CINXE.COM
Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732615622"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732615622" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732615622"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732615622"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732615622"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732615622"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732615622"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732615622"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732615622"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/information-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/information-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/information-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732615622"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(0,129,62,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(0,129,62,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(0,129,62,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(0,129,62,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(0,129,62,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732615622"> <meta name="title" content="Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation"> <meta name="description" content="Despite considerable advancements in integrating the Internet of Things (IoT) and artificial intelligence (AI) within the industrial maintenance framework, the increasing reliance on these innovative technologies introduces significant vulnerabilities due to cybersecurity risks, potentially compromising the integrity of decision-making processes. Accordingly, this study aims to offer comprehensive insights into the cybersecurity challenges associated with predictive maintenance, proposing a novel methodology that leverages generative AI for data augmentation, enhancing threat detection capabilities. Experimental evaluations conducted using the NASA Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset affirm the viability of this approach leveraging the state-of-the-art TimeGAN model for temporal-aware data generation and building a recurrent classifier for attack discrimination in a balanced dataset. The classifier’s results demonstrate the satisfactory and robust performance achieved in terms of accuracy (between 80% and 90%) and how the strategic generation of data can effectively bolster the resilience of intelligent maintenance systems against cyber threats." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/information-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation"> <meta name="dc.creator" content="Flora Amato"> <meta name="dc.creator" content="Egidia Cirillo"> <meta name="dc.creator" content="Mattia Fonisto"> <meta name="dc.creator" content="Alberto Moccardi"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Information 2024, Vol. 15, Page 740"> <meta name="dc.date" content="2024-11-20"> <meta name ="dc.identifier" content="10.3390/info15110740"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="Despite considerable advancements in integrating the Internet of Things (IoT) and artificial intelligence (AI) within the industrial maintenance framework, the increasing reliance on these innovative technologies introduces significant vulnerabilities due to cybersecurity risks, potentially compromising the integrity of decision-making processes. Accordingly, this study aims to offer comprehensive insights into the cybersecurity challenges associated with predictive maintenance, proposing a novel methodology that leverages generative AI for data augmentation, enhancing threat detection capabilities. Experimental evaluations conducted using the NASA Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset affirm the viability of this approach leveraging the state-of-the-art TimeGAN model for temporal-aware data generation and building a recurrent classifier for attack discrimination in a balanced dataset. The classifier’s results demonstrate the satisfactory and robust performance achieved in terms of accuracy (between 80% and 90%) and how the strategic generation of data can effectively bolster the resilience of intelligent maintenance systems against cyber threats." > <meta name="dc.subject" content="artificial intelligence" > <meta name="dc.subject" content="predictive maintenance" > <meta name="dc.subject" content="secure artificial intelligence" > <meta name ="prism.issn" content="2078-2489"> <meta name ="prism.publicationName" content="Information"> <meta name ="prism.publicationDate" content="2024-11-20"> <meta name ="prism.volume" content="15"> <meta name ="prism.number" content="11"> <meta name ="prism.section" content="Article" > <meta name ="prism.startingPage" content="740" > <meta name="citation_issn" content="2078-2489"> <meta name="citation_journal_title" content="Information"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation"> <meta name="citation_publication_date" content="2024/11"> <meta name="citation_online_date" content="2024/11/20"> <meta name="citation_volume" content="15"> <meta name="citation_issue" content="11"> <meta name="citation_firstpage" content="740"> <meta name="citation_author" content="Amato, Flora"> <meta name="citation_author" content="Cirillo, Egidia"> <meta name="citation_author" content="Fonisto, Mattia"> <meta name="citation_author" content="Moccardi, Alberto"> <meta name="citation_doi" content="10.3390/info15110740"> <meta name="citation_id" content="mdpi-info15110740"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2078-2489/15/11/740"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2078-2489/15/11/740/pdf?version=1732084663"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2078-2489/15/11/740/pdf?version=1732084663"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2078-2489/15/11/740/pdf?version=1732084663"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2078-2489/15/11/740/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2078-2489/15/11/740/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2078-2489/15/11/740/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2078-2489/15/11/740/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2078-2489/15/11/740/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2078-2489/15/11/740/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/information-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2078-2489/15/11/740" /> <meta property="og:title" content="Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation" /> <meta property="og:description" content="Despite considerable advancements in integrating the Internet of Things (IoT) and artificial intelligence (AI) within the industrial maintenance framework, the increasing reliance on these innovative technologies introduces significant vulnerabilities due to cybersecurity risks, potentially compromising the integrity of decision-making processes. Accordingly, this study aims to offer comprehensive insights into the cybersecurity challenges associated with predictive maintenance, proposing a novel methodology that leverages generative AI for data augmentation, enhancing threat detection capabilities. Experimental evaluations conducted using the NASA Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset affirm the viability of this approach leveraging the state-of-the-art TimeGAN model for temporal-aware data generation and building a recurrent classifier for attack discrimination in a balanced dataset. The classifier’s results demonstrate the satisfactory and robust performance achieved in terms of accuracy (between 80% and 90%) and how the strategic generation of data can effectively bolster the resilience of intelligent maintenance systems against cyber threats." /> <meta property="og:image" content="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g001-550.jpg?1732084802" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732615622"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732615622"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2078-2489/15/11/741">Machine Learning-Based Methodologies for Cyber-Attacks and Network Traffic Monitoring: A Review and Insights</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2078-2489/15/11/739">PLC-Fusion: Perspective-Based Hierarchical and Deep LiDAR Camera Fusion for 3D Object Detection in Autonomous Vehicles</a></div> Previous Article in Special Issue<br> <div><a href="/2078-2489/15/10/631">Towards Securing Smart Homes: A Systematic Literature Review of Malware Detection Techniques and Recommended Prevention Approach</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732615622" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732615622" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=information " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" selected='selected'> Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="15" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="11" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/information">Information</a> </div> <div class="breadcrumb__element"> <a href="/2078-2489/15">Volume 15</a> </div> <div class="breadcrumb__element"> <a href="/2078-2489/15/11">Issue 11</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/info15110740</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/information"> <img src="https://pub.mdpi-res.com/img/journals/information-logo.png?8600e93ff98dbf14" alt="information-logo" title="Information" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D50" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/information" data-path="/2078-2489/15/11/740" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editors</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title="School of Computing and Information Science, Anglia Ruskin University, Cambridge CB1 1PT, UK"> <div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/10124?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/10124/thumb/Shareeful_Islam.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Shareeful Islam</span></a></div> </div> <div class="academic-editor-container " title="Institute for High Performance Computing and Networking ICAR, National Research Council of Italy (CNR), 00185 Rome, Italy"> <div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/1361034?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/1361034/thumb/Stefano_Silvestri.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Stefano Silvestri</span></a></div> </div> <div class="academic-editor-container " title="Department of Computing and Games, School of Computing Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK"> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732615622" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Zia Ush Shamszaman</span> </div> </div> </div> <div class="academic-editor-container hidden" title="School of Computing and Information Systems, Athabasca University, Athabasca, AB T9S 3A3, Canada"> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732615622" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Xiaokun Zhang</span> </div> </div> </div> <a href="#" class="js-show-more-academic-editors">Show more...</a> </div> </li> <li class="accordion-direct-link"> <a href="/2078-2489/15/11/740/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Detecting%20Adversarial%20Attacks%20in%20IoT-Enabled%20Predictive%20Maintenance%20with%20Time-Series%20Data%20Augmentation" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Flora%20Amato%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Amato, F.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Egidia%20Cirillo%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Cirillo, E.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Mattia%20Fonisto%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Fonisto, M.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Alberto%20Moccardi%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Moccardi, A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Flora%20Amato" target="_blank" rel="noopener noreferrer">Amato, F.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Egidia%20Cirillo" target="_blank" rel="noopener noreferrer">Cirillo, E.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Mattia%20Fonisto" target="_blank" rel="noopener noreferrer">Fonisto, M.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Alberto%20Moccardi" target="_blank" rel="noopener noreferrer">Moccardi, A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Flora%20Amato" target="_blank" rel="noopener noreferrer">Amato, F.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Egidia%20Cirillo" target="_blank" rel="noopener noreferrer">Cirillo, E.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Mattia%20Fonisto" target="_blank" rel="noopener noreferrer">Fonisto, M.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Alberto%20Moccardi" target="_blank" rel="noopener noreferrer">Moccardi, A.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/info15110740'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2078-2489/15/11/740/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/info15110740?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2078-2489/15/11/740/pdf?version=1732084663" data-name="Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation" data-journal="information"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2078-2489/15/11/740/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2078-2489/15/11/740"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <h1 class="title hypothesis_container" itemprop="name"> Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13419393' data-options='is_hover:true, hover_timeout:5000'> Flora Amato</div><div id="profile-card-drop13419393" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/1926086/thumb/Flora_Amato.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Flora Amato</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1926086?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Flora%20Amato" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Flora%20Amato&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Flora%20Amato" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13419393" href="/cdn-cgi/l/email-protection#2a0549444e07494d430546054f474b4346075a58455e4f495e434544091a1a1a4b1c1c1a131b1e1a1d1e121a1d1a481a1d1b181a13181c1b191a121a4c1a121a1d1e121a4c1b18"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-5128-5558" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13419394' data-options='is_hover:true, hover_timeout:5000'> Egidia Cirillo</div><div id="profile-card-drop13419394" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Egidia Cirillo</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/3891438?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Egidia%20Cirillo" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Egidia%20Cirillo&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Egidia%20Cirillo" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13419394" href="/cdn-cgi/l/email-protection#b49bd7dad099d7d3dd9bd89bd1d9d5ddd899c4c6dbc0d1d7c0dddbda9784848486828184d7848584d7848080d6848284d7858384d7848d848d84d58681858484d684d784d6848080d684d78585"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0009-0005-3227-6073" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13419395' data-options='is_hover:true, hover_timeout:5000'> Mattia Fonisto</div><div id="profile-card-drop13419395" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Mattia Fonisto</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2899706?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Mattia%20Fonisto" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Mattia%20Fonisto&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Mattia%20Fonisto" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13419395" href="/cdn-cgi/l/email-protection#022d616c662f61656b2d6e2d676f636b6e2f72706d766761766b6d6c21323232613466333b333b32363261363132603230323132363367333b32303066333a323132363231326136313236333b"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-2422-0425" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13419396' data-options='is_hover:true, hover_timeout:5000'> Alberto Moccardi</div><div id="profile-card-drop13419396" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Alberto Moccardi</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/3820688?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Alberto%20Moccardi" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Alberto%20Moccardi&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Alberto%20Moccardi" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> *</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13419396" href="/cdn-cgi/l/email-protection#28074b464c054b4f410744074d4549414405585a475c4d4b5c4147460b1818184c1e19181b181c191b191d184d1c4e184b184d181a181a1818191b181d18101a19191c184e1810184e18181c4e1810191d"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0009-0001-6136-9368" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-name ">Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Information</em> <b>2024</b>, <em>15</em>(11), 740; <a href="https://doi.org/10.3390/info15110740">https://doi.org/10.3390/info15110740</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 30 September 2024</span> / <span style="display: inline-block">Revised: 15 November 2024</span> / <span style="display: inline-block">Accepted: 16 November 2024</span> / <span style="display: inline-block">Published: 20 November 2024</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/information/special_issues/9H07N045G4 ">The Convergence of Artificial Intelligence and Internet of Things Security: Shaping the Future of Secure Connected Systems</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-1524729" aria-controls="drop-supplementary-1524729" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-1524729" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2078-2489/15/11/740/pdf?version=1732084663" data-name="Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation" data-journal="information">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2078-2489/15/11/740/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2078-2489/15/11/740/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2078-2489/15/11/740/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2078-2489/15/11/740/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g001.png?1732084799" title=" <strong>Figure 1</strong><br/> <p>Relationship between vulnerabilities and impact of attacks.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g002.png?1732084803" title=" <strong>Figure 2</strong><br/> <p>Failure-data scarcity and augmentation practices in predictive maintenance.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g003.png?1732084806" title=" <strong>Figure 3</strong><br/> <p>NASA Commercial Modular Aero-Propulsion Simulation System (N-CMAPSS) [<a href="#B34-information-15-00740" class="html-bibr">34</a>].</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g004.png?1732084807" title=" <strong>Figure 4</strong><br/> <p>Compact workflow diagram for IoT system integration.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g005.png?1732084810" title=" <strong>Figure 5</strong><br/> <p>Time-series data augmentation.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g006.png?1732084811" title=" <strong>Figure 6</strong><br/> <p>Time GAN architecture, kernels and loss functions.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g007.png?1732084813" title=" <strong>Figure 7</strong><br/> <p>Exploratory data analysis of FD001 N-CMAPSS dataset.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g008.png?1732084815" title=" <strong>Figure 8</strong><br/> <p>TimeGAN training process.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g009.png?1732084817" title=" <strong>Figure 9</strong><br/> <p>Visualization of synthetic data and original data with PCA and t-SNE.</p> "> </a> <a href="https://pub.mdpi-res.com/information/information-15-00740/article_deploy/html/images/information-15-00740-g010.png?1732084818" title=" <strong>Figure 10</strong><br/> <p>Training and validation performance of the classifier over 250 epochs. The left panel shows accuracy, and the right panel shows AUC. Solid lines represent training metrics, and dashed lines represent validation metrics.</p> "> </a> </div> <a class="button button--color-inversed" href="/2078-2489/15/11/740/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">Despite considerable advancements in integrating the Internet of Things (IoT) and artificial intelligence (AI) within the industrial maintenance framework, the increasing reliance on these innovative technologies introduces significant vulnerabilities due to cybersecurity risks, potentially compromising the integrity of decision-making processes. Accordingly, this study aims to offer comprehensive insights into the cybersecurity challenges associated with predictive maintenance, proposing a novel methodology that leverages generative AI for data augmentation, enhancing threat detection capabilities. Experimental evaluations conducted using the NASA Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset affirm the viability of this approach leveraging the state-of-the-art TimeGAN model for temporal-aware data generation and building a recurrent classifier for attack discrimination in a balanced dataset. The classifier’s results demonstrate the satisfactory and robust performance achieved in terms of accuracy (between 80% and 90%) and how the strategic generation of data can effectively bolster the resilience of intelligent maintenance systems against cyber threats.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=artificial+intelligence">artificial intelligence</a>; <a href="/search?q=predictive+maintenance">predictive maintenance</a>; <a href="/search?q=secure+artificial+intelligence">secure artificial intelligence</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-information-15-00740' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>The advent of IoT and AI has markedly transformed maintenance strategies in many industrial sectors, propelled by the combination of advanced networks and predictive modeling, enabling real-time data acquisition and processing from production equipment [<a href="#B1-information-15-00740" class="html-bibr">1</a>]. This novel maintenance paradigm, staying at the forefront of Industry 4.0 applications, originates from a long evolution through the centuries, as highlighted by Poor et al. [<a href="#B2-information-15-00740" class="html-bibr">2</a>], moving from visual inspections of trained craftsmen to data-driven condition-based maintenance being largely adopted for diagnosing the health parameters of observed systems [<a href="#B3-information-15-00740" class="html-bibr">3</a>,<a href="#B4-information-15-00740" class="html-bibr">4</a>]. The predictive maintenance (PdM) approach, which extends condition-based maintenance (CbM) with prognostic features, requires amalgamating multiple data sources from a network of sensors. This strategy necessitates strategic processing to build a comprehensive data structure that includes operational parameters, machinery settings, and historical data on repair to offer accurate predictions about future health states. The outlined innovative maintenance design finds applications across a diverse array of domains, from smart manufacturing, in which it is integrated to enhance the efficiency and reliability of the processes [<a href="#B5-information-15-00740" class="html-bibr">5</a>] to the transportation sector, which employs predictive analytics to maintain and improve the safety and reliability of transportation systems [<a href="#B6-information-15-00740" class="html-bibr">6</a>,<a href="#B7-information-15-00740" class="html-bibr">7</a>].</div><div class='html-p'>From a practical perspective, adopting predictive maintenance aims to enhance overall productivity by minimizing unplanned downtime and ensuring the continuity of production processes without abrupt interruptions. Moreover, from a business standpoint, this practice effectively reduces the total maintenance costs by averting severe machine failures that necessitate costly repairs and eliminating the need for sub-optimal static scheduled interventions [<a href="#B8-information-15-00740" class="html-bibr">8</a>], aligning the industry with sustainable strategies and digital transformation. At its core, PdM integrates advanced analytics to diagnose fault conditions and predict equipment failures through real-time data acquisition and processing. Specifically, diagnosis involves the identification of anomalies and failures in machinery through continuous monitoring and data analysis, while prognosis entails the prediction of future failures and the estimation of the equipment’s remaining useful life (RUL), facilitating timely maintenance decisions [<a href="#B9-information-15-00740" class="html-bibr">9</a>].</div><div class='html-p'>The concept of the IoT, the driving force of the PdM shift, integrates a plethora of interconnected devices, allowing for sensing and interacting with external environments through decentralized sensors. The IoT enables complex ecosystems of interconnected devices that actively communicate and process data. This technology architecture is practically delineated into five distinct layers, each providing essential functionalities for the operation and management of IoT systems:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Sensing layer: Gathers environmental data through sensors and actuators.</div></li><li><div class='html-p'>Network layer: Connects these devices to higher computational platforms such as cloud or fog computing systems.</div></li><li><div class='html-p'>Storage layer: Manages data accumulation and preservation.</div></li><li><div class='html-p'>Learning layer: Employs advanced algorithms for data analysis.</div></li><li><div class='html-p'>Application layer: Uses processed data to improve practical applications and decision support systems.</div></li></ul></div><div class='html-p'>Set within the context of PdM, with its technologies and challenges [<a href="#B10-information-15-00740" class="html-bibr">10</a>], this apparatus potentially presents onboard processing capabilities supporting communication with legacy devices by integrating older equipment into contemporary IoT infrastructures and protocols like MQTT [<a href="#B11-information-15-00740" class="html-bibr">11</a>] or RS-485 [<a href="#B12-information-15-00740" class="html-bibr">12</a>] and enhancing local data management in terms of data flow and responsiveness through caching, buffering, and preprocessing. Specifically, data management within these distributed systems often presents significant integration challenges due to varied semantics and formats, as depicted by Christou et al. [<a href="#B13-information-15-00740" class="html-bibr">13</a>], who address these issues by developing a digital platform tailored for PdM, simplifying application deployment, and streamlining data consolidation and analytics.</div><div class='html-p'>From an analytical perspective, the implementation of AI algorithms in predictive maintenance (PdM) leverages a broad array of computational methods aimed at interpreting and forecasting complex, dynamic data. Particularly, deep learning algorithms have demonstrated robust effectiveness across a range of critical tasks including fault diagnosis [<a href="#B14-information-15-00740" class="html-bibr">14</a>], prognostics [<a href="#B15-information-15-00740" class="html-bibr">15</a>,<a href="#B16-information-15-00740" class="html-bibr">16</a>], and anomaly detection [<a href="#B17-information-15-00740" class="html-bibr">17</a>].</div><div class='html-p'>Moreover, the current vibrant AI research landscape has led to significant advancements and a shift from model-centric to data-centric approaches [<a href="#B18-information-15-00740" class="html-bibr">18</a>], amplifying the potential applications of generative artificial intelligence (GAI) [<a href="#B19-information-15-00740" class="html-bibr">19</a>] in PdM systems. Despite the substantial volume of data available in these complex applications, there is often a paucity of records exhibiting anomalous behavior, especially in critical or cost-sensitive units. From this new perspective, the advancements in GAI have introduced novel context-aware methods for generating synthetic data, particularly in time-series applications, demonstrating the capability to produce realistic synthetic time-series data by capturing the complex temporal dynamics while offering a complementary approach to traditional simulations, enhancing any predictive model performances in real-world applications where data are scarce [<a href="#B20-information-15-00740" class="html-bibr">20</a>].</div><div class='html-p'>Artificial intelligence technology, moreover, is profoundly impacting a wide range of applications across various productive sectors, with cybersecurity being a prominent example [<a href="#B21-information-15-00740" class="html-bibr">21</a>]. Placed in the context of PdM and broader applications involving Internet of Things (IoT) systems, the adoption of AI models can play a crucial role in safeguarding system functionality against adversarial attacks, which can lead algorithms to make incorrect predictions, resulting in significant operational failures [<a href="#B22-information-15-00740" class="html-bibr">22</a>].</div><div class='html-p'>Specifically, one of the most significant threats to AI models in PdM systems is false data injection attacks, a form of evasion attack where adversaries introduce deceptive data to manipulate the model’s output. This threat can cause AI models to overlook critical equipment failures or generate false alarms, leading to unplanned downtime, increased maintenance costs, and potential safety hazards. For enterprises managing extensive IoT infrastructures with critical assets—such as power grids, manufacturing plants, and transportation networks—the ramifications of false data injection are particularly severe as the expansive and interconnected nature of IoT systems enlarges the attack surface, thereby facilitating easier infiltration by malicious actors who can sniff a sample of the time-series collection related to a certain time window, learn the temporal context, and then inject credible fraudulent data undetected [<a href="#B23-information-15-00740" class="html-bibr">23</a>]. Moreover, these organizations often possess limited datasets on operational failures or attacks themselves due to the rarity of such events, complicating the training of AI models to be resilient against threats. This gap has also been highlighted by Fink et al. [<a href="#B24-information-15-00740" class="html-bibr">24</a>] and Tiddens et al. [<a href="#B25-information-15-00740" class="html-bibr">25</a>], emphasizing the need for future work to refine predictive maintenance technologies and their implementation in practice. From this perspective, one promising approach is the utilization of data augmentation through generative models, specifically time-series generative adversarial networks (TimeGANs), which have demonstrated potential in generating realistic synthetic time-series data [<a href="#B26-information-15-00740" class="html-bibr">26</a>], augmenting scarce datasets, and simulating a wide range of operational scenarios, including rare failure events and adversarial attacks. By incorporating a generative data augmentation approach, AI tools can be trained on a more diverse dataset that encompasses potential adversarial patterns, thereby enhancing the ability to detect false data injection attempts and fortifying AI models against security threats. In conclusion, this work is structured as follows: A deep evaluation of IoT vulnerabilities is given in <a href="#sec2-information-15-00740" class="html-sec">Section 2</a>; a description of data in a PdM environment in <a href="#sec3-information-15-00740" class="html-sec">Section 3</a>; followed by the methodology in <a href="#sec4-information-15-00740" class="html-sec">Section 4</a> and results in <a href="#sec5-information-15-00740" class="html-sec">Section 5</a>. We propose a solution to enhance security within the PdM framework by enabling the detection of false data injection attacks in IoT-enabled systems simulating synthetic data injection with generative algorithms, thus contributing to the broader discourse on the security of AI models in critical infrastructure set “into the wild”.</div></section><section id='sec2-information-15-00740' type=''><h2 data-nested='1'> 2. IoT Vulnerabilities and Data Attacks in Predictive Maintenance</h2><div class='html-p'>The integration of the IoT into predictive maintenance (PdM) systems significantly enhances industrial capabilities to monitor equipment health and predict potential failures. However, this increased connectivity introduces a range of vulnerabilities and potential for attacks, thus monitoring is required for maintaining the integrity, reliability, and security within the PdM applications [<a href="#B27-information-15-00740" class="html-bibr">27</a>].</div><ul class='html-bullet'><li><div class='html-p'>Physical security deficiencies: IoT devices in industrial environments often lack adequate protection, making them susceptible to tampering, unauthorized access, or physical damage. This exposure potentially allows adversaries to manipulate sensor data, install malicious firmware, or disrupt device functionality, leading to inaccurate maintenance predictions.</div></li><li><div class='html-p'>Inadequate authentication mechanisms: Many IoT devices use simplified authentication protocols due to computational and power limitations, thereby allowing attackers to gain unauthorized access, intercept, and alter data transmissions.</div></li><li><div class='html-p'>Weak encryption practices: Secure data transmission from IoT devices to centralized analytics platforms is crucial for accurate PdM. Weak or improperly implemented encryption protocols leave sensitive data vulnerable to interception and manipulation, undermining the effectiveness of maintenance strategies.</div></li><li><div class='html-p'>Improper patch management: Regular updates and patches are also vital for addressing security vulnerabilities in IoT devices. Neglecting proper patch management can leave devices exposed to unknown exploits, and insecure update mechanisms may be compromised by malicious actors.</div></li><li><div class='html-p'>Exposure through unnecessary open ports: IoT devices may have open network ports that are not essential for their primary functions. These open ports expand the attack surface, providing additional entry points for malicious activities like deploying malware or interfering with communication channels between devices and central systems.</div></li></ul><div class='html-p'>Data attacks, among the different types of adversarial threats, pose significant threats to the integrity and reliability of PdM systems, with the main aim of this threat type being to compromise the availability, confidentiality, and integrity of data within IoT ecosystems, thereby undermining the effectiveness of PdM strategies, affecting safety and productivity in real contexts. The impact of these data attacks on PdM is profound, since AI models depend heavily on the quality and integrity of input data, with any compromise potentially resulting in cascading failures throughout the maintenance decision-making process. Specifically, erroneous data can cause models to generate false positives, leading to unnecessary maintenance interventions that incur additional costs and reduce equipment availability; alternatively, false negatives may prevent the detection of critical equipment faults, resulting in unexpected breakdowns, costly repairs, and safety risks to personnel. A clear overview of data attacks associated with IoT vulnerabilities in PdM systems is presented in <a href="#information-15-00740-f001" class="html-fig">Figure 1</a>.</div><div class='html-p'>One clear example of this threat type is data tampering, which involves unauthorized alteration of data during transmission between IoT devices and servers, resulting in incorrect maintenance actions or failure to detect equipment faults. Replay attacks capture and transmit valid data packets at a later time, causing AI models to process outdated information, potentially delaying necessary maintenance interventions. Data falsification refers to the deliberate injection of fabricated data into IoT systems, deceiving AI models into making incorrect predictions and potentially causing unnecessary maintenance actions or masking genuine faults. Vulnerabilities in APIs and interfaces can lead to unauthorized access, data breaches, or manipulation, jeopardizing the confidentiality and integrity of maintenance data. Device impersonation, from this perspective, allows attackers to masquerade as legitimate IoT devices [<a href="#B27-information-15-00740" class="html-bibr">27</a>], undermining trust in the PdM system and leading to flawed predictive insights.</div></section><section id='sec3-information-15-00740' type=''><h2 data-nested='1'> 3. Data in Predictive Maintenance</h2><div class='html-p'>In high-reliability sectors such as aerospace, energy, and healthcare, failures and data attacks on critical units are exceptionally rare, thanks to stringent maintenance standards and proactive management. While this rarity enhances operational safety, it presents a substantial challenge for developing robust security models designed to predict and mitigate potential data breaches or malicious attacks. Traditional predictive maintenance models depend heavily on historical failure data, but the scarcity of such data makes it difficult to achieve the accuracy and reliability required for effective preemptive measures.</div><div class='html-p'>A practical solution to the problem of data scarcity is the application of data augmentation techniques tailored to meet specific safety and asset requirements. The illustration in <a href="#information-15-00740-f002" class="html-fig">Figure 2</a> clearly shows a workflow which could address the necessity of data simulation and synthetic data generation in different contexts by taking into account the costs and the risk related to overusage of the machinery.</div><div class='html-p'>Simulations, conducted using tools like Matlab and Simulink version R2024b, are essential in modeling and analyzing dynamic systems, facilitating the generation of realistic data that reflect the complexities of real-world operations or potential dangerous scenarios like failures and attacks.</div><div class='html-p'>In this context, the CMAPSS dataset, developed by NASA [<a href="#B28-information-15-00740" class="html-bibr">28</a>,<a href="#B29-information-15-00740" class="html-bibr">29</a>], has been extensively utilized as a critical benchmark in prognostic health management (PHM) research and predictive maintenance applications [<a href="#B30-information-15-00740" class="html-bibr">30</a>]. It offers realistic signals related to machinery fleets, facilitating numerous artificial intelligence applications in both industry and academia [<a href="#B31-information-15-00740" class="html-bibr">31</a>,<a href="#B32-information-15-00740" class="html-bibr">32</a>,<a href="#B33-information-15-00740" class="html-bibr">33</a>].</div><div class='html-p'>The study by Chao et al. [<a href="#B34-information-15-00740" class="html-bibr">34</a>,<a href="#B35-information-15-00740" class="html-bibr">35</a>] introduced the new Commercial Modular Aero-Propulsion Simulation System (N-CMAPSS) dataset, generated using the CMAPSS tool with a specific modular design, presented in <a href="#information-15-00740-f003" class="html-fig">Figure 3</a>, integrating engines’ lifecycles under multiple failure modalities with tailored degradation patterns. Particularly, the N-CMAPSS dataset enhances the legacy CMAPSS dataset by incorporating more realistic flight conditions, making it a valuable resource for modeling real-world predictive maintenance scenarios.</div><div class='html-p'>Principally, the N-CMAPSS simulation involves simultaneous failures of up to five rotating sub-components: fan, low-pressure compressor (LPC), high-pressure compressor (HPC), low-pressure turbine (LPT), and high-pressure turbine (HPT). In addition to component-level failures, the simulation environment incorporates various flight conditions—such as altitude, Mach number, and throttle resolver angle (TRA)—to realistically model a wide range of operational scenarios, thus facilitating a detailed exploration of engine degradation processes and predictive maintenance scenarios.</div><div class='html-p'>The overall N-CMAPSS dataset, featured in the 2021 PHM Data Challenge, represents typical data ensembles for a small fleet of turbofan engines. Its structure comprises four subsets, each simulating a unique combination of fault scenarios and fault conditions, as detailed in <a href="#information-15-00740-t001" class="html-table">Table 1</a>.</div><div class='html-p'>The four datasets, indicated as FD001 to FD004, present different levels of noise and increasing pattern complexity, with the aim of rendering the failure prediction and model benchmarking as realistic as possible.</div><div class='html-p'>The datasets are described in more detail in <a href="#information-15-00740-t002" class="html-table">Table 2</a>.</div><div class='html-p'>These sets can be mainly grouped into two classes based on the operational conditions:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Single operational condition: FD001 and FD003 were collected under a single flight condition, indicating that data were captured at specific settings of Mach, TRA, and altitude.</div></li><li><div class='html-p'>Multiple operational conditions: FD002 and FD004 encompass six different flight conditions, capturing data across varying settings to reflect more complex operational scenarios.</div></li></ul></div><div class='html-p'>Each engine configuration in the dataset includes a record of operational cycles, ranging from a minimum of 128 cycles in FD001 to a maximum of 544 cycles in FD004 for training data, indicating extensive variability in operational durability and conditions, also reflected in the test datasets. Moreover, the increasing complexity is encapsulated by the number of failure modalities, with FD003 and FD004 presenting more complex datasets compared to their single-failure-modality counterparts.</div><div class='html-p'>Among the few tools capable of providing reliable and detailed simulation of engine degradation, N-CMAPSS includes realistic operational conditions, making it an invaluable and unique resource for developing and benchmarking predictive maintenance models, especially in addressing the challenges posed by complex, real-world time-series data.</div></section><section id='sec4-information-15-00740' type='methods'><h2 data-nested='1'> 4. Methodology</h2><div class='html-p'>At its core, this study intersects IoT, security, and AI to present a comprehensive and data-agnostic methodology that enhances the resilience of PdM systems against sophisticated adversarial data attacks. The approach, presented in <a href="#information-15-00740-f004" class="html-fig">Figure 4</a>, targets the vulnerabilities exploited by malicious entities that evade detection by injecting highly tailored false data into systems, compromising the accuracy of RUL predictions, crucial for effective industrial prognostics.</div><div class='html-p'>The methodology, performed entirely using Python scripting language, with a T4 GPU and leveraging statistical libraries for exploratory analysis and TensorFlow for deep learning models, commences with a rigorous statistical analysis to determine the stationarity of the time-series data, employing formal tests such as the augmented Dickey–Fuller (ADF) to ascertain the presence of unit roots, thus confirming the data’s stationarity or non-stationarity. This step is vital as non-stationary data indicate changing statistical properties over time, typical in sensor data from industrial systems. Following the establishment of non-stationarity, the approach includes a correlation analysis using the variance inflation factor (VIF) to detect redundancies in sensor outputs, refining the predictive model’s accuracy and efficiency.</div><div class='html-p'>Subsequently, the methodology leverages synthetic data generation using the TimeGAN, a state-of-the-art model which merges adversarial training with unsupervised and supervised learning objectives to capture the intricate temporal dynamics and distributions inherent in time-series data. The training on the target dataset facilitates the generation of synthetic data that mirror the real data’s statistical properties and temporal patterns. These synthetic data serve a dual purpose: they simulate refined synthetic data attack scenarios that are challenging to distinguish from genuine data and augment the training set for the adversarial detection model, thereby enhancing its generalization capabilities and anomaly detection sensitivity.</div><div class='html-p'>The final phase involves training a classification model to differentiate between authentic and synthetic data streams using the balanced dataset, combining original and synthetic data in equal proportions, which is crucial for a fair evaluation. The choice of the model is guided by its proficiency in capturing temporal dependencies and complex patterns, with recurrent neural networks (RNNs) or long short-term memory (LSTM) networks being typical choices due to their effectiveness in sequential data handling.</div><div class='html-p'>In the evaluation phase, the model’s performance is validated using a comprehensive suite of metrics, including accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). This rigorous assessment ensures the model’s suitability for deployment in PdM systems, aiming to robustly detect real-world adversarial attacks and thereby mitigate potential operational and financial impacts in industrial environments.</div><div class='html-p'>By addressing the complex challenges posed by data injection attacks, our methodology contributes significantly to the field of IoT security and predictive maintenance, offering a scalable and adaptable solution that not only meets the current security demands but is also designed to evolve in response to emerging threats, technological advancements, and production shifts, paving the way for safer, more secure industrial operations.</div><section id='sec4dot1-information-15-00740' type=''><h4 class='html-italic' data-nested='2'> 4.1. Time-Series Data Augmentation</h4><div class='html-p'>Data augmentation techniques can be roughly classified into classic and advanced approaches, as in <a href="#information-15-00740-f005" class="html-fig">Figure 5</a>. Classical approaches involves techniques traditionally used in image processing, adapted to enhance the diversity and robustness of models in dealing with sequential data. These techniques include cropping, flipping, and jittering, each contributing uniquely to the model’s ability to generalize from training data to unseen scenarios.</div><div class='html-p'>Cropping in time-series data involves extracting a shorter segment from a longer sequence, thus allowing models to learn from various phases and features within the dataset. Mathematically, given a time series <span class='html-italic'>T</span> consisting of <span class='html-italic'>N</span> observations, a cropped time series <math display='inline'><semantics> <msup> <mi>T</mi> <mo>′</mo> </msup> </semantics></math> can be defined starting at a random index <span class='html-italic'>t</span> with a length <span class='html-italic'>L</span>, where <span class='html-italic'>L</span> is less than <span class='html-italic'>N</span>. The cropped series is represented as <div class='html-disp-formula-info' id=''> <div class='f'> <math display='block'><semantics> <mrow> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mo>{</mo> <mi>T</mi> <mrow> <mo>[</mo> <mi>t</mi> <mo>]</mo> </mrow> <mo>,</mo> <mi>T</mi> <mrow> <mo>[</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>]</mo> </mrow> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mi>T</mi> <mrow> <mo>[</mo> <mi>t</mi> <mo>+</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo>]</mo> </mrow> <mo>}</mo> </mrow> <mspace width="28.45274pt"/> <mi>w</mi> <mi>h</mi> <mi>e</mi> <mi>r</mi> <mi>e</mi> <mspace width="3.33333pt"/> <mrow> <mo>{</mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mi>N</mi> <mo>−</mo> <mi>L</mi> <mo>}</mo> </mrow> <mo>.</mo> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>Flipping is particularly useful in scenarios where the temporal sequence’s direction does not influence the interpretation of the data. This technique reverses the order of the series, thereby augmenting the dataset with a time-reversed sequence. For a time series <math display='inline'><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mo>{</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>N</mi> </msub> <mo>}</mo> </mrow> </semantics></math>, the flipped series <math display='inline'><semantics> <msup> <mi>T</mi> <mo>′</mo> </msup> </semantics></math> is given by <div class='html-disp-formula-info' id=''> <div class='f'> <math display='block'><semantics> <mrow> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mo>{</mo> <msub> <mi>t</mi> <mi>N</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>}</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>Jittering introduces random noise to each data point in the series, simulating the effect of measurement errors or other external noise factors. This is achieved by adding a noise component <math display='inline'><semantics> <msub> <mi>ϵ</mi> <mi>i</mi> </msub> </semantics></math> to each observation <math display='inline'><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>, where <math display='inline'><semantics> <msub> <mi>ϵ</mi> <mi>i</mi> </msub> </semantics></math> follows a Gaussian distribution with mean zero and a predefined standard deviation <math display='inline'><semantics> <mi>σ</mi> </semantics></math>. The jittered series <math display='inline'><semantics> <msup> <mi>T</mi> <mo>′</mo> </msup> </semantics></math> is expressed as <div class='html-disp-formula-info' id=''> <div class='f'> <math display='block'><semantics> <mrow> <msup> <mi>T</mi> <mo>′</mo> </msup> <mrow> <mo>[</mo> <mi>i</mi> <mo>]</mo> </mrow> <mo>=</mo> <mi>T</mi> <mrow> <mo>[</mo> <mi>i</mi> <mo>]</mo> </mrow> <mo>+</mo> <msub> <mi>ϵ</mi> <mi>i</mi> </msub> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mi>f</mi> <mi>o</mi> <mi>r</mi> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mi>N</mi> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <msub> <mi>ϵ</mi> <mi>i</mi> </msub> <mo>∼</mo> <mi mathvariant="script">N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>Delving deeper into the topic, the domain of time-series data presents unique challenges in data augmentation, primarily due to the importance of preserving temporal integrity and understanding underlying patterns that unfold over time.</div><div class='html-p'>Traditional methods like jittering, cropping, and flipping, while effective for introducing simple variations, are insufficient for generating synthetic data with the complex, context-dependent structures inherent in sequential datasets. As machine learning evolved, more advanced techniques like the Synthetic Minority Oversampling Technique (SMOTE) were developed to address data imbalance by creating synthetic samples in feature space [<a href="#B36-information-15-00740" class="html-bibr">36</a>]. However, SMOTE does not account for temporal correlations, which are crucial in time-series data, potentially leading to the generation of non-plausible data sequences [<a href="#B37-information-15-00740" class="html-bibr">37</a>]. This limitation spurred the development of time-series-specific augmentation techniques that consider the sequential nature of the data.</div><div class='html-p'>In response to these challenges, more sophisticated techniques such as conditional variational autoencoders (CVAEs) and generative adversarial networks (GANs) have been explored for generating new data instances. The conditional GAN (CGAN), for instance, has been effectively used to generate synthetic time-series data under specific conditions, yet often struggles with capturing long-term dependencies [<a href="#B38-information-15-00740" class="html-bibr">38</a>].</div><div class='html-p'>Emerging from this progression, TimeGAN has been introduced as a novel approach to synthesizing time-series data. Its architecture, depicted in <a href="#information-15-00740-f006" class="html-fig">Figure 6</a>, integrates an autoencoder for latent space representation, a GAN for adversarial training, and a supervised component to enforce temporal consistency, representing a state-of-the-art method in synthetic data generation [<a href="#B26-information-15-00740" class="html-bibr">26</a>]. The innovative part of this model lies in maintaining chronological order and temporal correlations in the generation, addressing one of the significant drawbacks of previous methods.</div><div class='html-p'>The architecture of TimeGAN is specifically designed to tackle the challenges of temporal data by learning joint distributions of time-series data and their corresponding labels in supervised learning contexts.</div><ul class='html-bullet'><li><div class='html-p'>Preservation of temporal dynamics: Time-series data are inherently sequential, where each data point is dependent on previous points. Classical augmentation methods (such as flipping, scaling, or rotating) do not account for these temporal dependencies, while TimeGAN is designed to learn and preserve temporal dynamics, ensuring that the synthetic data it generates maintain realistic temporal correlations and sequences.</div></li><li><div class='html-p'>Complex pattern learning: TimeGAN utilizes a combination of RNNs, a GAN and an AE architecture to learn complex patterns in time-series data. It captures both the static patterns across different time series and the dynamic patterns within a single series, which is something classical augmentation cannot achieve, as such techniques often apply simple transformations that might disrupt the inherent sequence of time-series data.</div></li></ul><div class='html-p'>In summary, while basic data augmentation techniques laid the foundational groundwork, the evolution towards integrating advanced machine learning and deep learning techniques such as TimeGAN represents a significant leap forward. These advancements not only address the inherent limitations of traditional methods but also pave the way for innovative approaches to handling, analyzing, and predicting time-series data.</div></section><section id='sec4dot2-information-15-00740' type=''><h4 class='html-italic' data-nested='2'> 4.2. Evasion Detection Modeling</h4><div class='html-p'>To evaluate the fidelity of the synthetic time-series data, classification experiments were conducted, aiming to distinguish between real and synthetic datasets, which represent possible attacks. This approach provides a quantitative measure of how closely the synthetic data resemble the real data by assessing whether a model can effectively learn to differentiate between the two.</div><div class='html-p'>We obtained the real dataset <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mi>real</mi> </msub> </semantics></math> and ensured it was aligned in size with the synthetic dataset <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mi>synthetic</mi> </msub> </semantics></math> by truncating <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mi>real</mi> </msub> </semantics></math> to match the number of samples in <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mi>synthetic</mi> </msub> </semantics></math>, with both datasets processed to have a consistent shape suitable for input into the classification model.</div><div class='html-p'>The combined dataset was partitioned into training and testing sets using a tailored split, denoting the number of series as <math display='inline'><semantics> <msub> <mi>n</mi> <mi>series</mi> </msub> </semantics></math>, with <math display='inline'><semantics> <mrow> <msub> <mi>n</mi> <mi>train</mi> </msub> <mo>=</mo> <mn>0.8</mn> <mo>×</mo> <msub> <mi>n</mi> <mi>series</mi> </msub> </mrow> </semantics></math> for training and <math display='inline'><semantics> <mrow> <msub> <mi>n</mi> <mi>test</mi> </msub> <mo>=</mo> <msub> <mi>n</mi> <mi>series</mi> </msub> <mo>−</mo> <msub> <mi>n</mi> <mi>train</mi> </msub> </mrow> </semantics></math> for testing. Importantly, the training dataset was balanced, containing equal numbers of real and synthetic samples, which is crucial as it prevents the classifier from becoming biased toward a particular class, ensuring that any learning is due to inherent differences between the datasets rather than class imbalance.</div><div class='html-p'>In the experiments, the label <math display='inline'><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> is assigned for real data and <math display='inline'><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for synthetic data, with the training data <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mi>train</mi> </msub> </semantics></math> and labels <math display='inline'><semantics> <msub> <mi mathvariant="script">Y</mi> <mi>train</mi> </msub> </semantics></math> constructed by vertically stacking the real and synthetic training samples and their corresponding labels. The same process was applied to create the testing data <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mi>test</mi> </msub> </semantics></math> and labels <math display='inline'><semantics> <msub> <mi mathvariant="script">Y</mi> <mi>test</mi> </msub> </semantics></math>.</div><div class='html-p'>The classification model employed represents a sequential neural network consisting of six gated recurrent unit (GRU) layers, followed by a dense output layer with a sigmoid activation function. Specifically, the model architecture is defined as follows:<div class='html-disp-formula-info' id=''> <div class='f'> <math display='block'><semantics> <mrow> <mi>Model</mi> <mo>=</mo> <mfenced separators="" open="{" close=""> <mtable> <mtr> <mtd columnalign="left"> <mrow> <mi>Input</mi> <mspace width="4.pt"/> <mi>layer</mi> <mspace width="4.pt"/> <mi>of</mi> <mspace width="4.pt"/> <mi>shape</mi> <mspace width="4.pt"/> <mo>(</mo> <mn>10</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mrow> <mi>GRU</mi> <mspace width="4.pt"/> <mi>layer</mi> <mspace width="4.pt"/> <mi>with</mi> <mspace width="4.pt"/> <mn>6</mn> <mspace width="4.pt"/> <mi>units</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd columnalign="left"> <mrow> <mi>Dense</mi> <mspace width="4.pt"/> <mi>output</mi> <mspace width="4.pt"/> <mi>layer</mi> <mspace width="4.pt"/> <mi>with</mi> <mspace width="4.pt"/> <mi>sigmoid</mi> <mspace width="4.pt"/> <mi>activation</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>The model was compiled using binary cross-entropy as the loss function, the Adam optimizer, and was evaluated using the area under the receiver operating characteristic curve (AUC) and accuracy metrics constructed over 250 epochs with a batch size of 128.</div><div class='html-p'>The balanced nature of the training data played a significant role in the model’s ability to capture the distinctions between the real and synthetic datasets. By providing an equal number of samples from each class, we ensured an unbiased classifier, allowing the model to focus on learning the underlying features that differentiate the two datasets.</div></section></section><section id='sec5-information-15-00740' type='results'><h2 data-nested='1'> 5. Results</h2><div class='html-p'>In order to pursue the main tasks and generate synthetic data that are able to train a model for evasion detection, we need to ascertain two main conditions about the process: non-stationary and non-multicollinearity. The initial phase of our analysis focused on evaluating the stationarity of each sensor measurement across different units within the FD001 dataset of N-CMAPSS. The accompanying heatmap illustrates the stationarity properties of the data, where each cell represents a combination of a sensor and a unit. In detail, red cells indicate non-stationary behavior, suggesting that the statistical properties of these measurements change over time, which is crucial for identifying which sensors exhibit trends or seasonal variations that must be accounted for in subsequent predictive modeling. In total, the heatmap in <a href="#information-15-00740-f007" class="html-fig">Figure 7</a> presents a clear visualization of non-stationarity distributed across various sensors and units, underscoring the complexity and dynamic nature of the data. Such insights are pivotal for refining our approach to data processing, ensuring that our predictive models can accommodate these non-stationarities effectively, thereby removing unnecessary sensors that present stationary behavior from the generation process.</div><div class='html-p'>Following the assessment of stationarity, we conducted a correlation analysis to evaluate the relationships between different relevant sensor measurements, highlighting potential redundancies or interactions that could influence the behavior of the system. The analysis is further enhanced by the VIF, which does not present any kind of relevant multicollinearity phenomena, as presented in <a href="#information-15-00740-f007" class="html-fig">Figure 7</a>.</div><div class='html-p'>The outcomes of this preliminary step have several implications for our methodology:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Enhanced data preprocessing: Non-stationary sensors require specific treatments such as differencing or transformation to ensure that subsequent predictive models are not biased by transient trends in the data.</div></li><li><div class='html-p'>Informed feature engineering: By understanding the correlation structure among sensors, we can engineer more effective features that capture the underlying processes of the system, potentially enhancing the predictive tasks.</div></li></ul></div><div class='html-p'>The TimeGANmodel architecture was designed to generate 35 batches of synthetic data, each containing 128 samples with dimensions 24 × 6. These samples were then reshaped into a final structure of (20,480; 24; 14), ensuring a consistent format for subsequent analysis through gated recurrent unit (GRU) kernels.</div><div class='html-p'>The training process was meticulously recorded, capturing various metrics to monitor the model’s performance and stability over time. These metrics included discriminator loss (d_loss), generator loss on unlabeled data (g_loss_u), generator loss on synthetic data (g_loss_s), generator loss on validity (g_loss_v), and encoder loss at initial time (e_loss_t0). The evolution of these metrics over 10,000 iterations reflects the model’s learning progression and stability adjustments.</div><div class='html-p'>Overall, <a href="#information-15-00740-f008" class="html-fig">Figure 8</a> presents a TimeGAN model that, while showing some fluctuations in generator performance (G Loss U), has a generally effective generator (low and stable G Loss S and G Loss V) and a discriminator whose challenge is increasing (indicative of improving generator quality). Moreover, the encoder also shows stability, which is essential for consistent synthetic data generation. The two y-axes of <a href="#information-15-00740-f008" class="html-fig">Figure 8</a>, in fact, help to distinguish between higher-range losses (D Loss and G Loss U) and lower-range losses, providing a clear view of all aspects of the model’s training dynamics, allowing for optimizing and troubleshooting the training process by identifying which components might require further tuning. After generation, the synthetic data, along with real data, were visualized using principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). These techniques reduced the high-dimensional data space into two dimensions to facilitate a visual comparison of the distribution characteristics between the real and synthetic datasets.</div><ul class='html-bullet'><li><div class='html-p'>PCA result: The PCA plot visually differentiates between real and synthetic data, highlighting the ability of the model to simulate realistic time-series samples.</div></li><li><div class='html-p'>t-SNE result:The t-SNE visualization provides a more nuanced separation of the data points, with the algorithm computing the proximity of 1125 samples and optimizing the layout to minimize the Kullback–Leibler divergence. The final KL divergence value after 1000 iterations stands at 0.458589, indicating effective dimensionality reduction and data clustering.</div></li></ul><div class='html-p'>The training dynamics and visualizations presented in <a href="#information-15-00740-f009" class="html-fig">Figure 9</a> underscore the efficacy of the proposed TimeGAN in generating high-fidelity synthetic time-series data. The losses recorded during training show a stabilization trend, suggesting that the model effectively learned the complex temporal patterns inherent in the dataset. The visual distinction between the real and synthetic data points in the PCA and t-SNE plots, depicted in <a href="#information-15-00740-f009" class="html-fig">Figure 9</a>, also validates the synthetic data’s quality and their utility in augmenting the training process for different predictive tasks. By enriching the dataset with high-quality synthetic instances, it is possible to improve model training processes, refine detection accuracy, and prepare more robust systems, capable of handling real-world variability and complexities in IoT environments.</div><div class='html-p'>The efficacy of a GRU backbone classifier trained on high-fidelity synthetic data generated through TimeGAN, with the aim of distinguishing between real and synthetic evasion data attacks, was rigorously evaluated. In the aforementioned validation process, presented in <a href="#information-15-00740-f010" class="html-fig">Figure 10</a>, two principal metrics were employed, the ROC-AUC curve and accuracy, providing comprehensive insights into the classifier’s capability to differentiate between classes across various thresholds and demonstrating a consistent improvement across training epochs. Notably, the AUC values for both the training and testing phases ascended progressively, achieving high levels above 0.9. This signifies a robust generalization capability, essential for deploying the classifier in real-world scenarios where evasion attempts are likely. In terms of accuracy, defined as the ratio of true results (both true positives and true negatives) to total cases, the classifier exhibited a marked improvement throughout the training period. Specifically, the accuracy curves revealed a steady ascent, reflecting an enhanced proficiency in classifying data points accurately, with the test accuracy stabilizing between 80% and 90%. This level of performance suggests a well-balanced model that effectively learns and generalizes from the training data, yet it also highlights potential areas for further refinement to address more subtle aspects of evasion tactics.</div></section><section id='sec6-information-15-00740' type='discussion'><h2 data-nested='1'> 6. Discussion</h2><div class='html-p'>This study presents a comprehensive methodology to enhance the resilience of PdM systems in IoT environments against sophisticated adversarial data attacks. By integrating rigorous statistical analysis, advanced generative models, and robust classification techniques, the proposed approach addresses the critical challenges posed by data injection attacks that compromise the accuracy of RUL predictions. The data-agnostic nature of this approach ensures its applicability across various industrial domains and datasets, with the integration of advanced generative models like TimeGAN representing a substantial progression from traditional augmentation techniques, offering enhanced preservation of temporal dynamics and complex pattern learning. From this perspective, the high performance of the classifier underscores the solution’s utility in real IoT environments susceptible to evasion attacks, where detecting synthetic data injection is critical for maintaining the integrity of predictive maintenance systems and repair action.</div><div class='html-p'>Overall, this study successfully demonstrates the application of a framework that is capable of effectively countering evasion attacks. Future work will focus on extending this framework to accommodate an even broader range of attack vectors and to further refine the detection capabilities under varying operational conditions, thereby contributing to the fortification of cybersecurity in predictive maintenance interconnected systems.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Conceptualization, A.M., E.C. and F.A.; methodology, A.M. and F.A.; software, A.M. and M.F.; validation, A.M., M.F. and F.A.; formal analysis, E.C. and F.A.; investigation, A.M. and F.A.; resources, A.M. and E.C.; writing—original draft preparation, A.M., M.F. and F.A.; writing—review and editing, A.M., M.F. and F.A.; visualization, A.M. and F.A.; supervision, F.A.; project administration, F.A. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2>Funding</h2><div class='html-p'>This research received no external funding.</div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>Publicly available datasets were analyzed in this study. This data can be found here: <a href='https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6' target='_blank' rel="noopener noreferrer">https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6</a> (accessed on 16 November 2024).</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflicts of interest.</div></section><section id='html-glossary'><h2 >Abbreviations</h2><div class='html-p'>The following abbreviations are used in this manuscript: <table class='html-array_table'><tbody ><tr ><td align='left' valign='middle' class='html-align-left' >ADF</td><td align='left' valign='middle' class='html-align-left' >Augmented Dickey–Fuller test</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >AI</td><td align='left' valign='middle' class='html-align-left' >Artificial intelligence</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >CbM</td><td align='left' valign='middle' class='html-align-left' >Condition-based maintenance</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >CGAN</td><td align='left' valign='middle' class='html-align-left' >Conditional generative adversarial network</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >CVAE</td><td align='left' valign='middle' class='html-align-left' >Conditional variational auto-encoder</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >GAN</td><td align='left' valign='middle' class='html-align-left' >Generative adversarial network</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >GAI</td><td align='left' valign='middle' class='html-align-left' >Generative AI</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >GRU</td><td align='left' valign='middle' class='html-align-left' >Gated recurrent unit</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >HPC</td><td align='left' valign='middle' class='html-align-left' >High-pressure compressor</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >IoT</td><td align='left' valign='middle' class='html-align-left' >Internet of Things</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >LSTM</td><td align='left' valign='middle' class='html-align-left' >Long short-term memory</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >N-CMAPSS</td><td align='left' valign='middle' class='html-align-left' >NASA Commercial Modular Aero-Propulsion Simulation System</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >PCA</td><td align='left' valign='middle' class='html-align-left' >Principal component analysis</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >PdM</td><td align='left' valign='middle' class='html-align-left' >Predictive maintenance</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >RNN</td><td align='left' valign='middle' class='html-align-left' >Recurrent neural network</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >RUL</td><td align='left' valign='middle' class='html-align-left' >Remaining useful life</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >t-SNE</td><td align='left' valign='middle' class='html-align-left' >t-distributed stochastic neighbor embedding</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >VAE</td><td align='left' valign='middle' class='html-align-left' >Variational auto-encoder</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >VIF</td><td align='left' valign='middle' class='html-align-left' >Variance inflation factor</td></tr></tbody></table></div></section><section id='html-references_list'><h2>References</h2><ol class='html-xx'><li id='B1-information-15-00740' class='html-x' data-content='1.'>Nagorny, K.; Monteiro, P.; Barata, J.; Colombo, A. Big Data Analysis in Smart Manufacturing: A Review. <span class='html-italic'>Int. J. Commun. Netw. Syst. Sci.</span> <b>2017</b>, <span class='html-italic'>10</span>, 31–58. [<a href="https://scholar.google.com/scholar_lookup?title=Big+Data+Analysis+in+Smart+Manufacturing:+A+Review&author=Nagorny,+K.&author=Monteiro,+P.&author=Barata,+J.&author=Colombo,+A.&publication_year=2017&journal=Int.+J.+Commun.+Netw.+Syst.+Sci.&volume=10&pages=31%E2%80%9358&doi=10.4236/ijcns.2017.103003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.4236/ijcns.2017.103003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B2-information-15-00740' class='html-x' data-content='2.'>Poor, P.; Ženíšek, D.; Basl, J. Historical Overview of Maintenance Management Strategies: Developmentfrom Breakdown Maintenance to Predictive Maintenance in Accordance with FourIndustrial Revolutions. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic, 23–26 July 2019. [<a href="https://scholar.google.com/scholar_lookup?title=Historical+Overview+of+Maintenance+Management+Strategies:+Developmentfrom+Breakdown+Maintenance+to+Predictive+Maintenance+in+Accordance+with+FourIndustrial+Revolutions&conference=Proceedings+of+the+International+Conference+on+Industrial+Engineering+and+Operations+Management&author=Poor,+P.&author=%C5%BDen%C3%AD%C5%A1ek,+D.&author=Basl,+J.&publication_year=2019" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B3-information-15-00740' class='html-x' data-content='3.'>Lee, J.; Kao, H.A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. <span class='html-italic'>Procedia CIRP</span> <b>2014</b>, <span class='html-italic'>16</span>, 3–8. [<a href="https://scholar.google.com/scholar_lookup?title=Service+Innovation+and+Smart+Analytics+for+Industry+4.0+and+Big+Data+Environment&author=Lee,+J.&author=Kao,+H.A.&author=Yang,+S.&publication_year=2014&journal=Procedia+CIRP&volume=16&pages=3%E2%80%938&doi=10.1016/j.procir.2014.02.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.procir.2014.02.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B4-information-15-00740' class='html-x' data-content='4.'>Kang, H.; Lee, J.; Choi, S.; Kim, H.; Park, J.; Son, J.; Kim, B.; Noh, S.D. Smart manufacturing: Past research, present findings, and future directions. <span class='html-italic'>Int. J. Precis. Eng. Manuf.-Green Technol.</span> <b>2016</b>, <span class='html-italic'>3</span>, 111–128. [<a href="https://scholar.google.com/scholar_lookup?title=Smart+manufacturing:+Past+research,+present+findings,+and+future+directions&author=Kang,+H.&author=Lee,+J.&author=Choi,+S.&author=Kim,+H.&author=Park,+J.&author=Son,+J.&author=Kim,+B.&author=Noh,+S.D.&publication_year=2016&journal=Int.+J.+Precis.+Eng.+Manuf.-Green+Technol.&volume=3&pages=111%E2%80%93128&doi=10.1007/s40684-016-0015-5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s40684-016-0015-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B5-information-15-00740' class='html-x' data-content='5.'>Cheng, J.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. <span class='html-italic'>Autom. Constr.</span> <b>2020</b>, <span class='html-italic'>112</span>, 103087. [<a href="https://scholar.google.com/scholar_lookup?title=Data-driven+predictive+maintenance+planning+framework+for+MEP+components+based+on+BIM+and+IoT+using+machine+learning+algorithms&author=Cheng,+J.&author=Chen,+W.&author=Chen,+K.&author=Wang,+Q.&publication_year=2020&journal=Autom.+Constr.&volume=112&pages=103087&doi=10.1016/j.autcon.2020.103087" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.autcon.2020.103087" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-information-15-00740' class='html-x' data-content='6.'>Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. <span class='html-italic'>Mech. Syst. Signal Process.</span> <b>2018</b>, <span class='html-italic'>108</span>, 33–47. [<a href="https://scholar.google.com/scholar_lookup?title=Artificial+intelligence+for+fault+diagnosis+of+rotating+machinery:+A+review&author=Liu,+R.&author=Yang,+B.&author=Zio,+E.&author=Chen,+X.&publication_year=2018&journal=Mech.+Syst.+Signal+Process.&volume=108&pages=33%E2%80%9347&doi=10.1016/j.ymssp.2018.02.016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ymssp.2018.02.016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B7-information-15-00740' class='html-x' data-content='7.'>Kaur, M. <span class='html-italic'>Future of Industrial Automation with AI and Cloud Robotics</span>; IGI Global Scientific Publishing: New York, NY, USA, 2024; pp. 1–19. [<a href="https://scholar.google.com/scholar_lookup?title=Future+of+Industrial+Automation+with+AI+and+Cloud+Robotics&author=Kaur,+M.&publication_year=2024" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.4018/979-8-3693-1914-7.ch001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B8-information-15-00740' class='html-x' data-content='8.'>Jimenez, V.J.; Bouhmala, N.; Gausdal, A.H. Developing a predictive maintenance model for vessel machinery. <span class='html-italic'>J. Ocean Eng. Sci.</span> <b>2020</b>, <span class='html-italic'>5</span>, 358–386. [<a href="https://scholar.google.com/scholar_lookup?title=Developing+a+predictive+maintenance+model+for+vessel+machinery&author=Jimenez,+V.J.&author=Bouhmala,+N.&author=Gausdal,+A.H.&publication_year=2020&journal=J.+Ocean+Eng.+Sci.&volume=5&pages=358%E2%80%93386&doi=10.1016/j.joes.2020.03.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.joes.2020.03.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B9-information-15-00740' class='html-x' data-content='9.'>Liu, B.; Gao, Z.; Lu, B.; Dong, H.; An, Z. Deep Learning-Based Remaining Useful Life Estimation of Bearings with Time-Frequency Information. <span class='html-italic'>Sensors</span> <b>2022</b>, <span class='html-italic'>22</span>, 7402. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+Learning-Based+Remaining+Useful+Life+Estimation+of+Bearings+with+Time-Frequency+Information&author=Liu,+B.&author=Gao,+Z.&author=Lu,+B.&author=Dong,+H.&author=An,+Z.&publication_year=2022&journal=Sensors&volume=22&pages=7402&doi=10.3390/s22197402" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s22197402" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B10-information-15-00740' class='html-xx' data-content='10.'>Ahmed, S.; Alam, M.S.; Hoque, M.; Lameesa, A.; Afrin, S.; Farah, T.; Kabir, M.; Shafiullah, G.; Muyeen, S. Industrial Internet of Things enabled technologies, challenges, and future directions. <span class='html-italic'>Comput. Electr. Eng.</span> <b>2023</b>, <span class='html-italic'>110</span>, 108847. [<a href="https://scholar.google.com/scholar_lookup?title=Industrial+Internet+of+Things+enabled+technologies,+challenges,+and+future+directions&author=Ahmed,+S.&author=Alam,+M.S.&author=Hoque,+M.&author=Lameesa,+A.&author=Afrin,+S.&author=Farah,+T.&author=Kabir,+M.&author=Shafiullah,+G.&author=Muyeen,+S.&publication_year=2023&journal=Comput.+Electr.+Eng.&volume=110&pages=108847&doi=10.1016/j.compeleceng.2023.108847" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compeleceng.2023.108847" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-information-15-00740' class='html-xx' data-content='11.'>Masdani, M.; Darlis, D. A comprehensive study on MQTT as a low power protocol for internet of things application. <span class='html-italic'>IOP Conf. Ser. Mater. Sci. Eng.</span> <b>2018</b>, <span class='html-italic'>434</span>, 012274. [<a href="https://scholar.google.com/scholar_lookup?title=A+comprehensive+study+on+MQTT+as+a+low+power+protocol+for+internet+of+things+application&author=Masdani,+M.&author=Darlis,+D.&publication_year=2018&journal=IOP+Conf.+Ser.+Mater.+Sci.+Eng.&volume=434&pages=012274&doi=10.1088/1757-899X/434/1/012274" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/1757-899X/434/1/012274" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B12-information-15-00740' class='html-xx' data-content='12.'>Parpala, R.; Iacob, R. Application of IoT concept on predictive maintenance of industrial equipment. In Proceedings of the MATEC Web of Conferences, Sozopol, Bulgaria, 11–13 September 2017; Volume 121, p. 02008. [<a href="https://scholar.google.com/scholar_lookup?title=Application+of+IoT+concept+on+predictive+maintenance+of+industrial+equipment&conference=Proceedings+of+the+MATEC+Web+of+Conferences&author=Parpala,+R.&author=Iacob,+R.&publication_year=2017&pages=02008&doi=10.1051/matecconf/201712102008" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1051/matecconf/201712102008" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B13-information-15-00740' class='html-xx' data-content='13.'>Christou, I.T.; Kefalakis, N.; Zalonis, A.; Soldatos, J.; Bröchler, R. End-to-End Industrial IoT Platform for Actionable Predictive Maintenance. <span class='html-italic'>IFAC-PapersOnLine</span> <b>2020</b>, <span class='html-italic'>53</span>. [<a href="https://scholar.google.com/scholar_lookup?title=End-to-End+Industrial+IoT+Platform+for+Actionable+Predictive+Maintenance&author=Christou,+I.T.&author=Kefalakis,+N.&author=Zalonis,+A.&author=Soldatos,+J.&author=Br%C3%B6chler,+R.&publication_year=2020&journal=IFAC-PapersOnLine&volume=53&doi=10.1016/j.ifacol.2020.11.028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ifacol.2020.11.028" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B14-information-15-00740' class='html-xx' data-content='14.'>Arellano-Espitia, F.; Delgado-Prieto, M.; Martinez-Viol, V.; Saucedo-Dorantes, J.J.; Osornio-Rios, R.A. Deep-Learning-Based Methodology for Fault Diagnosis in Electromechanical Systems. <span class='html-italic'>Sensors</span> <b>2020</b>, <span class='html-italic'>20</span>, 3949. [<a href="https://scholar.google.com/scholar_lookup?title=Deep-Learning-Based+Methodology+for+Fault+Diagnosis+in+Electromechanical+Systems&author=Arellano-Espitia,+F.&author=Delgado-Prieto,+M.&author=Martinez-Viol,+V.&author=Saucedo-Dorantes,+J.J.&author=Osornio-Rios,+R.A.&publication_year=2020&journal=Sensors&volume=20&pages=3949&doi=10.3390/s20143949&pmid=32708574" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s20143949" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32708574" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B15-information-15-00740' class='html-xx' data-content='15.'>Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries based on a Deep Learning Algorithm. <span class='html-italic'>Energies</span> <b>2019</b>, <span class='html-italic'>12</span>, 660. [<a href="https://scholar.google.com/scholar_lookup?title=A+Data-Driven+Predictive+Prognostic+Model+for+Lithium-Ion+Batteries+based+on+a+Deep+Learning+Algorithm&author=Khumprom,+P.&author=Yodo,+N.&publication_year=2019&journal=Energies&volume=12&pages=660&doi=10.3390/en12040660" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/en12040660" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-information-15-00740' class='html-xx' data-content='16.'>Zhang, X.; Dong, Y.; Wen, L.; Lu, F.; Li, W. Remaining Useful Life Estimation Based on a New Convolutional and Recurrent Neural Network. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (Case), Vancouver, BC, Canada, 22–26 August 2019; pp. 317–322. [<a href="https://scholar.google.com/scholar_lookup?title=Remaining+Useful+Life+Estimation+Based+on+a+New+Convolutional+and+Recurrent+Neural+Network&conference=Proceedings+of+the+2019+IEEE+15th+International+Conference+on+Automation+Science+and+Engineering+(Case)&author=Zhang,+X.&author=Dong,+Y.&author=Wen,+L.&author=Lu,+F.&author=Li,+W.&publication_year=2019&pages=317%E2%80%93322&doi=10.1109/COASE.2019.8843078" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/COASE.2019.8843078" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-information-15-00740' class='html-xx' data-content='17.'>Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A Sparse Auto-encoder-Based Deep Neural Network Approach for Induction Motor Faults Classification. <span class='html-italic'>Measurement</span> <b>2016</b>, <span class='html-italic'>89</span>, 171–178. [<a href="https://scholar.google.com/scholar_lookup?title=A+Sparse+Auto-encoder-Based+Deep+Neural+Network+Approach+for+Induction+Motor+Faults+Classification&author=Sun,+W.&author=Shao,+S.&author=Zhao,+R.&author=Yan,+R.&author=Zhang,+X.&author=Chen,+X.&publication_year=2016&journal=Measurement&volume=89&pages=171%E2%80%93178&doi=10.1016/j.measurement.2016.04.007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.measurement.2016.04.007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-information-15-00740' class='html-xx' data-content='18.'>Hamid, O.H. Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions. <span class='html-italic'>Appl. Sci.</span> <b>2023</b>, <span class='html-italic'>13</span>, 2753. [<a href="https://scholar.google.com/scholar_lookup?title=Data-Centric+and+Model-Centric+AI:+Twin+Drivers+of+Compact+and+Robust+Industry+4.0+Solutions&author=Hamid,+O.H.&publication_year=2023&journal=Appl.+Sci.&volume=13&pages=2753&doi=10.3390/app13052753" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app13052753" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-information-15-00740' class='html-xx' data-content='19.'>Feuerriegel, S.; Hartmann, J.; Janiesch, C.; Zschech, P. Generative AI. <span class='html-italic'>Bus. Inf. Syst. Eng.</span> <b>2023</b>, <span class='html-italic'>66</span>, 111–126. [<a href="https://scholar.google.com/scholar_lookup?title=Generative+AI&author=Feuerriegel,+S.&author=Hartmann,+J.&author=Janiesch,+C.&author=Zschech,+P.&publication_year=2023&journal=Bus.+Inf.+Syst.+Eng.&volume=66&pages=111%E2%80%93126&doi=10.1007/s12599-023-00834-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s12599-023-00834-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-information-15-00740' class='html-xx' data-content='20.'>Esteban, C.; Hyland, S.L.; Rätsch, G. Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. <span class='html-italic'>arXiv</span> <b>2017</b>, arXiv:1706.02633. [<a href="https://scholar.google.com/scholar_lookup?title=Real-valued+(Medical)+Time+Series+Generation+with+Recurrent+Conditional+GANs&author=Esteban,+C.&author=Hyland,+S.L.&author=R%C3%A4tsch,+G.&publication_year=2017&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B21-information-15-00740' class='html-xx' data-content='21.'>Sangwan, R.S.; Badr, Y.; Srinivasan, S.M. Cybersecurity for AI Systems: A Survey. <span class='html-italic'>J. Cybersecur. Priv.</span> <b>2023</b>, <span class='html-italic'>3</span>, 166–190. [<a href="https://scholar.google.com/scholar_lookup?title=Cybersecurity+for+AI+Systems:+A+Survey&author=Sangwan,+R.S.&author=Badr,+Y.&author=Srinivasan,+S.M.&publication_year=2023&journal=J.+Cybersecur.+Priv.&volume=3&pages=166%E2%80%93190&doi=10.3390/jcp3020010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/jcp3020010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B22-information-15-00740' class='html-xx' data-content='22.'>Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. <span class='html-italic'>Pattern Recognit.</span> <b>2018</b>, <span class='html-italic'>84</span>, 317–331. [<a href="https://scholar.google.com/scholar_lookup?title=Wild+patterns:+Ten+years+after+the+rise+of+adversarial+machine+learning&author=Biggio,+B.&author=Roli,+F.&publication_year=2018&journal=Pattern+Recognit.&volume=84&pages=317%E2%80%93331&doi=10.1016/j.patcog.2018.07.023" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.patcog.2018.07.023" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B23-information-15-00740' class='html-xx' data-content='23.'>Wang, Y.; Attebury, G.; Ramamurthy, B. A Survey of Security Issues in Wireless Sensor Networks. <span class='html-italic'>Commun. Surv. Tutorials</span> <b>2007</b>, <span class='html-italic'>8</span>, 2–23. [<a href="https://scholar.google.com/scholar_lookup?title=A+Survey+of+Security+Issues+in+Wireless+Sensor+Networks&author=Wang,+Y.&author=Attebury,+G.&author=Ramamurthy,+B.&publication_year=2007&journal=Commun.+Surv.+Tutorials&volume=8&pages=2%E2%80%9323&doi=10.1109/COMST.2006.315852" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/COMST.2006.315852" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B24-information-15-00740' class='html-xx' data-content='24.'>Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.J.; Ducoffe, M. Potential, Challenges and Future Directions for Deep Learning in Prognostics and Health Management Applications. <span class='html-italic'>arXiv</span> <b>2020</b>, arXiv:2005.02144. [<a href="https://scholar.google.com/scholar_lookup?title=Potential,+Challenges+and+Future+Directions+for+Deep+Learning+in+Prognostics+and+Health+Management+Applications&author=Fink,+O.&author=Wang,+Q.&author=Svens%C3%A9n,+M.&author=Dersin,+P.&author=Lee,+W.J.&author=Ducoffe,+M.&publication_year=2020&journal=arXiv&doi=10.1016/j.engappai.2020.103678" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.engappai.2020.103678" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-information-15-00740' class='html-xx' data-content='25.'>Tiddens, W.; Braaksma, A.; Tinga, T. The Adoption of Prognostic Technologies in Maintenance Decision Making: A Multiple Case Study. <span class='html-italic'>Procedia CIRP</span> <b>2015</b>, <span class='html-italic'>38</span>, 171–176. [<a href="https://scholar.google.com/scholar_lookup?title=The+Adoption+of+Prognostic+Technologies+in+Maintenance+Decision+Making:+A+Multiple+Case+Study&author=Tiddens,+W.&author=Braaksma,+A.&author=Tinga,+T.&publication_year=2015&journal=Procedia+CIRP&volume=38&pages=171%E2%80%93176&doi=10.1016/j.procir.2015.08.028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.procir.2015.08.028" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-information-15-00740' class='html-xx' data-content='26.'>Yoon, J.; Jarrett, D.; Schaar, M. Time-series Generative Adversarial Networks. <span class='html-italic'>Adv. Neural Inf. Process. Syst.</span> <b>2019</b>, <span class='html-italic'>32</span>, 5508–5518. [<a href="https://scholar.google.com/scholar_lookup?title=Time-series+Generative+Adversarial+Networks&author=Yoon,+J.&author=Jarrett,+D.&author=Schaar,+M.&publication_year=2019&journal=Adv.+Neural+Inf.+Process.+Syst.&volume=32&pages=5508%E2%80%935518" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B27-information-15-00740' class='html-xx' data-content='27.'>Sasi, T.; Lashkari, A.H.; Lu, R.; Xiong, P.; Iqbal, S. A comprehensive survey on IoT attacks: Taxonomy, detection mechanisms and challenges. <span class='html-italic'>J. Inf. Intell.</span> <b>2024</b>, <span class='html-italic'>2</span>, 455–513. [<a href="https://scholar.google.com/scholar_lookup?title=A+comprehensive+survey+on+IoT+attacks:+Taxonomy,+detection+mechanisms+and+challenges&author=Sasi,+T.&author=Lashkari,+A.H.&author=Lu,+R.&author=Xiong,+P.&author=Iqbal,+S.&publication_year=2024&journal=J.+Inf.+Intell.&volume=2&pages=455%E2%80%93513&doi=10.1016/j.jiixd.2023.12.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jiixd.2023.12.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-information-15-00740' class='html-xx' data-content='28.'>Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of the International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008. [<a href="https://scholar.google.com/scholar_lookup?title=Damage+propagation+modeling+for+aircraft+engine+run-to-failure+simulation&conference=Proceedings+of+the+International+Conference+on+Prognostics+and+Health+Management&author=Saxena,+A.&author=Goebel,+K.&author=Simon,+D.&author=Eklund,+N.&publication_year=2008&doi=10.1109/PHM.2008.4711414" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/PHM.2008.4711414" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B29-information-15-00740' class='html-xx' data-content='29.'>Saxena, A.; Goebel, K. PHM08 Challenge Data Set. In <span class='html-italic'>NASA Prognostics Data Repository</span>; NASA Ames Research Center: Moffett Field, CA, USA, 2008. Available online: <a href="https://data.nasa.gov/download/nk8v-ckry/application/zip" target="_blank" rel="noopener noreferrer">https://data.nasa.gov/download/nk8v-ckry/application%2Fzip</a> (accessed on 16 November 2024).</li><li id='B30-information-15-00740' class='html-xx' data-content='30.'>NASA. <span class='html-italic'>Commercial Modular Aero-Propulsion System Simulation (CMAPSS)</span>; NASA Official: Washington, DC, USA. Available online: <a href="https://software.nasa.gov/software/LEW-18315-2" target="_blank" rel="noopener noreferrer">https://software.nasa.gov/software/LEW-18315-2</a> (accessed on 16 November 2024).</li><li id='B31-information-15-00740' class='html-xx' data-content='31.'>Pathan, M. A Comprehensive Survey of Predictive Maintenance Techniques for Aircraft Engines Utilizing the C-MAPSS Dataset. <span class='html-italic'>Int. J. Sci. Res. Eng. Manag.</span> <b>2024</b>, <span class='html-italic'>8</span>, 1–5. [<a href="https://scholar.google.com/scholar_lookup?title=A+Comprehensive+Survey+of+Predictive+Maintenance+Techniques+for+Aircraft+Engines+Utilizing+the+C-MAPSS+Dataset&author=Pathan,+M.&publication_year=2024&journal=Int.+J.+Sci.+Res.+Eng.+Manag.&volume=8&pages=1%E2%80%935&doi=10.55041/IJSREM34660" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.55041/IJSREM34660" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-information-15-00740' class='html-xx' data-content='32.'>Maulana, F.; Starr, A.; Ompusunggu, A.P. Explainable Data-Driven Method Combined with Bayesian Filtering for Remaining Useful Lifetime Prediction of Aircraft Engines Using NASA CMAPSS Datasets. <span class='html-italic'>Machines</span> <b>2023</b>, <span class='html-italic'>11</span>, 163. [<a href="https://scholar.google.com/scholar_lookup?title=Explainable+Data-Driven+Method+Combined+with+Bayesian+Filtering+for+Remaining+Useful+Lifetime+Prediction+of+Aircraft+Engines+Using+NASA+CMAPSS+Datasets&author=Maulana,+F.&author=Starr,+A.&author=Ompusunggu,+A.P.&publication_year=2023&journal=Machines&volume=11&pages=163&doi=10.3390/machines11020163" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/machines11020163" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B33-information-15-00740' class='html-xx' data-content='33.'>Vollert, S.; Theissler, A. Challenges of machine learning-based RUL prognosis: A review on NASA’s C-MAPSS data set. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021; pp. 1–8. [<a href="https://scholar.google.com/scholar_lookup?title=Challenges+of+machine+learning-based+RUL+prognosis:+A+review+on+NASA%E2%80%99s+C-MAPSS+data+set&conference=Proceedings+of+the+2021+26th+IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation+(ETFA)&author=Vollert,+S.&author=Theissler,+A.&publication_year=2021&pages=1%E2%80%938&doi=10.1109/ETFA45728.2021.9613682" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ETFA45728.2021.9613682" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B34-information-15-00740' class='html-xx' data-content='34.'>Arias Chao, M.; Kulkarni, C.; Goebel, K.; Fink, O. Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics. <span class='html-italic'>Data</span> <b>2021</b>, <span class='html-italic'>6</span>, 5. [<a href="https://scholar.google.com/scholar_lookup?title=Aircraft+Engine+Run-to-Failure+Dataset+under+Real+Flight+Conditions+for+Prognostics+and+Diagnostics&author=Arias+Chao,+M.&author=Kulkarni,+C.&author=Goebel,+K.&author=Fink,+O.&publication_year=2021&journal=Data&volume=6&pages=5&doi=10.3390/data6010005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/data6010005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B35-information-15-00740' class='html-xx' data-content='35.'>Chao, M.A.; Kulkarni, C.; Goebel, K.; Fink, O. PHM Society Data Challenge 2021. <span class='html-italic'>PHM Soc.</span> <b>2021</b>, <span class='html-italic'>14</span>, 1–6. [<a href="https://scholar.google.com/scholar_lookup?title=PHM+Society+Data+Challenge+2021&author=Chao,+M.A.&author=Kulkarni,+C.&author=Goebel,+K.&author=Fink,+O.&publication_year=2021&journal=PHM+Soc.&volume=14&pages=1%E2%80%936&doi=10.36001/ijphm.2023.v14i2.3486" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.36001/ijphm.2023.v14i2.3486" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B36-information-15-00740' class='html-xx' data-content='36.'>Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. <span class='html-italic'>J. Artif. Intell. Res.</span> <b>2002</b>, <span class='html-italic'>16</span>, 321–357. [<a href="https://scholar.google.com/scholar_lookup?title=SMOTE:+Synthetic+Minority+Over-sampling+Technique&author=Chawla,+N.V.&author=Bowyer,+K.W.&author=Hall,+L.O.&author=Kegelmeyer,+W.P.&publication_year=2002&journal=J.+Artif.+Intell.+Res.&volume=16&pages=321%E2%80%93357&doi=10.1613/jair.953" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1613/jair.953" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B37-information-15-00740' class='html-xx' data-content='37.'>Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. <span class='html-italic'>J. Artif. Intell. Res.</span> <b>2018</b>, <span class='html-italic'>61</span>, 863–905. [<a href="https://scholar.google.com/scholar_lookup?title=SMOTE+for+Learning+from+Imbalanced+Data:+Progress+and+Challenges,+Marking+the+15-year+Anniversary&author=Fern%C3%A1ndez,+A.&author=Garcia,+S.&author=Herrera,+F.&author=Chawla,+N.&publication_year=2018&journal=J.+Artif.+Intell.+Res.&volume=61&pages=863%E2%80%93905&doi=10.1613/jair.1.11192" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1613/jair.1.11192" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B38-information-15-00740' class='html-xx' data-content='38.'>Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. <span class='html-italic'>arXiv</span> <b>2014</b>, arXiv:1411.1784. [<a href="https://scholar.google.com/scholar_lookup?title=Conditional+Generative+Adversarial+Nets&author=Mirza,+M.&author=Osindero,+S.&publication_year=2014&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="information-15-00740-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f001"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g001.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g001.png" alt="Information 15 00740 g001" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Relationship between vulnerabilities and impact of attacks. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f001"> <div class="html-caption"> <b>Figure 1.</b> Relationship between vulnerabilities and impact of attacks.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g001.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g001.png" alt="Information 15 00740 g001" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g001.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f002"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g002.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g002.png" alt="Information 15 00740 g002" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Failure-data scarcity and augmentation practices in predictive maintenance. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f002"> <div class="html-caption"> <b>Figure 2.</b> Failure-data scarcity and augmentation practices in predictive maintenance.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g002.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g002.png" alt="Information 15 00740 g002" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g002.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f003"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g003.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g003.png" alt="Information 15 00740 g003" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> NASA Commercial Modular Aero-Propulsion Simulation System (N-CMAPSS) [<a href="#B34-information-15-00740" class="html-bibr">34</a>]. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f003"> <div class="html-caption"> <b>Figure 3.</b> NASA Commercial Modular Aero-Propulsion Simulation System (N-CMAPSS) [<a href="#B34-information-15-00740" class="html-bibr">34</a>].</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g003.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g003.png" alt="Information 15 00740 g003" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g003.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f004"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g004.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g004.png" alt="Information 15 00740 g004" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> Compact workflow diagram for IoT system integration. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f004"> <div class="html-caption"> <b>Figure 4.</b> Compact workflow diagram for IoT system integration.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g004.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g004.png" alt="Information 15 00740 g004" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g004.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f005"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g005.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g005.png" alt="Information 15 00740 g005" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Time-series data augmentation. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f005"> <div class="html-caption"> <b>Figure 5.</b> Time-series data augmentation.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g005.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g005.png" alt="Information 15 00740 g005" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g005.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f006"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g006.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g006.png" alt="Information 15 00740 g006" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> Time GAN architecture, kernels and loss functions. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f006"> <div class="html-caption"> <b>Figure 6.</b> Time GAN architecture, kernels and loss functions.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g006.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g006.png" alt="Information 15 00740 g006" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g006.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f007"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f007"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g007.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g007.png" alt="Information 15 00740 g007" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g007-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> Exploratory data analysis of FD001 N-CMAPSS dataset. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f007"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f007"> <div class="html-caption"> <b>Figure 7.</b> Exploratory data analysis of FD001 N-CMAPSS dataset.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g007.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g007.png" alt="Information 15 00740 g007" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g007.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f008"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f008"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g008.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g008.png" alt="Information 15 00740 g008" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g008-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f008"></a> </div> </div> <div class="html-fig_description"> <b>Figure 8.</b> TimeGAN training process. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f008"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f008"> <div class="html-caption"> <b>Figure 8.</b> TimeGAN training process.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g008.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g008.png" alt="Information 15 00740 g008" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g008.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f009"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f009"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g009.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g009.png" alt="Information 15 00740 g009" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g009-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f009"></a> </div> </div> <div class="html-fig_description"> <b>Figure 9.</b> Visualization of synthetic data and original data with PCA and t-SNE. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f009"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f009"> <div class="html-caption"> <b>Figure 9.</b> Visualization of synthetic data and original data with PCA and t-SNE.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g009.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g009.png" alt="Information 15 00740 g009" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g009.png" /></div> </div> <div class="html-fig-wrap" id="information-15-00740-f010"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f010"> <img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g010.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g010.png" alt="Information 15 00740 g010" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g010-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#fig_body_display_information-15-00740-f010"></a> </div> </div> <div class="html-fig_description"> <b>Figure 10.</b> Training and validation performance of the classifier over 250 epochs. The left panel shows accuracy, and the right panel shows AUC. Solid lines represent training metrics, and dashed lines represent validation metrics. <!-- <p><a class="html-figpopup" href="#fig_body_display_information-15-00740-f010"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_information-15-00740-f010"> <div class="html-caption"> <b>Figure 10.</b> Training and validation performance of the classifier over 250 epochs. The left panel shows accuracy, and the right panel shows AUC. Solid lines represent training metrics, and dashed lines represent validation metrics.</div> <div class="html-img"><img data-large="/information/information-15-00740/article_deploy/html/images/information-15-00740-g010.png" data-original="/information/information-15-00740/article_deploy/html/images/information-15-00740-g010.png" alt="Information 15 00740 g010" data-lsrc="/information/information-15-00740/article_deploy/html/images/information-15-00740-g010.png" /></div> </div> <div class="html-table-wrap" id="information-15-00740-t001"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href='#table_body_display_information-15-00740-t001'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#table_body_display_information-15-00740-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> CMAPSS dataset fault scenarios. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_information-15-00740-t001"> <div class="html-caption"><b>Table 1.</b> CMAPSS dataset fault scenarios.</div> <table > <thead ><tr ><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Label</th><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Description</th></tr></thead><tbody ><tr ><td align='left' valign='middle' class='html-align-left' >FD001</td><td align='left' valign='middle' class='html-align-left' >Simulates a single fault mode in the HPC.</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >FD002</td><td align='left' valign='middle' class='html-align-left' >Simulates a single fault mode in the HPC under multiple operating conditions.</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >FD003</td><td align='left' valign='middle' class='html-align-left' >Simulates two fault modes (HPC and fan) under a single operating condition.</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >FD004</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Simulates two fault modes (HPC and fan) under multiple operating conditions.</td></tr></tbody> </table> </div> <div class="html-table-wrap" id="information-15-00740-t002"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href='#table_body_display_information-15-00740-t002'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2078-2489/15/11/740/display" href="#table_body_display_information-15-00740-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Comparative overview of datasets FD001, FD002, FD003, and FD004. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_information-15-00740-t002"> <div class="html-caption"><b>Table 2.</b> Comparative overview of datasets FD001, FD002, FD003, and FD004.</div> <table > <thead ><tr ><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Metric</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FD001</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FD002</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FD003</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FD004</th></tr></thead><tbody ><tr ><td align='left' valign='middle' class='html-align-left' >Train units</td><td align='center' valign='middle' class='html-align-center' >100</td><td align='center' valign='middle' class='html-align-center' >260</td><td align='center' valign='middle' class='html-align-center' >100</td><td align='center' valign='middle' class='html-align-center' >249</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Test units</td><td align='center' valign='middle' class='html-align-center' >100</td><td align='center' valign='middle' class='html-align-center' >259</td><td align='center' valign='middle' class='html-align-center' >100</td><td align='center' valign='middle' class='html-align-center' >248</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Conditions</td><td align='center' valign='middle' class='html-align-center' >Sea Level</td><td align='center' valign='middle' class='html-align-center' >SIX</td><td align='center' valign='middle' class='html-align-center' >Sea Level</td><td align='center' valign='middle' class='html-align-center' >SIX</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Fault modes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >HPC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >HPC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >HPC and Fan</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >HPC and Fan</td></tr></tbody> </table> </div> </section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Disclaimer/Publisher’s Note:</b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</div></td></tr></table></section> <section id="html-copyright"><br>© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" rel="noopener noreferrer">https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#271801464a571c5452454d4244531a6155484a0215176a63776e0214660215170215156342534244534e494002151766435142555446554e464b02151766535346444c540215174e490215176e48730a624946454b4243021517775542434e44534e51420215176a464e4953424946494442021517504e534f021517734e4a420a7442554e4254021517634653460215176652404a42495346534e484901565248531c01464a571c4548435e1a4f535357541d0808505050094a43574e0944484a081417131e13121f0214660217660217666342534244534e494002151766435142555446554e464b02151766535346444c540215174e490215176e48730a624946454b4243021517775542434e44534e51420215176a464e4953424946494442021517504e534f021517734e4a420a7442554e4254021517634653460215176652404a42495346534e48490217660217666645545355464453021466021517634254574e5342021517444849544e43425546454b42021517464351464944424a424953540215174e490215174e495342405546534e4940021517534f420215176e495342554942530215174841021517734f4e49405402151702151f6e487302151e0215174649430215174655534e414e444e464b0215174e4953424b4b4e404249444202151702151f666e02151e021517504e534f4e49021517534f420215174e4943525453554e464b0215174a464e49534249464944420215174155464a425048554c021564021517534f420215174e4944554246544e494002151755424b4e464944420215174849021517534f4254420215174e4949485146534e51420215175342444f49484b48404e42540215174e495355484352444254021517544e40494e414e4446495302151751524b49425546454e4b4e534e42540215174352420215175348021517445e45425554424452554e535e021517554e544c540215640215175748534249534e464b4b5e02151744484a5755484a4e544e4940021517534f420215174e49534240554e535e02151748410215174342444e544e48490a4a464c4e4940021517575548444254544254090215176644444855434e49404b5e021564021517534f4e54021517545352435e021517464e4a540215175348021517484141425502151744484a5755424f4249544e51420215174e49544e404f53540215174e495348021517534f42021517445e45425554424452554e535e021517444f464b4b424940425402151746545448444e46534243021517504e534f021517575542434e44534e51420215174a464e49534249464944420215640215175755485748544e494002151746021517494851424b0215174a42534f4843484b48405e021517534f46530215174b4251425546404254021517404249425546534e5142021517666e021517414855021517434653460215174652404a42495346534e484902156402151742494f4649444e4940021517534f554246530215174342534244534e484902151744465746454e4b4e534e425409021517625f5742554e4a424953464b0215174251464b5246534e48495402151744484943524453424302151752544e4940021517534f420215176966746602151764484a4a4255444e464b0215176a4843524b4655021517664255480a77554857524b544e4849021517745e5453424a021517744e4a524b46534e484902151702151f690a646a6677747402151e021517434653465442530215174641414e554a021517534f42021517514e46454e4b4e535e0215174841021517534f4e54021517465757554846444f0215174b4251425546404e4940021517534f4202151754534653420a48410a534f420a465553021517734e4a426066690215174a4843424b02151741485502151753424a574855464b0a465046554202151743465346021517404249425546534e484902151746494302151745524e4b434e494002151746021517554244525555424953021517444b4654544e414e425502151741485502151746535346444c021517434e5444554e4a4e4946534e48490215174e490215174602151745464b46494442430215174346534654425309021517734f42021517444b4654544e414e4255021511555456524802146554021517554254524b535402151743424a4849545355465342021517534f420215175446534e544146445348555e0215174649430215175548455254530215175742554148554a4649444202151746444f4e425142430215174e490215175342554a540215174841021517464444525546445e02151702151f454253504242490215171f170215120215174649430215171e1702151202151e0215174649430215174f4850021517534f42021517545355465342404e44021517404249425546534e48490215174841021517434653460215174446490215174241414244534e51424b5e02151745484b54534255021517534f420215175542544e4b4e4249444202151748410215174e4953424b4b4e404249530215174a464e4953424946494442021517545e5453424a540215174640464e495453021517445e454255021517534f554246535409" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Detecting+Adversarial+Attacks+in+IoT-Enabled+Predictive+Maintenance+with+Time-Series+Data+Augmentation&hashtags=mdpiinformation&url=https%3A%2F%2Fwww.mdpi.com%2F3049458&via=InformationMDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F3049458&title=Detecting%20Adversarial%20Attacks%20in%20IoT-Enabled%20Predictive%20Maintenance%20with%20Time-Series%20Data%20Augmentation%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DDespite%20considerable%20advancements%20in%20integrating%20the%20Internet%20of%20Things%20%28IoT%29%20and%20artificial%20intelligence%20%28AI%29%20within%20the%20industrial%20maintenance%20framework%2C%20the%20increasing%20reliance%20on%20these%20innovative%20technologies%20introduces%20significant%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/3049458" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/3049458" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/3049458" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Amato, F.; Cirillo, E.; Fonisto, M.; Moccardi, A. Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation. <em>Information</em> <b>2024</b>, <em>15</em>, 740. https://doi.org/10.3390/info15110740 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Amato F, Cirillo E, Fonisto M, Moccardi A. Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation. <em>Information</em>. 2024; 15(11):740. https://doi.org/10.3390/info15110740 </p> <b>Chicago/Turabian Style</b><br> <p> Amato, Flora, Egidia Cirillo, Mattia Fonisto, and Alberto Moccardi. 2024. "Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation" <em>Information</em> 15, no. 11: 740. https://doi.org/10.3390/info15110740 </p> <b>APA Style</b><br> <p> Amato, F., Cirillo, E., Fonisto, M., & Moccardi, A. (2024). Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation. <em>Information</em>, <em>15</em>(11), 740. https://doi.org/10.3390/info15110740 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/information/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1524729"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1524729"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1524729"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Amato, F.; Cirillo, E.; Fonisto, M.; Moccardi, A. Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation. <em>Information</em> <b>2024</b>, <em>15</em>, 740. https://doi.org/10.3390/info15110740 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Amato F, Cirillo E, Fonisto M, Moccardi A. Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation. <em>Information</em>. 2024; 15(11):740. https://doi.org/10.3390/info15110740 </p> <b>Chicago/Turabian Style</b><br> <p> Amato, Flora, Egidia Cirillo, Mattia Fonisto, and Alberto Moccardi. 2024. "Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation" <em>Information</em> 15, no. 11: 740. https://doi.org/10.3390/info15110740 </p> <b>APA Style</b><br> <p> Amato, F., Cirillo, E., Fonisto, M., & Moccardi, A. (2024). Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation. <em>Information</em>, <em>15</em>(11), 740. https://doi.org/10.3390/info15110740 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/information">Information</a></em>, EISSN 2078-2489, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/information" class="rss-link">RSS</a> </span> <span> <a href="/journal/information/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732615622" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#370811565a470c4442555d5254430a7145585a1205077a73677e1204761205071205057352435254435e595012050776534152454456455e565b12050776434356545c441205075e591205077e58631a725956555b5253120507674552535e54435e41521205077a565e5943525956595452120507405e435f120507635e5a521a6452455e5244120507735643561205077642505a52594356435e585911464258430c11565a470c5558534e0a5f434347440d1818404040195a53475e1954585a180407030e03020f1204761207761207767352435254435e595012050776534152454456455e565b12050776434356545c441205075e591205077e58631a725956555b5253120507674552535e54435e41521205077a565e5943525956595452120507405e435f120507635e5a521a6452455e5244120507735643561205077642505a52594356435e58593d3d735244475e4352120507545859445e53524556555b52120507565341565954525a525943441205075e591205075e594352504556435e5950120507435f521205077e594352455952431205075851120507635f5e59504412050712050f7e586312050e1205075659531205075645435e515e545e565b1205075e5943525b5b5e505259545212050712050f767e12050e120507405e435f5e59120507435f521205075e5953424443455e565b1205075a565e59435259565954521205075145565a524058455c120574120507435f521205075e5954455256445e595012050745525b5e565954521205075859120507435f5244521205075e5959584156435e41521205074352545f59585b58505e52441205075e594345585342545244120507445e50595e515e5456594312050741425b59524556555e5b5e435e52441205075342521205074358120507544e55524544525442455e434e120507455e445c441205741205074758435259435e565b5b4e12050754585a4745585a5e445e5950120507435f521205075e59435250455e434e12050758511205075352545e445e58591a5a565c5e5950120507474558545244445244191205077654545845535e59505b4e120574120507435f5e44120507444342534e120507565e5a441205074358120507585151524512050754585a4745525f5259445e41521205075e59445e505f43441205075e594358120507435f52120507544e55524544525442455e434e120507545f565b5b525950524412050756444458545e56435253120507405e435f120507474552535e54435e41521205075a565e59435259565954521205741205074745584758445e595012050756120507595841525b1205075a52435f5853585b58504e120507435f56431205075b5241524556505244120507505259524556435e4152120507767e120507515845120507535643561205075642505a52594356435e585912057412050752595f5659545e5950120507435f455256431205075352435254435e585912050754564756555e5b5e435e524419120507724f4752455e5a525943565b1205075241565b4256435e58594412050754585953425443525312050742445e5950120507435f521205077976647612050774585a5a5245545e565b1205077a5853425b5645120507765245581a67455847425b445e5859120507644e4443525a120507645e5a425b56435e585912050712050f791a747a7667646412050e120507535643564452431205075651515e455a120507435f52120507415e56555e5b5e434e1205075851120507435f5e44120507564747455856545f1205075b5241524556505e5950120507435f5212050744435643521a58511a435f521a564543120507635e5a527076791205075a5853525b12050751584512050743525a475845565b1a564056455212050753564356120507505259524556435e585912050756595312050755425e5b535e595012050756120507455254424545525943120507545b5644445e515e524512050751584512050756434356545c120507535e4454455e5a5e5956435e58591205075e591205075612050755565b56595452531205075356435644524319120507635f52120507545b5644445e515e5245127205120f07120e0e44120507455244425b434412050753525a5859444345564352120507435f521205074456435e445156544358454e1205075659531205074558554244431205074752455158455a5659545212050756545f5e524152531205075e591205074352455a441205075851120507565454424556544e12050712050f555243405252591205070f071205021205075659531205070e0712050212050e1205075659531205075f5840120507435f52120507444345564352505e54120507505259524556435e58591205075851120507535643561205075456591205075251515254435e41525b4e12050755585b44435245120507435f521205074552445e5b5e5259545212050758511205075e5943525b5b5e505259431205075a565e5943525956595452120507444e4443525a441205075650565e594443120507544e555245120507435f455256434419" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Detecting+Adversarial+Attacks+in+IoT-Enabled+Predictive+Maintenance+with+Time-Series+Data+Augmentation&hashtags=mdpiinformation&url=https%3A%2F%2Fwww.mdpi.com%2F3049458&via=InformationMDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F3049458&title=Detecting%20Adversarial%20Attacks%20in%20IoT-Enabled%20Predictive%20Maintenance%20with%20Time-Series%20Data%20Augmentation%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DDespite%20considerable%20advancements%20in%20integrating%20the%20Internet%20of%20Things%20%28IoT%29%20and%20artificial%20intelligence%20%28AI%29%20within%20the%20industrial%20maintenance%20framework%2C%20the%20increasing%20reliance%20on%20these%20innovative%20technologies%20introduces%20significant%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/3049458" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/3049458" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/3049458" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/3049458" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/3049458" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/3049458</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="96" y="0" width="12" height="12" /> <rect x="108" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="132" y="0" width="12" height="12" /> <rect x="156" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="132" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="108" y="24" width="12" height="12" /> <rect x="156" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="132" y="36" width="12" height="12" /> <rect x="156" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="180" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="132" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="192" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="108" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="156" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="108" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="24" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="96" y="96" width="12" height="12" /> <rect x="108" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="204" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="288" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="12" y="108" width="12" height="12" /> <rect x="48" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="84" y="108" width="12" height="12" /> <rect x="156" y="108" width="12" height="12" /> <rect x="180" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="204" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="228" y="108" width="12" height="12" /> <rect x="252" y="108" width="12" height="12" /> <rect x="276" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="0" y="120" width="12" height="12" /> <rect x="12" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="84" y="120" width="12" height="12" /> <rect x="108" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="144" y="120" width="12" height="12" /> <rect x="156" y="120" width="12" height="12" /> <rect x="180" y="120" width="12" height="12" /> <rect x="192" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="252" y="120" width="12" height="12" /> <rect x="264" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="12" y="132" width="12" height="12" /> <rect x="36" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="228" y="132" width="12" height="12" /> <rect x="252" y="132" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="48" y="144" width="12" height="12" /> <rect x="60" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="108" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="132" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="180" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="12" y="156" width="12" height="12" /> <rect x="24" y="156" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="108" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="144" y="156" width="12" height="12" /> <rect x="180" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="204" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="276" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="12" y="168" width="12" height="12" /> <rect x="24" y="168" width="12" height="12" /> <rect x="36" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="132" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="156" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="180" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="252" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="24" y="180" width="12" height="12" /> <rect x="36" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="60" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="204" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="228" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="252" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="84" y="192" width="12" height="12" /> <rect x="96" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="120" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="144" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="180" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="276" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="132" y="204" width="12" height="12" /> <rect x="144" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="108" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="180" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="132" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="156" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="180" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="180" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="276" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="96" y="264" width="12" height="12" /> <rect x="120" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="204" y="264" width="12" height="12" /> <rect x="228" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="252" y="264" width="12" height="12" /> <rect x="276" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="108" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="228" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="132" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="156" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="204" y="288" width="12" height="12" /> <rect x="252" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732615622"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "information"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732615622"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732615622'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732615622"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732615622"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/1524729/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/info15110740' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2078-2489/15/11/740" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732615622\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Finfo15110740/50"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732615622\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Finfo15110740", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732615622"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732615622"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2078-2489/15/11/740/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/1524729/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, """) + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/1524729/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732615622"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732615622"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732615622"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732615622"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732615622"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732615622"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732615622"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732615622"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e8e7377fd1c4d21',t:'MTczMjY3MjA1NS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>