hexagonal_lattice"},{"id":1270323,"name":"Speed of Convergence","url":"https://www.academia.edu/Documents/in/Speed_of_Convergence"},{"id":1745766,"name":"Cellular automaton","url":"https://www.academia.edu/Documents/in/Cellular_automaton"},{"id":2474424,"name":"Glauber Dynamics","url":"https://www.academia.edu/Documents/in/Glauber_Dynamics"},{"id":3115632,"name":"Continuous time","url":"https://www.academia.edu/Documents/in/Continuous_time"},{"id":3115633,"name":"Discrete time","url":"https://www.academia.edu/Documents/in/Discrete_time"}],"urls":[{"id":16795169,"url":"http://direct.bl.uk/research/41/12/RN120950976.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177701/Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model"><img alt="Research paper thumbnail of Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model" class="work-thumbnail" src="https://attachments.academia-assets.com/79372650/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177701/Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model">Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model</a></div><div class="wp-workCard_item"><span>The Annals of Applied …</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of $+ 1$ or $-1$ to each site in $\ mathbf {Z}^ 2$, is the zero-temperature limit ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="758b4dab005c268449b9bfc131f80bf8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372650,&quot;asset_id&quot;:69177701,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372650/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177701]").text(description); $(".js-view-count[data-work-id=69177701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177701, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "758b4dab005c268449b9bfc131f80bf8" } } $('.js-work-strip[data-work-id=69177701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177701,"title":"Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model","translated_title":"","metadata":{"abstract":"We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of $+ 1$ or $-1$ to each site in $\\ mathbf {Z}^ 2$, is the zero-temperature limit ...","publisher":"projecteuclid.org","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"The Annals of Applied …"},"translated_abstract":"We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of $+ 1$ or $-1$ to each site in $\\ mathbf {Z}^ 2$, is the zero-temperature limit ...","internal_url":"https://www.academia.edu/69177701/Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model","translated_internal_url":"","created_at":"2022-01-22T09:14:24.139-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372650/thumbnails/1.jpg","file_name":"0103050v1.pdf","download_url":"https://www.academia.edu/attachments/79372650/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Clusters_and_recurrence_in_the_two_dimen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372650/0103050v1-libre.pdf?1642873945=\u0026response-content-disposition=attachment%3B+filename%3DClusters_and_recurrence_in_the_two_dimen.pdf\u0026Expires=1732749551\u0026Signature=FlJqc5Xou6b5yMNSU7AOESnKW1tYhCALpqXNmIsma8jCcxpR3TcHo5thz2J4S9l20uK7KjvjtK1E6zrokMHXa0uCR66Sfr57bu8jhQrthhng7I22yzzvLhLNswI8AbkoRUySi-uR9iT6F7tK4j3eo2MnphRePfB3~P-1bW3kynmGQOBk1cxzKtZFugre6Bj0DcCGpOSnO1NyiKeAIxeQlhzRHhXE8xUW9tvqS5UXqMB0NRh3odpIrbG91c4mj7W6dZM5GW0FZDQfVT8QnAVmmUNGMc8qTf03e5mYoPcdgeOgIQffXshFFAD~-DVkrP4DzLBv4jnTMlEb-8xnpqTZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Clusters_and_recurrence_in_the_two_dimensional_zero_temperature_stochastic_Ising_model","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372650,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372650/thumbnails/1.jpg","file_name":"0103050v1.pdf","download_url":"https://www.academia.edu/attachments/79372650/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Clusters_and_recurrence_in_the_two_dimen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372650/0103050v1-libre.pdf?1642873945=\u0026response-content-disposition=attachment%3B+filename%3DClusters_and_recurrence_in_the_two_dimen.pdf\u0026Expires=1732749551\u0026Signature=FlJqc5Xou6b5yMNSU7AOESnKW1tYhCALpqXNmIsma8jCcxpR3TcHo5thz2J4S9l20uK7KjvjtK1E6zrokMHXa0uCR66Sfr57bu8jhQrthhng7I22yzzvLhLNswI8AbkoRUySi-uR9iT6F7tK4j3eo2MnphRePfB3~P-1bW3kynmGQOBk1cxzKtZFugre6Bj0DcCGpOSnO1NyiKeAIxeQlhzRHhXE8xUW9tvqS5UXqMB0NRh3odpIrbG91c4mj7W6dZM5GW0FZDQfVT8QnAVmmUNGMc8qTf03e5mYoPcdgeOgIQffXshFFAD~-DVkrP4DzLBv4jnTMlEb-8xnpqTZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":37937,"name":"Clusters","url":"https://www.academia.edu/Documents/in/Clusters"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space"},{"id":741671,"name":"Markov Process","url":"https://www.academia.edu/Documents/in/Markov_Process"},{"id":2474424,"name":"Glauber Dynamics","url":"https://www.academia.edu/Documents/in/Glauber_Dynamics"},{"id":2683729,"name":"Local Recurrence","url":"https://www.academia.edu/Documents/in/Local_Recurrence"},{"id":3115632,"name":"Continuous time","url":"https://www.academia.edu/Documents/in/Continuous_time"}],"urls":[{"id":16795168,"url":"http://direct.bl.uk/research/1C/64/RN117078097.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177700"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177700/The_scaling_limit_geometry_of_near_critical_2D_percolation"><img alt="Research paper thumbnail of The scaling limit geometry of near-critical 2D percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372641/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177700/The_scaling_limit_geometry_of_near_critical_2D_percolation">The scaling limit geometry of near-critical 2D percolation</a></div><div class="wp-workCard_item"><span>Journal of statistical physics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν, with ν= 4/3, as the lattice spacing δ→ 0. Our proposed framework extends previous analyses for p= pc, based on SLE 6. It combines the continuum nonsimple loop ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b075f6ca6d5d0600d7b50c8b1368d27" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372641,&quot;asset_id&quot;:69177700,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372641/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177700"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177700"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177700; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177700]").text(description); $(".js-view-count[data-work-id=69177700]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177700; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177700']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177700, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b075f6ca6d5d0600d7b50c8b1368d27" } } $('.js-work-strip[data-work-id=69177700]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177700,"title":"The scaling limit geometry of near-critical 2D percolation","translated_title":"","metadata":{"abstract":"We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν, with ν= 4/3, as the lattice spacing δ→ 0. Our proposed framework extends previous analyses for p= pc, based on SLE 6. It combines the continuum nonsimple loop ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of statistical physics"},"translated_abstract":"We analyze the geometry of scaling limits of near-critical 2D percolation, ie, for p= p c+ λδ 1/ν, with ν= 4/3, as the lattice spacing δ→ 0. Our proposed framework extends previous analyses for p= pc, based on SLE 6. It combines the continuum nonsimple loop ...","internal_url":"https://www.academia.edu/69177700/The_scaling_limit_geometry_of_near_critical_2D_percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:23.989-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372641/thumbnails/1.jpg","file_name":"0510740.pdf","download_url":"https://www.academia.edu/attachments/79372641/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_scaling_limit_geometry_of_near_criti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372641/0510740-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DThe_scaling_limit_geometry_of_near_criti.pdf\u0026Expires=1732749551\u0026Signature=FxQQdWdkR0phgRUxOZBVMdgkGpI9aFq3pCtYSBz3wGL-64hNQa~L0gnLdgRqC4hlD3qHxJxrcQnhWzmdFLEDnz-9rJ2e3C3rjJ4BAD-efR1wUlitSob9T~wTY~jO665aeEpyj-wnzrlB6khF~gV78L~A83ToK1ArRfJX24WPSePbGw~qQrBSwGEvuAEE97rXyBzi1zgT90DxjUvpEDXpzld2JuE4c0vEk~CUhk6qrWn7JuG82ahksNM0YlWKNiY3fUtF5RpkSgq3nl6-hkuRPOnmDMzRYu6-9auqnl00T3C5kK2Z7kmIpGz0v93Blvb5GgAKv0Q62-0N0-ufcp4xnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_scaling_limit_geometry_of_near_critical_2D_percolation","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372641/thumbnails/1.jpg","file_name":"0510740.pdf","download_url":"https://www.academia.edu/attachments/79372641/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_scaling_limit_geometry_of_near_criti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372641/0510740-libre.pdf?1642873946=\u0026response-content-disposition=attachment%3B+filename%3DThe_scaling_limit_geometry_of_near_criti.pdf\u0026Expires=1732749551\u0026Signature=FxQQdWdkR0phgRUxOZBVMdgkGpI9aFq3pCtYSBz3wGL-64hNQa~L0gnLdgRqC4hlD3qHxJxrcQnhWzmdFLEDnz-9rJ2e3C3rjJ4BAD-efR1wUlitSob9T~wTY~jO665aeEpyj-wnzrlB6khF~gV78L~A83ToK1ArRfJX24WPSePbGw~qQrBSwGEvuAEE97rXyBzi1zgT90DxjUvpEDXpzld2JuE4c0vEk~CUhk6qrWn7JuG82ahksNM0YlWKNiY3fUtF5RpkSgq3nl6-hkuRPOnmDMzRYu6-9auqnl00T3C5kK2Z7kmIpGz0v93Blvb5GgAKv0Q62-0N0-ufcp4xnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":310813,"name":"Criticality","url":"https://www.academia.edu/Documents/in/Criticality"},{"id":595394,"name":"Continuum","url":"https://www.academia.edu/Documents/in/Continuum"},{"id":1155889,"name":"Minimal Spanning Tree","url":"https://www.academia.edu/Documents/in/Minimal_Spanning_Tree"},{"id":1317328,"name":"Scaling Limits","url":"https://www.academia.edu/Documents/in/Scaling_Limits"},{"id":1495455,"name":"Finite Size Scaling","url":"https://www.academia.edu/Documents/in/Finite_Size_Scaling"},{"id":2248009,"name":"Continuo","url":"https://www.academia.edu/Documents/in/Continuo"}],"urls":[{"id":16795167,"url":"http://direct.bl.uk/research/58/54/RN200090212.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177699/The_full_scaling_limit_of_two_dimensional_critical_percolation"><img alt="Research paper thumbnail of The full scaling limit of two-dimensional critical percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/79372644/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177699/The_full_scaling_limit_of_two_dimensional_critical_percolation">The full scaling limit of two-dimensional critical percolation</a></div><div class="wp-workCard_item"><span>Arxiv preprint math/0504036</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice--that is, the scaling limit of the set of all interfaces ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="50a75f3367c38b104a488c7ef175df47" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372644,&quot;asset_id&quot;:69177699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372644/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177699]").text(description); $(".js-view-count[data-work-id=69177699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "50a75f3367c38b104a488c7ef175df47" } } $('.js-work-strip[data-work-id=69177699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177699,"title":"The full scaling limit of two-dimensional critical percolation","translated_title":"","metadata":{"abstract":"Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice--that is, the scaling limit of the set of all interfaces ...","publisher":"arxiv.org","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Arxiv preprint math/0504036"},"translated_abstract":"Abstract: We use SLE (6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice--that is, the scaling limit of the set of all interfaces ...","internal_url":"https://www.academia.edu/69177699/The_full_scaling_limit_of_two_dimensional_critical_percolation","translated_internal_url":"","created_at":"2022-01-22T09:14:23.892-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372644,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372644/thumbnails/1.jpg","file_name":"0504036.pdf","download_url":"https://www.academia.edu/attachments/79372644/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_full_scaling_limit_of_two_dimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372644/0504036-libre.pdf?1642873955=\u0026response-content-disposition=attachment%3B+filename%3DThe_full_scaling_limit_of_two_dimensiona.pdf\u0026Expires=1732749552\u0026Signature=EnS2lrnByc22aUS6ogvie6668T8dUez1~gEhrS6T9wFuf5DnPm~ge5F0HC5RijUn2dsWK8tdGnZz8s0L9LmI6BMmwCNL3VOD45up9~kLV26RVBpLeEUM19jnCTGeel4TMGkSbuGCNgP1fsAMM7u4cIpPAA8ABVOylzztSD~5aehGH1vYdlCDhiTQEotpE~CEdg842HI7crgAMp40vqp1nOD0gwelIizIiVrL~VzQfDP4F5A09KhXUoriYf5l3Mb~YpH9V8kKws7GqiW-FhXhLSl4efSCPDyBUnvLqa4bJfBkyCmgQb-L9~81EDRvLrnJ8D-NCAsUUMqaOKal1V767Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_full_scaling_limit_of_two_dimensional_critical_percolation","translated_slug":"","page_count":67,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372644,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372644/thumbnails/1.jpg","file_name":"0504036.pdf","download_url":"https://www.academia.edu/attachments/79372644/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_full_scaling_limit_of_two_dimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372644/0504036-libre.pdf?1642873955=\u0026response-content-disposition=attachment%3B+filename%3DThe_full_scaling_limit_of_two_dimensiona.pdf\u0026Expires=1732749552\u0026Signature=EnS2lrnByc22aUS6ogvie6668T8dUez1~gEhrS6T9wFuf5DnPm~ge5F0HC5RijUn2dsWK8tdGnZz8s0L9LmI6BMmwCNL3VOD45up9~kLV26RVBpLeEUM19jnCTGeel4TMGkSbuGCNgP1fsAMM7u4cIpPAA8ABVOylzztSD~5aehGH1vYdlCDhiTQEotpE~CEdg842HI7crgAMp40vqp1nOD0gwelIizIiVrL~VzQfDP4F5A09KhXUoriYf5l3Mb~YpH9V8kKws7GqiW-FhXhLSl4efSCPDyBUnvLqa4bJfBkyCmgQb-L9~81EDRvLrnJ8D-NCAsUUMqaOKal1V767Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2895246,"name":"Conformal Invariance","url":"https://www.academia.edu/Documents/in/Conformal_Invariance"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="69177698"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/69177698/Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence"><img alt="Research paper thumbnail of Critical percolation exploration path and SLE 6: a proof of convergence" class="work-thumbnail" src="https://attachments.academia-assets.com/79372646/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/69177698/Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence">Critical percolation exploration path and SLE 6: a proof of convergence</a></div><div class="wp-workCard_item"><span>Probability theory and related fields</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It was argued by Schramm and Smirnov that the critical site percolation exploration path on the t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov&amp;#x27;s theorem that crossing ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e67fc63533ef26e91159928e71afb810" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:79372646,&quot;asset_id&quot;:69177698,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/79372646/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="69177698"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="69177698"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69177698; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69177698]").text(description); $(".js-view-count[data-work-id=69177698]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69177698; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='69177698']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 69177698, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e67fc63533ef26e91159928e71afb810" } } $('.js-work-strip[data-work-id=69177698]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":69177698,"title":"Critical percolation exploration path and SLE 6: a proof of convergence","translated_title":"","metadata":{"abstract":"It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov\u0026#x27;s theorem that crossing ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Probability theory and related fields"},"translated_abstract":"It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov\u0026#x27;s theorem that crossing ...","internal_url":"https://www.academia.edu/69177698/Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence","translated_internal_url":"","created_at":"2022-01-22T09:14:23.744-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52848710,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79372646,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372646/thumbnails/1.jpg","file_name":"s00440-006-0049-7.pdf","download_url":"https://www.academia.edu/attachments/79372646/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_percolation_exploration_path_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372646/s00440-006-0049-7-libre.pdf?1642873952=\u0026response-content-disposition=attachment%3B+filename%3DCritical_percolation_exploration_path_an.pdf\u0026Expires=1732749552\u0026Signature=GSXvAxTY7gPJIyp5s1PY1f9MJBz1mTZOBrwKg5szJa~ucCWamPeGNYXKjSFDsH2929kGivdHjxcPSbB2s9Eg2KAyvSHjR7g7-1DB9vyoKbYMC9P83xHGk23wl5Wv~xWoeLHSuPrN67sMM4ZeWKBqD1S2cWxUG76kSCKAV~gOeDnCkyryNq-MRcqr0LCLp3Xj-QTRG7lcU1qZMXgeevqI9f7BEil476wwGloKj8HWEYP4B3cmMXmezeYMb4~mvnXbjYrp3DAo1UgJ12qonb2Vg23svrgeKe-Tx6UIWnG02llOU0sbNYklyeBXJzY6jQIbW3-4ISdBESMdigZBpEk5rQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Critical_percolation_exploration_path_and_SLE_6_a_proof_of_convergence","translated_slug":"","page_count":47,"language":"en","content_type":"Work","owner":{"id":52848710,"first_name":"Federico","middle_initials":null,"last_name":"Camia","page_name":"FedericoCamia","domain_name":"independent","created_at":"2016-09-01T22:54:59.634-07:00","display_name":"Federico Camia","url":"https://independent.academia.edu/FedericoCamia"},"attachments":[{"id":79372646,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79372646/thumbnails/1.jpg","file_name":"s00440-006-0049-7.pdf","download_url":"https://www.academia.edu/attachments/79372646/download_file?st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&st=MTczMjc0NTk1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_percolation_exploration_path_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79372646/s00440-006-0049-7-libre.pdf?1642873952=\u0026response-content-disposition=attachment%3B+filename%3DCritical_percolation_exploration_path_an.pdf\u0026Expires=1732749552\u0026Signature=GSXvAxTY7gPJIyp5s1PY1f9MJBz1mTZOBrwKg5szJa~ucCWamPeGNYXKjSFDsH2929kGivdHjxcPSbB2s9Eg2KAyvSHjR7g7-1DB9vyoKbYMC9P83xHGk23wl5Wv~xWoeLHSuPrN67sMM4ZeWKBqD1S2cWxUG76kSCKAV~gOeDnCkyryNq-MRcqr0LCLp3Xj-QTRG7lcU1qZMXgeevqI9f7BEil476wwGloKj8HWEYP4B3cmMXmezeYMb4~mvnXbjYrp3DAo1UgJ12qonb2Vg23svrgeKe-Tx6UIWnG02llOU0sbNYklyeBXJzY6jQIbW3-4ISdBESMdigZBpEk5rQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":50071,"name":"Percolation","url":"https://www.academia.edu/Documents/in/Percolation"},{"id":230427,"name":"Lattice","url":"https://www.academia.edu/Documents/in/Lattice"},{"id":410032,"name":"Invariant","url":"https://www.academia.edu/Documents/in/Invariant"},{"id":1196284,"name":"SLE","url":"https://www.academia.edu/Documents/in/SLE"},{"id":2814568,"name":"Probability Distribution","url":"https://www.academia.edu/Documents/in/Probability_Distribution"},{"id":2891350,"name":"Distribution Function","url":"https://www.academia.edu/Documents/in/Distribution_Function-1"},{"id":2895246,"name":"Conformal Invariance","url":"https://www.academia.edu/Documents/in/Conformal_Invariance"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[{"id":16795166,"url":"http://direct.bl.uk/research/39/5C/RN212343958.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e41f2fa32ea8ec2dd43a9a399442674b024debddf1ac39eb93d2457c4f7bfc46", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="f6wd3x7F926ehJDXEHyx3ErWZUc8SK5fFNuxUyOFd+GhIzc/iDB5WrVIXKzgHq8EHH/85p3RTR/HnbGjRXovag==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/FedericoCamia" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="/yhSAyyTQwjx9PxKodvXxwePNZBVJ/vr3LNjy4b2CTchp3jjumbNPNo4MDFRuckfUSasMfS+GKsP9WM74AlRvA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10