CINXE.COM
NVIDIA AI and Data Science
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge,chrome=1"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="RlfxatTzpOAbQaaXCQpYBchL6F54BYH0Qr3q+RsPdASsYFauFg9FHEc37Z74Eh2ski4yAZIqbszFDOVGbvJDHg==" /> <title>NVIDIA AI and Data Science</title> <link rel="icon" type="image/x-icon" href="https://app.cdn.lookbookhq.com/lbhq-production/10412/thumbnails/original/1a53d015-3f8b-4152-a6e7-b397ba726c21.png"> <meta name="description" content="Get the latest content assets for NVIDIA AI and data science."> <link rel="canonical" href="https://resources.nvidia.com/l/en-us-data-science"> <meta name="robots" content="noindex, follow"> <meta property="og:title" content="NVIDIA AI and Data Science"> <meta property="og:description" content="Get the latest content assets for NVIDIA AI and data science."> <meta property="og:site_name" content="NVIDIA"> <meta property="og:url" content="https://resources.nvidia.com/l/en-us-data-science"> <meta property="og:type" content="website"> <meta property="og:image" content="https://cdn.pathfactory.com/assets/10412/logos/477996/d4950ed9-49ce-4fca-b333-e287fc8f5d35.jpg"> <meta property="og:image:height" content="384"> <meta property="og:image:width" content="576"> <meta name="twitter:title" content="NVIDIA AI and Data Science"> <meta name="twitter:description" content="Get the latest content assets for NVIDIA AI and data science."> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:image" content="https://cdn.pathfactory.com/assets/10412/logos/477996/d4950ed9-49ce-4fca-b333-e287fc8f5d35.jpg"> <link href="//cdn.pathfactory.com/web-fonts/roboto_lato/roboto_lato.css" media="screen" rel="stylesheet" type="text/css"> <link href= "//cdn.pathfactory.com/web-fonts/font-awesome/font-awesome.min.css" media="screen" rel="stylesheet" type="text/css"> <link href="//cdn.pathfactory.com/web-fonts/overpass/overpass.css" rel="stylesheet" type="text/css"> <style> @font-face { font-family: NVIDIASansWBd; src: url('https://cdn.pathfactory.com/assets/2/fonts/24bc8386-6985-4360-9f61-7107cd1e37f8.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWBdIt; src: url('https://cdn.pathfactory.com/assets/2/fonts/f169550d-f0dc-436f-a410-a126b54fbbbb.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWIt; src: url('https://cdn.pathfactory.com/assets/2/fonts/8a9216fb-6ac7-496c-bedb-7543dcf11d81.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWLt; src: url('https://cdn.pathfactory.com/assets/2/fonts/43b86a56-d2be-4e84-8396-e4c2d71cf4d9.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWLtIt; src: url('https://cdn.pathfactory.com/assets/2/fonts/ce922b2e-51c5-40e6-8e81-0dcfea65dc4f.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWMd; src: url('https://cdn.pathfactory.com/assets/2/fonts/720a495d-45b5-441d-a0da-80cd8eb0af28.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWMdIt; src: url('https://cdn.pathfactory.com/assets/2/fonts/bf17431d-f89c-483b-ae00-01ef2bd57854.woff2') format('woff2'); } @font-face { font-family: NVIDIASansWRg; src: url('https://cdn.pathfactory.com/assets/2/fonts/ad4ba864-75dc-44ab-a48b-a3c63972f646.woff2') format('woff2'); }</style> <script type="javascript/pathfactory"> (function() { var didInit = false; function initMunchkin() { if(didInit === false) { didInit = true; Munchkin.init('156-OFN-742'); } } function trackWebPage(thresholdPassed) { var url = document.location.pathname; var params = ""; var queryString = ""; if (thresholdPassed) { url = url + ", Met Threshold"; params = "threshold_passed=true" + (params ? "&" + params : ""); } params = params + (queryString ? "&" + queryString : ""); window.mktoMunchkinFunction('visitWebPage', { url: url, params: params }); } var s = document.createElement('script'); s.type = 'text/javascript'; s.async = true; s.src = '//munchkin.marketo.net/munchkin.js'; s.onreadystatechange = function() { if (this.readyState == 'complete' || this.readyState == 'loaded') { initMunchkin(); } }; s.onload = initMunchkin; document.getElementsByTagName('head')[0].appendChild(s); })(); </script> <script> window.__PATHFACTORY__ = {"environment":{"apiHost":"https://jukebox.lookbookhq.com","appId":"0c527753-20eb-4bd8-885a-7288228baf8c","accessProtectionSsoDomains":[],"baseUrl":"https://resources.nvidia.com","clientId":"LB-AEE03768-10412","consentDeclinedCookieLifetimeDays":"1/48","contentId":273106,"contentUuid":"b9740f06-f8ad-4a45-86e2-97bfc840c35e","cookieLifetimeDays":"730","cookieWhitelist":["ELOQUA","_mkto_trk","RegExp::^visitor_id[0-9]+$::pardot_visitor_id","hubspotutk"],"cfCollectionUuid":null,"cfContextConfig":null,"cfContexts":null,"collectionUuid":"12d34166-ff69-4921-b3f9-74a2083b0b15","childTrackExperienceUuid":null,"enableSnowplowForCampaignTools":true,"enableHippoTracking":true,"enableSnowplowTracking":true,"enableRadwareBotDetection":false,"enableDemandbase":false,"enableNvidiaNcidCookie":true,"enableSixSense":true,"environment":"production","experienceId":47646,"experienceType":"landing","experienceUuid":"12d34166-ff69-4921-b3f9-74a2083b0b15","landingPageContentUuid":null,"gdprCookieConsentEnabled":true,"landingExperienceId":9405,"landingExperienceLink":"","landingPageId":null,"marketingAutomationPlatform":"marketo","requestIp":"104.96.220.22","rocketChatEndpoint":"https://rocket.pathfactory.com","showCookieConsent":true,"standardCookieConsentEnabled":false,"snowplowCollector":"spcollector.pathfactory.com","experienceUniqueId":null,"enableCustomSnowplowCollector":false},"global":{"cookieWhitelist":["ELOQUA","_mkto_trk","RegExp::^visitor_id[0-9]+$::pardot_visitor_id","hubspotutk"],"customFonts":[{"title":"NVIDIASansWBd","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/24bc8386-6985-4360-9f61-7107cd1e37f8.woff2"},{"title":"NVIDIASansWBdIt","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/f169550d-f0dc-436f-a410-a126b54fbbbb.woff2"},{"title":"NVIDIASansWIt","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/8a9216fb-6ac7-496c-bedb-7543dcf11d81.woff2"},{"title":"NVIDIASansWLt","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/43b86a56-d2be-4e84-8396-e4c2d71cf4d9.woff2"},{"title":"NVIDIASansWLtIt","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/ce922b2e-51c5-40e6-8e81-0dcfea65dc4f.woff2"},{"title":"NVIDIASansWMd","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/720a495d-45b5-441d-a0da-80cd8eb0af28.woff2"},{"title":"NVIDIASansWMdIt","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/bf17431d-f89c-483b-ae00-01ef2bd57854.woff2"},{"title":"NVIDIASansWRg","fontFiles":"https://cdn.pathfactory.com/assets/2/fonts/ad4ba864-75dc-44ab-a48b-a3c63972f646.woff2"}],"showCookieConsent":true,"currentContent":null,"experienceContent":[{"id":295389,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2021-05-25T18:56:58.000-07:00","imageId":664306,"slug":"hardware-software-pr","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/295389/thumbnails/600x/Hardware-Software-Process-Report.png","title":"Hardware \u003e Software \u003e Process: Data Science in a Post-Moore's Law World","canonicalUrl":null,"description":"In this report, you鈥檒l learn about the co-evolution of hardware and software innovations that enable previously-impossible applications. They demand rethinking of how we write data science applications and the processes we follow to build them.","rating":null,"contentUuid":"814f5e86-75ba-4411-8464-42a780ccb767","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/jhbbzkhmrh/hardware-software-process-report","languageId":0,"contentTypeName":"Ebook","contentTypeId":2494,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/hardware-software-pr?x=yBY2dT","altText":"","topics":["Data Science","Accelerated Data Science"],"contentTypes":[{"id":2494,"name":"Ebook"}],"topicsJson":[{"contentId":295389,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":295389,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":295389,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":295389,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":295389,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2021-05-25T21:58:59.000-04:00","updatedAt":"2023-10-03T14:32:16.000-07:00","parameterizedContentTypeName":"ebook"},{"id":190473,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T10:44:42.000-07:00","imageId":662427,"slug":"top-10-kaggle-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190473/thumbnails/600x/a67a3c54-f20d-4bb4-9d73-d6a1f86dfab8.jpg","title":"How To Place Top 10 in a Kaggle Competition","canonicalUrl":null,"description":"","rating":null,"contentUuid":"89337066-9e7d-4926-8208-0b22c312740e","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/t18f5hwsdu","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/top-10-kaggle-webinar?x=yBY2dT","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190473,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190473,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":190473,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:00:23.000-04:00","updatedAt":"2023-10-03T14:11:05.000-07:00","parameterizedContentTypeName":"webinar"},{"id":206012,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-10-07T10:16:37.000-07:00","imageId":662500,"slug":"simplifying-data-sci-workflows-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/206012/thumbnails/600x/47f05082-8e6a-4ad6-b65e-0a3b26f755df.jpg","title":"Simplifying End-to-End Data Science Workflows","canonicalUrl":null,"description":"","rating":null,"contentUuid":"ec02d133-f69e-43c9-84dd-f759ab3b853b","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/k65ztm7sps","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/simplifying-data-sci-workflows-webinar?x=yBY2dT","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":206012,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":206012,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":206012,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-10-07T13:31:49.000-04:00","updatedAt":"2023-10-03T14:13:29.000-07:00","parameterizedContentTypeName":"webinar"},{"id":190475,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T10:44:43.000-07:00","imageId":662429,"slug":"spark-google-cloud-dataproc-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190475/thumbnails/600x/0bda2f43-474e-4d33-8d95-71eee916e4a2.jpg","title":"Accelerate Spark 3.0 with Google Cloud Dataproc and NVIDIA GPUs","canonicalUrl":null,"description":"","rating":null,"contentUuid":"de045e51-8297-41dc-85b8-24015b63806d","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/lacieqlc7l","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/spark-google-cloud-dataproc-webinar?x=yBY2dT","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190475,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190475,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":190475,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:00:23.000-04:00","updatedAt":"2023-10-03T14:11:11.000-07:00","parameterizedContentTypeName":"webinar"},{"id":190474,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T10:44:42.000-07:00","imageId":662428,"slug":"speeding-solar-analysis-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190474/thumbnails/600x/75b82d88-8844-4024-b76b-68231c510eb1.jpg","title":"Speeding Up Solar Analysis Using Machine Learning with NASA","canonicalUrl":null,"description":"","rating":null,"contentUuid":"3cee9b05-b424-4236-9468-b20382df5aab","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/faesykvrnh","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/speeding-solar-analysis-webinar?x=yBY2dT","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190474,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190474,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":190474,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:00:23.000-04:00","updatedAt":"2023-10-03T14:11:05.000-07:00","parameterizedContentTypeName":"webinar"},{"id":190480,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T11:02:20.000-07:00","imageId":662430,"slug":"state-of-rapids-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190480/thumbnails/600x/maxresdefault.jpg","title":"State of RAPIDS: Bridging the GPU Data Science Ecosystem","canonicalUrl":null,"description":"See how RAPIDS and the open-source ecosystem are advancing data science. We'll explore RAPIDS, the end to end open-source data science accelerator from NVIDI...","rating":null,"contentUuid":"e06e1fdc-380a-4bf2-81b5-5dd174035699","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=v_WKJpwq7yQ","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/state-of-rapids-video?x=yBY2dT","altText":"","topics":["Video"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":190480,"name":"Video","id":27316,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190480,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Simulation / Modeling / Design"],"solutionsJson":[{"contentId":190480,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":190480,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:05:04.000-04:00","updatedAt":"2023-10-03T14:11:12.000-07:00","parameterizedContentTypeName":"video"},{"id":73681,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-01T11:11:33.000-07:00","imageId":663488,"slug":"rtx-data-science-product-brief","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/73681/thumbnails/600x/4ea9dcb7-935e-4e1f-ae3b-7bbd3e1b8e6f-1.png","title":"A New Breed of Workstations for Data Science","canonicalUrl":null,"description":"","rating":null,"contentUuid":"ebd88b42-4a2f-4285-afa0-29c7e05a77b9","mediaType":"pdf","sourceUrl":"https://cdn.pathfactory.com/assets/preprocessed/10412/4ea9dcb7-935e-4e1f-ae3b-7bbd3e1b8e6f/4ea9dcb7-935e-4e1f-ae3b-7bbd3e1b8e6f.pdf","languageId":0,"contentTypeName":"Solution Brief","contentTypeId":7047,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/rtx-data-science-product-brief?x=yBY2dT","altText":"","topics":["Solution Brief"],"contentTypes":[{"id":7047,"name":"Solution Brief"}],"topicsJson":[{"contentId":73681,"name":"Solution Brief","id":38154,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":73681,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":73681,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:20.000-04:00","updatedAt":"2023-10-03T14:27:03.000-07:00","parameterizedContentTypeName":"solution-brief"},{"id":147480,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-05-19T14:07:58.000-07:00","imageId":665970,"slug":"apache-spark-ebook","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/147480/thumbnails/600x/37136359-d005-41ee-b765-91496c4d6556.jpg","title":"Accelerating Apache 3.X Leveraging NVIDIA GPUs to Power the Next Era of Analytics and AI","canonicalUrl":null,"description":"In this Apache Spark 3.0 eBook, You'll learn about Data Processing Evolution from Hadoop to GPUs and the RAPIDS Library.","rating":null,"contentUuid":"a8391607-090f-4540-9ce6-97c5769bd576","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/pzskflctd5/accelerating-apache-spark-3_08262021","languageId":0,"contentTypeName":"Ebook","contentTypeId":2494,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/apache-spark-ebook?x=yBY2dT","altText":"","topics":["Ebook"],"contentTypes":[{"id":2494,"name":"Ebook"}],"topicsJson":[{"contentId":147480,"name":"Ebook","id":27309,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":147480,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":147480,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:47:25.000-07:00","parameterizedContentTypeName":"ebook"},{"id":188390,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T11:30:11.000-07:00","imageId":662409,"slug":"GTC2020-s22516","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188390/thumbnails/600x/s22516-accelerate-ml-lifecycle-with-containers-kubernetes-and-nvidia-gpus-presented-by-red-hat_4x3.jpg","title":"Accelerate ML Lifecycle with Containers, Kubernetes and NVIDIA GPUs (Presented by Red Hat)","canonicalUrl":null,"description":"Data scientists desire a self-service, cloud-like experience to easily access ML modeling tools, data, and GPUs to rapidly build, scale, reproduce, and share ML modeling results with peers and developers. Containers and kubernetes platforms, integrated with NVIDIA GPUs, provide these capabilities to accelerate the training, testing, and deploying the ML models in production quickly.We'll provide an overview of how these technologies are helping solve real-world customer challenges. We'll walk through the various customer use cases and solutions associated with the combination of these technologies. We'll review the key capabilities required in a containers and kubernetes platform to help data scientists easily use technologies (such as Jupyter Notebooks, ML frameworks, etc.) to innovate faster. Finally, we'll share the platform options (for example, Red Hat OpenShift, Kubeflow), and examples of how data scientists are accelerating ML initiatives with containers and Kubernetes.","rating":null,"contentUuid":"84ac85de-0253-46c5-97ee-9e1c57f58a61","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22516?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22516?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188390,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188390,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188390,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188390,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:08.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":188378,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T11:07:33.000-07:00","imageId":662408,"slug":"GTC2020-s22556","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188378/thumbnails/600x/s22556-accelerated-analytics-fit-for-purpose-scaling-out-and-up_4x3.jpg","title":"Accelerated Analytics Fit for Purpose: Scaling Out and Up (Presented by OmniSci)","canonicalUrl":null,"description":"OmniSci has demonstrated the massive scaling possible using GPUs for computation and visualization. However, not every analytics problem or user persona requires massive scale; rather, our customers say they want proper-sized tools for the various problems they encounter across the enterprise. Our talk will outline the vision for scaling the OmniSci platform from trillions of records in a giant data store to hundreds of millions of records on a laptop, and every form factor in between. Whether you have a massive cluster of servers, a data science workstation, a GPU-enabled laptop, or even a CPU-only laptop, OmniSci can provide the same accelerated analytics experience appropriate for the problem at hand.","rating":null,"contentUuid":"a753446b-8e76-4f25-a630-6d0ca947726d","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22556?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22556?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188378,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188378,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188378,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188378,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:21.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188376,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T11:05:26.000-07:00","imageId":662407,"slug":"GTC2020-cwe21753","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188376/thumbnails/600x/cwe00000-connect-with-experts_4x3.jpg","title":"Accelerated Data ETL and Analytics: Implementations and Algorithms","canonicalUrl":null,"description":"Modern data science and analytics applications have high memory bandwidth and computational demands. GPUs are well equipped for this challenge, processing large amounts of data at high speed. This session focuses on implementations and algorithms for data analytics, such as parallel joins, aggregations, and other data manipulation techniques, as well as string operations, distributed systems, and more. We have a team of experts who architect, develop, and maintain core RAPIDS libraries ready to discuss the nuts and bolts of GPU-accelerated Data ETL \u0026 Data Analytics.","rating":null,"contentUuid":"a57ad961-bcd4-4e2e-81d4-818b63f669c9","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/cwe21753?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-cwe21753?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188376,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188376,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188376,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188376,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:48.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188371,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:54:27.000-07:00","imageId":662404,"slug":"GTC2020-s22417","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188371/thumbnails/600x/s22417-accelerated-data-science-in-the-classroom-teaching-analytics-and-machine-learning-with-rapids_4x3.jpg","title":"Accelerated Data Science in the Classroom: Teaching Analytics and Machine Learning with RAPIDS","canonicalUrl":null,"description":"The demand for accelerated data-science skill sets among new graduate students grows rapidly as the computational demands for data analytics applications soar. This session introduces a novel yet reproducible approach to teaching data-science topics in a graduate data science course at the Georgia Institute of Technology, taught by Professor Polo Chau. Haekyu Park, a computer science Ph.D. student and teaching assistant of the course, will co-present key pedagogical considerations and solutions that help students learn GPU-accelerated data science and analytics using the open-source RAPIDS framework. For example, we present a hybrid, flexible approach for students to learn, where they can choose to experiment with RAPIDS using a local NVIDIA DGX-1 system, or the cloud, or both.","rating":null,"contentUuid":"2e1950a3-331a-4c0a-8025-0552dd5357fa","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22417?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22417?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188371,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188371,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188371,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188371,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:10.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188372,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:57:58.000-07:00","imageId":662405,"slug":"GTC2020-s22661","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188372/thumbnails/600x/s22661-accelerating-adobe-intelligent-service-via-gpu-based-spark-3.0-and-xgboost_4x3.jpg","title":"Accelerating Adobe's Intelligent Service via GPU-based Spark 3.0 and XGBoost","canonicalUrl":null,"description":"In Adobe's Intelligent Services, Journey AI can optimize the delivery of marketing messages. It includes several complex features and advanced machine learning models. With the debut of GPU-based Spark 3.0, the processing speed of these features can be greatly increased. Furthermore, GPU-based XGBoost offers a dramatic acceleration in model training for machine learning features. This talk will briefly introduce Adobe Intelligent Services and provide the evaluation results of GPU-based Spark 3.0 and XGBoost on the acceleration of Adobe's Journey AI.","rating":null,"contentUuid":"d8e57552-61f6-42cd-bd5b-0b007e701d22","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22661?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22661?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188372,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188372,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188372,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188372,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:58.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188374,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:59:36.000-07:00","imageId":662406,"slug":"GTC2020-s22674","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188374/thumbnails/600x/s22674-accelerating-apache-spark-3.0-with-rapids-and-gpus_4x3.jpg","title":"Accelerating Apache Spark 3.0 with RAPIDS and GPUs","canonicalUrl":null,"description":"Utilizing accelerators in Apache Spark presents opportunities for significant speedup of ETL, ML and DL applications. In this talk we give an overview of accelerator aware task scheduling, columnar data processing support, fractional scheduling, and stage level resource scheduling and configuration. Furthermore, we dive into the Apache Spark 3.x RAPIDS plugin, which enables applications to take advantage of GPU acceleration with no code change. An explanation of how the Catalyst optimizer physical plan is modified for GPU aware scheduling is reviewed. The talk touches upon how the plugin can take advantage of the RAPIDS specific libraries, cudf, cuio and rmm to run tasks on the GPU. Optimizations were also made to the shuffle plugin to take advantage of the GPU using UCX, a unified communication framework that addresses GPU memory intra and inter node.","rating":null,"contentUuid":"0693bdd0-6f4c-4ac0-b814-16a55649b12c","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22674?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22674?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188374,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188374,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188374,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188374,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:49.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188362,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:42:14.000-07:00","imageId":662401,"slug":"GTC2020-s21642","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188362/thumbnails/600x/s21642-accelerating-graph-algorithms-on-exascale-systems_4x3.jpg","title":"Accelerating Graph Algorithms on Exascale Systems","canonicalUrl":null,"description":"We'll discuss our current efforts for accelerating graph algorithms on the latest US Department of Energy leadership systems. Graph methods are key kernels for large-scale data analytics, as well as for several exascale application domains, including smart grids, computational biology, computational chemistry, and climate science. We'll present our latest results on distributed implementations employing GPUs and accelerators of graph kernels such as community detection and influence maximization, showing how we can tackle large-scale problems with heterogeneous supercomputers.","rating":null,"contentUuid":"540400a5-1d9b-45c3-9858-b8379b9a2d4d","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21642?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21642?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188362,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188362,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188362,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188362,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:45.000-04:00","updatedAt":"2023-10-03T14:10:31.000-07:00","parameterizedContentTypeName":"session"},{"id":188367,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:49:29.000-07:00","imageId":662402,"slug":"GTC2020-s22471","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188367/thumbnails/600x/s22471-cupy-overview-numpy-syntax-computation-with-advanced-cuda-features_4x3.jpg","title":"CuPy Overview: NumPy Syntax Computation with Advanced CUDA Features","canonicalUrl":null,"description":"We'll introduce CuPy, describing the advantages of the library and how it is cleanly exposing in Python multiple CUDA state-of-the art libraries such as cuTENSOR or cuDNN. Discover the CuPy advantages and how they can use it to experience performance gains in their NumPy codes without any major changes.","rating":null,"contentUuid":"926f68df-b378-411b-a0f0-e02cecf9f813","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22471?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22471?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188367,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188367,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188367,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188367,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:38.000-04:00","updatedAt":"2023-10-03T14:10:31.000-07:00","parameterizedContentTypeName":"session"},{"id":188368,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:51:02.000-07:00","imageId":662403,"slug":"GTC2020-s22504","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188368/thumbnails/600x/s22504-deep-dive-with-kun-dong-network-density-of-states-kdd_4x3.jpg","title":"Deep Dive with Kun Dong, Network Density of States (KDD)","canonicalUrl":null,"description":"Learn more about this KDD paper: Network Density of States","rating":null,"contentUuid":"5b5ac73c-beca-4342-b63c-a6658b4d3fdc","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22504?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22504?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188368,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188368,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188368,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188368,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:18.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":155932,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:23:08.000-07:00","imageId":662235,"slug":"GTC2020-s22555","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155932/thumbnails/600x/s22555-deep-learning-demystified_4x3.jpg","title":"Deep Learning Demystified","canonicalUrl":null,"description":"Artificial intelligence has evolved and improved methods for data analysis and complex computations, solving problems that seemed well beyond our reach only a few years ago. Today, deep learning is transforming every industry, from health care and retail to automotive and financial services. Join us to understand the fundamentals of accelerated data analytics, high-level use cases, and problem-solving methods. We'll cover: \u003cbr/\u003e* demystifying artificial intelligence, machine learning, and deep learning; \u003cbr/\u003e* understanding the key challenges organizations face in adopting this new approach and how to address them; and \u003cbr/\u003e* learning about the latest tools and technologies, along with training resources, that can help deliver breakthrough results.","rating":null,"contentUuid":"6003b9ba-31ce-4e5c-b933-b1a4bddbb089","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22555?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22555?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155932,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155932,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155932,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155932,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:54:43.000-04:00","updatedAt":"2023-10-03T14:05:14.000-07:00","parameterizedContentTypeName":"session"},{"id":188433,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662418,"slug":"GTC2020-s22535","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188433/thumbnails/600x/s22535-dell-precision-data-science-workstation-for-the-new-era-of-ai-productivity_4x3.jpg","title":"Dell Precision Data Science Workstation for the new era of AI productivity","canonicalUrl":null,"description":"For too long, AI systems have been brittle platforms that data scientists and IT managers spend too much time assembling and fixing, rather than using. That's now a bygone era. Gone are the days or weeks going through trial and error to keep your AI platform working. The Dell Data Science Workstation is ready for AI work the day it arrives. It shreds through your data prep and model training iterations orders of magnitude faster. Hours of iteration time reduce to minutes or seconds. Days reduce to hours. Imagine the greater insights you'll now extract from your data, whether you're infusing AI into health care, business and finance, security, energy, media and entertainment, or manufacturing and engineering. Join us to hear what Dell, NVIDIA, and Canonical are collaborating on for Dell Data Science Workstation to make you data scientists and IT managers more productive and stress-free. These are solutions that can still be roll-your-own, but are enterprise-built and enterprise supported.","rating":null,"contentUuid":"a12d0b1b-3de8-490e-b63c-860dc2711c62","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22535?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22535?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188433,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188433,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188433,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188433,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":155930,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:23:05.000-07:00","imageId":662233,"slug":"GTC2020-s22446","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155930/thumbnails/600x/s22446-democratized-ml-pipelines-and-spark-rapids-based-hyperparameter-tuning_4x3.jpg","title":"Democratized ML pipelines and Spark Rapids based-hyperparameter tuning","canonicalUrl":null,"description":"XGBoost is an optimized and distributed gradient-based boosting library that's been applied to solve variety of data science problems with its classification and regression capabilities. It's ranked as one of the best algorithms to win Kaggle competitions. We build high-dimensional churn prediction models using XGBoost on Spark, and challenge its limits on the amount of data and dimensions it can handle within a reasonable time. XGBoost was natural choice because of its accuracy and out-of-box support to handle unbalanced dataset. With GPU-based distributed XGBoost we crossed the limit of the CPU-based XGBoost solution and took it to next level. It enhanced our capabilities to do hyperparameters search for optimized models for maximum return.","rating":null,"contentUuid":"39c47af9-01de-4136-8285-26450a533a85","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22446?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22446?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155930,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155930,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155930,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155930,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:56:26.000-04:00","updatedAt":"2023-10-03T14:05:14.000-07:00","parameterizedContentTypeName":"session"},{"id":188432,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662417,"slug":"GTC2020-s22473","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188432/thumbnails/600x/s22473-edge-computing-for-building-machine-learning-pipelines-using-azure-stack_4x3.jpg","title":"Edge Computing for Building Machine Learning Pipelines Using Azure Stack","canonicalUrl":null,"description":"Machine learning models need to be built closer to the source due to latency and data sovereignty requirements. Microsoft offers industry-leading hybrid cloud solutions, such as Azure Stack Hub and Azure Stack Edge in partnership with NVIDIA GPUs, to drive innovation and deliver a consistent cloud experience for these edge applications. Learn how to unlock customer-use cases by building production-scale models using data-science pipelines on the edge.","rating":null,"contentUuid":"413942a2-7903-46cd-9c4a-3408c95131a8","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22473?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22473?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188432,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188432,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188432,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188432,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188429,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662414,"slug":"GTC2020-s21482","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188429/thumbnails/600x/s21482-fast-distributed-joins-with-rapids-and-ucx_4x3.jpg","title":"Fast Distributed Joins with RAPIDS and UCX","canonicalUrl":null,"description":"There are numerous optimized single-GPU join implementations (such as RAPIDS cuDF), but scaling out to multiple GPUs across multiple nodes is challenging. The repartitioned join approach is one of the most popular distributed join algorithms, featuring all-to-all exchange as the main communication pattern. We'll show how to leverage UCX for efficient all-to-all implementation and demonstrate various optimization strategies, such as reusing communication buffers to speed up GPU-to-GPU transfers and overlapping compute with communications. The implementation is designed to reuse RAPIDS components for single-GPU, and scales to NVLINK and Infiniband systems. Our latest performance results demonstrate that a single DGX-2 can achieve 220 GB/s throughput for joining 8B/8B key-value pairs, while 18 DGX-1V nodes (144 GPUs) connected over IB achieve 503 GB/s, which is comparable with 244 CPU nodes (2K cores) in the best-known distributed CPU implementation.","rating":null,"contentUuid":"188208da-d63d-4ec2-afc5-42e65a5b993b","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21482?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21482?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188429,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188429,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188429,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188429,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188431,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662416,"slug":"GTC2020-s21665","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188431/thumbnails/600x/s21665-gpu-accelerated-data-pipeline-and-machine-learning-on-drive-agx-using-rapids_4x3.jpg","title":"GPU-Accelerated Data Pipeline and Machine Learning on DRIVE AGX using RAPIDS","canonicalUrl":null,"description":"We'll present the extended capability of RAPIDS on the DRIVE AGX platform by demonstrating how it enhances the in-car user experience, with examples. ML algorithms are used extensively to address various challenges in autonomous cars. They include complex, multi-stage data science pipeline, sensor data processing, modeling, and analytics to accomplish new ML-based applications. Potential applications include recommender systems through driver or vehicle personalization, visual analytics of driving data, classification of driver condition, driving scenario, and more. In many cases, application workload runs on CPUs or ECUs, leading to performance bottlenecks as data size and their computes increase. Application workload can be parallelized, causing significant speedup, using GPUs. NVIDIA developed RAPIDS to accelerate entire end-to-end data science and analytics pipelines on GPUs. In this talk, we present extended capability of RAPIDS on NVIDA DRIVE AGX platform by demonstrating how RAPIDS works.","rating":null,"contentUuid":"6fb2eb34-385f-4a2b-b1a1-a92e6a623653","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21665?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21665?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188431,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188431,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188431,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188431,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:55:11.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":155908,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:22:35.000-07:00","imageId":662211,"slug":"GTC2020-s21587","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155908/thumbnails/600x/s21587-gpu-accelerated-tabu-search-and-large-neighborhood-search-to-solve-vehicle-routing-problem-with-time-windows_4x3.jpg","title":"GPU-Accelerated Tabu Search and Large Neighborhood Search to Solve Vehicle Routing Problem with Time Windows","canonicalUrl":null,"description":"Learn various metaheuristic optimization algorithms to solve large-scale vehicle routing problems with time windows with GPU programming. We'll introduce a Tabu Search algorithm designed to exploit the parallelism in neighborhood search and its OpenACC-based implementation that applies deep-copy and manages complex data types. Then we'll introduce an Adaptive Large Neighborhood Search algorithm in which various combinations of destroy-and-repair heuristics are adaptively applied during the optimization process for the exploration of a substantially wider neighborhood of the solution space. We'll also describe the ALNS implementation using CUDA C and its running test on an NVIDIA DGX Station.","rating":null,"contentUuid":"3d5614f1-20f0-42b9-a1c1-a58e9c7da6cc","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21587?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21587?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155908,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155908,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155908,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155908,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:58:08.000-04:00","updatedAt":"2023-10-03T14:04:51.000-07:00","parameterizedContentTypeName":"session"},{"id":155931,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:23:06.000-07:00","imageId":662234,"slug":"GTC2020-s22530","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155931/thumbnails/600x/4029dfcd-4871-430b-8fa8-d5baac02f926.png","title":"How SageMaker Helped NerdWallet Build an ML Platform","canonicalUrl":null,"description":"NerdWallet connects millions of users with the best financial products for them, and data science is an important piece. Six months ago, it took months for NerdWallet to launch and iterate on modelsnow, it takes days. Senior Engineering Manager Ryan Kirkman and Staff Software Engineer Sharadh Krishnamurthy will explain how NerdWallet massively increased its rate of data science learning by building a machine-learning platform on top of SageMaker and Airflow. They'll share how SageMaker's BYO container feature helped them design a human-centric data science workflow and reuse parts of their existing build/deploy system. They'll also share why building a machine-learning platform is now possible with a small team thanks to massive technological progress over the past 10 years, like GPUs that are effectively machine-learning supercomputers. What cost $100 million in 2008 can now be rented from Amazon Web Services for about $34 an hour (p3.16xlarge instance with 8 NVIDIA Tesla v100 GPUs).","rating":null,"contentUuid":"027a5593-3bea-4e07-9d8c-1ccb7205fa20","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22530?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22530?x=yBY2dT","altText":"","topics":["Accelerated Data Science","Recommendation Systems"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155931,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":155931,"name":"Recommendation Systems","id":45907,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155931,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Recommenders / Personalization"],"solutionsJson":[{"contentId":155931,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":155931,"name":"Recommenders / Personalization","id":95802,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155931,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:58:28.000-04:00","updatedAt":"2023-10-03T14:05:14.000-07:00","parameterizedContentTypeName":"session"},{"id":188428,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662413,"slug":"GTC2020-s22526","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188428/thumbnails/600x/s22526-how-to-get-the-most-out-of-your-data-science-workflows-presented-by-lenovo_4x3.jpg","title":"How To: Get the Most Out of Your Data Science Workflows (Presented by Lenovo)","canonicalUrl":null,"description":"Learn how SAS is taking the power of Lenovo workstations, using NVIDIA Quadro RTX GPUs and NVIDIA RAPIDS accelerated AI frameworks, to increase speed and efficiency across their data science workflows. Leveraging the data science workstation, SAS can accelerate complex AI training to help bring projects to market faster than ever before. Join Alex Ge, senior associate data","rating":null,"contentUuid":"66f8e45a-d6df-4047-b534-fb9b948a3a77","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22526?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22526?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188428,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188428,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188428,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188428,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:06:01.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188436,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:53.000-07:00","imageId":662421,"slug":"GTC2020-s21517","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188436/thumbnails/600x/s21517-nvidia-rapids-on-summit-supercomputer-early-experiences_4x3.jpg","title":"NVIDIA Rapids on Summit Supercomputer: Early Experiences","canonicalUrl":null,"description":"Learn about the ongoing efforts at the Oak Ridge Leadership Computing Facility to deploy and support data analytics workloads on the Summit supercomputer using DASK and NVIDIA Rapids. First, we'll cover deployment and execution details of these frameworks for the Summit supercomputer. Then we'll introduce cuDF and cuML performance results of scientific dataset manipulation and CORAL-2 benchmarks.","rating":null,"contentUuid":"344e1b3f-2062-4e09-96cd-c660c875f98e","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21517?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21517?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188436,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188436,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188436,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188436,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188430,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662415,"slug":"GTC2020-s21651","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188430/thumbnails/600x/s21651-accelerating-tabular-deep-learning-workflows-with-rapids-pytorch-and-fast.ai_4x3.jpg","title":"NVTabular: GPU Accelerated ETL for Recommender Systems","canonicalUrl":null,"description":"Recommender systems require massive datasets to train, particularly for deep learning based solutions. The transformation of these datasets in order to prepare them for model training is particularly challenging. Often the time taken to do steps such as feature engineering, categorical encoding and normalization of continuous variables exceeds the time it takes to train a model. NVTabular is an open source feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems. It provides a high level abstraction to simplify code, making development faster, and accelerates computation on the GPU using the RAPIDS cuDF library. It is available for download and contributions at http://www.github.com/nvidia/NVTabular. A part of the Merlin Recommenders Framework, it pairs perfectly with HugeCTR to provide a straightforward method to train huge deep learning based recommender systems on GPU.","rating":null,"contentUuid":"55c41ef8-e319-49fb-bebd-7a70148d6106","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21651?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21651?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188430,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188430,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188430,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188430,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188427,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662412,"slug":"GTC2020-d2s29","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188427/thumbnails/600x/D2S29_RAPIDS-TAXI_4x3.jpg","title":"RAPIDS: GPU-Accelerated Data Analytics \u0026 Machine Learning","canonicalUrl":null,"description":"The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA CUDA primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes.This demonstration uses RAPIDS, and OmniScis GPU-accelerated analytics platform to quickly visualize and run queries on the 1.1 billion New York City taxi ride dataset.","rating":null,"contentUuid":"30b6b288-6a81-45f6-8248-9e2d0d2dc611","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/techdemos/video/d2s29?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-d2s29?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188427,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188427,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188427,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188427,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T17:44:03.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":153202,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-05-28T17:41:44.000-07:00","imageId":666107,"slug":"GTC2020-d2s19","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/153202/thumbnails/600x/7dabe58a-4a65-49dc-9d40-c629c5c49964.jpg","title":"Real-Time GPU-Accelerated Data Analytics","canonicalUrl":null,"description":"Real-Time GPU-Accelerated Data Analytics - Analyze, Visualize and Turn Data Into Insights with AI","rating":null,"contentUuid":"17b36812-63a5-4a9d-a9f8-a74e63809336","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/techdemos/video/d2s19?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-d2s19?x=yBY2dT","altText":"","topics":["Accelerated Data Science","IT Services"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":153202,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":153202,"name":"IT Services","id":28292,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":153202,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Center / Cloud","Data Science"],"solutionsJson":[{"contentId":153202,"name":"Data Center / Cloud","id":95794,"type":"ContentSolution"},{"contentId":153202,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":153202,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T19:19:03.000-04:00","updatedAt":"2023-10-03T14:48:26.000-07:00","parameterizedContentTypeName":"session"},{"id":188435,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662420,"slug":"GTC2020-s21762","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188435/thumbnails/600x/s21762-running-unmodified-numpy-programs-on-hundreds-of-gpus-with-legate-numpy_4x3.jpg","title":"Running Unmodified NumPy Programs on Hundreds of GPUs with Legate NumPy","canonicalUrl":null,"description":"Learn how you can run unmodified NumPy programs on hundreds of GPUs with Legate NumPy. We'll describe the implementation of Legate NumPy, a drop-in replacement for NumPy that lets you transparently distribute and accelerate NumPy programs across machines ranging from a single DGX box to the world's top supercomputers. To illustrate the power of Legate NumPy, we'll present performance results on a combination of HPC and traditional machine-learning applications written in NumPy running at scale. In addition to describing how to use Legate NumPy, we'll also describe its underlying architecture and how it leverages the Legion runtime system to make distributed and accelerated NumPy possible. Finally, we'll cover the underlying Legate interface on which Legate NumPy is built and how you can construct your own accelerated and distributed Python libraries using Legate to seamlessly compose and interoperate with Legate NumPy.","rating":null,"contentUuid":"04aead01-b6ee-40d0-b8f3-a5678ac3c5ed","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21762?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21762?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188435,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188435,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188435,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188435,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188434,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662419,"slug":"GTC2020-s21578","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188434/thumbnails/600x/s21578-scaling-hyper-parameter-optimization-using-rapids-dask-and-kubernetes_4x3.jpg","title":"Scaling Hyper-Parameter Optimization Using RAPIDS, Dask, and Kubernetes","canonicalUrl":null,"description":"We'll show you how to scale end-to-end data-science workflows on GPUs using RAPIDS, Dask, and Kubernetes. Specifically, we build a dynamically sized dataset and use it to run XGBoost hyper-parameter optimization using a particle-swarm strategy while scaling the number of GPUs in our cluster. We'll highlight best practices for scaling within a node (Dask) and across nodes (Dask plus Kubernetes), and demonstrate that the entire data-science workflow can be done on the GPU.\u003cbr/\u003eThe session content is presented as a Jupyter notebook enabling:\u003cbr/\u003e1) adjusting the workflow (e.g., size of synthetic dataset, number of workers),\u003cbr/\u003e2) interactively exploring data and model predictions, and\u003cbr/\u003e3) monitoring large scale compute via Dask dashboards.\u003cbr/\u003eHaving walked through these ideas, participants will be able to further explore and extend the content in their own environments.","rating":null,"contentUuid":"77949a30-8aaa-4184-bfd7-ed9500b57e1b","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21578?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21578?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188434,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188434,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188434,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188434,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":157054,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-04T15:07:53.000-07:00","imageId":662243,"slug":"GTC2020-s22136","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/157054/thumbnails/600x/s22136-scaling-pydata-with-dask-and-rapids-at-capital-one_4x3.jpg","title":"Scaling PyData with Dask and RAPIDS at Capital One","canonicalUrl":null,"description":"Data science at scale is challenging. Doing it optimally across an enterprise is even harder. Well discuss the challenges and potential to distribute and accelerate financial and credit data analysis to build machine learning models, and how to align an organization behind powerful open source tools to optimize value generation across a large enterprise.","rating":null,"contentUuid":"cfc11440-14b7-4c7f-902f-3183a786354a","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22136?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22136?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":157054,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":157054,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":157054,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":157054,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T20:02:54.000-04:00","updatedAt":"2023-10-03T14:05:28.000-07:00","parameterizedContentTypeName":"session"},{"id":188426,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662411,"slug":"GTC2020-s21269","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188426/thumbnails/600x/s21269-simplifying-gpu-access-a-polyglot-binding-for-gpus-with-graalvm_4x3.jpg","title":"Simplifying GPU Access: A Polyglot Binding for GPUs with GraalVM","canonicalUrl":null,"description":"GPU computing accelerates workloads and fuels breakthroughs across industries. There are many GPU-accelerated libraries developers can leverage, but integrating these libraries into existing software stacks can be challenging. Programming GPUs typically requires low-level programming, while high-level scripting languages have become very popular. Accelerated computing solutions are heterogeneous and inherently more complex. We'll present an open-source prototype called grCUDA that leverages Oracle's GraalVM and exposes GPUs in polyglot environments. While GraalVM can be regarded as the \"one VM to rule them all,\" grCUDA is the \"one GPU binding to rule them all.\" Data is efficiently shared between GPUs and GraalVM languages (R, Python, JavaScript) while GPU kernels can be launched directly from those languages. Precompiled GPU kernels can be used, as well as kernels that are generated at runtime. We'll also show how to access GPU-accelerated libraries such as RAPIDS cuML.","rating":null,"contentUuid":"80939052-d1e9-4f42-9f9d-2473e4576184","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21269?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21269?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188426,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188426,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188426,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188426,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T17:44:03.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":155896,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:22:22.000-07:00","imageId":662200,"slug":"GTC2020-s21347","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155896/thumbnails/600x/s21347-speed-up-your-data-science-tasks-by-a-factor-of-100-using-azureml-and-nvidia-rapids_4x3.jpg","title":"Speed Up Your Data Science Tasks By a Factor of 100+ Using AzureML and NVIDIA RAPIDS","canonicalUrl":null,"description":"We'll show how RAPIDS, DASK, and AzureML combine to provide data scientists with access to a parallel high-performance compute environment through a simple Python API. We'll show how the dataframe library cuDF, which will be familiar to Pandas users, as well as the ML library cuML, which provides GPU versions of all ML algorithms available in Scikit-learn, enable data scientists to quickly and easily scale their workloads. Azure Machine Learning service is the first major cloud ML service to integrate NVIDIA RAPIDS, enabling parallel, high-performance computing though a few steps in a simple Jupyter Notebook. RAPIDS is a suite of libraries built on NVIDIA CUDA for doing GPU-accelerated machine learning, enabling faster data preparation and model training. Together, AzureML and RAPIDS dramatically accelerate common data science tasks by leveraging the power of NVIDIA GPUs scaled out to an AzureML cluster of multiple GPU nodes running DASK.","rating":null,"contentUuid":"e0869117-e201-41ef-b939-04b68f840304","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21347?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21347?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155896,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155896,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155896,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155896,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T20:06:11.000-04:00","updatedAt":"2023-10-03T14:04:38.000-07:00","parameterizedContentTypeName":"session"},{"id":188425,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662410,"slug":"GTC2020-s21818","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188425/thumbnails/600x/s21818-unlocking-gpu-accelerated-data-science-at-scale-with-active-analytics_4x3.jpg","title":"Unlocking GPU-Accelerated Data Science at Scale with Active Analytics","canonicalUrl":null,"description":"We'll highlight how a GPU-accelerated active analytics platform streamlines traditional data-science workloads, in a democratized, pushbutton environment. We'll explore a demo that shows how GPU-accelerated data science can significantly reduce time to insight, uncover new results, and improve model performance. Key topics will include simplified data access and engineering,","rating":null,"contentUuid":"c86582a5-80d9-4b59-9ad9-00fe26c85ce9","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21818?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21818?x=yBY2dT","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188425,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188425,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188425,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188425,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T17:44:03.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":190482,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T11:06:48.000-07:00","imageId":662431,"slug":"american-airlines-ml-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190482/thumbnails/600x/8988e4f9-4699-497e-9a92-c940a13d7667.jpg","title":"American Airlines Realizes New Business Efficiencies with Machine Learning and Data Science Workstations","canonicalUrl":null,"description":"","rating":null,"contentUuid":"5b8b6f6d-b940-4683-ac7d-bbdfd17e27dd","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/kbf6hkwzqj","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/american-airlines-ml-webinar?x=yBY2dT","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190482,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190482,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":190482,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:11:05.000-04:00","updatedAt":"2023-10-03T14:11:12.000-07:00","parameterizedContentTypeName":"webinar"},{"id":121119,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-03-24T10:39:47.000-07:00","imageId":665508,"slug":"quadro-dsws-kpf-rapi","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/121119/thumbnails/600x/d7627df2-a0cd-4c42-be5c-14009a658a3c-1.png","title":"AI Acquires an Eye for Architecture","canonicalUrl":null,"description":"KPF realizes large performance gains with ResNet-50 and RAPIDS nearest neighbors search algorithm for architectural classification on NVIDIA Quadro RTX 8000 and BOXX Data Science Workstation.","rating":null,"contentUuid":"a7e2dd52-9943-469c-9cb5-eb66e72f75eb","mediaType":"pdf","sourceUrl":"https://cdn.pathfactory.com/assets/preprocessed/10412/d7627df2-a0cd-4c42-be5c-14009a658a3c/d7627df2-a0cd-4c42-be5c-14009a658a3c.pdf","languageId":0,"contentTypeName":"Customer Success Story","contentTypeId":12933,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/quadro-dsws-kpf-rapi?x=yBY2dT","altText":"","topics":["Design and Pro Visualization","Data Science","Machine learning","Data Science Workstation","Architecture","Engineering","and Construction","Track Transfer","Generative AI","Simulation / Modeling / Design"],"contentTypes":[{"id":12933,"name":"Customer Success Story"}],"topicsJson":[{"contentId":121119,"name":"Design and Pro Visualization","id":16044,"type":"ContentTopic"},{"contentId":121119,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":121119,"name":"Machine learning","id":27525,"type":"ContentTopic"},{"contentId":121119,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"},{"contentId":121119,"name":"Architecture","id":72676,"type":"ContentTopic"},{"contentId":121119,"name":"Engineering","id":72677,"type":"ContentTopic"},{"contentId":121119,"name":"and Construction","id":72678,"type":"ContentTopic"},{"contentId":121119,"name":"Track Transfer","id":89522,"type":"ContentTopic"},{"contentId":121119,"name":"Generative AI","id":92037,"type":"ContentTopic"},{"contentId":121119,"name":"Simulation / Modeling / Design","id":96287,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":["[en_us] Design and Viz Customer Stories Explore Page"],"personasJson":[{"contentId":121119,"name":"[en_us] Design and Viz Customer Stories Explore Page","id":68653,"type":"ContentPersona"}],"industries":["Architecture / Engineering / Construction"],"industriesJson":[{"contentId":121119,"name":"Architecture / Engineering / Construction","id":43899,"type":"ContentIndustry"}],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":121119,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":121119,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":121119,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":121119,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":121119,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T15:47:12.000-04:00","updatedAt":"2024-01-09T23:36:14.000-08:00","parameterizedContentTypeName":"customer-success-story"},{"id":108762,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-01-10T10:35:22.000-08:00","imageId":665297,"slug":"nasa-interview-at-gtc-dc-2019-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/108762/thumbnails/600x/maxresdefault.jpg","title":"NASA Interview at GTC DC 2019","canonicalUrl":null,"description":"Customers are using GPUs to accelerate their #datascience and get fast insights. Hear from Michael Kirk, as he explains how NASA has been seeing major benefi...","rating":null,"contentUuid":"ec7fbcca-fa78-47f4-b4b4-fbf254264556","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=-hpN-tZOyVI","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/nasa-interview-at-gtc-dc-2019-video?x=yBY2dT","altText":"","topics":["AI and Deep Learning","Data Science","Video","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":108762,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":108762,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":108762,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":108762,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":108762,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":108762,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":108762,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":108762,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":108762,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:26:17.000-04:00","updatedAt":"2023-10-03T14:41:45.000-07:00","parameterizedContentTypeName":"video"},{"id":84638,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-07-16T16:45:06.000-07:00","imageId":664690,"slug":"walmart-rapids-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/84638/thumbnails/600x/0d56e033-adc2-41f3-8680-d601780f5775.jpg","title":"Walmart Uses Rapids to Help Develop Better Retail Forecasting","canonicalUrl":null,"description":"With RAPIDS and NVIDIA GPUs, Walmart Labs is now able to generate more accurate forecasting models, analyze more features over longer horizons, and iterate 1...","rating":null,"contentUuid":"cb77e29c-d22f-4a77-8b08-9f8a50fe4b3f","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=OQjko2H7xec","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/walmart-rapids-video?x=yBY2dT","altText":"","topics":["Data Science","Video","Accelerated Data Science","RAPIDS Open Source","AI for Business","Retail \u0026 Consumer Packaged Goods","AI","AI for Enterprise Leaders"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":84638,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":84638,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":84638,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":84638,"name":"RAPIDS Open Source","id":27631,"type":"ContentTopic"},{"contentId":84638,"name":"AI for Business","id":27641,"type":"ContentTopic"},{"contentId":84638,"name":"Retail \u0026 Consumer Packaged Goods","id":27660,"type":"ContentTopic"},{"contentId":84638,"name":"AI","id":37650,"type":"ContentTopic"},{"contentId":84638,"name":"AI for Enterprise Leaders","id":53321,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":["Retail / Consumer Packaged Goods"],"industriesJson":[{"contentId":84638,"name":"Retail / Consumer Packaged Goods","id":69173,"type":"ContentIndustry"}],"businessUnits":["Deep Learning","Developer ","Embedded"],"businessUnitsJson":[{"contentId":84638,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"},{"contentId":84638,"name":"Developer ","id":16052,"type":"ContentBusinessUnit"},{"contentId":84638,"name":"Embedded","id":36599,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":84638,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":84638,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":84638,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":84638,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:34:43.000-07:00","parameterizedContentTypeName":"video"},{"id":84753,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-07-17T11:57:28.000-07:00","imageId":664707,"slug":"getting-started-on-data-science-workstations-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/84753/thumbnails/600x/maxresdefault.jpg","title":"Getting started on NVIDIA-Powered Data Science Workstations","canonicalUrl":null,"description":"Walk through getting started on NVIDIA-Powered Data Science Workstations, powerful systems featuring pre-installed CUDA-X AI software libraries and NVIDIA Qu...","rating":null,"contentUuid":"8fa022b6-a4fa-4e75-b28d-9b910ec21134","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=enN9F_iNVLw","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/getting-started-on-data-science-workstations-video?x=yBY2dT","altText":"","topics":["Data Center","Data Science","Video","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":84753,"name":"Data Center","id":16043,"type":"ContentTopic"},{"contentId":84753,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":84753,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":84753,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":84753,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Center / Cloud","Data Science","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":84753,"name":"Data Center / Cloud","id":95794,"type":"ContentSolution"},{"contentId":84753,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":84753,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":84753,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:34:55.000-07:00","parameterizedContentTypeName":"video"},{"id":77184,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-23T12:47:19.000-07:00","imageId":664026,"slug":"rapids-data-science-solution-product-brief","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/77184/thumbnails/600x/1024_1561561073-1.png","title":"Accelerated Data Science Solution with RAPIDS","canonicalUrl":null,"description":"","rating":null,"contentUuid":"fc2a8a8e-de66-4c9e-850e-609e174ba81d","mediaType":"pdf","sourceUrl":"https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/deep-learning-solutions/data-science/data-science-rapids-solution-brief.pdf","languageId":0,"contentTypeName":"Solution Brief","contentTypeId":7047,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/rapids-data-science-solution-product-brief?x=yBY2dT","altText":"","topics":["Solution Brief"],"contentTypes":[{"id":7047,"name":"Solution Brief"}],"topicsJson":[{"contentId":77184,"name":"Solution Brief","id":38154,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":77184,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":77184,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:30:16.000-07:00","parameterizedContentTypeName":"solution-brief"},{"id":73684,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-01T11:22:50.000-07:00","imageId":663493,"slug":"accelerating-data-sc","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/73684/thumbnails/600x/maxresdefault.jpg","title":"Data Science with NVIDIA-Powered Workstations","canonicalUrl":null,"description":"See how the new NVIDIA-powered data science workstations are enabling data scientists to sort through massive amounts of data to derive actionable insights a...","rating":null,"contentUuid":"89c67cc4-71be-4fa6-8fc0-35da3a91a47a","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=F0FYJbwII88","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/accelerating-data-sc?x=yBY2dT","altText":"","topics":["AI and Deep Learning","Data Science","Video","Accelerated Data Science","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":73684,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":73684,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":73684,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":73684,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":73684,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":73684,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":73684,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":73684,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":73684,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":73684,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:27:03.000-07:00","parameterizedContentTypeName":"video"},{"id":69491,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:11.000-07:00","imageId":663102,"slug":"gpu-accelerated-data","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69491/thumbnails/600x/maxresdefault.jpg","title":"GPU-Accelerated Data Science Demo","canonicalUrl":null,"description":"With GPU-acceleration, data science workflows can be transformed from days to minutes. Watch the #GTC19 keynote demo showcasing 1TB of data and over 500 mill...","rating":null,"contentUuid":"f46b73d1-f881-4f29-828c-854545ab459c","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=LztHuPh3GyU","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/gpu-accelerated-data?x=yBY2dT","altText":"","topics":["AI and Deep Learning","Data Science","Video","Accelerated Data Science","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":69491,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":69491,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":69491,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":69491,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":69491,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":69491,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":69491,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":69491,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":69491,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":69491,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:15:43.000-04:00","updatedAt":"2023-10-03T14:24:28.000-07:00","parameterizedContentTypeName":"video"},{"id":76675,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-21T15:41:22.000-07:00","imageId":664015,"slug":"rapids-with-xgboost-and-cuml-white-paper","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/76675/thumbnails/600x/1024_1558478606-01.png","title":"Getting Started with RAPIDS Using XGBoost and cuML","canonicalUrl":null,"description":"","rating":null,"contentUuid":"97ee9611-0482-4c32-bf37-68533cabfd0d","mediaType":"pdf","sourceUrl":"https://app.cdn.lookbookhq.com/lbhq-production/10412/content/original/844c7323-3547-41f6-a82a-64098de0ffd6/RAPIDS-XGBoost-cuML1.pdf","languageId":0,"contentTypeName":"White Paper","contentTypeId":2493,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/rapids-with-xgboost-and-cuml-white-paper?x=yBY2dT","altText":"","topics":["AI and Deep Learning","White Paper"],"contentTypes":[{"id":2493,"name":"White Paper"}],"topicsJson":[{"contentId":76675,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":76675,"name":"White Paper","id":27313,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":76675,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Generative AI"],"solutionsJson":[{"contentId":76675,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":76675,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:29:22.000-04:00","updatedAt":"2023-10-03T14:30:13.000-07:00","parameterizedContentTypeName":"white-paper"},{"id":69494,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:11.000-07:00","imageId":663108,"slug":"quansight-and-rapids","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69494/thumbnails/600x/maxresdefault.jpg","title":"Pushing Data Science Performance Forward","canonicalUrl":null,"description":"Travis Oliphant, CEO of Quansight, and early contributor to RAPIDS, explains the work being done to integrate GPUs with data.","rating":null,"contentUuid":"a23a9f37-7b4e-4d16-941e-87bbbe8ec135","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=iHM4RyjeV-U","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/quansight-and-rapids?x=yBY2dT","altText":"","topics":["Video"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":69494,"name":"Video","id":27316,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":69494,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Simulation / Modeling / Design"],"solutionsJson":[{"contentId":69494,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":69494,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:38:10.000-04:00","updatedAt":"2023-10-03T14:24:28.000-07:00","parameterizedContentTypeName":"video"},{"id":69489,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:10.000-07:00","imageId":663096,"slug":"business-transformat","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69489/thumbnails/600x/mlperf-social-share-1200x1200.jpg","title":"Business Transformation Driven by NVIDIA Data Science With RAPIDS","canonicalUrl":null,"description":"NVIDIA AI performance benchmarks, capturing the top spots in the industry.","rating":null,"contentUuid":"c9651f60-7335-429f-a411-5afad68823c2","mediaType":"webpage","sourceUrl":"https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/interactive-infographic/","languageId":0,"contentTypeName":"Infographic","contentTypeId":2490,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/business-transformat?x=yBY2dT","altText":"","topics":["AI and Deep Learning","Data Center","Data Science","Infographic","Accelerated Data Science","Mainstream GPU Infrastructure"],"contentTypes":[{"id":2490,"name":"Infographic"}],"topicsJson":[{"contentId":69489,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":69489,"name":"Data Center","id":16043,"type":"ContentTopic"},{"contentId":69489,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":69489,"name":"Infographic","id":27315,"type":"ContentTopic"},{"contentId":69489,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":69489,"name":"Mainstream GPU Infrastructure","id":27658,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning","HPC "],"businessUnitsJson":[{"contentId":69489,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"},{"contentId":69489,"name":"HPC ","id":16049,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Center / Cloud","Data Science","Generative AI"],"solutionsJson":[{"contentId":69489,"name":"Data Center / Cloud","id":95794,"type":"ContentSolution"},{"contentId":69489,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":69489,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":69489,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:21:20.000-04:00","updatedAt":"2023-10-03T14:24:18.000-07:00","parameterizedContentTypeName":"infographic"},{"id":69492,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:11.000-07:00","imageId":663105,"slug":"unlocking-machine-learning-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69492/thumbnails/600x/0.jpg","title":"Unlocking Machine Learning Performance and Productivity","canonicalUrl":null,"description":"","rating":null,"contentUuid":"be716c64-0dd8-47ff-b82e-654deb0c3345","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/dhy4y9stfy","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/unlocking-machine-learning-webinar?x=yBY2dT","altText":"","topics":["AI and Deep Learning","Data Science","Webinar","Accelerated Data Science"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":69492,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":69492,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":69492,"name":"Webinar","id":27310,"type":"ContentTopic"},{"contentId":69492,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":69492,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI"],"solutionsJson":[{"contentId":69492,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":69492,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":69492,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:25:53.000-04:00","updatedAt":"2023-10-03T14:24:29.000-07:00","parameterizedContentTypeName":"webinar"},{"id":318508,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2021-08-05T21:59:03.000-07:00","imageId":663803,"slug":"accelerated-data-sci","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/318508/thumbnails/600x/01a87675-c381-4fbd-ad7b-43d410fca4b9.png","title":"Accelerate CDP Workloads with NVIDIA-Certified Systems","canonicalUrl":null,"description":"Easily deploy end-to-end data science pipelines to improve your data-driven operations.","rating":null,"contentUuid":"dd624260-de46-4f54-bce7-8924df40d0a1","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/sbvlwwnxp8/accelerated-data-science-print-cloudera-solution-brief-1836848-r2-op1","languageId":0,"contentTypeName":"Solution Brief","contentTypeId":7047,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/accelerated-data-sci?x=yBY2dT","altText":"","topics":["AI and Deep Learning","Data Science","Accelerated Data Science","AI for Enterprise","AI","Solution Brief"],"contentTypes":[{"id":7047,"name":"Solution Brief"}],"topicsJson":[{"contentId":318508,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":318508,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":318508,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":318508,"name":"AI for Enterprise","id":33483,"type":"ContentTopic"},{"contentId":318508,"name":"AI","id":37650,"type":"ContentTopic"},{"contentId":318508,"name":"Solution Brief","id":38154,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":318508,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI"],"solutionsJson":[{"contentId":318508,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":318508,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":318508,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2021-08-06T01:03:34.000-04:00","updatedAt":"2023-10-03T14:28:57.000-07:00","parameterizedContentTypeName":"solution-brief"}],"recommendedContent":null},"pageViewData":{"id":9405,"businessUnits":[{"id":16047,"label":"Deep Learning","count":21,"parameterizedValue":"deep-learning"},{"id":16052,"label":"Developer ","count":1,"parameterizedValue":"developer"},{"id":36599,"label":"Embedded","count":1,"parameterizedValue":"embedded"},{"id":46177,"label":"GTC","count":28,"parameterizedValue":"gtc"},{"id":16049,"label":"HPC ","count":1,"parameterizedValue":"hpc"}],"carouselTopicsConfig":{"topics":[],"excludeFeaturedAssets":false,"otherContentTitle":"More Content"},"carouselContentsConfig":null,"contentTrackOptions":"overlay","contentTypes":[{"id":12933,"label":"Customer Success Story","count":1,"parameterizedValue":"customer-success-story"},{"id":2494,"label":"Ebook","count":2,"parameterizedValue":"ebook"},{"id":2490,"label":"Infographic","count":1,"parameterizedValue":"infographic"},{"id":5629,"label":"Session","count":28,"parameterizedValue":"session"},{"id":7047,"label":"Solution Brief","count":3,"parameterizedValue":"solution-brief"},{"id":2492,"label":"Video","count":7,"parameterizedValue":"video"},{"id":2497,"label":"Webinar","count":6,"parameterizedValue":"webinar"},{"id":2493,"label":"White Paper","count":1,"parameterizedValue":"white-paper"}],"cookieConsentConfig":{"autoApplyCookieConsent":true,"consentDeclinedCookieLifetimeDays":"1/48","cookieLifetimeDays":"730","enabled":"custom","enabledStrict":false,"experienceRule":"new","externalCode":"\u003cstyle\u003e\n\n #cookiePolicy-layer {\n \n display: flex;\n align-items: center;\n height: auto;\n min-height:54px;\n min-width: 320px;\n }\n \n \n #cookiePolicy-layer .messageContainer {\n max-height: 50px;\n line-height: 18px;\n font-size:16px;\n margin-right: 20px;\n margin-left:15px ;\n margin-bottom: 10px;\n font-family: Helvetica,Arial,Sans-Serif;\n }\n \n #sidebar-container {\n margin-bottom: 50px !important;\n }\n \n #cookiePolicy-layer{background:#3c3c3c none repeat scroll 0 0;border-top:2px solid #76b900;bottom:0;display:none;left:0;position:fixed;width:100%;z-index:9999999}\n #cookiePolicy-layer .messageContainer{color:#fff;float:left;text-align:center}\n #cookiePolicy-layer p{margin:1em;text-align:center}\n #cookiePolicy-layer .green-box-bttn{background-color:#76b900;border:0 none;color:#fff;cursor:pointer;display:inline-block;float:right;font-size:1em;font-weight:bold;height:100%;letter-spacing:1px;padding:0;text-align:center;text-decoration:none;text-transform:uppercase;margin-right:6%}\n #cookiePolicy-layer .green-box-bttn span{display:inline-block;vertical-align:middle}\n #cookiePolicy-layer a{color:#76b900;text-decoration:none}\n \n @media screen and (min-width:768px) and (max-width:1024px){\n #cookiePolicy-layer{height:77px}\n #cookiePolicy-layer .messageContainer{line-height:77px;width:79%}\n #cookiePolicy-layer .messageContainer p{display:inline-block;line-height:1.4em;vertical-align:middle}\n #cookiePolicy-layer .green-box-bttn{line-height:77px;width:15%}\n }\n @media screen and (min-width:320px) and (max-width:767px){\n #cookiePolicy-layer{height:60px}\n #cookiePolicy-layer .messageContainer{line-height:60px;width:74%}\n #cookiePolicy-layer .messageContainer p{display:inline-block;font-size:.6em;line-height:1.2em;margin:.5em 1em;vertical-align:middle}\n #cookiePolicy-layer .green-box-bttn{font-size:.6em;line-height:60px;width:20%}\n }\n @media screen and (min-width:1024px){\n #cookiePolicy-layer{height:54px}\n #cookiePolicy-layer .messageContainer{line-height:23px;width:84%}\n #cookiePolicy-layer .messageContainer p{display:inline-block;line-height:1.4em;vertical-align:middle}\n #cookiePolicy-layer .green-box-bttn{line-height:54px;width:10%}\n }\n \n @media screen and (max-width: 767px) {\n #cookiePolicy-layer {\n min-height:76px;\n }\n #cookiePolicy-layer .messageContainer {\n line-height: 16px;\n font-size:14px;\n }\n \n }\n \n \u003c/style\u003e \t\n \n \u003cscript\u003e\n \n //Add the script for your consent provider here\n \n function setPfConsent(status){\n if(pfConsentStatus()!=true \u0026\u0026status==true)\n return pfCookieResponse(true);\n if (pfConsentStatus() != false \u0026\u0026 status==false)\n pfCookieResponse(false);\n } \n \n //functions to wait for flow promoter to be rendered\n \n function rafAsync() {\n return new Promise(resolve =\u003e {\n requestAnimationFrame(resolve); \n });\n }\n \n function checkElement(selector) {\n if (document.querySelector(selector) === null) {\n return rafAsync().then(() =\u003e checkElement(selector));\n } else {\n if (document.querySelector(selector).parentNode==null){\n return rafAsync().then(() =\u003e checkElement(selector));\n } else {\n return Promise.resolve(true);\n }\n }\n }\n \n \n checkElement(\"#cookiePolicy-btn-close\") //add the selector for the element you are waiting for here\n .then((element) =\u003e {\n \n const cookiePolicy = document.getElementById(\"cookiePolicy-btn-close\");\n const messageContainer = document.getElementById(\"cookiePolicy-layer\");\n \n pfOnJukeboxLoad.then(function() {\n if(pfConsentStatus()!=true) {\n messageContainer.style.display = \"flex\";\n }\n \n cookiePolicy.addEventListener(\"click\", function(event) {\n event.preventDefault();\n messageContainer.style.visibility = \"hidden\";\n setPfConsent(true);\n })\n \n });\n });\n \u003c/script\u003e","countries":[],"marketingAutomationPlatform":"marketo","gdprAcceptButtonBackgroundColor":"#fff","gdprDeclineButtonBackgroundColor":"#fff","gdprButtonColor":"#000000","gdprButtonFontFamily":"NVIDIASansWRg","gdprButtonFontSize":"13px","gdprButtonFontWeight":"normal","gdprButtonLineHeight":"18px","gdprLearnMoreUrl":"","gdprLearnMoreColor":"#76b900","gdprLearnMoreFontFamily":"NVIDIASansWRg","gdprLearnMoreFontSize":"15px","gdprLearnMoreFontWeight":"normal","gdprLearnMoreLineHeight":"20px","gdprMessageColor":"#000000","gdprMessageFontFamily":"NVIDIASansWRg","gdprMessageFontSize":"13px","gdprMessageFontWeight":"normal","gdprMessageLineHeight":"18px","gdprDialogBackgroundColor":"#ffffff","gdprPreferencesBodyTextColor":"#000000","gdprPreferencesBodyTextFontFamily":"NVIDIASansWRg","gdprPreferencesBodyTextFontSize":"13px","gdprPreferencesBodyTextFontWeight":"normal","gdprPreferencesBodyTextLineHeight":"18px","gdprPreferencesHeaderColor":"#000000","gdprPreferencesHeaderFontFamily":"NVIDIASansWRg","gdprPreferencesHeaderFontSize":"13px","gdprPreferencesHeaderFontWeight":"normal","gdprPreferencesHeaderLineHeight":"18px","gdprPreferencesSubheaderColor":"#000000","gdprPreferencesSubheaderFontFamily":"NVIDIASansWRg","gdprPreferencesSubheaderFontSize":"13px","gdprPreferencesSubheaderFontWeight":"normal","gdprPreferencesSubheaderLineHeight":"18px","gdprPreferencesDialogBackgroundColor":"#ffffff","gdprPreferencesDialogOptInColor":"#76b900","cookieMessage":"This site uses cookies to provide a personalized content experience and track visitor engagement.","gdprAccept":"Accept","gdprDecline":"Decline","gdprLearnMore":"Learn More","gdprCookieMessage":"This site uses cookies to provide a personalized content experience and track visitor engagement.","gdprPreferencesBodyText":"These cookies are necessary for the website to function. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy settings, logging in or filling in forms.","gdprPreferencesHeaderText":"Cookie Preference Center","gdprPreferencesSubheaderText":"Cookies Used","gdprPreferencesLinkLabel":"Cookie Settings","gdprPreferencesMapDescription":"These cookies are necessary for the website to function. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy settings, logging in or filling in forms.","gdprPreferencesGaDescription":"These cookies are necessary for the website to function. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy settings, logging in or filling in forms.","gdprPreferencesStrictlyNecessarySubheaderText":"Strictly Necessary Cookies","gdprMarketingCookieTypeText":"Marketing","gdprThirdPartyCookieTypeText":"3rd Party","vidSessionCookieDesc":"vid - session cookie used to collect anonymous information for analytics, and provide content and navigation in this content track.","strictModeVidSessionCookieDesc":"vid - this session cookie is required to render content and navigate around this content track.","vidPermanentCookieDesc":"vid - PathFactory permanent cookie used to collect information about both unknown and known web visitors and behaviour habits to make content relevant to your interests.","externalCodesList":[],"googleAnalyticsEnabled":false},"cookieConsentEnabled":false,"ctaConfigurations":[],"exitConfig":{"delay":5,"featuredItemId":null,"type":"asset","formId":null,"enableEscKey":false,"enableOutsideModal":false,"itemColor":"#000000","itemFontFamily":"NVIDIASansWRg","itemFontSize":"15px","itemFontWeight":"normal","itemLineHeight":"20px","maxItems":1,"messageColor":"#000000","messageFontFamily":"NVIDIASansWRg","messageFontSize":"17px","messageFontWeight":"normal","messageLineHeight":"22px","titleColor":"#76b900","titleFontFamily":"NVIDIASansWRg","titleFontSize":"27px","titleFontWeight":"normal","titleLineHeight":"34px","message":"We have so much more great content. Why not check this out?","title":"Before you go..."},"experienceType":"landing","exploreConfig":{"thumbnailAspectRatioWidth":16,"thumbnailAspectRatioHeight":9,"heroLayout":"default","heroBackgroundColor":"#000000","heroBackgroundImage":"https://cdn.pathfactory.com/assets/10412/heroes/504035/c94b4fde-70e8-48c8-b1fb-98f77336a250.jpg","heroBackgroundSpan":"fixed","heroBrandImage":"","heroPartnerImage":"","heroPersonalizedImage":"","heroTitleColor":"#FFFFFF","heroTitleFontFamily":"NVIDIASansWRg","heroTitleFontSize":"38px","heroTitleFontWeight":"normal","heroTitleFontStyle":"normal","heroTitleTextDecoration":"none","heroTitleLineHeight":"44px","heroTitleTextAlign":"left","heroSubtitleColor":"#FFFFFF","heroSubtitleFontFamily":"NVIDIASansWRg","heroSubtitleFontSize":"24px","heroSubtitleFontWeight":"normal","heroSubtitleFontStyle":"normal","heroSubtitleTextDecoration":"none","heroSubtitleLineHeight":"30px","heroSubtitleTextAlign":"left","bodyLayout":"grid","pageBackgroundColor":"#FFFFFF","pageTitleStyleColor":"#000000","pageTitleStyleFontFamily":"NVIDIASansWRg","pageTitleStyleFontSize":"27px","pageTitleStyleFontWeight":"normal","pageTitleStyleFontStyle":"normal","pageTitleStyleTextDecoration":"none","pageTitleStyleLineHeight":"34px","pageTitleStyleTextAlign":"center","descriptionStyleColor":"#000000","descriptionStyleFontFamily":"NVIDIASansWRg","descriptionStyleFontSize":"15px","descriptionStyleFontWeight":"normal","descriptionStyleFontStyle":"normal","descriptionStyleTextDecoration":"none","descriptionStyleLineHeight":"20px","descriptionStyleTextAlign":"center","contentTitleStyleColor":"#000000","contentTitleStyleFontFamily":"NVIDIASansWRg","contentTitleStyleFontSize":"15px","contentTitleStyleFontWeight":"normal","contentTitleStyleFontStyle":"normal","contentTitleStyleTextDecoration":"none","contentTitleStyleLineHeight":"20px","contentTitleStyleTextAlign":"left","contentTypeLabelsStyleColor":"#000000","contentTypeLabelsStyleBackgroundColor":"#76b900","contentTypeLabelsStyleFontFamily":"NVIDIASansWRg","contentTypeLabelsStyleFontWeight":"normal","contentTypeLabelsStyleFontStyle":"normal","contentTypeLabelsStyleTextDecoration":"none","topicCarouselTextStyleColor":"#213542","topicCarouselTextStyleFontFamily":"Roboto","topicCarouselTextStyleFontWeight":"normal","topicCarouselTextStyleFontStyle":"normal","topicCarouselTextStyleTextDecoration":"none","topicCarouselTextStyleFontSize":"24px","topicCarouselTextStyleLineHeight":"18px","topicCarouselTextStyleTextAlign":"left","topicCarouselDescriptionStyleColor":"#213542","topicCarouselDescriptionStyleFontFamily":"Roboto","topicCarouselDescriptionStyleFontSize":"13px","topicCarouselDescriptionStyleFontWeight":"normal","topicCarouselDescriptionStyleFontStyle":"normal","topicCarouselDescriptionStyleTextDecoration":"none","topicCarouselDescriptionStyleLineHeight":"18px","topicCarouselDescriptionStyleTextAlign":"left","topicCarouselArrowsStyleColor":"#FFFFFF","topicCarouselArrowsStyleBackgroundColor":"#213542","searchFiltersStyleColor":"#000000","searchFiltersStyleBackgroundColor":"#76b900","searchFiltersStyleFontFamily":"NVIDIASansWRg","searchFiltersStyleFontSize":"13px","searchFiltersStyleLineHeight":"18px","searchFieldInputColor":"#76b900","searchFieldInputBackgroundColor":"#ffffff","searchFieldInputFontFamily":"NVIDIASansWRg","searchFieldInputFontSize":"13px","searchFieldInputLineHeight":"18px","dynamicBrandLogo":false,"dynamicPartnerLogo":false,"featuredLabel":"Featured","searchButtonTitle":"Search","searchInputFieldPlaceholder":"Search","filterByContentTypeTitle":"Filter by Content Type","filterByFunnelStageTitle":"Filter by Funnel Stage","filterByBusinessUnitTitle":"Filter by Business Unit","filterByPersonaTitle":"Filter by Persona","filterByIndustryTitle":"Filter by Industry","filterByLanguageTitle":"Filter by Language","filterByTopicTitle":"Filter by Topic","filterByProductTitle":"Filter by Product","filterBySolutionTitle":"Filter by Solution"},"featuredTopics":[],"formConfig":{"headerTextFontFamily":"NVIDIASansWRg","headerTextColor":"#212529","headerTextFontWeight":"500","headerTextFontSize":"1.39rem","headerTextLineHeight":"1.2em","bodyTextFontFamily":"NVIDIASansWRg","bodyTextColor":"#212529","bodyTextFontWeight":"normal","bodyTextFontSize":"0.95rem","bodyTextLineHeight":"1.2em","firstName":"First Name","lastName":"Last Name","title":"Title","company":"Company","phone":"Phone","email":"Email","employeeCount":"Employee Count","country":"Country","stateProvince":"State/Province","city":"City","zipCode":"Zip Code/Postal Code","address":"Address"},"funnelStages":[{"id":845,"label":"Bottom of Funnel","count":4,"parameterizedValue":"bottom-of-funnel"},{"id":846,"label":"Middle of Funnel","count":35,"parameterizedValue":"middle-of-funnel"},{"id":844,"label":"Top of Funnel","count":10,"parameterizedValue":"top-of-funnel"}],"gdprCookieConsentEnabled":true,"generalConfig":{"favicon":"https://app.cdn.lookbookhq.com/lbhq-production/10412/thumbnails/original/1a53d015-3f8b-4152-a6e7-b397ba726c21.png","clientLogo":""},"hasTopicSidebar":false,"headerConfig":{"title":"RECOMMENDED CONTENT","backgroundColor":"#FFFFFF","logo":"https://app.cdn.lookbookhq.com/lbhq-production/10412/thumbnails/original/d6fa0b65-d21e-41b6-a596-09cf6b93f72f.png","logoHeight":"30","titleColor":"#000000","titleFontFamily":"NVIDIASansWRg","titleFontSize":"15px","titleFontWeight":"normal","titleLineHeight":"20px","sharingIconColor":"#76b900","dividerColor":"#222222","dynamicLogo":false,"fixedHeader":false,"showTitle":false,"showCtaOnMobile":"enabled","imageAltText":""},"headerEnabled":false,"inactivityConfig":{"delay":10,"title":"(1) Are you still there?"},"inactivityEnabled":null,"industries":[{"id":43899,"label":"Architecture / Engineering / Construction","count":1,"parameterizedValue":"architecture-engineering-construction"},{"id":69173,"label":"Retail / Consumer Packaged Goods","count":1,"parameterizedValue":"retail-consumer-packaged-goods"}],"landingExperienceAssetsConfig":{"hasTopicSidebar":null,"content":[{"id":295389,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2021-05-25T18:56:58.000-07:00","imageId":664306,"slug":"hardware-software-pr","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/295389/thumbnails/600x/Hardware-Software-Process-Report.png","title":"Hardware \u003e Software \u003e Process: Data Science in a Post-Moore's Law World","canonicalUrl":null,"description":"In this report, you鈥檒l learn about the co-evolution of hardware and software innovations that enable previously-impossible applications. They demand rethinking of how we write data science applications and the processes we follow to build them.","rating":null,"contentUuid":"814f5e86-75ba-4411-8464-42a780ccb767","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/jhbbzkhmrh/hardware-software-process-report","languageId":0,"contentTypeName":"Ebook","contentTypeId":2494,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/hardware-software-pr?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Data Science","Accelerated Data Science"],"contentTypes":[{"id":2494,"name":"Ebook"}],"topicsJson":[{"contentId":295389,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":295389,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":295389,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":295389,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":295389,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2021-05-25T21:58:59.000-04:00","updatedAt":"2023-10-03T14:32:16.000-07:00","parameterizedContentTypeName":"ebook"},{"id":190473,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T10:44:42.000-07:00","imageId":662427,"slug":"top-10-kaggle-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190473/thumbnails/600x/a67a3c54-f20d-4bb4-9d73-d6a1f86dfab8.jpg","title":"How To Place Top 10 in a Kaggle Competition","canonicalUrl":null,"description":"","rating":null,"contentUuid":"89337066-9e7d-4926-8208-0b22c312740e","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/t18f5hwsdu","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/top-10-kaggle-webinar?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190473,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190473,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":190473,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:00:23.000-04:00","updatedAt":"2023-10-03T14:11:05.000-07:00","parameterizedContentTypeName":"webinar"},{"id":206012,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-10-07T10:16:37.000-07:00","imageId":662500,"slug":"simplifying-data-sci-workflows-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/206012/thumbnails/600x/47f05082-8e6a-4ad6-b65e-0a3b26f755df.jpg","title":"Simplifying End-to-End Data Science Workflows","canonicalUrl":null,"description":"","rating":null,"contentUuid":"ec02d133-f69e-43c9-84dd-f759ab3b853b","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/k65ztm7sps","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/simplifying-data-sci-workflows-webinar?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":206012,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":206012,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":206012,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-10-07T13:31:49.000-04:00","updatedAt":"2023-10-03T14:13:29.000-07:00","parameterizedContentTypeName":"webinar"},{"id":190475,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T10:44:43.000-07:00","imageId":662429,"slug":"spark-google-cloud-dataproc-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190475/thumbnails/600x/0bda2f43-474e-4d33-8d95-71eee916e4a2.jpg","title":"Accelerate Spark 3.0 with Google Cloud Dataproc and NVIDIA GPUs","canonicalUrl":null,"description":"","rating":null,"contentUuid":"de045e51-8297-41dc-85b8-24015b63806d","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/lacieqlc7l","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/spark-google-cloud-dataproc-webinar?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190475,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190475,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":190475,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:00:23.000-04:00","updatedAt":"2023-10-03T14:11:11.000-07:00","parameterizedContentTypeName":"webinar"},{"id":190474,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T10:44:42.000-07:00","imageId":662428,"slug":"speeding-solar-analysis-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190474/thumbnails/600x/75b82d88-8844-4024-b76b-68231c510eb1.jpg","title":"Speeding Up Solar Analysis Using Machine Learning with NASA","canonicalUrl":null,"description":"","rating":null,"contentUuid":"3cee9b05-b424-4236-9468-b20382df5aab","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/faesykvrnh","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/speeding-solar-analysis-webinar?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190474,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190474,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":190474,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:00:23.000-04:00","updatedAt":"2023-10-03T14:11:05.000-07:00","parameterizedContentTypeName":"webinar"},{"id":190480,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T11:02:20.000-07:00","imageId":662430,"slug":"state-of-rapids-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190480/thumbnails/600x/maxresdefault.jpg","title":"State of RAPIDS: Bridging the GPU Data Science Ecosystem","canonicalUrl":null,"description":"See how RAPIDS and the open-source ecosystem are advancing data science. We'll explore RAPIDS, the end to end open-source data science accelerator from NVIDI...","rating":null,"contentUuid":"e06e1fdc-380a-4bf2-81b5-5dd174035699","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=v_WKJpwq7yQ","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/state-of-rapids-video?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Video"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":190480,"name":"Video","id":27316,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190480,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Simulation / Modeling / Design"],"solutionsJson":[{"contentId":190480,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":190480,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:05:04.000-04:00","updatedAt":"2023-10-03T14:11:12.000-07:00","parameterizedContentTypeName":"video"},{"id":73681,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-01T11:11:33.000-07:00","imageId":663488,"slug":"rtx-data-science-product-brief","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/73681/thumbnails/600x/4ea9dcb7-935e-4e1f-ae3b-7bbd3e1b8e6f-1.png","title":"A New Breed of Workstations for Data Science","canonicalUrl":null,"description":"","rating":null,"contentUuid":"ebd88b42-4a2f-4285-afa0-29c7e05a77b9","mediaType":"pdf","sourceUrl":"https://cdn.pathfactory.com/assets/preprocessed/10412/4ea9dcb7-935e-4e1f-ae3b-7bbd3e1b8e6f/4ea9dcb7-935e-4e1f-ae3b-7bbd3e1b8e6f.pdf","languageId":0,"contentTypeName":"Solution Brief","contentTypeId":7047,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/rtx-data-science-product-brief?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Solution Brief"],"contentTypes":[{"id":7047,"name":"Solution Brief"}],"topicsJson":[{"contentId":73681,"name":"Solution Brief","id":38154,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":73681,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":73681,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:20.000-04:00","updatedAt":"2023-10-03T14:27:03.000-07:00","parameterizedContentTypeName":"solution-brief"},{"id":147480,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-05-19T14:07:58.000-07:00","imageId":665970,"slug":"apache-spark-ebook","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/147480/thumbnails/600x/37136359-d005-41ee-b765-91496c4d6556.jpg","title":"Accelerating Apache 3.X Leveraging NVIDIA GPUs to Power the Next Era of Analytics and AI","canonicalUrl":null,"description":"In this Apache Spark 3.0 eBook, You'll learn about Data Processing Evolution from Hadoop to GPUs and the RAPIDS Library.","rating":null,"contentUuid":"a8391607-090f-4540-9ce6-97c5769bd576","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/pzskflctd5/accelerating-apache-spark-3_08262021","languageId":0,"contentTypeName":"Ebook","contentTypeId":2494,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/apache-spark-ebook?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Ebook"],"contentTypes":[{"id":2494,"name":"Ebook"}],"topicsJson":[{"contentId":147480,"name":"Ebook","id":27309,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":147480,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":147480,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:47:25.000-07:00","parameterizedContentTypeName":"ebook"},{"id":188390,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T11:30:11.000-07:00","imageId":662409,"slug":"GTC2020-s22516","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188390/thumbnails/600x/s22516-accelerate-ml-lifecycle-with-containers-kubernetes-and-nvidia-gpus-presented-by-red-hat_4x3.jpg","title":"Accelerate ML Lifecycle with Containers, Kubernetes and NVIDIA GPUs (Presented by Red Hat)","canonicalUrl":null,"description":"Data scientists desire a self-service, cloud-like experience to easily access ML modeling tools, data, and GPUs to rapidly build, scale, reproduce, and share ML modeling results with peers and developers. Containers and kubernetes platforms, integrated with NVIDIA GPUs, provide these capabilities to accelerate the training, testing, and deploying the ML models in production quickly.We'll provide an overview of how these technologies are helping solve real-world customer challenges. We'll walk through the various customer use cases and solutions associated with the combination of these technologies. We'll review the key capabilities required in a containers and kubernetes platform to help data scientists easily use technologies (such as Jupyter Notebooks, ML frameworks, etc.) to innovate faster. Finally, we'll share the platform options (for example, Red Hat OpenShift, Kubeflow), and examples of how data scientists are accelerating ML initiatives with containers and Kubernetes.","rating":null,"contentUuid":"84ac85de-0253-46c5-97ee-9e1c57f58a61","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22516?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22516?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188390,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188390,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188390,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188390,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:08.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":188378,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T11:07:33.000-07:00","imageId":662408,"slug":"GTC2020-s22556","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188378/thumbnails/600x/s22556-accelerated-analytics-fit-for-purpose-scaling-out-and-up_4x3.jpg","title":"Accelerated Analytics Fit for Purpose: Scaling Out and Up (Presented by OmniSci)","canonicalUrl":null,"description":"OmniSci has demonstrated the massive scaling possible using GPUs for computation and visualization. However, not every analytics problem or user persona requires massive scale; rather, our customers say they want proper-sized tools for the various problems they encounter across the enterprise. Our talk will outline the vision for scaling the OmniSci platform from trillions of records in a giant data store to hundreds of millions of records on a laptop, and every form factor in between. Whether you have a massive cluster of servers, a data science workstation, a GPU-enabled laptop, or even a CPU-only laptop, OmniSci can provide the same accelerated analytics experience appropriate for the problem at hand.","rating":null,"contentUuid":"a753446b-8e76-4f25-a630-6d0ca947726d","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22556?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22556?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188378,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188378,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188378,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188378,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:21.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188376,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T11:05:26.000-07:00","imageId":662407,"slug":"GTC2020-cwe21753","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188376/thumbnails/600x/cwe00000-connect-with-experts_4x3.jpg","title":"Accelerated Data ETL and Analytics: Implementations and Algorithms","canonicalUrl":null,"description":"Modern data science and analytics applications have high memory bandwidth and computational demands. GPUs are well equipped for this challenge, processing large amounts of data at high speed. This session focuses on implementations and algorithms for data analytics, such as parallel joins, aggregations, and other data manipulation techniques, as well as string operations, distributed systems, and more. We have a team of experts who architect, develop, and maintain core RAPIDS libraries ready to discuss the nuts and bolts of GPU-accelerated Data ETL \u0026 Data Analytics.","rating":null,"contentUuid":"a57ad961-bcd4-4e2e-81d4-818b63f669c9","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/cwe21753?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-cwe21753?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188376,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188376,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188376,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188376,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:48.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188371,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:54:27.000-07:00","imageId":662404,"slug":"GTC2020-s22417","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188371/thumbnails/600x/s22417-accelerated-data-science-in-the-classroom-teaching-analytics-and-machine-learning-with-rapids_4x3.jpg","title":"Accelerated Data Science in the Classroom: Teaching Analytics and Machine Learning with RAPIDS","canonicalUrl":null,"description":"The demand for accelerated data-science skill sets among new graduate students grows rapidly as the computational demands for data analytics applications soar. This session introduces a novel yet reproducible approach to teaching data-science topics in a graduate data science course at the Georgia Institute of Technology, taught by Professor Polo Chau. Haekyu Park, a computer science Ph.D. student and teaching assistant of the course, will co-present key pedagogical considerations and solutions that help students learn GPU-accelerated data science and analytics using the open-source RAPIDS framework. For example, we present a hybrid, flexible approach for students to learn, where they can choose to experiment with RAPIDS using a local NVIDIA DGX-1 system, or the cloud, or both.","rating":null,"contentUuid":"2e1950a3-331a-4c0a-8025-0552dd5357fa","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22417?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22417?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188371,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188371,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188371,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188371,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:10.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188372,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:57:58.000-07:00","imageId":662405,"slug":"GTC2020-s22661","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188372/thumbnails/600x/s22661-accelerating-adobe-intelligent-service-via-gpu-based-spark-3.0-and-xgboost_4x3.jpg","title":"Accelerating Adobe's Intelligent Service via GPU-based Spark 3.0 and XGBoost","canonicalUrl":null,"description":"In Adobe's Intelligent Services, Journey AI can optimize the delivery of marketing messages. It includes several complex features and advanced machine learning models. With the debut of GPU-based Spark 3.0, the processing speed of these features can be greatly increased. Furthermore, GPU-based XGBoost offers a dramatic acceleration in model training for machine learning features. This talk will briefly introduce Adobe Intelligent Services and provide the evaluation results of GPU-based Spark 3.0 and XGBoost on the acceleration of Adobe's Journey AI.","rating":null,"contentUuid":"d8e57552-61f6-42cd-bd5b-0b007e701d22","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22661?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22661?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188372,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188372,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188372,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188372,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:58.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188374,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:59:36.000-07:00","imageId":662406,"slug":"GTC2020-s22674","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188374/thumbnails/600x/s22674-accelerating-apache-spark-3.0-with-rapids-and-gpus_4x3.jpg","title":"Accelerating Apache Spark 3.0 with RAPIDS and GPUs","canonicalUrl":null,"description":"Utilizing accelerators in Apache Spark presents opportunities for significant speedup of ETL, ML and DL applications. In this talk we give an overview of accelerator aware task scheduling, columnar data processing support, fractional scheduling, and stage level resource scheduling and configuration. Furthermore, we dive into the Apache Spark 3.x RAPIDS plugin, which enables applications to take advantage of GPU acceleration with no code change. An explanation of how the Catalyst optimizer physical plan is modified for GPU aware scheduling is reviewed. The talk touches upon how the plugin can take advantage of the RAPIDS specific libraries, cudf, cuio and rmm to run tasks on the GPU. Optimizations were also made to the shuffle plugin to take advantage of the GPU using UCX, a unified communication framework that addresses GPU memory intra and inter node.","rating":null,"contentUuid":"0693bdd0-6f4c-4ac0-b814-16a55649b12c","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22674?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22674?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188374,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188374,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188374,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188374,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:12:49.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":188362,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:42:14.000-07:00","imageId":662401,"slug":"GTC2020-s21642","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188362/thumbnails/600x/s21642-accelerating-graph-algorithms-on-exascale-systems_4x3.jpg","title":"Accelerating Graph Algorithms on Exascale Systems","canonicalUrl":null,"description":"We'll discuss our current efforts for accelerating graph algorithms on the latest US Department of Energy leadership systems. Graph methods are key kernels for large-scale data analytics, as well as for several exascale application domains, including smart grids, computational biology, computational chemistry, and climate science. We'll present our latest results on distributed implementations employing GPUs and accelerators of graph kernels such as community detection and influence maximization, showing how we can tackle large-scale problems with heterogeneous supercomputers.","rating":null,"contentUuid":"540400a5-1d9b-45c3-9858-b8379b9a2d4d","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21642?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21642?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188362,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188362,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188362,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188362,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:45.000-04:00","updatedAt":"2023-10-03T14:10:31.000-07:00","parameterizedContentTypeName":"session"},{"id":188367,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:49:29.000-07:00","imageId":662402,"slug":"GTC2020-s22471","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188367/thumbnails/600x/s22471-cupy-overview-numpy-syntax-computation-with-advanced-cuda-features_4x3.jpg","title":"CuPy Overview: NumPy Syntax Computation with Advanced CUDA Features","canonicalUrl":null,"description":"We'll introduce CuPy, describing the advantages of the library and how it is cleanly exposing in Python multiple CUDA state-of-the art libraries such as cuTENSOR or cuDNN. Discover the CuPy advantages and how they can use it to experience performance gains in their NumPy codes without any major changes.","rating":null,"contentUuid":"926f68df-b378-411b-a0f0-e02cecf9f813","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22471?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22471?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188367,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188367,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188367,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188367,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:38.000-04:00","updatedAt":"2023-10-03T14:10:31.000-07:00","parameterizedContentTypeName":"session"},{"id":188368,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T10:51:02.000-07:00","imageId":662403,"slug":"GTC2020-s22504","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188368/thumbnails/600x/s22504-deep-dive-with-kun-dong-network-density-of-states-kdd_4x3.jpg","title":"Deep Dive with Kun Dong, Network Density of States (KDD)","canonicalUrl":null,"description":"Learn more about this KDD paper: Network Density of States","rating":null,"contentUuid":"5b5ac73c-beca-4342-b63c-a6658b4d3fdc","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22504?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22504?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188368,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188368,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188368,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188368,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T15:13:18.000-04:00","updatedAt":"2023-10-03T14:10:36.000-07:00","parameterizedContentTypeName":"session"},{"id":155932,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:23:08.000-07:00","imageId":662235,"slug":"GTC2020-s22555","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155932/thumbnails/600x/s22555-deep-learning-demystified_4x3.jpg","title":"Deep Learning Demystified","canonicalUrl":null,"description":"Artificial intelligence has evolved and improved methods for data analysis and complex computations, solving problems that seemed well beyond our reach only a few years ago. Today, deep learning is transforming every industry, from health care and retail to automotive and financial services. Join us to understand the fundamentals of accelerated data analytics, high-level use cases, and problem-solving methods. We'll cover: \u003cbr/\u003e* demystifying artificial intelligence, machine learning, and deep learning; \u003cbr/\u003e* understanding the key challenges organizations face in adopting this new approach and how to address them; and \u003cbr/\u003e* learning about the latest tools and technologies, along with training resources, that can help deliver breakthrough results.","rating":null,"contentUuid":"6003b9ba-31ce-4e5c-b933-b1a4bddbb089","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22555?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22555?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155932,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155932,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155932,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155932,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:54:43.000-04:00","updatedAt":"2023-10-03T14:05:14.000-07:00","parameterizedContentTypeName":"session"},{"id":188433,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662418,"slug":"GTC2020-s22535","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188433/thumbnails/600x/s22535-dell-precision-data-science-workstation-for-the-new-era-of-ai-productivity_4x3.jpg","title":"Dell Precision Data Science Workstation for the new era of AI productivity","canonicalUrl":null,"description":"For too long, AI systems have been brittle platforms that data scientists and IT managers spend too much time assembling and fixing, rather than using. That's now a bygone era. Gone are the days or weeks going through trial and error to keep your AI platform working. The Dell Data Science Workstation is ready for AI work the day it arrives. It shreds through your data prep and model training iterations orders of magnitude faster. Hours of iteration time reduce to minutes or seconds. Days reduce to hours. Imagine the greater insights you'll now extract from your data, whether you're infusing AI into health care, business and finance, security, energy, media and entertainment, or manufacturing and engineering. Join us to hear what Dell, NVIDIA, and Canonical are collaborating on for Dell Data Science Workstation to make you data scientists and IT managers more productive and stress-free. These are solutions that can still be roll-your-own, but are enterprise-built and enterprise supported.","rating":null,"contentUuid":"a12d0b1b-3de8-490e-b63c-860dc2711c62","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22535?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22535?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188433,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188433,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188433,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188433,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":155930,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:23:05.000-07:00","imageId":662233,"slug":"GTC2020-s22446","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155930/thumbnails/600x/s22446-democratized-ml-pipelines-and-spark-rapids-based-hyperparameter-tuning_4x3.jpg","title":"Democratized ML pipelines and Spark Rapids based-hyperparameter tuning","canonicalUrl":null,"description":"XGBoost is an optimized and distributed gradient-based boosting library that's been applied to solve variety of data science problems with its classification and regression capabilities. It's ranked as one of the best algorithms to win Kaggle competitions. We build high-dimensional churn prediction models using XGBoost on Spark, and challenge its limits on the amount of data and dimensions it can handle within a reasonable time. XGBoost was natural choice because of its accuracy and out-of-box support to handle unbalanced dataset. With GPU-based distributed XGBoost we crossed the limit of the CPU-based XGBoost solution and took it to next level. It enhanced our capabilities to do hyperparameters search for optimized models for maximum return.","rating":null,"contentUuid":"39c47af9-01de-4136-8285-26450a533a85","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22446?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22446?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155930,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155930,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155930,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155930,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:56:26.000-04:00","updatedAt":"2023-10-03T14:05:14.000-07:00","parameterizedContentTypeName":"session"},{"id":188432,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662417,"slug":"GTC2020-s22473","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188432/thumbnails/600x/s22473-edge-computing-for-building-machine-learning-pipelines-using-azure-stack_4x3.jpg","title":"Edge Computing for Building Machine Learning Pipelines Using Azure Stack","canonicalUrl":null,"description":"Machine learning models need to be built closer to the source due to latency and data sovereignty requirements. Microsoft offers industry-leading hybrid cloud solutions, such as Azure Stack Hub and Azure Stack Edge in partnership with NVIDIA GPUs, to drive innovation and deliver a consistent cloud experience for these edge applications. Learn how to unlock customer-use cases by building production-scale models using data-science pipelines on the edge.","rating":null,"contentUuid":"413942a2-7903-46cd-9c4a-3408c95131a8","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22473?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22473?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188432,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188432,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188432,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188432,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188429,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662414,"slug":"GTC2020-s21482","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188429/thumbnails/600x/s21482-fast-distributed-joins-with-rapids-and-ucx_4x3.jpg","title":"Fast Distributed Joins with RAPIDS and UCX","canonicalUrl":null,"description":"There are numerous optimized single-GPU join implementations (such as RAPIDS cuDF), but scaling out to multiple GPUs across multiple nodes is challenging. The repartitioned join approach is one of the most popular distributed join algorithms, featuring all-to-all exchange as the main communication pattern. We'll show how to leverage UCX for efficient all-to-all implementation and demonstrate various optimization strategies, such as reusing communication buffers to speed up GPU-to-GPU transfers and overlapping compute with communications. The implementation is designed to reuse RAPIDS components for single-GPU, and scales to NVLINK and Infiniband systems. Our latest performance results demonstrate that a single DGX-2 can achieve 220 GB/s throughput for joining 8B/8B key-value pairs, while 18 DGX-1V nodes (144 GPUs) connected over IB achieve 503 GB/s, which is comparable with 244 CPU nodes (2K cores) in the best-known distributed CPU implementation.","rating":null,"contentUuid":"188208da-d63d-4ec2-afc5-42e65a5b993b","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21482?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21482?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188429,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188429,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188429,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188429,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188431,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662416,"slug":"GTC2020-s21665","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188431/thumbnails/600x/s21665-gpu-accelerated-data-pipeline-and-machine-learning-on-drive-agx-using-rapids_4x3.jpg","title":"GPU-Accelerated Data Pipeline and Machine Learning on DRIVE AGX using RAPIDS","canonicalUrl":null,"description":"We'll present the extended capability of RAPIDS on the DRIVE AGX platform by demonstrating how it enhances the in-car user experience, with examples. ML algorithms are used extensively to address various challenges in autonomous cars. They include complex, multi-stage data science pipeline, sensor data processing, modeling, and analytics to accomplish new ML-based applications. Potential applications include recommender systems through driver or vehicle personalization, visual analytics of driving data, classification of driver condition, driving scenario, and more. In many cases, application workload runs on CPUs or ECUs, leading to performance bottlenecks as data size and their computes increase. Application workload can be parallelized, causing significant speedup, using GPUs. NVIDIA developed RAPIDS to accelerate entire end-to-end data science and analytics pipelines on GPUs. In this talk, we present extended capability of RAPIDS on NVIDA DRIVE AGX platform by demonstrating how RAPIDS works.","rating":null,"contentUuid":"6fb2eb34-385f-4a2b-b1a1-a92e6a623653","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21665?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21665?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188431,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188431,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188431,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188431,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:55:11.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":155908,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:22:35.000-07:00","imageId":662211,"slug":"GTC2020-s21587","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155908/thumbnails/600x/s21587-gpu-accelerated-tabu-search-and-large-neighborhood-search-to-solve-vehicle-routing-problem-with-time-windows_4x3.jpg","title":"GPU-Accelerated Tabu Search and Large Neighborhood Search to Solve Vehicle Routing Problem with Time Windows","canonicalUrl":null,"description":"Learn various metaheuristic optimization algorithms to solve large-scale vehicle routing problems with time windows with GPU programming. We'll introduce a Tabu Search algorithm designed to exploit the parallelism in neighborhood search and its OpenACC-based implementation that applies deep-copy and manages complex data types. Then we'll introduce an Adaptive Large Neighborhood Search algorithm in which various combinations of destroy-and-repair heuristics are adaptively applied during the optimization process for the exploration of a substantially wider neighborhood of the solution space. We'll also describe the ALNS implementation using CUDA C and its running test on an NVIDIA DGX Station.","rating":null,"contentUuid":"3d5614f1-20f0-42b9-a1c1-a58e9c7da6cc","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21587?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21587?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155908,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155908,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155908,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155908,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:58:08.000-04:00","updatedAt":"2023-10-03T14:04:51.000-07:00","parameterizedContentTypeName":"session"},{"id":155931,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:23:06.000-07:00","imageId":662234,"slug":"GTC2020-s22530","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155931/thumbnails/600x/4029dfcd-4871-430b-8fa8-d5baac02f926.png","title":"How SageMaker Helped NerdWallet Build an ML Platform","canonicalUrl":null,"description":"NerdWallet connects millions of users with the best financial products for them, and data science is an important piece. Six months ago, it took months for NerdWallet to launch and iterate on modelsnow, it takes days. Senior Engineering Manager Ryan Kirkman and Staff Software Engineer Sharadh Krishnamurthy will explain how NerdWallet massively increased its rate of data science learning by building a machine-learning platform on top of SageMaker and Airflow. They'll share how SageMaker's BYO container feature helped them design a human-centric data science workflow and reuse parts of their existing build/deploy system. They'll also share why building a machine-learning platform is now possible with a small team thanks to massive technological progress over the past 10 years, like GPUs that are effectively machine-learning supercomputers. What cost $100 million in 2008 can now be rented from Amazon Web Services for about $34 an hour (p3.16xlarge instance with 8 NVIDIA Tesla v100 GPUs).","rating":null,"contentUuid":"027a5593-3bea-4e07-9d8c-1ccb7205fa20","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22530?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22530?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science","Recommendation Systems"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155931,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":155931,"name":"Recommendation Systems","id":45907,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155931,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Recommenders / Personalization"],"solutionsJson":[{"contentId":155931,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":155931,"name":"Recommenders / Personalization","id":95802,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155931,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T19:58:28.000-04:00","updatedAt":"2023-10-03T14:05:14.000-07:00","parameterizedContentTypeName":"session"},{"id":188428,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662413,"slug":"GTC2020-s22526","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188428/thumbnails/600x/s22526-how-to-get-the-most-out-of-your-data-science-workflows-presented-by-lenovo_4x3.jpg","title":"How To: Get the Most Out of Your Data Science Workflows (Presented by Lenovo)","canonicalUrl":null,"description":"Learn how SAS is taking the power of Lenovo workstations, using NVIDIA Quadro RTX GPUs and NVIDIA RAPIDS accelerated AI frameworks, to increase speed and efficiency across their data science workflows. Leveraging the data science workstation, SAS can accelerate complex AI training to help bring projects to market faster than ever before. Join Alex Ge, senior associate data","rating":null,"contentUuid":"66f8e45a-d6df-4047-b534-fb9b948a3a77","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22526?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22526?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188428,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188428,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188428,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188428,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:06:01.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188436,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:53.000-07:00","imageId":662421,"slug":"GTC2020-s21517","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188436/thumbnails/600x/s21517-nvidia-rapids-on-summit-supercomputer-early-experiences_4x3.jpg","title":"NVIDIA Rapids on Summit Supercomputer: Early Experiences","canonicalUrl":null,"description":"Learn about the ongoing efforts at the Oak Ridge Leadership Computing Facility to deploy and support data analytics workloads on the Summit supercomputer using DASK and NVIDIA Rapids. First, we'll cover deployment and execution details of these frameworks for the Summit supercomputer. Then we'll introduce cuDF and cuML performance results of scientific dataset manipulation and CORAL-2 benchmarks.","rating":null,"contentUuid":"344e1b3f-2062-4e09-96cd-c660c875f98e","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21517?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21517?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188436,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188436,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188436,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188436,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188430,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662415,"slug":"GTC2020-s21651","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188430/thumbnails/600x/s21651-accelerating-tabular-deep-learning-workflows-with-rapids-pytorch-and-fast.ai_4x3.jpg","title":"NVTabular: GPU Accelerated ETL for Recommender Systems","canonicalUrl":null,"description":"Recommender systems require massive datasets to train, particularly for deep learning based solutions. The transformation of these datasets in order to prepare them for model training is particularly challenging. Often the time taken to do steps such as feature engineering, categorical encoding and normalization of continuous variables exceeds the time it takes to train a model. NVTabular is an open source feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems. It provides a high level abstraction to simplify code, making development faster, and accelerates computation on the GPU using the RAPIDS cuDF library. It is available for download and contributions at http://www.github.com/nvidia/NVTabular. A part of the Merlin Recommenders Framework, it pairs perfectly with HugeCTR to provide a straightforward method to train huge deep learning based recommender systems on GPU.","rating":null,"contentUuid":"55c41ef8-e319-49fb-bebd-7a70148d6106","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21651?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21651?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188430,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188430,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188430,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188430,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188427,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662412,"slug":"GTC2020-d2s29","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188427/thumbnails/600x/D2S29_RAPIDS-TAXI_4x3.jpg","title":"RAPIDS: GPU-Accelerated Data Analytics \u0026 Machine Learning","canonicalUrl":null,"description":"The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA CUDA primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes.This demonstration uses RAPIDS, and OmniScis GPU-accelerated analytics platform to quickly visualize and run queries on the 1.1 billion New York City taxi ride dataset.","rating":null,"contentUuid":"30b6b288-6a81-45f6-8248-9e2d0d2dc611","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/techdemos/video/d2s29?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-d2s29?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188427,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188427,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188427,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188427,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T17:44:03.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":153202,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-05-28T17:41:44.000-07:00","imageId":666107,"slug":"GTC2020-d2s19","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/153202/thumbnails/600x/7dabe58a-4a65-49dc-9d40-c629c5c49964.jpg","title":"Real-Time GPU-Accelerated Data Analytics","canonicalUrl":null,"description":"Real-Time GPU-Accelerated Data Analytics - Analyze, Visualize and Turn Data Into Insights with AI","rating":null,"contentUuid":"17b36812-63a5-4a9d-a9f8-a74e63809336","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/techdemos/video/d2s19?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-d2s19?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science","IT Services"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":153202,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":153202,"name":"IT Services","id":28292,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":153202,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Center / Cloud","Data Science"],"solutionsJson":[{"contentId":153202,"name":"Data Center / Cloud","id":95794,"type":"ContentSolution"},{"contentId":153202,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":153202,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T19:19:03.000-04:00","updatedAt":"2023-10-03T14:48:26.000-07:00","parameterizedContentTypeName":"session"},{"id":188435,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662420,"slug":"GTC2020-s21762","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188435/thumbnails/600x/s21762-running-unmodified-numpy-programs-on-hundreds-of-gpus-with-legate-numpy_4x3.jpg","title":"Running Unmodified NumPy Programs on Hundreds of GPUs with Legate NumPy","canonicalUrl":null,"description":"Learn how you can run unmodified NumPy programs on hundreds of GPUs with Legate NumPy. We'll describe the implementation of Legate NumPy, a drop-in replacement for NumPy that lets you transparently distribute and accelerate NumPy programs across machines ranging from a single DGX box to the world's top supercomputers. To illustrate the power of Legate NumPy, we'll present performance results on a combination of HPC and traditional machine-learning applications written in NumPy running at scale. In addition to describing how to use Legate NumPy, we'll also describe its underlying architecture and how it leverages the Legion runtime system to make distributed and accelerated NumPy possible. Finally, we'll cover the underlying Legate interface on which Legate NumPy is built and how you can construct your own accelerated and distributed Python libraries using Legate to seamlessly compose and interoperate with Legate NumPy.","rating":null,"contentUuid":"04aead01-b6ee-40d0-b8f3-a5678ac3c5ed","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21762?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21762?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188435,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188435,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188435,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188435,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":188434,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662419,"slug":"GTC2020-s21578","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188434/thumbnails/600x/s21578-scaling-hyper-parameter-optimization-using-rapids-dask-and-kubernetes_4x3.jpg","title":"Scaling Hyper-Parameter Optimization Using RAPIDS, Dask, and Kubernetes","canonicalUrl":null,"description":"We'll show you how to scale end-to-end data-science workflows on GPUs using RAPIDS, Dask, and Kubernetes. Specifically, we build a dynamically sized dataset and use it to run XGBoost hyper-parameter optimization using a particle-swarm strategy while scaling the number of GPUs in our cluster. We'll highlight best practices for scaling within a node (Dask) and across nodes (Dask plus Kubernetes), and demonstrate that the entire data-science workflow can be done on the GPU.\u003cbr/\u003eThe session content is presented as a Jupyter notebook enabling:\u003cbr/\u003e1) adjusting the workflow (e.g., size of synthetic dataset, number of workers),\u003cbr/\u003e2) interactively exploring data and model predictions, and\u003cbr/\u003e3) monitoring large scale compute via Dask dashboards.\u003cbr/\u003eHaving walked through these ideas, participants will be able to further explore and extend the content in their own environments.","rating":null,"contentUuid":"77949a30-8aaa-4184-bfd7-ed9500b57e1b","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21578?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21578?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188434,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188434,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188434,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188434,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T18:20:41.000-04:00","updatedAt":"2023-10-03T14:10:49.000-07:00","parameterizedContentTypeName":"session"},{"id":157054,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-04T15:07:53.000-07:00","imageId":662243,"slug":"GTC2020-s22136","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/157054/thumbnails/600x/s22136-scaling-pydata-with-dask-and-rapids-at-capital-one_4x3.jpg","title":"Scaling PyData with Dask and RAPIDS at Capital One","canonicalUrl":null,"description":"Data science at scale is challenging. Doing it optimally across an enterprise is even harder. Well discuss the challenges and potential to distribute and accelerate financial and credit data analysis to build machine learning models, and how to align an organization behind powerful open source tools to optimize value generation across a large enterprise.","rating":null,"contentUuid":"cfc11440-14b7-4c7f-902f-3183a786354a","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s22136?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s22136?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":157054,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":157054,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":157054,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":157054,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T20:02:54.000-04:00","updatedAt":"2023-10-03T14:05:28.000-07:00","parameterizedContentTypeName":"session"},{"id":188426,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662411,"slug":"GTC2020-s21269","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188426/thumbnails/600x/s21269-simplifying-gpu-access-a-polyglot-binding-for-gpus-with-graalvm_4x3.jpg","title":"Simplifying GPU Access: A Polyglot Binding for GPUs with GraalVM","canonicalUrl":null,"description":"GPU computing accelerates workloads and fuels breakthroughs across industries. There are many GPU-accelerated libraries developers can leverage, but integrating these libraries into existing software stacks can be challenging. Programming GPUs typically requires low-level programming, while high-level scripting languages have become very popular. Accelerated computing solutions are heterogeneous and inherently more complex. We'll present an open-source prototype called grCUDA that leverages Oracle's GraalVM and exposes GPUs in polyglot environments. While GraalVM can be regarded as the \"one VM to rule them all,\" grCUDA is the \"one GPU binding to rule them all.\" Data is efficiently shared between GPUs and GraalVM languages (R, Python, JavaScript) while GPU kernels can be launched directly from those languages. Precompiled GPU kernels can be used, as well as kernels that are generated at runtime. We'll also show how to access GPU-accelerated libraries such as RAPIDS cuML.","rating":null,"contentUuid":"80939052-d1e9-4f42-9f9d-2473e4576184","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21269?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21269?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188426,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188426,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188426,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188426,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T17:44:03.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":155896,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-06-01T14:22:22.000-07:00","imageId":662200,"slug":"GTC2020-s21347","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/155896/thumbnails/600x/s21347-speed-up-your-data-science-tasks-by-a-factor-of-100-using-azureml-and-nvidia-rapids_4x3.jpg","title":"Speed Up Your Data Science Tasks By a Factor of 100+ Using AzureML and NVIDIA RAPIDS","canonicalUrl":null,"description":"We'll show how RAPIDS, DASK, and AzureML combine to provide data scientists with access to a parallel high-performance compute environment through a simple Python API. We'll show how the dataframe library cuDF, which will be familiar to Pandas users, as well as the ML library cuML, which provides GPU versions of all ML algorithms available in Scikit-learn, enable data scientists to quickly and easily scale their workloads. Azure Machine Learning service is the first major cloud ML service to integrate NVIDIA RAPIDS, enabling parallel, high-performance computing though a few steps in a simple Jupyter Notebook. RAPIDS is a suite of libraries built on NVIDIA CUDA for doing GPU-accelerated machine learning, enabling faster data preparation and model training. Together, AzureML and RAPIDS dramatically accelerate common data science tasks by leveraging the power of NVIDIA GPUs scaled out to an AzureML cluster of multiple GPU nodes running DASK.","rating":null,"contentUuid":"e0869117-e201-41ef-b939-04b68f840304","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21347?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21347?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":155896,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":155896,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":155896,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":155896,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T20:06:11.000-04:00","updatedAt":"2023-10-03T14:04:38.000-07:00","parameterizedContentTypeName":"session"},{"id":188425,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-08-28T13:42:52.000-07:00","imageId":662410,"slug":"GTC2020-s21818","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/188425/thumbnails/600x/s21818-unlocking-gpu-accelerated-data-science-at-scale-with-active-analytics_4x3.jpg","title":"Unlocking GPU-Accelerated Data Science at Scale with Active Analytics","canonicalUrl":null,"description":"We'll highlight how a GPU-accelerated active analytics platform streamlines traditional data-science workloads, in a democratized, pushbutton environment. We'll explore a demo that shows how GPU-accelerated data science can significantly reduce time to insight, uncover new results, and improve model performance. Key topics will include simplified data access and engineering,","rating":null,"contentUuid":"c86582a5-80d9-4b59-9ad9-00fe26c85ce9","mediaType":"webpage","sourceUrl":"https://developer.nvidia.com/gtc/2020/video/s21818?reader=1","languageId":0,"contentTypeName":"Session","contentTypeId":5629,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/GTC2020-s21818?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Accelerated Data Science"],"contentTypes":[{"id":5629,"name":"Session"}],"topicsJson":[{"contentId":188425,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["GTC"],"businessUnitsJson":[{"contentId":188425,"name":"GTC","id":46177,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science"],"solutionsJson":[{"contentId":188425,"name":"Data Science","id":95795,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":188425,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-28T17:44:03.000-04:00","updatedAt":"2023-10-03T14:10:39.000-07:00","parameterizedContentTypeName":"session"},{"id":190482,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-09-04T11:06:48.000-07:00","imageId":662431,"slug":"american-airlines-ml-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/190482/thumbnails/600x/8988e4f9-4699-497e-9a92-c940a13d7667.jpg","title":"American Airlines Realizes New Business Efficiencies with Machine Learning and Data Science Workstations","canonicalUrl":null,"description":"","rating":null,"contentUuid":"5b8b6f6d-b940-4683-ac7d-bbdfd17e27dd","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/kbf6hkwzqj","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/american-airlines-ml-webinar?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Webinar"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":190482,"name":"Webinar","id":27310,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":190482,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":190482,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:11:05.000-04:00","updatedAt":"2023-10-03T14:11:12.000-07:00","parameterizedContentTypeName":"webinar"},{"id":121119,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-03-24T10:39:47.000-07:00","imageId":665508,"slug":"quadro-dsws-kpf-rapi","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/121119/thumbnails/600x/d7627df2-a0cd-4c42-be5c-14009a658a3c-1.png","title":"AI Acquires an Eye for Architecture","canonicalUrl":null,"description":"KPF realizes large performance gains with ResNet-50 and RAPIDS nearest neighbors search algorithm for architectural classification on NVIDIA Quadro RTX 8000 and BOXX Data Science Workstation.","rating":null,"contentUuid":"a7e2dd52-9943-469c-9cb5-eb66e72f75eb","mediaType":"pdf","sourceUrl":"https://cdn.pathfactory.com/assets/preprocessed/10412/d7627df2-a0cd-4c42-be5c-14009a658a3c/d7627df2-a0cd-4c42-be5c-14009a658a3c.pdf","languageId":0,"contentTypeName":"Customer Success Story","contentTypeId":12933,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/quadro-dsws-kpf-rapi?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Design and Pro Visualization","Data Science","Machine learning","Data Science Workstation","Architecture","Engineering","and Construction","Track Transfer","Generative AI","Simulation / Modeling / Design"],"contentTypes":[{"id":12933,"name":"Customer Success Story"}],"topicsJson":[{"contentId":121119,"name":"Design and Pro Visualization","id":16044,"type":"ContentTopic"},{"contentId":121119,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":121119,"name":"Machine learning","id":27525,"type":"ContentTopic"},{"contentId":121119,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"},{"contentId":121119,"name":"Architecture","id":72676,"type":"ContentTopic"},{"contentId":121119,"name":"Engineering","id":72677,"type":"ContentTopic"},{"contentId":121119,"name":"and Construction","id":72678,"type":"ContentTopic"},{"contentId":121119,"name":"Track Transfer","id":89522,"type":"ContentTopic"},{"contentId":121119,"name":"Generative AI","id":92037,"type":"ContentTopic"},{"contentId":121119,"name":"Simulation / Modeling / Design","id":96287,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":["[en_us] Design and Viz Customer Stories Explore Page"],"personasJson":[{"contentId":121119,"name":"[en_us] Design and Viz Customer Stories Explore Page","id":68653,"type":"ContentPersona"}],"industries":["Architecture / Engineering / Construction"],"industriesJson":[{"contentId":121119,"name":"Architecture / Engineering / Construction","id":43899,"type":"ContentIndustry"}],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":121119,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":121119,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":121119,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":121119,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":121119,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T15:47:12.000-04:00","updatedAt":"2024-01-09T23:36:14.000-08:00","parameterizedContentTypeName":"customer-success-story"},{"id":108762,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2020-01-10T10:35:22.000-08:00","imageId":665297,"slug":"nasa-interview-at-gtc-dc-2019-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/108762/thumbnails/600x/maxresdefault.jpg","title":"NASA Interview at GTC DC 2019","canonicalUrl":null,"description":"Customers are using GPUs to accelerate their #datascience and get fast insights. Hear from Michael Kirk, as he explains how NASA has been seeing major benefi...","rating":null,"contentUuid":"ec7fbcca-fa78-47f4-b4b4-fbf254264556","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=-hpN-tZOyVI","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/nasa-interview-at-gtc-dc-2019-video?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","Data Science","Video","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":108762,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":108762,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":108762,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":108762,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":108762,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":108762,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":108762,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":108762,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":108762,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:26:17.000-04:00","updatedAt":"2023-10-03T14:41:45.000-07:00","parameterizedContentTypeName":"video"},{"id":84638,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-07-16T16:45:06.000-07:00","imageId":664690,"slug":"walmart-rapids-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/84638/thumbnails/600x/0d56e033-adc2-41f3-8680-d601780f5775.jpg","title":"Walmart Uses Rapids to Help Develop Better Retail Forecasting","canonicalUrl":null,"description":"With RAPIDS and NVIDIA GPUs, Walmart Labs is now able to generate more accurate forecasting models, analyze more features over longer horizons, and iterate 1...","rating":null,"contentUuid":"cb77e29c-d22f-4a77-8b08-9f8a50fe4b3f","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=OQjko2H7xec","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/walmart-rapids-video?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Data Science","Video","Accelerated Data Science","RAPIDS Open Source","AI for Business","Retail \u0026 Consumer Packaged Goods","AI","AI for Enterprise Leaders"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":84638,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":84638,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":84638,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":84638,"name":"RAPIDS Open Source","id":27631,"type":"ContentTopic"},{"contentId":84638,"name":"AI for Business","id":27641,"type":"ContentTopic"},{"contentId":84638,"name":"Retail \u0026 Consumer Packaged Goods","id":27660,"type":"ContentTopic"},{"contentId":84638,"name":"AI","id":37650,"type":"ContentTopic"},{"contentId":84638,"name":"AI for Enterprise Leaders","id":53321,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":["Retail / Consumer Packaged Goods"],"industriesJson":[{"contentId":84638,"name":"Retail / Consumer Packaged Goods","id":69173,"type":"ContentIndustry"}],"businessUnits":["Deep Learning","Developer ","Embedded"],"businessUnitsJson":[{"contentId":84638,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"},{"contentId":84638,"name":"Developer ","id":16052,"type":"ContentBusinessUnit"},{"contentId":84638,"name":"Embedded","id":36599,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":84638,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":84638,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":84638,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":84638,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:34:43.000-07:00","parameterizedContentTypeName":"video"},{"id":84753,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-07-17T11:57:28.000-07:00","imageId":664707,"slug":"getting-started-on-data-science-workstations-video","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/84753/thumbnails/600x/maxresdefault.jpg","title":"Getting started on NVIDIA-Powered Data Science Workstations","canonicalUrl":null,"description":"Walk through getting started on NVIDIA-Powered Data Science Workstations, powerful systems featuring pre-installed CUDA-X AI software libraries and NVIDIA Qu...","rating":null,"contentUuid":"8fa022b6-a4fa-4e75-b28d-9b910ec21134","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=enN9F_iNVLw","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/getting-started-on-data-science-workstations-video?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Data Center","Data Science","Video","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":84753,"name":"Data Center","id":16043,"type":"ContentTopic"},{"contentId":84753,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":84753,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":84753,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":84753,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Center / Cloud","Data Science","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":84753,"name":"Data Center / Cloud","id":95794,"type":"ContentSolution"},{"contentId":84753,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":84753,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":84753,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:34:55.000-07:00","parameterizedContentTypeName":"video"},{"id":77184,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-23T12:47:19.000-07:00","imageId":664026,"slug":"rapids-data-science-solution-product-brief","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/77184/thumbnails/600x/1024_1561561073-1.png","title":"Accelerated Data Science Solution with RAPIDS","canonicalUrl":null,"description":"","rating":null,"contentUuid":"fc2a8a8e-de66-4c9e-850e-609e174ba81d","mediaType":"pdf","sourceUrl":"https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/deep-learning-solutions/data-science/data-science-rapids-solution-brief.pdf","languageId":0,"contentTypeName":"Solution Brief","contentTypeId":7047,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/rapids-data-science-solution-product-brief?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Solution Brief"],"contentTypes":[{"id":7047,"name":"Solution Brief"}],"topicsJson":[{"contentId":77184,"name":"Solution Brief","id":38154,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":77184,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":[],"solutionsJson":[],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":77184,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:30:16.000-07:00","parameterizedContentTypeName":"solution-brief"},{"id":73684,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-01T11:22:50.000-07:00","imageId":663493,"slug":"accelerating-data-sc","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/73684/thumbnails/600x/maxresdefault.jpg","title":"Data Science with NVIDIA-Powered Workstations","canonicalUrl":null,"description":"See how the new NVIDIA-powered data science workstations are enabling data scientists to sort through massive amounts of data to derive actionable insights a...","rating":null,"contentUuid":"89c67cc4-71be-4fa6-8fc0-35da3a91a47a","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=F0FYJbwII88","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/accelerating-data-sc?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","Data Science","Video","Accelerated Data Science","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":73684,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":73684,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":73684,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":73684,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":73684,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":73684,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":73684,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":73684,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":73684,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":73684,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:14:21.000-04:00","updatedAt":"2023-10-03T14:27:03.000-07:00","parameterizedContentTypeName":"video"},{"id":69491,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:11.000-07:00","imageId":663102,"slug":"gpu-accelerated-data","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69491/thumbnails/600x/maxresdefault.jpg","title":"GPU-Accelerated Data Science Demo","canonicalUrl":null,"description":"With GPU-acceleration, data science workflows can be transformed from days to minutes. Watch the #GTC19 keynote demo showcasing 1TB of data and over 500 mill...","rating":null,"contentUuid":"f46b73d1-f881-4f29-828c-854545ab459c","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=LztHuPh3GyU","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/gpu-accelerated-data?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","Data Science","Video","Accelerated Data Science","Data Science Workstation"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":69491,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":69491,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":69491,"name":"Video","id":27316,"type":"ContentTopic"},{"contentId":69491,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":69491,"name":"Data Science Workstation","id":27632,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":69491,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI","Simulation / Modeling / Design"],"solutionsJson":[{"contentId":69491,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":69491,"name":"Generative AI","id":95800,"type":"ContentSolution"},{"contentId":69491,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Bottom of Funnel"],"funnelStagesJson":[{"contentId":69491,"name":"Bottom of Funnel","id":845,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:15:43.000-04:00","updatedAt":"2023-10-03T14:24:28.000-07:00","parameterizedContentTypeName":"video"},{"id":76675,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-05-21T15:41:22.000-07:00","imageId":664015,"slug":"rapids-with-xgboost-and-cuml-white-paper","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/76675/thumbnails/600x/1024_1558478606-01.png","title":"Getting Started with RAPIDS Using XGBoost and cuML","canonicalUrl":null,"description":"","rating":null,"contentUuid":"97ee9611-0482-4c32-bf37-68533cabfd0d","mediaType":"pdf","sourceUrl":"https://app.cdn.lookbookhq.com/lbhq-production/10412/content/original/844c7323-3547-41f6-a82a-64098de0ffd6/RAPIDS-XGBoost-cuML1.pdf","languageId":0,"contentTypeName":"White Paper","contentTypeId":2493,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/rapids-with-xgboost-and-cuml-white-paper?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","White Paper"],"contentTypes":[{"id":2493,"name":"White Paper"}],"topicsJson":[{"contentId":76675,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":76675,"name":"White Paper","id":27313,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":76675,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Generative AI"],"solutionsJson":[{"contentId":76675,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":76675,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:29:22.000-04:00","updatedAt":"2023-10-03T14:30:13.000-07:00","parameterizedContentTypeName":"white-paper"},{"id":69494,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:11.000-07:00","imageId":663108,"slug":"quansight-and-rapids","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69494/thumbnails/600x/maxresdefault.jpg","title":"Pushing Data Science Performance Forward","canonicalUrl":null,"description":"Travis Oliphant, CEO of Quansight, and early contributor to RAPIDS, explains the work being done to integrate GPUs with data.","rating":null,"contentUuid":"a23a9f37-7b4e-4d16-941e-87bbbe8ec135","mediaType":"video","sourceUrl":"https://www.youtube.com/watch?v=iHM4RyjeV-U","languageId":0,"contentTypeName":"Video","contentTypeId":2492,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/quansight-and-rapids?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["Video"],"contentTypes":[{"id":2492,"name":"Video"}],"topicsJson":[{"contentId":69494,"name":"Video","id":27316,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":69494,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Simulation / Modeling / Design"],"solutionsJson":[{"contentId":69494,"name":"Simulation / Modeling / Design","id":95805,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":69494,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:38:10.000-04:00","updatedAt":"2023-10-03T14:24:28.000-07:00","parameterizedContentTypeName":"video"},{"id":69489,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:10.000-07:00","imageId":663096,"slug":"business-transformat","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69489/thumbnails/600x/mlperf-social-share-1200x1200.jpg","title":"Business Transformation Driven by NVIDIA Data Science With RAPIDS","canonicalUrl":null,"description":"NVIDIA AI performance benchmarks, capturing the top spots in the industry.","rating":null,"contentUuid":"c9651f60-7335-429f-a411-5afad68823c2","mediaType":"webpage","sourceUrl":"https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/interactive-infographic/","languageId":0,"contentTypeName":"Infographic","contentTypeId":2490,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/business-transformat?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","Data Center","Data Science","Infographic","Accelerated Data Science","Mainstream GPU Infrastructure"],"contentTypes":[{"id":2490,"name":"Infographic"}],"topicsJson":[{"contentId":69489,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":69489,"name":"Data Center","id":16043,"type":"ContentTopic"},{"contentId":69489,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":69489,"name":"Infographic","id":27315,"type":"ContentTopic"},{"contentId":69489,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":69489,"name":"Mainstream GPU Infrastructure","id":27658,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning","HPC "],"businessUnitsJson":[{"contentId":69489,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"},{"contentId":69489,"name":"HPC ","id":16049,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Center / Cloud","Data Science","Generative AI"],"solutionsJson":[{"contentId":69489,"name":"Data Center / Cloud","id":95794,"type":"ContentSolution"},{"contentId":69489,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":69489,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":69489,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-08-24T13:21:20.000-04:00","updatedAt":"2023-10-03T14:24:18.000-07:00","parameterizedContentTypeName":"infographic"},{"id":69492,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":"","descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2019-03-28T14:32:11.000-07:00","imageId":663105,"slug":"unlocking-machine-learning-webinar","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/69492/thumbnails/600x/0.jpg","title":"Unlocking Machine Learning Performance and Productivity","canonicalUrl":null,"description":"","rating":null,"contentUuid":"be716c64-0dd8-47ff-b82e-654deb0c3345","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/dhy4y9stfy","languageId":0,"contentTypeName":"Webinar","contentTypeId":2497,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/unlocking-machine-learning-webinar?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","Data Science","Webinar","Accelerated Data Science"],"contentTypes":[{"id":2497,"name":"Webinar"}],"topicsJson":[{"contentId":69492,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":69492,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":69492,"name":"Webinar","id":27310,"type":"ContentTopic"},{"contentId":69492,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":69492,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI"],"solutionsJson":[{"contentId":69492,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":69492,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Middle of Funnel"],"funnelStagesJson":[{"contentId":69492,"name":"Middle of Funnel","id":846,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2020-09-04T14:25:53.000-04:00","updatedAt":"2023-10-03T14:24:29.000-07:00","parameterizedContentTypeName":"webinar"},{"id":318508,"imageOverrideId":null,"nextPromoterTitle":null,"nextSignpostTitle":null,"nextSignpostBehavior":null,"openExternallyEnabled":false,"previousSignpostTitle":null,"targetDelay":0,"titleOverride":null,"descriptionOverride":null,"thumbnailOverride":null,"videoStartTime":null,"videoRelatedEnabled":null,"videoAutoplayDisabled":null,"enableCaption":false,"languageCode":null,"customSlug":null,"createdAt":"2021-08-05T21:59:03.000-07:00","imageId":663803,"slug":"accelerated-data-sci","thumbnail":"https://cdn.pathfactory.com/assets/10412/contents/318508/thumbnails/600x/01a87675-c381-4fbd-ad7b-43d410fca4b9.png","title":"Accelerate CDP Workloads with NVIDIA-Certified Systems","canonicalUrl":null,"description":"Easily deploy end-to-end data science pipelines to improve your data-driven operations.","rating":null,"contentUuid":"dd624260-de46-4f54-bce7-8924df40d0a1","mediaType":"webpage","sourceUrl":"https://nvdam.widen.net/s/sbvlwwnxp8/accelerated-data-science-print-cloudera-solution-brief-1836848-r2-op1","languageId":0,"contentTypeName":"Solution Brief","contentTypeId":7047,"experienceId":47646,"views":0,"url":"https://resources.nvidia.com/c/accelerated-data-sci?x=yBY2dT\u0026lx=jsVNdg","altText":"","topics":["AI and Deep Learning","Data Science","Accelerated Data Science","AI for Enterprise","AI","Solution Brief"],"contentTypes":[{"id":7047,"name":"Solution Brief"}],"topicsJson":[{"contentId":318508,"name":"AI and Deep Learning","id":16041,"type":"ContentTopic"},{"contentId":318508,"name":"Data Science","id":20735,"type":"ContentTopic"},{"contentId":318508,"name":"Accelerated Data Science","id":27630,"type":"ContentTopic"},{"contentId":318508,"name":"AI for Enterprise","id":33483,"type":"ContentTopic"},{"contentId":318508,"name":"AI","id":37650,"type":"ContentTopic"},{"contentId":318508,"name":"Solution Brief","id":38154,"type":"ContentTopic"}],"languageNames":["English"],"languageJson":[{"id":0,"name":"English"}],"personas":[],"personasJson":[],"industries":[],"industriesJson":[],"businessUnits":["Deep Learning"],"businessUnitsJson":[{"contentId":318508,"name":"Deep Learning","id":16047,"type":"ContentBusinessUnit"}],"products":[],"productsJson":[],"solutions":["Data Science","Generative AI"],"solutionsJson":[{"contentId":318508,"name":"Data Science","id":95795,"type":"ContentSolution"},{"contentId":318508,"name":"Generative AI","id":95800,"type":"ContentSolution"}],"funnelStages":["Top of Funnel"],"funnelStagesJson":[{"contentId":318508,"name":"Top of Funnel","id":844,"type":"ContentFunnelStage"}],"assetTypes":[],"language":"English","ecCreatedAt":"2021-08-06T01:03:34.000-04:00","updatedAt":"2023-10-03T14:28:57.000-07:00","parameterizedContentTypeName":"solution-brief"}],"sourceExperienceType":"target","featuredContentIds":[147480,295389,318508],"excludeFeaturedAssets":false,"carouselTopics":[],"carouselTopicsWithIdsAndSortBy":[],"primaryColor":"#333","inversePrimaryColor":"#e1e1e1","filteredContentType":[],"filteredTopic":[],"filteredPersona":[],"filteredIndustry":[],"filteredBusinessUnit":[],"filteredFunnelStage":[],"filteredLanguage":[],"filteredAvailability":[],"filteredProduct":[],"filteredSolution":[],"search":null},"landingExperienceConfig":{"headerBackgroundImage":null,"fixedWidthImage":true,"headerHeight":"250px","headerImageTop":"0px","headerImageLeft":"0px","headerFillImageVerticalPosition":"50%","headerTitle":"NVIDIA AI and Data Science","headerScale":"100%","headerSubtitle":"","displayAssetType":true,"displayContentType":true,"displayAssetTopics":false,"displayBodyText":true,"displayCtaSection":true,"displayCoverSection":true,"displayCoverSectionText":true,"displayFeaturedContent":true,"displaySearchSection":true,"contentTitle":"","contentDescription":"Get the latest content assets for NVIDIA AI and data science.","topicFilterStyle":"dropdown","assetLayoutType":"grid","otherContentTitle":"More Content","featuredAssetIds":[147480,295389,318508],"featuredTopicIds":[],"carouselTopicIds":[],"displayFilterSection":true,"enableAdvancedCustomization":true,"enableFilterByTopic":false,"enableFilterByContent":true,"enableFilterByBusinessUnit":false,"enableFilterByPersona":false,"enableFilterByIndustry":false,"enableFilterByFunnelStage":false,"enableFilterByLanguage":false,"enableFilterByProduct":false,"enableFilterBySolution":false,"excludeFeaturedAssets":false,"headerBackgroundColor":"#000000","headerTitleColor":"#FFFFFF","headerTitleFontFamily":"NVIDIASansWRg","headerTitleFontSize":"38px","headerTitleFontWeight":"normal","headerTitleLineHeight":"44px","headerSubtitleColor":"#FFFFFF","headerSubtitleFontFamily":"NVIDIASansWRg","headerSubtitleFontSize":"24px","headerSubtitleFontWeight":"normal","headerSubtitleLineHeight":"30px","assetsBackgroundColor":"#FFFFFF","contentTitleColor":"#000000","contentTitleFontFamily":"NVIDIASansWRg","contentTitleFontSize":"27px","contentTitleFontWeight":"normal","contentTitleLineHeight":"34px","contentDescriptionColor":"#000000","contentDescriptionFontFamily":"NVIDIASansWRg","contentDescriptionFontSize":"15px","contentDescriptionFontWeight":"normal","contentDescriptionLineHeight":"20px","topicDescriptionFontFamily":"Roboto","topicDescriptionFontWeight":"normal","topicDescriptionLineHeight":"18px","topicDescriptionFontSize":"13px","topicDescriptionColor":"#213542","topicDescriptionTextAlign":"left","topicDescriptionFontStyle":"normal","topicDescriptionTextDecoration":"none","assetTitleColor":"#000000","assetTitleFontFamily":"NVIDIASansWRg","assetTitleFontSize":"15px","assetTitleFontWeight":"normal","assetTitleLineHeight":"20px","thumbnailAspectRatioWidth":16,"thumbnailAspectRatioHeight":9,"heroLayout":"default","heroBackgroundColor":"#000000","heroBackgroundImage":"https://cdn.pathfactory.com/assets/10412/heroes/504035/c94b4fde-70e8-48c8-b1fb-98f77336a250.jpg","heroBackgroundSpan":"fixed","heroBrandImage":"","heroPartnerImage":"","heroPersonalizedImage":"","heroTitleColor":"#FFFFFF","heroTitleFontFamily":"NVIDIASansWRg","heroTitleFontSize":"38px","heroTitleFontWeight":"normal","heroTitleFontStyle":"normal","heroTitleTextDecoration":"none","heroTitleLineHeight":"44px","heroTitleTextAlign":"left","heroSubtitleColor":"#FFFFFF","heroSubtitleFontFamily":"NVIDIASansWRg","heroSubtitleFontSize":"24px","heroSubtitleFontWeight":"normal","heroSubtitleFontStyle":"normal","heroSubtitleTextDecoration":"none","heroSubtitleLineHeight":"30px","heroSubtitleTextAlign":"left","bodyLayout":"grid","pageBackgroundColor":"#FFFFFF","pageTitleStyleColor":"#000000","pageTitleStyleFontFamily":"NVIDIASansWRg","pageTitleStyleFontSize":"27px","pageTitleStyleFontWeight":"normal","pageTitleStyleFontStyle":"normal","pageTitleStyleTextDecoration":"none","pageTitleStyleLineHeight":"34px","pageTitleStyleTextAlign":"center","descriptionStyleColor":"#000000","descriptionStyleFontFamily":"NVIDIASansWRg","descriptionStyleFontSize":"15px","descriptionStyleFontWeight":"normal","descriptionStyleFontStyle":"normal","descriptionStyleTextDecoration":"none","descriptionStyleLineHeight":"20px","descriptionStyleTextAlign":"center","contentTitleStyleColor":"#000000","contentTitleStyleFontFamily":"NVIDIASansWRg","contentTitleStyleFontSize":"15px","contentTitleStyleFontWeight":"normal","contentTitleStyleFontStyle":"normal","contentTitleStyleTextDecoration":"none","contentTitleStyleLineHeight":"20px","contentTitleStyleTextAlign":"left","contentTypeLabelsStyleColor":"#000000","contentTypeLabelsStyleBackgroundColor":"#76b900","contentTypeLabelsStyleFontFamily":"NVIDIASansWRg","contentTypeLabelsStyleFontWeight":"normal","contentTypeLabelsStyleFontStyle":"normal","contentTypeLabelsStyleTextDecoration":"none","topicCarouselTextStyleColor":"#213542","topicCarouselTextStyleFontFamily":"Roboto","topicCarouselTextStyleFontWeight":"normal","topicCarouselTextStyleFontStyle":"normal","topicCarouselTextStyleTextDecoration":"none","topicCarouselTextStyleFontSize":"24px","topicCarouselTextStyleLineHeight":"18px","topicCarouselTextStyleTextAlign":"left","topicCarouselDescriptionStyleColor":"#213542","topicCarouselDescriptionStyleFontFamily":"Roboto","topicCarouselDescriptionStyleFontSize":"13px","topicCarouselDescriptionStyleFontWeight":"normal","topicCarouselDescriptionStyleFontStyle":"normal","topicCarouselDescriptionStyleTextDecoration":"none","topicCarouselDescriptionStyleLineHeight":"18px","topicCarouselDescriptionStyleTextAlign":"left","topicCarouselArrowsStyleColor":"#FFFFFF","topicCarouselArrowsStyleBackgroundColor":"#213542","searchFiltersStyleColor":"#000000","searchFiltersStyleBackgroundColor":"#76b900","searchFiltersStyleFontFamily":"NVIDIASansWRg","searchFiltersStyleFontSize":"13px","searchFiltersStyleLineHeight":"18px","searchFieldInputColor":"#76b900","searchFieldInputBackgroundColor":"#ffffff","searchFieldInputFontFamily":"NVIDIASansWRg","searchFieldInputFontSize":"13px","searchFieldInputLineHeight":"18px","dynamicBrandLogo":false,"dynamicPartnerLogo":false,"featuredLabel":"Featured","searchButtonTitle":"Search","searchInputFieldPlaceholder":"Search","filterByContentTypeTitle":"Filter by Content Type","filterByFunnelStageTitle":"Filter by Funnel Stage","filterByBusinessUnitTitle":"Filter by Business Unit","filterByPersonaTitle":"Filter by Persona","filterByIndustryTitle":"Filter by Industry","filterByLanguageTitle":"Filter by Language","filterByTopicTitle":"Filter by Topic","filterByProductTitle":"Filter by Product","filterBySolutionTitle":"Filter by Solution","headerTitleTextAlign":"left","headerTitleTextStyle":"normal","headerTitleTextDecoration":"none","headerSubtitleTextAlign":"left","headerSubtitleTextStyle":"normal","headerSubtitleTextDecoration":"none","contentTitleTextAlign":"center","contentTitleFontStyle":"normal","contentTitleTextDecoration":"none","contentDescriptionTextAlign":"center","contentDescriptionFontStyle":"normal","contentDescriptionTextDecoration":"none","assetTitleTextAlign":"left","assetTitleFontStyle":"normal","assetTitleTextDecoration":"none","assetMediaTagFontFamily":"NVIDIASansWRg","assetMediaTagFontStyle":"normal","assetMediaTagTextDecoration":"none","assetMediaTagFontWeight":"normal","assetMediaTagColor":"#000000","assetMediaTagBackgroundColor":"#76b900","assetCarouselArrowsColor":"#FFFFFF","assetCarouselArrowsBackgroundColor":"#213542","defaultHeroBrandImage":"","defaultHeroPartnerImage":"","defaultHeroPersonalizedImage":"","headerImageAltText":""},"languageNames":[{"id":0,"label":"English","count":49,"parameterizedValue":"english"}],"personas":[{"id":68653,"label":"[en_us] Design and Viz Customer Stories Explore Page","count":1,"parameterizedValue":"en_us-design-and-viz-customer-stories-explore-page"}],"shareConfig":{"logoLink":"https://www.nvidia.com/en-us/","emailSubject":"","emailMessage":"","twitterHandle":"","socialShareMessage":"","linkedinEnabled":true,"twitterEnabled":true,"facebookEnabled":true,"emailEnabled":true,"likeEnabled":false,"downloadEnabled":false},"topicSidebarConfig":{"shareOptions":{"twitter":false,"facebook":false,"linkedin":false,"email":false,"like":false,"download":false},"excludedTopicIds":[],"logo":"https://app.cdn.lookbookhq.com/lbhq-production/10412/thumbnails/original/cc8df558-c3d9-464e-bef4-ad9192e38d5d.png","thumbnailOrIcon":"thumbnail","sharingIconColor":"#76b900","topicBarColor":"#76b900","topicBarFontFamily":"NVIDIASansWRg","topicBarFontSize":"13px","topicBarFontWeight":"bold","topicBarLineHeight":"18px","topicBarBackgroundColor":"#ffffff","sidebarBackgroundColor":"#ffffff","itemColor":"#76b900","itemFontFamily":"NVIDIASansWRg","itemFontSize":"15px","itemFontWeight":"normal","itemLineHeight":"20px","thumbnailAspectRatioWidth":4,"thumbnailAspectRatioHeight":3,"filterTitle":"Filter by Topic","filterTitleActive":"Topic: ","relatedContent":"Related Content","seeAllButtonTitle":"See All","seeLessButtonTitle":"See Less","singularAssetTitle":"asset","pluralAssetTitle":"assets"},"topics":[{"id":37650,"label":"AI","count":2,"parameterizedValue":"ai"},{"id":16041,"label":"AI and Deep Learning","count":7,"parameterizedValue":"ai-and-deep-learning"},{"id":27641,"label":"AI for Business","count":1,"parameterizedValue":"ai-for-business"},{"id":33483,"label":"AI for Enterprise","count":1,"parameterizedValue":"ai-for-enterprise"},{"id":53321,"label":"AI for Enterprise Leaders","count":1,"parameterizedValue":"ai-for-enterprise-leaders"},{"id":27630,"label":"Accelerated Data Science","count":35,"parameterizedValue":"accelerated-data-science"},{"id":72676,"label":"Architecture","count":1,"parameterizedValue":"architecture"},{"id":16043,"label":"Data Center","count":2,"parameterizedValue":"data-center"},{"id":20735,"label":"Data Science","count":10,"parameterizedValue":"data-science"},{"id":27632,"label":"Data Science Workstation","count":5,"parameterizedValue":"data-science-workstation"},{"id":16044,"label":"Design and Pro Visualization","count":1,"parameterizedValue":"design-and-pro-visualization"},{"id":27309,"label":"Ebook","count":1,"parameterizedValue":"ebook"},{"id":72677,"label":"Engineering","count":1,"parameterizedValue":"engineering"},{"id":92037,"label":"Generative AI","count":1,"parameterizedValue":"generative-ai"},{"id":28292,"label":"IT Services","count":1,"parameterizedValue":"it-services"},{"id":27315,"label":"Infographic","count":1,"parameterizedValue":"infographic"},{"id":27525,"label":"Machine learning","count":1,"parameterizedValue":"machine-learning"},{"id":27658,"label":"Mainstream GPU Infrastructure","count":1,"parameterizedValue":"mainstream-gpu-infrastructure"},{"id":27631,"label":"RAPIDS Open Source","count":1,"parameterizedValue":"rapids-open-source"},{"id":45907,"label":"Recommendation Systems","count":1,"parameterizedValue":"recommendation-systems"},{"id":27660,"label":"Retail \u0026 Consumer Packaged Goods","count":1,"parameterizedValue":"retail-consumer-packaged-goods"},{"id":96287,"label":"Simulation / Modeling / Design","count":1,"parameterizedValue":"simulation-modeling-design"},{"id":38154,"label":"Solution Brief","count":3,"parameterizedValue":"solution-brief"},{"id":89522,"label":"Track Transfer","count":1,"parameterizedValue":"track-transfer"},{"id":27316,"label":"Video","count":7,"parameterizedValue":"video"},{"id":27310,"label":"Webinar","count":6,"parameterizedValue":"webinar"},{"id":27313,"label":"White Paper","count":1,"parameterizedValue":"white-paper"},{"id":72678,"label":"and Construction","count":1,"parameterizedValue":"and-construction"}],"products":[],"solutions":[{"id":95794,"label":"Data Center / Cloud","count":3,"parameterizedValue":"data-center-cloud"},{"id":95795,"label":"Data Science","count":38,"parameterizedValue":"data-science"},{"id":95800,"label":"Generative AI","count":9,"parameterizedValue":"generative-ai"},{"id":95802,"label":"Recommenders / Personalization","count":1,"parameterizedValue":"recommenders-personalization"},{"id":95805,"label":"Simulation / Modeling / Design","count":8,"parameterizedValue":"simulation-modeling-design"}]}}; window.getPFContact = function() { var api_host = "https://resources.nvidia.com" return fetch(`${api_host}/get_contact`) }; </script> <script src="https://cdn-app.pathfactory.com/libraries/overlay/overlay.js"></script> <link href="https://cdn-app.pathfactory.com/libraries/overlay/overlay.css" rel="stylesheet" type="text/css" /> <script> function handleOverlay(retries = 0) { var nextRetryCount = retries + 1; var rawOverlayUrl = window.location.search.substring(1).split("&").filter(function(query) { return query.indexOf("overlay_url=") == 0 })[0] var overlayUrl = rawOverlayUrl ? decodeURIComponent(rawOverlayUrl.replace("overlay_url=", "")) : null; var overlayContentLink = document.querySelector(`a[data-lookbook-overlay-href^="${overlayUrl}"]`); if (overlayUrl && overlayContentLink) { overlayContentLink.click() } else if (overlayUrl && retries <= 10) { setTimeout(function() { handleOverlay(nextRetryCount) }, 500); } }; handleOverlay(); </script> <link rel="stylesheet" href="https://cdn-app.pathfactory.com/libraries/explore/normalize.min.css" /> <link rel="stylesheet" href="https://cdn-app.pathfactory.com/libraries/explore/skeleton.min.css" /> <style> * { box-sizing: border-box; } body, html { height: 100%; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; } .lx-header__background { height: 250px; background-color: #000000; } .lx-header { position: relative; display: flex; align-items: center; justify-content: center; } .lx-header-fixed-image__container { overflow: hidden; width: 100%; height: 100%; display: flex; align-items: center; justify-content: center; } @media (max-width: 1024px) { .lx-header__background { height: 24.4140625vw; } } @media (max-width: 480px) { .lx-header__background { height: 117px; } } .lx-header__full_image { height: 100%; width: 100%; background-image: url("https://cdn.pathfactory.com/assets/10412/heroes/504035/c94b4fde-70e8-48c8-b1fb-98f77336a250.jpg"); background-size: cover; background-position: 50% 50%; } .lx-header__fixed_image { width: 1024.0px; position: relative; top: 0px; left: 0px; } .lx-header-text-and-cta { position: absolute; left: 0; right: 0; display: flex; flex-direction: column; padding: 0 20px; width: 100%; max-width: 1024px; height: auto; margin: auto; } .lx-header-text-container { word-break: keep-all; } @media (max-width: 1024px) { .lx-header__fixed_image { width: 100%; top: 0.0vw; left: 0.0vw; } } .lx-header-title__text { color: #FFFFFF; font-family: NVIDIASansWRg; font-size: 38px; font-weight: normal; line-height: 44px; font-style: normal; text-decoration: none; text-align: left; } @media (max-width: 480px) { .lx-header-title__text { font-size: 26px; line-height: 32px; } } .lx-header-subtitle__text { margin-top: 1%; color: #FFFFFF; font-family: NVIDIASansWRg; font-size: 24px; font-weight: normal; line-height: 30px; font-style: normal; text-decoration: none; text-align: left; } @media (max-width: 480px) { .lx-header-subtitle__text { font-size: 18px; line-height: 17px; } } @media (min-width: 550px) { #header-title-row { margin-left: -2%; margin-right: -2%; } } .lx-content-title__text { color: #000000; font-family: NVIDIASansWRg; font-size: 27px; font-weight: normal; line-height: 34px; text-align: center; font-style: normal; text-decoration: none; margin-bottom: 0; margin-top: 15px; } .lx-content-description__text { color: #000000; font-family: NVIDIASansWRg; font-size: 15px; font-weight: normal; line-height: 20px; text-align: center; font-style: normal; text-decoration: none; white-space: pre-line; } .lx-topic-description__text { color: #213542; font-family: Roboto; font-size: 13px; font-weight: normal; line-height: 18px; text-align: left; font-style: normal; text-decoration: none; white-space: pre-line; } .lx-content-text { padding: 0 5px; color: #000000; font-family: NVIDIASansWRg; font-size: 15px; font-weight: normal; line-height: 20px; word-break: keep-all; } .lx-hero-logos-container { position: absolute; bottom: -50px; left: 0; right: 0; max-width: 975px; display: flex; justify-content: center; align-items: center; margin: auto; } @media (min-width: 480px) { .lx-hero-logos-container { width: 80%; } } @media (min-width: 550px) { .lx-hero-logos-container { width: 85%; } } @media (max-width: 1024px) { .lx-hero-logos-container { padding-left: 1vw; padding-right: 1vw; } } .lx-hero-logos-inner { width: 100%; max-width: 975px; } .lx-hero-logos-section { display: flex; justify-content: space-between; align-items: flex-start; } .lx-hero-image { display: block; width: 90px; height: 90px; background-color: #fff; background-size: cover; background-position: center top; margin-bottom: 10px; box-shadow: 0 1px 6px rgba(0, 0, 0, 0.15), 0 1px 3px rgba(0, 0, 0, 0.15); margin: 0 5px; border-radius: 5px; } @media (max-width: 480px) { .lx-hero-image { height: 60px; width: 60px; } .lx-hero-logos-container { bottom: -25px; } } .lx-hero-image-rounded { border-radius: 50%; } .lx-hero-logos-left { display: flex; flex: 1; justify-content: flex-start; margin-left: -5px; } .lx-hero-logos-center { display: flex; flex: 1; flex-direction: row; justify-content: center; } .lx-hero-logos-right { display: flex; flex: 1; justify-content: flex-end; margin-right: -5px; } .lx-content-title__container { margin-top: 40px; } @media (max-width: 480px) { .lx-content-title__container { margin-top: 40px; } } .attribution_footer { box-sizing: border-box; margin: 0; min-width: 0; align-items: center; grid-area: header; padding-left: 1rem; padding-right: 1rem; z-index: 99999; height: 100px; overflow: hidden; display: flex; } </style> <script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?version=4.8.0&features=Promise"></script> <script> if (window.Promise) { window.pfResolveJukeboxLoaded; window.pfOnJukeboxLoad = new Promise(function (resolve) { window.pfResolveJukeboxLoaded = resolve; }); } </script> <style> #cookiePolicy-layer { display: flex; align-items: center; height: auto; min-height:54px; min-width: 320px; } #cookiePolicy-layer .messageContainer { max-height: 50px; line-height: 18px; font-size:16px; margin-right: 20px; margin-left:15px ; margin-bottom: 10px; font-family: Helvetica,Arial,Sans-Serif; } #sidebar-container { margin-bottom: 50px !important; } #cookiePolicy-layer{background:#3c3c3c none repeat scroll 0 0;border-top:2px solid #76b900;bottom:0;display:none;left:0;position:fixed;width:100%;z-index:9999999} #cookiePolicy-layer .messageContainer{color:#fff;float:left;text-align:center} #cookiePolicy-layer p{margin:1em;text-align:center} #cookiePolicy-layer .green-box-bttn{background-color:#76b900;border:0 none;color:#fff;cursor:pointer;display:inline-block;float:right;font-size:1em;font-weight:bold;height:100%;letter-spacing:1px;padding:0;text-align:center;text-decoration:none;text-transform:uppercase;margin-right:6%} #cookiePolicy-layer .green-box-bttn span{display:inline-block;vertical-align:middle} #cookiePolicy-layer a{color:#76b900;text-decoration:none} @media screen and (min-width:768px) and (max-width:1024px){ #cookiePolicy-layer{height:77px} #cookiePolicy-layer .messageContainer{line-height:77px;width:79%} #cookiePolicy-layer .messageContainer p{display:inline-block;line-height:1.4em;vertical-align:middle} #cookiePolicy-layer .green-box-bttn{line-height:77px;width:15%} } @media screen and (min-width:320px) and (max-width:767px){ #cookiePolicy-layer{height:60px} #cookiePolicy-layer .messageContainer{line-height:60px;width:74%} #cookiePolicy-layer .messageContainer p{display:inline-block;font-size:.6em;line-height:1.2em;margin:.5em 1em;vertical-align:middle} #cookiePolicy-layer .green-box-bttn{font-size:.6em;line-height:60px;width:20%} } @media screen and (min-width:1024px){ #cookiePolicy-layer{height:54px} #cookiePolicy-layer .messageContainer{line-height:23px;width:84%} #cookiePolicy-layer .messageContainer p{display:inline-block;line-height:1.4em;vertical-align:middle} #cookiePolicy-layer .green-box-bttn{line-height:54px;width:10%} } @media screen and (max-width: 767px) { #cookiePolicy-layer { min-height:76px; } #cookiePolicy-layer .messageContainer { line-height: 16px; font-size:14px; } } </style> <script> //Add the script for your consent provider here function setPfConsent(status){ if(pfConsentStatus()!=true &&status==true) return pfCookieResponse(true); if (pfConsentStatus() != false && status==false) pfCookieResponse(false); } //functions to wait for flow promoter to be rendered function rafAsync() { return new Promise(resolve => { requestAnimationFrame(resolve); }); } function checkElement(selector) { if (document.querySelector(selector) === null) { return rafAsync().then(() => checkElement(selector)); } else { if (document.querySelector(selector).parentNode==null){ return rafAsync().then(() => checkElement(selector)); } else { return Promise.resolve(true); } } } checkElement("#cookiePolicy-btn-close") //add the selector for the element you are waiting for here .then((element) => { const cookiePolicy = document.getElementById("cookiePolicy-btn-close"); const messageContainer = document.getElementById("cookiePolicy-layer"); pfOnJukeboxLoad.then(function() { if(pfConsentStatus()!=true) { messageContainer.style.display = "flex"; } cookiePolicy.addEventListener("click", function(event) { event.preventDefault(); messageContainer.style.visibility = "hidden"; setPfConsent(true); }) }); }); </script> <div id="header-1"></div> <script> window.addEventListener("load", () => { var locale="en_US" if(document.documentElement.lang==='es') locale="es_LA"; else if(document.documentElement.lang==='de') locale="de_DE"; else if(document.documentElement.lang==='zh') locale="zh_CN"; else if(document.documentElement.lang==='fr') locale="fr_FR"; else if(document.documentElement.lang==='ja') locale="ja_JP"; else if(document.documentElement.lang==='ko') locale="ko_KR"; else if(document.documentElement.lang==='pt') locale="pt_BR"; else if(document.documentElement.lang==='ru') locale="ru_RU"; NVIDIAHeaderFooterPlugin.mount({ headerElemID: "header-1", footerElemID: "footer-1", showFooter: true, mountLocale: locale, mountBrand: "", //don't provide brand injectAEMfont: true, // here }); }); </script> <style> /* .lookbook-overlay-close-wrapper #lookbook-overlay-close.lookbook-overlay-close, .lookbook-overlay-close, #lookbook-overlay-close { background-color: rgb(255,255,255) !important; color: white !important; } */ /* Content Tag Position Below Thumbnail */ .pf-explore-asset-media-tag { display: inline-block; position: relative !important; top: 0px !important; left: 0px !important; margin-bottom: 0px !important; } /* Remove thumbnail border */ .pf-explore-image-container { margin-top: 0px !important; box-shadow: none !important; webkit-transition: none !important; transition: none !important; } .pf-explore-search-input, .pf-explore-search-button, .pf-explore-filter { border-radius: 0px !important; } h3 { text-transform: none !important; } /* Change asset container styling */ .pf-explore-asset-container { border-bottom: none !important; border-radius: 1px; box-shadow: 0 1px 6px rgb(0 0 0 / 15%), 0 1px 3px rgb(0 0 0 / 15%) !important; -webkit-transition: box-shadow 0.1s ease-in-out !important; transition: box-shadow 0.1s ease-in-out !important; } /* Change asset container hover state */ .pf-explore-asset-container:hover { box-shadow: 0 3px 10px rgb(0 0 0 / 22%), 0 2px 5px rgb(0 0 0 / 22%) !important; } /* Change content type tag styling */ .pf-explore-asset-media-tag { color: #000000 !important; background-color: transparent !important; border-color: transparent !important; box-shadow: none !important; padding: 0px 10px !important; font-size: 12px !important; } /* Change asset title styling and truncate text at 2 lines */ .pf-explore-asset-title { color: #000000 !important; padding: 0px 10px !important; text-overflow: ellipsis; overflow: hidden; display: -webkit-box !important; -webkit-line-clamp: 3; -webkit-box-orient: vertical; white-space: normal; } .play-button { position: absolute; width: 56px; height: 56px; background-color: rgba(0,0,0,0); border-radius: none; top: 20%; left: 40%; margin: 0px !important; cursor: pointer; z-index: 9999; border: none !important; background-image: url('https://www.nvidia.com/content/dam/icons/play-button-pathfactory.svg'); background-repeat: no-repeat; } .play-button:after { border-width: 0px !important; border-style: none !important; border-color: transparent !important; } /* Explore Pages*/ .pf-explore-asset-container { padding-bottom: 0px !important; } .pf-explore-image-container { margin-bottom: 30px !important; } #explore-assets-app .pf-explore-asset-title { height: auto; overflow: hidden; display: -webkit-box; -webkit-line-clamp: 3; -webkit-box-orient: vertical; padding: 18px 30px 0px 30px !important; line-height: 25px !important; } .pf-explore-asset-container { display: flex; flex-direction: column; height:100%; /*min-height:310px;*/ } .pf-explore-grid-container { margin-bottom:30px; } #explore-assets-app .pf-explore-asset-media-tag { padding: 0px 0px 0px 30px !important; } .pf-explore-asset-link { padding-bottom: 0px; } /* Tablet */ @media only screen and (min-device-width: 768px) and (max-device-width: 1024px) and (-webkit-min-device-pixel-ratio: 2) { .pf-explore-asset-container { display: flex; /* min-height:220px;*/ } } @media only screen and (min-device-width: 768px) and (max-device-width: 1024px) and (orientation: landscape) and (-webkit-min-device-pixel-ratio: 2) { .pf-explore-asset-container { display: flex; /*min-height:290px;*/ } } </style> <style> /* Modifies the headline text ontop of the hero image. Im not sure if these fonts settings match the Creative font specs though, so can you make sure they match? */ .lx-header-title__text { max-width: 520px !important; font-size: 48px !important; font-weight: 700 !important; line-height: 1.25em !important; } /* Aligns the hero text with the left edge of the NVIDIA logo in the mega nav */ .lx-header-text-and-cta { max-width: 1160px !important; } /* Removes PathFactory's out of the box setting that controls the max width ofthe hero image, so you can make the hero image wider then PF will normally allow*/ .lx-header__fixed_image { width: auto !important; } /* Modifies the paragraph text in the body of the page that appears above the grid of content. Im not sure if these fonts settings match the Creative font specs though, so can you make sure they match? */ .lx-content-description__text { font-size: 22px !important; line-height: 1.75em !important; padding-bottom: 40px !important; } /* Aligns the search bar to the right of the page. We need to make this mobile responsive though, so the search bar is only floated right on desktop and not on mobile or tablet */ #explore-topic-search-container { border: none !important; float: right; display:inline-block; padding-bottom: 10px; } #explore-grid { clear:both; } /* Removes PathFactory's out of the box setting that makes the h2 text all uppercase*/ h2 { text-transform: none !important; } /*aligns CTA center*/ #qa-explore-assets div .dnKCVK { width: 100%; } #qa-cta-button-body { margin:auto; } @media screen and (max-width: 639px) { #explore-topic-search-container { float:none; } } @media screen and (min-width: 640px) and (max-width: 1024px) { } @media screen and (min-width: 1025px) and (max-width: 1349px) { } @media screen and (min-width: 1350px) { } </style> <style> /* makes the down arrows on the filters white */ i { color: white; } /* adds padding to the right of each filter to make it look better on mobile */ .pf-explore-filter-container { padding-right: 5px; } /* makes the filter boxes have no black border and no round edges */ .p-multiselect { border-color: #76b900 !important; border-radius: 0px !important; } /* makes the star icon in the featured asset tag black */ .pf-explore-asset-featured-tag-icon { color: #000 !important; } /* makes the filter boxes have light grey backgrounds and fixes the padding */ .laquCT{ background-color: #F8F9F9; height: 100%; margin-left: -12px; padding: 0.5em 1em 0.5em 1em; margin-right: 0px; } /* makes the filter boxes have black text, grey borders, and fixes padding issue that prevents you from clicking the remove filter button */ .jquFfr { color: #000 !important; background-color: grey !important; border: thin solid grey !important; font-weight: 400 !important; padding: 0 0 0 12px !important; } /* makes search text box have black text, light grey background, grey border */ .pf-explore-search-input { color: #000 !important; border: thin solid grey !important; background-color: #F8F9F9 !important; } /* makes selected filter item's remove "x" icon black */ .pi { color: #000; } /* makes selected filter item's remove "x" icon centered vertically */ .closebtn { font-size: 0px; } /* makes selected filter item white */ .chip { background: #fff; } /* makes fitler drop down items have green borders when hovered over */ .p-checkbox:not(.p-checkbox-disabled) .p-checkbox-box:hover { border-color: #76b900; } /* makes fitler drop down items have green checkmarks next to them after selected */ .p-checkbox .p-checkbox-box.p-highlight { border-color: #76b900; background: #76b900; } .p-checkbox:not(.p-checkbox-disabled) .p-checkbox-box.p-highlight:hover { border-color: #76b900; background: #76b900; } /* makes fitler drop down items have light grey backgrounds when selected */ .p-multiselect-panel .p-multiselect-items .p-multiselect-item.p-highlight { background: #EEE; } /* makes the search button have a grey background color, removes the margin and padding on the left, and makes the text less bold */ .pf-explore-search-button { background-color: #76b900; border: thin solid #76b900; margin-left: 0px; font-weight: 400; padding: 0 12px 0 0; } /* makes the search text box's border turn green when you click into it */ .pf-explore-search-input:focus-visible { border-color: #76b900 !important; outline: none; } /* makes the search button turn green when you click it */ .pf-explore-search-button:active { background-color: #76b900 !important; border-color: #76b900 !important; } /* fixes issue that prevents you from clicking the remove filter button */ .fa { width: 32px; text-align: center; } /* removes margin on the grey search button and makes search icon black*/ .fa-search { margin: 0px; color: #000 !important; } /* fixes the padding around the optional CTA button that can be added benieth the body paragraph */ .ciwbCw { padding: 0 0 35px; } /*fixes the filter to align with the search bar*/ #qa-explore-assets .jaarnv, #qa-explore-assets div:nth-child(3) { width:auto; } #qa-explore-content-type-filter { margin-top: 10px; } </style> <script> const intervalTimer = setInterval(() => { if(document.getElementsByClassName('pf-explore-asset-media-tag').length){ clearInterval(intervalTimer); const contentTypeTags = document.getElementsByClassName('pf-explore-asset-media-tag'); contentTypeTags.forEach((contentTypeTag) => { if (contentTypeTag.innerText.toLowerCase()=='video'){ var thumbnailcontainer = contentTypeTag.previousSibling thumbnailcontainer.insertAdjacentHTML('afterBegin','<div class="play-button"></div>') } if (contentTypeTag.innerText.toLowerCase()=='webinar'){ var thumbnailcontainer = contentTypeTag.previousSibling thumbnailcontainer.insertAdjacentHTML('afterBegin','<div class="play-button"></div>') } if (contentTypeTag.innerText.toLowerCase()=='gtc session'){ var thumbnailcontainer = contentTypeTag.previousSibling thumbnailcontainer.insertAdjacentHTML('afterBegin','<div class="play-button"></div>') } if (contentTypeTag.innerText.toLowerCase()=='session'){ var thumbnailcontainer = contentTypeTag.previousSibling thumbnailcontainer.insertAdjacentHTML('afterBegin','<div class="play-button"></div>') } }) } },600) </script> <style> /*global-font-styles*/ @media(max-width:639px) { /*asset title h5*/ .pf-microsite-card-title > div, #explore-assets-app .pf-explore-asset-title, #qa-flow-content a > div span.flow-asset-title { font-size: 16px !important; line-height: 1.25em !important; font-weight:400 !important; } } @media screen and (min-width:640px) and (max-width:1023px) { /*asset title h5*/ .pf-microsite-card-title > div, #explore-assets-app .pf-explore-asset-title, #qa-flow-content a > div span.flow-asset-title { font-size: 16px !important; line-height: 1.25em !important; font-weight:400 !important; } } @media screen and (min-width:1024px) and (max-width:1349px){ /*asset title h5*/ .pf-microsite-card-title > div, #explore-assets-app .pf-explore-asset-title, #qa-flow-content a > div span.flow-asset-title { font-size: 16px !important; line-height: 1.25em !important; font-weight:400 !important; } } @media screen and (min-width:1350px) { /*asset title h5*/ .pf-microsite-card-title > div, #explore-assets-app .pf-explore-asset-title, #qa-flow-content a > div span.flow-asset-title { font-size: 16px !important; line-height: 1.25em !important; font-weight:400 !important; } } /*asset type tag black and size p medium*/ .pf-explore-asset-media-tag, .content-type-label, div[data-qa-hook="content-type-asset"] { color: black !important; font-size: 12px; font-weight: 700; } </style> <style> #qa-explore-topic-filter { margin-top: 10px; } #qa-explore-industry-filter { margin-top: 10px; } </style> <script> window.addEventListener("load", () => { var locale="en_US" if(document.documentElement.lang==='es') locale="es_LA"; else if(document.documentElement.lang==='de') locale="de_DE"; else if(document.documentElement.lang==='zh') locale="zh_CN"; else if(document.documentElement.lang==='fr') locale="fr_FR"; else if(document.documentElement.lang==='ja') locale="ja_JP"; else if(document.documentElement.lang==='ko') locale="ko_KR"; else if(document.documentElement.lang==='pt') locale="pt_BR"; else if(document.documentElement.lang==='ru') locale="ru_RU"; NVIDIAHeaderFooterPlugin.mount({ headerElemID: "header-1", footerElemID: "footer-1", showFooter: true, mountLocale: locale, mountBrand: "deep-learning-ai", injectAEMfont: true, }); }); </script> <script> // Create IE + others compatible event handler var eventMethod = window.addEventListener ? "addEventListener" : "attachEvent"; var eventer = window[eventMethod]; var messageEvent = eventMethod == "attachEvent" ? "onmessage" : "message"; // Listen to message from child window eventer(messageEvent,function(e) { try{ if (typeof e.data=== 'string'){ const data = JSON.parse(e.data); const redirectURL = data.message; if(redirectURL && redirectURL !==''){ window.open(redirectURL, "_blank"); } } }catch(ex){ } },false); </script> <script type="text/javascript"> _linkedin_partner_id = "84497"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <noscript> <img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=84497&fmt=gif" /> </noscript> <!-- Facebook Pixel Code --> <script> !function(f,b,e,v,n,t,s) {if(f.fbq)return;n=f.fbq=function(){n.callMethod? n.callMethod.apply(n,arguments):n.queue.push(arguments)}; if(!f._fbq)f._fbq=n;n.push=n;n.loaded=!0;n.version='2.0'; n.queue=[];t=b.createElement(e);t.async=!0; t.src=v;s=b.getElementsByTagName(e)[0]; s.parentNode.insertBefore(t,s)}(window, document,'script', 'https://connect.facebook.net/en_US/fbevents.js'); fbq('init', '161755414605325'); fbq('track', 'PageView'); </script> <noscript><img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=161755414605325&ev=PageView&noscript=1" /></noscript> <!-- End Facebook Pixel Code --> <!-- Global site tag (gtag.js) - Google Ads: 1041695361 --> <script async src="https://www.googletagmanager.com/gtag/js?id=AW-1041695361"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'AW-1041695361'); </script> <style> #download { display:none !important; } #print { display:none !important; } .lookbook-overlay-close-wrapper #lookbook-overlay-close.lookbook-overlay-close, .lookbook-overlay-close, #lookbook-overlay-close { background-color: rgb(255, 255, 255) !important; color: black !important; } </style> <style> /* Change green featured label ontop large currently selected tile */ #qa-sidebar-featured-tag { background: #76b900; } /* Change large currently selected tile styling */ #qa-sidebar-featured-item { background: white; transition: all .3s cubic-bezier(0.25,0.8,0.25,1); box-shadow: 0 0 2px 0 #dee2e6, 0 2px 6px 0 #dee2e6; border-radius: 2px; margin-top: 2px; } /* Change small tile styling */ .iDHATf{ background: white; transition: all .3s cubic-bezier(0.25,0.8,0.25,1); border-radius: 2px; margin-top: 10px !important; box-shadow: 0 1px 6px rgb(0 0 0 / 15%), 0 1px 3px rgb(0 0 0 / 15%) !important; -webkit-transition: box-shadow 0.1s ease-in-out !important; transition: box-shadow 0.1s ease-in-out !important; } /* Change asset container hover state */ .iDHATf:hover { box-shadow: 0 3px 10px rgb(0 0 0 / 22%), 0 2px 5px rgb(0 0 0 / 22%) !important; } </style> <script> (function(w,d,t,r,u) { var f,n,i; w[u]=w[u]||[],f=function() { var o={ti:"30006101", enableAutoSpaTracking: true}; o.q=w[u],w[u]=new UET(o),w[u].push("pageLoad") }, n=d.createElement(t),n.src=r,n.async=1,n.onload=n.onreadystatechange=function() { var s=this.readyState; s&&s!=="loaded"&&s!=="complete"||(f(),n.onload=n.onreadystatechange=null) }, i=d.getElementsByTagName(t)[0],i.parentNode.insertBefore(n,i) }) (window,document,"script","//bat.bing.com/bat.js","uetq"); </script> </head> <body style="background-color: #FFFFFF;"> <link rel="stylesheet" href="https://www.nvidia.com/etc.clientlibs/nvidiaweb/clientlibs/clientlib-site.min.e0e24464945f0475851ddf4afafe974e.css" /> <link rel="stylesheet" href="https://www.nvidia.com/etc.clientlibs/nvidiaweb/clientlibs/clientlib-base.min.69ab89312e3eb50a6791b03ca8d8ec12.css" /> <link rel="stylesheet" href="https://www.nvidia.com/etc.clientlibs/nvidiaweb/clientlibs/clientlib-nvgdc.min.8a39624940817bcc77c060ec3f3d0cfb.css" /> <link rel="stylesheet" href="https://www.nvidia.com/etc/designs/nvidiaGDC/clientlibs_global.min.80193159c3cdb64bd99c6015a604f4ef.css" /> <style> #header-1 div[class^="header-emotion-cache"] span , #header-1 div[class^="header-emotion-cache"] a { text-transform: none; } .lx-header__background { height: auto !important; padding-top: 44px !important; } </style> <script> var trackURL= document.location.href; if (sessionStorage.clickcount) sessionStorage.clickcount = Number(sessionStorage.clickcount) + 1; else sessionStorage.clickcount = 1; if(trackURL.includes("fm=dnd") && Number(sessionStorage.clickcount)===1){ __PATHFACTORY__.pageViewData.captureConfig.enabled=false; } </script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script> <script> window.onload = function() { $('#qa-flow-footer-home-button').append('View All Content'); }; </script> <style> #qa-flow-footer-home-button { color: white; background-color: #76b900; margin-left: 10px; } #qa-flow-footer-home-button i { padding-right:10px; } </style> <div id="qa-explore-header-background" class="lx-header lx-header__background"> <div class="lx-header-fixed-image__container" > <img class="lx-header__fixed_image" src="https://cdn.pathfactory.com/assets/10412/heroes/504035/c94b4fde-70e8-48c8-b1fb-98f77336a250.jpg" alt="" title=""/> </div> <div class="lx-header-text-and-cta lx-header-text-and-cta-container"> <div class="lx-header-text-container"> <div class="lx-header-title__text">NVIDIA AI and Data Science</div> </div> <div id="header__cta" class="lx-hero__cta"></div> </div> <!--LOGOS--> <div class="lx-hero-logos-container"> <div class="lx-hero-logos-inner lx-hero-logos-section"> <div class="lx-hero-logos-left"> </div> <div class="lx-hero-logos-center"> </div> <div class="lx-hero-logos-right"> </div> </div> </div> </div> </div> <div class="lx-content-title__container"> <div class="container"> <div class="row" id="header-title-row"> <p class="lx-content-description__text"> Get the latest content assets for NVIDIA AI and data science. </p> </div> <div class="flex-row" id="explore-assets-app"></div> </div> </div> <style> .modal { position: fixed; height: 100%; width: 100%; top: 0; left: 0; z-index: 1000; display: none; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } .modal-title { color: #222; font-family: Roboto; font-size: 24px; font-weight: normal; line-height: 30px; margin-top: -10px; margin-bottom: 15px; } .modal-overlay { position: fixed; height: 100%; width: 100%; top: 0; left: 0; z-index: 1000; background-color: rgba(0, 0, 0, 0.7); } .modal-wrapper { width: 90%; max-width: 440px; position: relative; box-sizing: border-box; padding: 25px 25px 25px; margin: 60px auto 10px; background-color: #fafafa; color: #333; text-align: left; border-radius: 3px; z-index: 1001; } .modal-close-button { font-size: 28px; line-height: 1; position: absolute; top: 2px; right: 2px; padding: 0 5px; opacity: 0.4; cursor: pointer; } .modal-close-button:before { content: "\D7"; } </style> <div class="modal" id="js-email-modal"> <div class="js-modal-close modal-overlay"></div> <div class="modal-wrapper"> <p class="modal-title">Share this Content</p> <span class="js-modal-close modal-close-button"></span> <div> <style> .email-form { margin-bottom: 0; } .submit-button, .submit-button:active, .submit-button:focus { margin: 20px 0 0 0; height: 36px; padding: 0 12px; background-color: #4CAF50; border: 1px solid rgba(0, 0, 0, 0.2); border-radius: 3px; -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; white-space: nowrap; cursor: pointer; font-family: 'Roboto'; font-size: 14px; font-weight: normal; line-height: 20px; text-transform: none; color: #fff; } .submit-button:hover { color: #fff; background-color: #449d48; } .submit-wrapper { text-align: center; } .input-group { margin-bottom: 10px; display: flex; align-items: center; } .input { display: inline-block; border-radius: 3px; border: 1px solid rgba(0, 0, 0, 0.2); height: 36px; width: 200px; padding: 0 8px; } .label { text-align: right; display: block; } </style> <form id="js-email-form" class="email-form"> <div class="row input-group"> <div class="one-third column"><label class="label" for="emailTo">Email To*</label></div> <div class="two-thirds column"><input type="text" name="emailTo" class="input" required /></div> </div> <div class="row input-group"> <div class="one-third column"><label class="label" for="emailMessage">Email Message</label></div> <div class="two-thirds column"><input type="text" name="emailMessage" value="" class="input" /></div> </div> <div class="row"> <div class="submit-wrapper"> <button class="submit-button">Send</button> </div> </div> </form> </div> </div> </div> <div id="jukebox-app"></div> </div> <script> (function(j,u,k,e,b,o,x){j["pfObject"]=b;j[b]=j[b]||function(){ (j[b].q=j[b].q||[]).push(arguments)},j[b].l=1*new Date();o=u.createElement(k), x=u.getElementsByTagName(k)[0];o.async=1;o.src=e;x.parentNode.insertBefore(o,x) })(window,document,"script","https://cdn-app.pathfactory.com/production/jukebox/current/tracks.js?x=2","pf"); pf("create", "LB-AEE03768-10412"); </script> <script src="https://images.nvidia.com/assets/raw-html-components/global-navigation-react/bundle.js" defer></script> <div id="footer-1"></div> <script src="https://cdnjs.cloudflare.com/ajax/libs/arrive/2.4.1/arrive.js" integrity="sha512-y8WYSN12qGaGi9+1wK2j66nQYfb/mAhEENjhABAA68bc0ZFRqEfnzf4l/zabQxLtvQrExYZJAOEcxpW1whCGOw==" crossorigin="anonymous" referrerpolicy="no-referrer"></script> <script> // When asset grid loads in PathFactory iFrame document.arrive("#pf-microsite", function() { // Re-size iFrame when first loaded into page // console.log("PF script is working!"); let message = { height: document.getElementById('pf-microsite').scrollHeight, width: document.getElementById('pf-microsite').scrollWidth, pfdimensions: true }; console.log('page dimensions are'); console.log(document.getElementById('pf-microsite').scrollHeight); console.log(document.getElementById('pf-microsite').scrollWidth); // window.top refers to parent window window.top.postMessage(message, "https://www.nvidia.com/"); // Re-size iFrame any time a change is detected within target element var target = document.getElementById('pf-microsite'); var observer = new MutationObserver(function(mutations) { mutations.forEach(function(mutation) { console.log(mutation.type); console.log('change detected'); let message = { height: document.getElementById('pf-microsite').scrollHeight, width: document.getElementById('pf-microsite').scrollWidth, pfdimensions: true }; console.log('page dimensions are'); console.log(document.getElementById('pf-microsite').scrollHeight); console.log(document.getElementById('pf-microsite').scrollWidth); // window.top refers to parent window window.top.postMessage(message, "https://www.nvidia.com/"); }); }); // configuration of the observer var config = { attributes: true, childList: true, subtree:true, characterData: true }; observer.observe(target, config); window.addEventListener('resize', function(event) { let message = { height: document.getElementById('pf-microsite').scrollHeight, width: document.getElementById('pf-microsite').scrollWidth, pfdimensions: true }; // window.top refers to parent window window.top.postMessage(message, "https://www.nvidia.com/"); }, true); }); </script> <style> .lookbook-overlay-close-wrapper #lookbook-overlay-close.lookbook-overlay-close, .lookbook-overlay-close, #lookbook-overlay-close { background-color: rgb(255,255,255) !important; color: white !important; } </style> <!-- The style attribute was added on May/12/2020 based on a request to have the consent bar show up in explore pages.--> <style> #cookiePolicy-layer { opacity: 1 !important; } </style> <div id="cookiePolicy-layer" style="display: none;" class="noSelection shadowBox-light"><div class="messageContainer fontSmall"> NVIDIA websites use cookies to deliver and improve the website experience. See our <a href="https://www.nvidia.com/en-us/about-nvidia/cookie-policy/" target="_blank">cookie policy</a> for further details on how we use cookies and how to change your cookie settings. </div><div id="cookiePolicy-btn-close" class="green-box-bttn"><span>Accept</span></div></div> <script> gtag('event', 'page_view', { 'send_to': 'AW-1041695361', 'user_id': 'replace with value' }); </script> <script src="https://cdnjs.cloudflare.com/ajax/libs/arrive/2.4.1/arrive.min.js" integrity="sha256-WXHeZwrvHW+Qpj5u2NCVyiL5XEVf/AzrYL5i4w4aRHM=" crossorigin="anonymous"></script> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script> <script> $(window).on("load", function(){ var trackURL= document.location.href; document.arrive('div#qa-logo-common', function () { if(trackURL.includes("sidebar=dnd")){ $('#qa-app-base > div > div').hide(); $('#qa-flow-next-wrapper').hide(); $('#qa-app-base > div > div').css('display','none'); $('#qa-app-base > div > div').addClass('hideQuery') $('#lb-app-container').attr('style','left:0px;'); console.log('query present'); } }); }); </script> <style> .hideQuery { display:none !important; } </style> </body> </html>