CINXE.COM
Search results for: new energy vehicles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: new energy vehicles</title> <meta name="description" content="Search results for: new energy vehicles"> <meta name="keywords" content="new energy vehicles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="new energy vehicles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="new energy vehicles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9320</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: new energy vehicles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9260</span> Cost Valuation Method for Development Concurrent, Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Deutskens"> Christoph Deutskens</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Ordung"> Mathias Ordung</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Optehostert"> Felix Optehostert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a non-negligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=research%20and%20development" title="research and development">research and development</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20and%20innovation" title=" technology and innovation"> technology and innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion-battery%20production" title=" lithium-ion-battery production"> lithium-ion-battery production</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20carrier%20development%20process" title=" load carrier development process"> load carrier development process</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20valuation%20method" title=" cost valuation method"> cost valuation method</a> </p> <a href="https://publications.waset.org/abstracts/35403/cost-valuation-method-for-development-concurrent-phase-appropriate-requirement-valuation-using-the-example-of-load-carrier-development-in-the-lithium-ion-battery-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9259</span> A Survey on Intelligent Connected-Vehicle Applications Based on Intercommunication Techniques in Smart Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Karabuluter">B. Karabuluter</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Karaduman"> O. Karaduman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Connected-Vehicles consists of intelligent vehicles, each of which can communicate with each other. Smart Cities are the most prominent application area of intelligent vehicles that can communicate with each other. The most important goal that is desired to be realized in Smart Cities planned for facilitating people's lives is to make transportation more comfortable and safe with intelligent/autonomous/driverless vehicles communicating with each other. In order to ensure these, the city must have communication infrastructure in the first place, and the vehicles must have the features to communicate with this infrastructure and with each other. In this context, intelligent transport studies to solve all transportation and traffic problems in classical cities continue to increase rapidly. In this study, current connected-vehicle applications developed for smart cities are considered in terms of communication techniques, vehicular networking, IoT, urban transportation implementations, intelligent traffic management, road safety, self driving. Taxonomies and assessments performed in the work show the trend of studies in inter-vehicle communication systems in smart cities and they are contributing to by ensuring that the requirements in this area are revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=connected%20vehicles" title=" connected vehicles"> connected vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructures" title=" infrastructures"> infrastructures</a>, <a href="https://publications.waset.org/abstracts/search?q=VANET" title=" VANET"> VANET</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20traffic%20management" title=" intelligent traffic management"> intelligent traffic management</a> </p> <a href="https://publications.waset.org/abstracts/83231/a-survey-on-intelligent-connected-vehicle-applications-based-on-intercommunication-techniques-in-smart-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9258</span> Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Hall">C. Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ramos"> J. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramasamy"> V. Ramasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylinder" title="cylinder">cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-cooling" title=" pre-cooling"> pre-cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=refueling" title=" refueling"> refueling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20model" title=" thermodynamic model"> thermodynamic model</a> </p> <a href="https://publications.waset.org/abstracts/147923/pre-cooling-strategies-for-the-refueling-of-hydrogen-cylinders-in-vehicular-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9257</span> The Role of Car Dealerships in Promoting Electric Vehicles: Covert Participatory Observations of Car Dealerships in Sweden</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Y.%20Faxer">Anne Y. Faxer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Olausson"> Ellen Olausson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Hagman"> Jens Hagman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Magazinius"> Ana Magazinius</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20J.%20Stier"> Jenny J. Stier</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Fransson"> Tommy Fransson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Enerback"> Oscar Enerback</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While electric vehicles (both battery electric vehicles and plug-in hybrids) have been on the market for around 6 years, they are still far from mainstream and the knowledge of them is still low among the public. This is likely one of the reasons that Sweden, having one of the highest penetrations of electric vehicles in Europe, still has a long way to go in reaching a fossil free vehicle fleet. Car dealerships are an important medium that connects consumers to vehicles, but somehow, their role in introducing electric vehicles has not yet been thoroughly studied. Research from other domains shows that salespeople can affect customer decisions in their choice of products. The aim of this study is to explore the role of car dealerships when it comes to promoting electric vehicles. The long-term goal is to understand how they could be a key in the effort of achieving a mass introduction of electric vehicles in Sweden. By emulating the customer’s experience, this study investigates the interaction between car salespeople and customers, particularly examining whether they present electric vehicles as viable options. Covert participatory observations were conducted for data collection from four different brands at in total twelve car dealers. The observers worked in pairs and played the role of a customer with needs that could be matched by an electric vehicle. The data was summarized in observation protocols and analyzed using thematic coding. The result shows that only one of twelve salespeople offered an electric vehicle as the first option. When environmental factors were brought up by the observers, the salespeople followed up with lower fuel consumption internal combustion engine vehicles rather than suggesting an electric vehicle. All salespeople possessed at least basic knowledge about electric vehicles but their interest of selling them were low in most cases. One of the reasons could be that the price of electric vehicles is usually higher. This could be inferred from the finding that salespeople tend to have a strong focus on price and economy in their dialogues with customers, regardless which type of car they were selling. In conclusion, the study suggests that car salespeople have the potential to help the market to achieve mass introduction of electric vehicles; however, their potential needs to be exploited further. To encourage salespeople to prioritize electric vehicles in the sales process, right incentives need to be in place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20dealerships" title="car dealerships">car dealerships</a>, <a href="https://publications.waset.org/abstracts/search?q=covert%20participatory%20observation" title=" covert participatory observation"> covert participatory observation</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20perspective" title=" customer perspective "> customer perspective </a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20penetration" title=" market penetration"> market penetration</a> </p> <a href="https://publications.waset.org/abstracts/79699/the-role-of-car-dealerships-in-promoting-electric-vehicles-covert-participatory-observations-of-car-dealerships-in-sweden" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9256</span> Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Widhi%20Hanantyo%20Suryadinata">Widhi Hanantyo Suryadinata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20renewable%20energy%20security" title="global renewable energy security">global renewable energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20energy%20security" title=" global energy security"> global energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20development" title=" policy development"> policy development</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20of%20global%20energy%20security" title=" shifting of global energy security"> shifting of global energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/184007/shifting-of-global-energy-security-a-comparative-analysis-of-indonesia-and-chinas-renewable-energy-policies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9255</span> How Autonomous Vehicles Transform Urban Policies and Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adri%C3%A1n%20P.%20G%C3%B3mez%20Ma%C3%B1as">Adrián P. Gómez Mañas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous vehicles have already transformed urban policies and cities. This is the main assumption of our research, which aims to understand how the representations of the possible arrival of autonomous vehicles already transform priorities or actions in transport and more largely, urban policies. This research is done within the framework of a Ph.D. doctorate directed by Professor Xavier Desjardins at the Sorbonne University of Paris. Our hypotheses are: (i) the perspectives, representations, and imaginaries on autonomous vehicles already affect the stakeholders of urban policies; (ii) the discourses on the opportunities or threats of autonomous vehicles reflect the current strategies of the stakeholders. Each stakeholder tries to integrate a discourse on autonomous vehicles that allows them to change as little as possible their current tactics and strategies. The objective is to eventually make a comparison between three different cases: Paris, United Arab Emirates, and Bogota. We chose those territories because their contexts are very different, but they all have important interests in mobility and innovation, and they all have started to reflect on the subject of self-driving mobility. The main methodology used is to interview actors of the metropolitan area (local officials, leading urban and transport planners, influent experts, and private companies). This work is supplemented with conferences, official documents, press articles, and websites. The objective is to understand: 1) What they know about autonomous vehicles and where does their knowledge come from; 2) What they expect from autonomous vehicles; 3) How their ideas about autonomous vehicles are transforming their action and strategy in managing daily mobility, investing in transport, designing public spaces and urban planning. We are going to present the research and some preliminary results; we will show that autonomous vehicles are often viewed by public authorities as a lever to reach something else. We will also present that speeches are very influenced by local context (political, geographical, economic, etc.), creating an interesting balance between global and local influences. We will analyze the differences and similarities between the three cases and will try to understand which are the causes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=self-driving%20mobility" title=" self-driving mobility"> self-driving mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20mobility" title=" urban mobility"> urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20policies" title=" public policies"> public policies</a> </p> <a href="https://publications.waset.org/abstracts/129041/how-autonomous-vehicles-transform-urban-policies-and-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9254</span> Investigating Factors Influencing Generation Z’s Pro-Environmental Behavior to Support the Energy Transition in Jakarta, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phimsupha%20Kokchang">Phimsupha Kokchang</a>, <a href="https://publications.waset.org/abstracts/search?q=Divine%20Ifransca%20Wijaya"> Divine Ifransca Wijaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy transition is crucial for mitigating climate change and achieving sustainable development and resilience. As the energy transition advances, generation Z is entering the economic world and will soon be responsible for taking care of the environment. This study aims to investigate the factors influencing generation Z’s pro-environmental behavior to support the energy transition. The theory of planned behavior approach was combined with the pro-environmental behavior concept to examine generation Z’s support toward the energy transition through participating in activism, using energy from renewable sources, opting for energy-efficient utilities or vehicles, and influencing others. Data were collected through an online questionnaire of 400 respondents aged 18-26 living in Jakarta, Indonesia. Partial least square structural equation modeling (PLS-SEM) using SmartPLS 3.0 software was used to analyze the reliability and validity of the measurement model. The results show that attitude, subjective norms, and perceived behavior control positively correlate with generation Z’s pro-environmental behavior to support the energy transition. This finding could enhance understanding and provide insights to formulate effective strategies and policies to increase generation Z’s support towards the energy transition. This study contributes to the energy transition discussion as it is included in the Sustainable Development Goals, as well as pro-environmental behavior and theory of planned behavior literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title="energy transition">energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-environmental%20behavior" title=" pro-environmental behavior"> pro-environmental behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20planned%20behavior" title=" theory of planned behavior"> theory of planned behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20Z" title=" generation Z"> generation Z</a> </p> <a href="https://publications.waset.org/abstracts/163896/investigating-factors-influencing-generation-zs-pro-environmental-behavior-to-support-the-energy-transition-in-jakarta-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9253</span> Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ghiassi-Farrokhfal">Y. Ghiassi-Farrokhfal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20storage" title=" battery storage"> battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20stations" title=" charging stations"> charging stations</a> </p> <a href="https://publications.waset.org/abstracts/70149/designing-ecologically-and-economically-optimal-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9252</span> Nematodes, Rotifers, Tardigrades and Diatoms as Vehicles for the Panspermic Transfer of Microbes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulamain%20Alharbi">Sulamain Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khiyami"> Mohammad Khiyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Amasha"> Reda Amasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20Al-Johny"> Bassam Al-Johny</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Khalil"> Hesham Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Milton%20Wainwrigh"> Milton Wainwrigh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nematodes, Rotifers and Tardigrades (NRT) are extreme-tolerant invertebrates which can survive long periods of stasis brought about by extreme drying and cold. They can also resist the effects of UV radiation, and as a result could act as vehicles for the panspermic transfer of microorganisms. Here we show that NRT contain a variety of bacteria and fungi within their bodies in which environment they could be protected from the extremes of the space and released into new cosmic environments. Diatoms were also shown to contain viable alga and Escherichia coli and so could also act as panspermic vehicles for the transfer of these and perhaps other microbes through space. Although not studied here, NRT, and possibly diatoms, also carry protozoa and viruses within their bodies and could act as vehicles for the panspermic transfer of an even wider range of microbes than shown here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extromophiles" title="extromophiles">extromophiles</a>, <a href="https://publications.waset.org/abstracts/search?q=diatoms" title=" diatoms"> diatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=panspermia" title=" panspermia"> panspermia</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20in%20space" title=" survival in space"> survival in space</a> </p> <a href="https://publications.waset.org/abstracts/3350/nematodes-rotifers-tardigrades-and-diatoms-as-vehicles-for-the-panspermic-transfer-of-microbes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9251</span> Observation of Critical Sliding Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Visar%20Baxhuku">Visar Baxhuku</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Demolli"> Halil Demolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alishukri%20Shkodra"> Alishukri Shkodra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the monitoring of vehicle movement, namely the developing of speed of vehicles during movement in a certain twist. The basic geometry data of twist are measured with the purpose of calculating the slide in border speed. During the research, measuring developed speed of passenger vehicles for the real conditions of the road surface, dry road with average damage, was realised. After setting values, the analysis was done in function security of movement in twist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20sliding%20velocity" title="critical sliding velocity">critical sliding velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20velocity" title=" moving velocity"> moving velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=curve" title=" curve"> curve</a>, <a href="https://publications.waset.org/abstracts/search?q=passenger%20vehicles" title=" passenger vehicles"> passenger vehicles</a> </p> <a href="https://publications.waset.org/abstracts/8578/observation-of-critical-sliding-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9250</span> Mechanical Design of External Pressure Vessel to an AUV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artur%20Siqueira%20N%C3%B3brega%20de%20Freitas">Artur Siqueira Nóbrega de Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Autonomous Underwater Vehicles (AUV), as well the Remotely Operated Vehicles (ROV), are unmanned technologies used in oceanographic investigations, offshore oil extraction, military applications, among others. Differently from AUVs, ROVs uses a physical connection with the surface for energy supply e data traffic. The AUVs use batteries and embedded data acquisition systems. These technologies have progressed, supported by studies in the areas of robotics, embedded systems, naval engineering, etc. This work presents a methodology for external pressure vessel design, responsible for contain and keep the internal components of the vehicle, such as on-board electronics and sensors, isolated from contact with water, creating a pressure differential between the inner and external regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vessel" title="vessel">vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20pressure" title=" external pressure"> external pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=AUV" title=" AUV"> AUV</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a> </p> <a href="https://publications.waset.org/abstracts/28324/mechanical-design-of-external-pressure-vessel-to-an-auv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9249</span> A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Elsayed%20Lotfy%20Elsayed%20Abouzeid">Mohammed Elsayed Lotfy Elsayed Abouzeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonobu%20Senjyu"> Tomonobu Senjyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Battery%20%20Energy%20Storage%20System" title="Battery Energy Storage System">Battery Energy Storage System</a>, <a href="https://publications.waset.org/abstracts/search?q=Electric%20Vehicle" title=" Electric Vehicle"> Electric Vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20and%20Ride" title=" Park and Ride"> Park and Ride</a>, <a href="https://publications.waset.org/abstracts/search?q=Photovoltaic" title=" Photovoltaic"> Photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=Multi-objective" title=" Multi-objective"> Multi-objective</a> </p> <a href="https://publications.waset.org/abstracts/123793/a-novel-multi-objective-park-and-ride-control-scheme-using-renewable-energy-sources-cairo-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9248</span> Broadcast Routing in Vehicular Ad hoc Networks (VANETs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muazzam%20A.%20Khan">Muazzam A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Wasim"> Muhammad Wasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicular%20ad-hoc%20network" title="vehicular ad-hoc network ">vehicular ad-hoc network </a>, <a href="https://publications.waset.org/abstracts/search?q=broadcasting" title=" broadcasting"> broadcasting</a>, <a href="https://publications.waset.org/abstracts/search?q=networking%20protocols" title=" networking protocols"> networking protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pattern" title=" traffic pattern"> traffic pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20intensity%20conflict" title=" low intensity conflict"> low intensity conflict</a> </p> <a href="https://publications.waset.org/abstracts/28117/broadcast-routing-in-vehicular-ad-hoc-networks-vanets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9247</span> Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Yang">Bo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Monterola"> Christopher Monterola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intersection%20control" title="intersection control">intersection control</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title=" autonomous vehicles"> autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20modelling" title=" traffic modelling"> traffic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system" title=" intelligent transport system"> intelligent transport system</a> </p> <a href="https://publications.waset.org/abstracts/52464/feasibility-study-of-distributed-lightless-intersection-control-with-level-1-autonomous-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9246</span> Open Jet Testing for Buoyant and Hybrid Buoyant Aerial Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Haque">A. U. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Asrar"> W. Asrar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Omar"> A. A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sulaeman"> E. Sulaeman</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S%20Mohamed%20Ali"> J. S Mohamed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open jet testing is a valuable testing technique which provides the desired results with reasonable accuracy. It has been used in past for the airships and now has recently been applied for the hybrid ones, having more non-buoyant force coming from the wings, empennage and the fuselage. In the present review work, an effort has been done to review the challenges involved in open jet testing. In order to shed light on the application of this technique, the experimental results of two different configurations are presented. Although, the aerodynamic results of such vehicles are unique to its own design; however, it will provide a starting point for planning any future testing. Few important testing areas which need more attention are also highlighted. Most of the hybrid buoyant aerial vehicles are unconventional in shape and there experimental data is generated, which is unique to its own design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20jet%20testing" title="open jet testing">open jet testing</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20buoyant%20aerial%20vehicles" title=" hybrid buoyant aerial vehicles"> hybrid buoyant aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=airships" title=" airships"> airships</a> </p> <a href="https://publications.waset.org/abstracts/41141/open-jet-testing-for-buoyant-and-hybrid-buoyant-aerial-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9245</span> Effects of Non-Motorized Vehicles on a Selected Intersection in Dhaka City for Non Lane Based Heterogeneous Traffic Using VISSIM 5.3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Dey">A. C. Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ahsan"> H. M. Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterogeneous traffic composed of both motorized and non-motorized vehicles that are a common feature of urban Bangladeshi roads. Popular non-motorized vehicles include rickshaws, rickshaw-van, and bicycle. These modes performed an important role in moving people and goods in the absence of a dependable mass transport system. However, rickshaws play a major role in meeting the demand for door-to-door public transport services to the city dwellers. But there is no separate lane for non-motorized vehicles in this city. Non-motorized vehicles generally occupy the outermost or curb-side lanes, however, at intersections non-motorized vehicles get mixed with the motorized vehicles. That’s why the conventional models fail to analyze the situation completely. Microscopic traffic simulation software VISSIM 5.3, itself a lane base software but default behavioral parameters [such as driving behavior, lateral distances, overtaking tendency, CCO=0.4m, CC1=1.5s] are modified for calibrating a model to analyze the effects of non-motorized traffic at an intersection (Mirpur-10) in a non-lane based mixed traffic condition. It is seen from field data that NMV occupies an average 20% of the total number of vehicles almost all the link roads. Due to the large share of non-motorized vehicles, capacity significantly drop. After analyzing simulation raw data, significant variation is noticed. Such as the average vehicular speed is reduced by 25% and the number of vehicles decreased by 30% only for the presence of NMV. Also the variation of lateral occupancy and queue delay time increase by 2.37% and 33.75% respectively. Thus results clearly show the negative effects of non-motorized vehicles on capacity at an intersection. So special management technics or restriction of NMV at major intersections may be an effective solution to improve this existing critical condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20occupancy" title="lateral occupancy">lateral occupancy</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20lane%20based%20intersection" title=" non lane based intersection"> non lane based intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=nmv" title=" nmv"> nmv</a>, <a href="https://publications.waset.org/abstracts/search?q=queue%20delay%20time" title=" queue delay time"> queue delay time</a>, <a href="https://publications.waset.org/abstracts/search?q=VISSIM%205.3" title=" VISSIM 5.3"> VISSIM 5.3</a> </p> <a href="https://publications.waset.org/abstracts/98140/effects-of-non-motorized-vehicles-on-a-selected-intersection-in-dhaka-city-for-non-lane-based-heterogeneous-traffic-using-vissim-53" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9244</span> Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziwen%20Fang">Ziwen Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianran%20Wang"> Jianran Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongtao%20Liu"> Hongtao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiguo%20Kong"> Weiguo Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kefei%20Wang"> Kefei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Luo"> Qi Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Haifeng%20Hong"> Haifeng Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20vehicle%20collision" title="railway vehicle collision">railway vehicle collision</a>, <a href="https://publications.waset.org/abstracts/search?q=crash%20energy%20management%20design" title=" crash energy management design"> crash energy management design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=crashworthiness%20test" title=" crashworthiness test"> crashworthiness test</a> </p> <a href="https://publications.waset.org/abstracts/92478/design-and-analysis-for-a-4-stage-crash-energy-management-system-for-railway-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9243</span> Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Agheb">S. Agheb</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ledwich"> G. Ledwich</a>, <a href="https://publications.waset.org/abstracts/search?q=G.Walker"> G.Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.Tong"> Z.Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20frequency%20regulation" title="emergency frequency regulation">emergency frequency regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20energy%20function" title=" Lyapunov energy function"> Lyapunov energy function</a> </p> <a href="https://publications.waset.org/abstracts/111333/aggregation-of-electric-vehicles-for-emergency-frequency-regulation-of-two-area-interconnected-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9242</span> The Potential of 48V HEV in Real Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Schudeleit">Mark Schudeleit</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Sieg"> Christian Sieg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferit%20K%C3%BC%C3%A7%C3%BCkay"> Ferit Küçükay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20use" title="customer use">customer use</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title=" dimensioning"> dimensioning</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicles" title=" hybrid electric vehicles"> hybrid electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20simulation" title=" vehicle simulation"> vehicle simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=48V%20hybrid%20system" title=" 48V hybrid system"> 48V hybrid system</a> </p> <a href="https://publications.waset.org/abstracts/37159/the-potential-of-48v-hev-in-real-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9241</span> On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kerbachi">R. Kerbachi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chikhi"> S. Chikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Boughedaoui"> M. Boughedaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on-board%20measurements%20of%20unit%20emissions%20of%20CO" title="on-board measurements of unit emissions of CO">on-board measurements of unit emissions of CO</a>, <a href="https://publications.waset.org/abstracts/search?q=HC" title=" HC"> HC</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20and%20CO2" title=" NOx and CO2"> NOx and CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20vehicles" title=" light vehicles"> light vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=mini-CVS" title=" mini-CVS"> mini-CVS</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG-fuel" title=" LPG-fuel"> LPG-fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=artemis" title=" artemis"> artemis</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/37645/on-board-measurement-of-real-exhaust-emission-of-light-duty-vehicles-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9240</span> Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salman%20Naseer">Salman Naseer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20tolerant%20network" title=" delay tolerant network"> delay tolerant network</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20offloading" title=" infrastructure offloading"> infrastructure offloading</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20network" title=" opportunistic network"> opportunistic network</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20mobility" title=" vehicular mobility"> vehicular mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a> </p> <a href="https://publications.waset.org/abstracts/166727/energy-efficient-massive-data-dissemination-through-vehicle-mobility-in-smart-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9239</span> Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Karaoglu">Kaan Karaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raif%20Bayir"> Raif Bayir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20systems" title=" wireless charging systems"> wireless charging systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cartesian%20robot" title=" cartesian robot"> cartesian robot</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20detection" title=" location detection"> location detection</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title=" trajectory planning"> trajectory planning</a> </p> <a href="https://publications.waset.org/abstracts/181986/design-of-cartesian-robot-for-electric-vehicle-wireless-charging-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9238</span> The Elimination of Fossil Fuel Subsidies from the Road Transportation Sector and the Promotion of Electro Mobility: The Ecuadorian Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20Acurio">Henry Acurio</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Corral"> Alvaro Corral</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Fonseca"> Juan Fonseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Ecuador, subventions on fossil fuels for the road transportation sector have always been part of its economy throughout time, mainly because of demagogy and populism from political leaders. It is clearly seen that the government cannot maintain the subsidies anymore due to its commercial balance and its general state budget; subsidies are a key barrier to implementing the use of cleaner technologies. However, during the last few months, the elimination of subsidies has been done gradually with the purpose of reaching international prices. It is expected that with this measure, the population will opt for other means of transportation, and in a certain way, it will promote the use of private electric vehicles and public, e.g., taxis and buses (urban transport). Considering the three main elements of sustainable development, an analysis of the social, economic, and environmental impacts of eliminating subsidies will be generated at the country level. To achieve this, four scenarios will be developed in order to determine how the subsidies will contribute to the promotion of electro-mobility: 1) A Business as Usual (BAU) scenario; 2) the introduction of 10 000 electric vehicles by 2025; 3) the introduction of 100 000 electric vehicles by 2030; 4) the introduction of 750 000 electric vehicles by 2040 (for all the scenarios, buses, taxis, lightweight duty vehicles, and private vehicles will be introduced, as it is established in the National Electro Mobility Strategy for Ecuador). The Low Emissions Analysis Platform (LEAP) will be used, and it will be suitable to determine the cost for the government in terms of importing derivatives for fossil fuels and the cost of electricity to power the electric fleet that can be changed. The elimination of subventions generates fiscal resources for the state that can be used to develop other kinds of projects that will benefit Ecuadorian society. It will definitely change the energy matrix, and it will provide energy security for the country; it will be an opportunity for the government to incentivize a greater introduction of renewable energies, e.g., solar, wind, and geothermal. At the same time, it will also reduce greenhouse gas emissions (GHG) from the transportation sector, considering its mitigation potential, which as a result, will ameliorate the inhabitant quality of life by improving the quality of air, therefore reducing respiratory diseases associated with exhaust emissions, consequently, achieving sustainability, the Sustainable Development Goals (SDGs), and complying with the agreements established in the Paris Agreement COP 21 in 2015. Electro-mobility in Latin America and the Caribbean can only be achieved by the implementation of the right policies by the central government, which need to be accompanied by a National Urban Mobility Policy (NUMP), and can encompass a greater vision to develop holistic, sustainable transport systems at local governments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro%20mobility" title="electro mobility">electro mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20transportation" title=" sustainable transportation"> sustainable transportation</a> </p> <a href="https://publications.waset.org/abstracts/160566/the-elimination-of-fossil-fuel-subsidies-from-the-road-transportation-sector-and-the-promotion-of-electro-mobility-the-ecuadorian-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9237</span> Construction of Large Scale UAVs Using Homebuilt Composite Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20J.%20Kozak">Brian J. Kozak</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20D.%20Shipman"> Joshua D. Shipman</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao%20Wang"> Peng Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Blake%20Shipp"> Blake Shipp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20aircraft" title="composite aircraft">composite aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=homebuilding" title=" homebuilding"> homebuilding</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20system%20industry" title=" unmanned aerial system industry"> unmanned aerial system industry</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles"> unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/113067/construction-of-large-scale-uavs-using-homebuilt-composite-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9236</span> Proposal of Methodology Based on Technical Characterization and Quantitative Contrast of Co₂ Emissions for the Migration to Electric Mobility of the Vehicle Fleet: Case Study of Electric Companies in Ecuador</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20I.%20Ullauri">Rodrigo I. Ullauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20E.%20Tinajero"> Santiago E. Tinajero</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20O.%20Ramos"> Omar O. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20R.%20Quintana"> Paola R. Quintana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of CO₂ emissions in the atmosphere and its impact on climate change is a global concern. The transportation sector is a significant consumer of fossil fuels and contributes significantly to greenhouse gas emissions. The current challenge is to find ways to reduce the use of fossil fuels in transportation. In Ecuador, where 92% of electricity is generated from clean sources, the concept of e-mobility is considered an attractive alternative to address the challenge of sustainable mobility. The proposal is to migrate from combustion-powered vehicles to electric vehicles in the electric companies of Ecuador, using a methodology to standardize criteria, determine specific requirements, contrast technical characteristics, and estimate emission reductions. The results showed that there are three categories of vehicles that have electric counterparts suitable for performing activities under certain operation parameters inherent to current technology limitations but with a significant contribution to the reduction of annual CO₂ emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20mobility" title=" electro mobility"> electro mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20transportation" title=" sustainable transportation"> sustainable transportation</a> </p> <a href="https://publications.waset.org/abstracts/161828/proposal-of-methodology-based-on-technical-characterization-and-quantitative-contrast-of-co2-emissions-for-the-migration-to-electric-mobility-of-the-vehicle-fleet-case-study-of-electric-companies-in-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9235</span> Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Fermi">Francesca Fermi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Astegiano"> Paola Astegiano</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Martino"> Angelo Martino</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Heitel"> Stephanie Heitel</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Krail"> Michael Krail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title="decarbonisation">decarbonisation</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emissions" title=" greenhouse gas emissions"> greenhouse gas emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=e-mobility" title=" e-mobility"> e-mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20policies" title=" transport policies"> transport policies</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/96353/toward-the-decarbonisation-of-eu-transport-sector-impacts-and-challenges-of-the-diffusion-of-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9234</span> Vehicle Speed Estimation Using Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prodipta%20Bhowmik">Prodipta Bhowmik</a>, <a href="https://publications.waset.org/abstracts/search?q=Poulami%20Saha"> Poulami Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Preety%20Mehra"> Preety Mehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Soni"> Yogesh Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Triloki%20Nath%20Jha"> Triloki Nath Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OpenCV" title="OpenCV">OpenCV</a>, <a href="https://publications.waset.org/abstracts/search?q=Haar%20Cascade%20classifier" title=" Haar Cascade classifier"> Haar Cascade classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=DLIB" title=" DLIB"> DLIB</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOV3" title=" YOLOV3"> YOLOV3</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20tracker" title=" centroid tracker"> centroid tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20detection" title=" vehicle detection"> vehicle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20tracking" title=" vehicle tracking"> vehicle tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20speed%20estimation" title=" vehicle speed estimation"> vehicle speed estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/153549/vehicle-speed-estimation-using-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9233</span> Automated Tracking and Statistics of Vehicles at the Signalized Intersection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Zhang">Qiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojian%20Hu1"> Xiaojian Hu1</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tracking%20and%20statistics" title="tracking and statistics">tracking and statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=signalized%20intersection" title=" signalized intersection"> signalized intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20parameter" title=" motion parameter"> motion parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/136436/automated-tracking-and-statistics-of-vehicles-at-the-signalized-intersection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9232</span> Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josua%20K.%20Junias">Josua K. Junias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fillemon%20N.%20Nangolo"> Fillemon N. Nangolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrina%20T.%20Johaness"> Petrina T. Johaness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricities" title="eccentricities">eccentricities</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20dynamic%20loading" title=" pavement dynamic loading"> pavement dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20displacement%20dynamic%20response" title=" vertical displacement dynamic response"> vertical displacement dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a> </p> <a href="https://publications.waset.org/abstracts/166750/modeling-the-road-pavement-dynamic-response-due-to-heavy-vehicles-loadings-and-kinematic-excitations-general-asymmetries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9231</span> Energy Initiatives for Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Beril%20Tugrul">A.Beril Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Selahattin%20Cimen"> Selahattin Cimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependency of humanity on the energy is ever-increasing today and the energy policies are reaching undeniable and un-ignorable dimensions steering the political events as well. Therefore, energy has the highest priority for Turkey like any other country. In this study, the energy supply security for Turkey evaluated according to the strategic criteria of energy policy. Under these circumstances, different alternatives are described and assessed with in terms of the energy expansion of Turkey. With this study, different opportunities in the energy expansion of Turkey is clarified and emphasized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20strategy" title=" energy strategy"> energy strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20projection" title=" future projection"> future projection</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey "> Turkey </a> </p> <a href="https://publications.waset.org/abstracts/2137/energy-initiatives-for-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=2" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=310">310</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=311">311</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20energy%20vehicles&page=4" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>