CINXE.COM

Search results for: climatic parameters

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: climatic parameters</title> <meta name="description" content="Search results for: climatic parameters"> <meta name="keywords" content="climatic parameters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="climatic parameters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="climatic parameters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9337</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: climatic parameters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9337</span> Simulation and Study of the Effect of Paint Mineral Coating on Energy Saving </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Azemati">A. A. Azemati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini"> H. Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using an adequate paint in buildings, energy consumption can be decreased. In this research, a range of wall paints in different climatic conditions has been investigated to observe its effect on energy consumption. In the current study, the researchers have investigated the effect of different parameters including climatic condition, absorption coefficient, and thermal loads on paint coating. In order to study these effects, heating and cooling loads of a typical building with different color paints have been calculated. The effect of building paint in different climatic condition was studied and a comparison was drawn between paints and painting coats with inorganic micro particles in temperate climate to obtain optimized energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic" title=" inorganic"> inorganic</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20coats" title=" painting coats"> painting coats</a> </p> <a href="https://publications.waset.org/abstracts/34125/simulation-and-study-of-the-effect-of-paint-mineral-coating-on-energy-saving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9336</span> Flood Scenarios for Hydrological and Hydrodynamic Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sharif%20Imam%20Ibne%20Amir">M. Sharif Imam Ibne Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Masud%20Kamal%20Khan"> Mohammad Masud Kamal Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Golam%20Rasul"> Mohammad Golam Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20H.%20Sharma"> Raj H. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Akram"> Fatema Akram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20evaporation" title=" potential evaporation"> potential evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario" title=" scenario"> scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise%20%28SLR%29" title=" sea level rise (SLR)"> sea level rise (SLR)</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-catchment" title=" sub-catchment"> sub-catchment</a> </p> <a href="https://publications.waset.org/abstracts/17875/flood-scenarios-for-hydrological-and-hydrodynamic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9335</span> Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran">Muhammad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Basit"> Iqra Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobushir%20Riaz%20Khan"> Mobushir Riaz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Rasheed%20Ahmad"> Sajid Rasheed Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat%20NDVI" title="Landsat NDVI">Landsat NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20models" title=" panel models"> panel models</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a> </p> <a href="https://publications.waset.org/abstracts/83022/analyzing-the-impact-of-spatio-temporal-climate-variations-on-the-rice-crop-calendar-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9334</span> Evaluation of Adaptive Fitness of Indian Teak (Tectona grandis L. F.) Metapopulation through Inter Simple Sequence Repeat Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Vaishnav">Vivek Vaishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamim%20Akhtar%20Ansari"> Shamim Akhtar Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teak (Tectona grandis L.f.) belonging to plant family Lamiaceae and the most commercialized timber species is endemic to South-Asia. The adaptive fitness of the species metapopulation was evaluated through its genetic differentiation and assessing the influence of geo-climatic conditions. 290 genotypes were sampled from 29 locations of its natural distribution and the genetic data was incorporated with geo-climatic parameters. Through Bayesian approach based analysis of 43 highly polymorphic ISSR markers, six homogeneous clusters (0.8% genetic variability) were identified. The six clusters were found with the various regimes of the temperature range, i.e., I - 9.10±1.35⁰C, II -6.35±0.21⁰C, III -12.21±0.43⁰C, IV - 10.8±1.06⁰C, V - 11.67±3.04⁰C, and VI - 12.35±0.21⁰C. The population had a very high percentage of LD (21.48%) among the amplified loci possibly due to experiencing restricted gene flow as well as co-adaptation and association of distant/diverse loci/alleles as a result of the stabilized climatic conditions and countless cycles of historical recombination events on a large geological timescale. The same possibly accounts for the narrow distribution of teak as a climax species in the tropical deciduous forests of the country. The regions of strong LD in teak genome significantly associated with climatic parameters also reflect that the species is tolerant to the wide regimes of the temperature range and may possibly withstand global warming and climate change in the coming millennium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20analysis" title="Bayesian analysis">Bayesian analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inter%20simple%20sequence%20repeat" title=" inter simple sequence repeat"> inter simple sequence repeat</a>, <a href="https://publications.waset.org/abstracts/search?q=linkage%20disequilibrium" title=" linkage disequilibrium"> linkage disequilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=marker-geoclimatic%20association" title=" marker-geoclimatic association"> marker-geoclimatic association</a> </p> <a href="https://publications.waset.org/abstracts/87648/evaluation-of-adaptive-fitness-of-indian-teak-tectona-grandis-l-f-metapopulation-through-inter-simple-sequence-repeat-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9333</span> An Investigation on the Role of Iwan as a Sustainable Element in the Traditional Houses of Different Climatic Regions of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nejadriahi">H. Nejadriahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the performance of Iwan as one of the significant spaces in the traditional architecture of Iran. The aim of this study is to investigate on the role of Iwan in sustainability enhancement of traditional houses of different climatic regions of Iran. Iwan is considered as a semi-open space, which its form and location in the building highly depends to the climatic situation of that region. For that reason, Iwan is recognized as one of the sustainable elements in the traditional houses of Iran, which can provide more comfort with less use of energy. In this study, the history and emergence of Iwan in&nbsp;the traditional architecture of Iran as well as the concept of sustainability in architecture are explained briefly. Then, the change of&nbsp;performance or&nbsp;form of&nbsp;Iwan is&nbsp;analysed in&nbsp;different climatic regions of Iran in accordance to the sustainability concepts. The methods used in this study are descriptive and analytic. Results of this paper verify that studying the sustainability solutions in the traditional architecture of Iran, would be a valuable source of inspiration for the current designers to create an environmental and sustainable architecture for the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20regions%20of%20Iran" title="climatic regions of Iran">climatic regions of Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwan" title=" Iwan"> Iwan</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20houses" title=" traditional houses"> traditional houses</a> </p> <a href="https://publications.waset.org/abstracts/51325/an-investigation-on-the-role-of-iwan-as-a-sustainable-element-in-the-traditional-houses-of-different-climatic-regions-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9332</span> Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Sekowski">Oskar Sekowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatologic%20potential" title="climatologic potential">climatologic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20classification" title=" climatic classification"> climatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Poland" title=" Poland"> Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=viticulture" title=" viticulture"> viticulture</a> </p> <a href="https://publications.waset.org/abstracts/110598/possibilities-to-evaluate-the-climatic-and-meteorological-potential-for-viticulture-in-poland-the-case-study-of-the-jagiellonian-university-vineyard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9331</span> Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zia%20Ullah">Zia Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruh%20Ullah"> Ruh Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-climatic%20zones" title="agro-climatic zones">agro-climatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=aridity%20index" title=" aridity index"> aridity index</a>, <a href="https://publications.waset.org/abstracts/search?q=GDD" title=" GDD"> GDD</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a> </p> <a href="https://publications.waset.org/abstracts/87732/agro-climatic-analysis-in-the-northern-areas-of-khyber-pakhtunkhwa-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9330</span> Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20AlHasem">Ahmed M. AlHasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astronomy" title="astronomy">astronomy</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20prediction" title=" weather prediction"> weather prediction</a> </p> <a href="https://publications.waset.org/abstracts/102495/statistical-scientific-investigation-of-popular-cultural-heritage-in-the-relationship-between-astronomy-and-weather-conditions-in-the-state-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9329</span> Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Flammini">A. Flammini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Morbidelli"> R. Morbidelli</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saltalippi"> C. Saltalippi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20change" title="climatic change">climatic change</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20regime" title=" rainfall regime"> rainfall regime</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a> </p> <a href="https://publications.waset.org/abstracts/103493/detection-of-trends-and-break-points-in-climatic-indices-the-case-of-umbria-region-in-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9328</span> A Comparison of Air Quality in Arid and Temperate Climatic Conditions – a Case Study of Leeds and Makkah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turki%20M.%20Habeebullah">Turki M. Habeebullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Munir"> Said Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Ropkins"> Karl Ropkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20A.%20Morsy"> Essam A. Morsy</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20M.%20F.%20Mohammed"> Atef M. F. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20R.%20Seroji"> Abdulaziz R. Seroji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from year 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and supress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20conditions" title=" climatic conditions"> climatic conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Makkah" title=" Makkah"> Makkah</a>, <a href="https://publications.waset.org/abstracts/search?q=Leeds" title=" Leeds"> Leeds</a> </p> <a href="https://publications.waset.org/abstracts/19619/a-comparison-of-air-quality-in-arid-and-temperate-climatic-conditions-a-case-study-of-leeds-and-makkah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9327</span> Farmers&#039; Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhwinder%20Singh">Sukhwinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Park"> Julian Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Benbi"> Dinesh Kumar Benbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title="soil health">soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=punjab%20agriculture" title=" punjab agriculture"> punjab agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility%20index" title=" soil fertility index"> soil fertility index</a> </p> <a href="https://publications.waset.org/abstracts/29934/farmers-perspective-on-soil-health-in-the-indian-punjab-a-quantitative-analysis-of-major-soil-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9326</span> Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Mugume">Isaac Mugume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bias%20correction" title="bias correction">bias correction</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20projections" title=" climatic projections"> climatic projections</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20models" title=" numerical models"> numerical models</a>, <a href="https://publications.waset.org/abstracts/search?q=representative%20concentration%20pathways" title=" representative concentration pathways"> representative concentration pathways</a> </p> <a href="https://publications.waset.org/abstracts/111018/reducing-uncertainty-in-climate-projections-over-uganda-by-numerical-models-using-bias-correction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9325</span> Variability of Climatic Elements in Nigeria Over Recent 100 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Salami">T. Salami</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Idowu"> O. S. Idowu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Bello"> N. J. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a>, <a href="https://publications.waset.org/abstracts/search?q=flooding" title=" flooding"> flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=excessive%20rainfall" title=" excessive rainfall"> excessive rainfall</a> </p> <a href="https://publications.waset.org/abstracts/40057/variability-of-climatic-elements-in-nigeria-over-recent-100-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9324</span> Pollutant Dispersion in Coastal Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Ben%20Hamza">Sonia Ben Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Bournot"> Hervé Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper spots light on the effect of a point source pollution on streams, stemming out from intentional release caused by unconscious facts. The consequences of such contamination on ecosystems are very serious. Accordingly, effective tools are highly demanded in this respect, which enable us to come across an accurate progress of pollutant and anticipate different measures to be applied in order to limit the degradation of the environmental surrounding. In this context, we are eager to model a pollutant dispersion of a free surface flow which is ejected by an outfall sewer of an urban sewerage network in coastal water taking into account the influence of climatic parameters on the spread of pollutant. Numerical results showed that pollutant dispersion is merely due to the presence of vortices and turbulence. Hence, it was realized that the pollutant spread in seawater is strongly correlated with climatic conditions in this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20waters" title="coastal waters">coastal waters</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20dispersion" title=" pollutant dispersion"> pollutant dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a> </p> <a href="https://publications.waset.org/abstracts/28431/pollutant-dispersion-in-coastal-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9323</span> Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Isaac">Rajendra Kumar Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac"> Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20variability" title="climate variability">climate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20strategies" title=" mitigation strategies"> mitigation strategies</a> </p> <a href="https://publications.waset.org/abstracts/58743/vulnerability-of-indian-agriculture-to-climate-change-a-study-of-the-himalayan-region-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9322</span> Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apu%20Kumar%20Saha">Apu Kumar Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrinmoy%20Majumder"> Mrinmoy Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydro-energy%20potential" title="hydro-energy potential">hydro-energy potential</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20criteria%20decision%20analysis" title=" multi criteria decision analysis"> multi criteria decision analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20and%20ecological%20engineering" title=" environmental and ecological engineering"> environmental and ecological engineering</a> </p> <a href="https://publications.waset.org/abstracts/19470/climate-variability-on-hydro-energy-potential-an-mcdm-and-neural-network-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9321</span> Environmental Effects on Energy Consumption of Smart Grid Consumers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ali">S. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salam%20Khan"> A. Salam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Khan"> A. U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tariq"> M. Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Hussain"> M. S. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Abbasi"> B. A. Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Hussain"> I. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Farid"> U. Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment and surrounding plays a pivotal rule in structuring life-style of the consumers. Living standards intern effect the energy consumption of the consumers. In smart grid paradigm, climate drifts, weather parameter and green environmental directly relates to the energy profiles of the various consumers, such as residential, commercial and industrial. Considering above factors helps policy in shaping utility load curves and optimal management of demand and supply. Thus, there is a pressing need to develop correlation models of load and weather parameters and critical analysis of the factors effecting energy profiles of smart grid consumers. In this paper, we elaborated various environment and weather parameter factors effecting demand of consumers. Moreover, we developed correlation models, such as Pearson, Spearman, and Kendall, an inter-relation between dependent (load) parameter and independent (weather) parameters. Furthermore, we validated our discussion with real-time data of Texas State. The numerical simulations proved the effective relation of climatic drifts with energy consumption of smart grid consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20drifts" title="climatic drifts">climatic drifts</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20analysis" title=" correlation analysis"> correlation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20parameter" title=" weather parameter"> weather parameter</a> </p> <a href="https://publications.waset.org/abstracts/55390/environmental-effects-on-energy-consumption-of-smart-grid-consumers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9320</span> Assessment of Land Use Land Cover Change-Induced Climatic Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20K.%20Jat">Mahesh K. Jat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankan%20Jana"> Ankan Jana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahender%20Choudhary"> Mahender Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) are used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LULC" title="LULC">LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20flux" title=" sensible heat flux"> sensible heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20flux" title=" latent heat flux"> latent heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=SEBAL" title=" SEBAL"> SEBAL</a>, <a href="https://publications.waset.org/abstracts/search?q=landsat" title=" landsat"> landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/148365/assessment-of-land-use-land-cover-change-induced-climatic-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9319</span> Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst.%20Nilufa%20Sultana">Mst. Nilufa Sultana</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Aqeel%20Ashraf"> Muhammad Aqeel Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Roseli%20Zainal%20Abidin"> Mohamed Roseli Zainal Abidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most people today are aware that global Climate change, is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kualalumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%20roofs" title="Green roofs">Green roofs</a>, <a href="https://publications.waset.org/abstracts/search?q=INWQS" title=" INWQS"> INWQS</a>, <a href="https://publications.waset.org/abstracts/search?q=MSMA-SME" title=" MSMA-SME"> MSMA-SME</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater%20harvesting" title=" rainwater harvesting"> rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20parameter" title=" water quality parameter"> water quality parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=WQI" title=" WQI"> WQI</a> </p> <a href="https://publications.waset.org/abstracts/23143/sustainability-analysis-and-quality-assessment-of-rainwater-harvested-from-green-roofs-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9318</span> Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Nisar">Nadia Nisar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza" title="influenza">influenza</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=metrological" title=" metrological"> metrological</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a> </p> <a href="https://publications.waset.org/abstracts/57604/impact-of-meteorological-factors-on-influenza-activity-in-pakistan-a-tale-of-two-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9317</span> Tourism Climate Index Environmental Assessment of Piranshahr</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvaneh%20Ziviar%20Pardehei">Parvaneh Ziviar Pardehei</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Hossinnejad"> Esmaeil Hossinnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the tourism climate index Miczcofski (TCI) and to assess climate Trjvng Piranshahr city tourism is discussed. The index is a systematic way to evaluate the climatic conditions for tourism. To calculate the parameters of mean monthly maximum temperature, minimum relative humidity, average daily relative humidity, rainfall, sunshine and the wind speed are used. In the months of April, July, August and September of comfort there in December, January, February and March, the nerve is cold comfort factor. Baker calculation method showed that during spring and summer cooling environment, mild, pleasant, and comfortable Byvklymay there. TCI results suggest that the months of April to July are top rated and best climatic conditions in terms of comfort to the tourists. In general, indices used in this paper show that the months of April to October is the best time for tourism in the city Piranshahr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tourism" title="tourism">tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Piranshahr%20city" title=" Piranshahr city"> Piranshahr city</a>, <a href="https://publications.waset.org/abstracts/search?q=TCI%20indicators%20and%20trjvng" title=" TCI indicators and trjvng"> TCI indicators and trjvng</a> </p> <a href="https://publications.waset.org/abstracts/42674/tourism-climate-index-environmental-assessment-of-piranshahr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9316</span> Climatic Roots of Piracy in Red Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Karami">Nasser Karami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piracy in the North West of Indian Ocean and the Red Sea has become a global crisis in recent years. Pirates of this area are often very poor people from the Horn of Africa and the western coast of the Red Sea. Climatic and geographical evidence suggests that poverty and destruction of social structures in the region have directly relation to prolonged-drought. Indeed, after the seventies (more than 40 years ago) due to the long-term drought in the region, all political, economic and social structures had declined. Spread of terrorism, violent extremism and of course piracy, are main effects of climate change and drought of this regression. It is disturbing to say the climatic documents say that because of global climate change, severe drought will continue in this region. This mean that the dangers worse than piracy threatens the future of this area. Forty-year data that has assessed in this study indicate that there is direct relationship between spread of drought and piracy in the Red Sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=poverty" title=" poverty"> poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=piracy%20in%20red%20sea" title=" piracy in red sea"> piracy in red sea</a> </p> <a href="https://publications.waset.org/abstracts/30771/climatic-roots-of-piracy-in-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9315</span> Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bensaid%20A.">Bensaid A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostephaoui%20T."> Mostephaoui T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nedjai%20R."> Nedjai R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=ETP" title=" ETP"> ETP</a>, <a href="https://publications.waset.org/abstracts/search?q=MODIS" title=" MODIS"> MODIS</a>, <a href="https://publications.waset.org/abstracts/search?q=GIEC%20scenarios" title=" GIEC scenarios"> GIEC scenarios</a> </p> <a href="https://publications.waset.org/abstracts/163258/crossing-multi-source-climate-data-to-estimate-the-effects-of-climate-change-on-evapotranspiration-data-application-to-the-french-central-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9314</span> Application and Aspects of Biometeorology in Inland Open Water Fisheries Management in the Context of Changing Climate: Status and Research Needs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.K.%20Sarkar">U.K. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Karnatak"> G. Karnatak</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Mishal"> P. Mishal</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianthuamluaia"> Lianthuamluaia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumari"> S. Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Das"> S.K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=B.K.%20Das"> B.K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inland open water fisheries provide food, income, livelihood and nutritional security to millions of fishers across the globe. However, the open water ecosystem and fisheries are threatened due to climate change and anthropogenic pressures, which are more visible in the recent six decades, making the resources vulnerable. Understanding the interaction between meteorological parameters and inland fisheries is imperative to develop mitigation and adaptation strategies. As per IPCC 5th assessment report, the earth is warming at a faster rate in recent decades. Global mean surface temperature (GMST) for the decade 2006–2015 (0.87°C) was 6 times higher than the average over the 1850–1900 period. The direct and indirect impacts of climatic parameters on the ecology of fisheries ecosystem have a great bearing on fisheries due to alterations in fish physiology. The impact of meteorological factors on ecosystem health and fish food organisms brings about changes in fish diversity, assemblage, reproduction and natural recruitment. India’s average temperature has risen by around 0.7°C during 1901–2018. The studies show that the mean air temperature in the Ganga basin has increased in the range of 0.20 - 0.47 °C and annual rainfall decreased in the range of 257-580 mm during the last three decades. The studies clearly indicate visible impacts of climatic and environmental factors on inland open water fisheries. Besides, a significant reduction in-depth and area (37.20–57.68% reduction), diversity of natural indigenous fish fauna (ranging from 22.85 to 54%) in wetlands and progression of trophic state from mesotrophic to eutrophic were recorded. In this communication, different applications of biometeorology in inland fisheries management with special reference to the assessment of ecosystem and species vulnerability to climatic variability and change have been discussed. Further, the paper discusses the impact of climate anomaly and extreme climatic events on inland fisheries and emphasizes novel modeling approaches for understanding the impact of climatic and environmental factors on reproductive phenology for identification of climate-sensitive/resilient fish species for the adoption of climate-smart fisheries in the future. Adaptation and mitigation strategies to enhance fish production and the role of culture-based fisheries and enclosure culture in converting sequestered carbon into blue carbon have also been discussed. In general, the type and direction of influence of meteorological parameters on fish biology in open water fisheries ecosystems are not adequately understood. The optimum range of meteorological parameters for sustaining inland open water fisheries is yet to be established. Therefore, the application of biometeorology in inland fisheries offers ample scope for understanding the dynamics in changing climate, which would help to develop a database on such least, addressed research frontier area. This would further help to project fisheries scenarios in changing climate regimes and develop adaptation and mitigation strategies to cope up with adverse meteorological factors to sustain fisheries and to conserve aquatic ecosystem and biodiversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometeorology" title="biometeorology">biometeorology</a>, <a href="https://publications.waset.org/abstracts/search?q=inland%20fisheries" title=" inland fisheries"> inland fisheries</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20ecosystem" title=" aquatic ecosystem"> aquatic ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/140100/application-and-aspects-of-biometeorology-in-inland-open-water-fisheries-management-in-the-context-of-changing-climate-status-and-research-needs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9313</span> Spatiotemporal Changes in Drought Sensitivity Captured by Multiple Tree-Ring Parameters of Central European Conifers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kre%C5%A1imir%20Begovi%C4%87">Krešimir Begović</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Rydval"> Miloš Rydval</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Tumajer"> Jan Tumajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristyna%20Svobodov%C3%A1"> Kristyna Svobodová</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Langbehn"> Thomas Langbehn</a>, <a href="https://publications.waset.org/abstracts/search?q=Yumei%20Jiang"> Yumei Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojtech%20%C4%8Cada"> Vojtech Čada</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Treml"> Vaclav Treml</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryszard%20Kaczka"> Ryszard Kaczka</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Svoboda"> Miroslav Svoboda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental changes have increased the frequency and intensity of climatic extremes, particularly hotter droughts, leading to altered tree growth patterns and multi-year lags in tree recovery. The effects of shifting climatic conditions on tree growth are inhomogeneous across species’ natural distribution ranges, with large spatial heterogeneity and inter-population variability, but generally have significant consequences for contemporary forest dynamics and future ecosystem functioning. Despite numerous studies on the impacts of regional drought effects, large uncertainties remain regarding the mechanistic basis of drought legacy effects on wood formation and the ability of individual species to cope with increasingly drier growing conditions and rising year-to-year climatic variability. To unravel the complexity of climate-growth interactions and assess species-specific responses to severe droughts, we combined forward modeling of tree growth (VS-lite model) with correlation analyses against climate (temperature, precipitation, and the SPEI-3 moisture index) and growth responses to extreme drought events from multiple tree-ring parameters (tree-width and blue intensity parameters). We used an extensive dataset with over 1000 tree-ring samples from 23 nature forest reserves across an altitudinal range in Czechia and Slovakia. Our results revealed substantial spatiotemporal variability in growth responses to summer season temperature and moisture availability across species and tree-ring parameters. However, a general trend of increasing spring moisture-growth sensitivity in recent decades was observed in the Scots pine mountain forests and lowland forests of both species. The VS-lite model effectively captured nonstationary climate-growth relationships and accurately estimated high-frequency growth variability, indicating a significant incidence of regional drought events and growth reductions. Notably, growth reductions during extreme drought years and discrete legacy effects identified in individual wood components were most pronounced in the lowland forests. Together with the observed growth declines in recent decades, these findings suggest an increasing vulnerability of Norway spruce and Scots pine in dry lowlands under intensifying climatic constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendroclimatology" title="dendroclimatology">dendroclimatology</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaganova%E2%80%93Shashkin%20lite" title=" Vaganova–Shashkin lite"> Vaganova–Shashkin lite</a>, <a href="https://publications.waset.org/abstracts/search?q=conifers" title=" conifers"> conifers</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20Europe" title=" central Europe"> central Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20intensity" title=" blue intensity"> blue intensity</a> </p> <a href="https://publications.waset.org/abstracts/178826/spatiotemporal-changes-in-drought-sensitivity-captured-by-multiple-tree-ring-parameters-of-central-european-conifers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9312</span> Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Rashidian">Leila Rashidian</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ebrahimi"> Abbas Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO<sub>2</sub> in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM<sub>3</sub> model in 2010-2030 time interval have been used based on the A<sub>2</sub> propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20WG" title=" Lars WG"> Lars WG</a>, <a href="https://publications.waset.org/abstracts/search?q=HADCM3" title=" HADCM3"> HADCM3</a>, <a href="https://publications.waset.org/abstracts/search?q=Gillan%20province" title=" Gillan province"> Gillan province</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20parameters" title=" climatic parameters"> climatic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=A2%20scenario" title=" A2 scenario"> A2 scenario</a> </p> <a href="https://publications.waset.org/abstracts/47640/investigating-climate-change-trend-based-on-data-simulation-and-ipcc-scenario-during-2010-2030-ad-case-study-of-fars-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9311</span> Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manon%20Ghislain">Manon Ghislain</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoth%C3%A9e%20Bonnet"> Timothée Bonnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Gimenez"> Olivier Gimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Dehorter"> Olivier Dehorter</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre-Yves%20Henry"> Pierre-Yves Henry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title="Bayesian approach">Bayesian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=capture-recapture" title=" capture-recapture"> capture-recapture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20anomaly" title=" climate anomaly"> climate anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20effort%20sites%20scheme" title=" constant effort sites scheme"> constant effort sites scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=passerine" title=" passerine"> passerine</a>, <a href="https://publications.waset.org/abstracts/search?q=seasons" title=" seasons"> seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a> </p> <a href="https://publications.waset.org/abstracts/42791/winter-not-spring-climate-drives-annual-adult-survival-in-common-passerines-a-country-wide-multi-species-modeling-exercise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9310</span> Investigating the Impact of Solar Radiation on Electricity Meters’ Accuracy Using A Modified Climatic Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Abdel%20Mageed">Hala M. Abdel Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Hosny"> Eman M. Hosny</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20S.%20Nada"> Adel S. Nada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar radiation test is one of the essential tests performed on electricity meters that is carried out using solar simulators. In this work, the (MKF-240) climatic chamber has been modified to act as a solar simulator at the Egyptian national institute of standard, NIS. Quartz Tungsten Halogen (QTH) lamps and an Aluminum plate are added to the climatic chamber to realize the solar test conditions. Many experimental trials have been performed to reach the optimum number of lamps needed to fulfil the test requirements and to adjust the best uniform test area. The proposed solar simulator design is capable to produce irradiance up to 1066 W/m2. Its output radiation is controlled by changing the number of illuminated lamps as well as changing the distance between lamps and tested electricity meter. The uniformity of radiation within the simulator has been recognized to be 91.5 % at maximum irradiance. Three samples of electricity meters have been tested under different irradiances, temperatures, and electric loads. The electricity meters’ accuracies have been recorded and analyzedfor eachsample. Moreover, measurement uncertainty contribution has been considered in all tests to get precision value. There were noticeable changes in the accuracies of the electricity meters while exposed to solar radiation, although there were no noticeable distortions of their insulationsand outer surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title="solar radiation">solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20simulator" title=" solar simulator"> solar simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20chamber" title=" climatic chamber"> climatic chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=halogen%20lamp" title=" halogen lamp"> halogen lamp</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20meter" title=" electricity meter"> electricity meter</a> </p> <a href="https://publications.waset.org/abstracts/152458/investigating-the-impact-of-solar-radiation-on-electricity-meters-accuracy-using-a-modified-climatic-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9309</span> Need for Elucidation of Palaeoclimatic Variability in the High Himalayan Mountains: A Multiproxy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Nawaz%20Ali">Sheikh Nawaz Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratima%20Pandey"> Pratima Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Morthekai"> P. Morthekai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Dubey"> Jyotsna Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Firoze%20Quamar"> Md. Firoze Quamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high mountain glaciers are one of the most sensitive recorders of climate changes, because they have the tendency to respond to the combined effect of snow fall and temperature. The Himalayan glaciers have been studied with a good pace during the last decade. However, owing to its large ecological diversity and geographical vividness, major part of the Indian Himalaya is uninvestigated, and hence the palaeoclimatic patterns as well as the chronology of past glaciations in particular remain controversial for the entire Indian Himalayan transect. Although the Himalayan glaciers are nourished by two important climatic systems viz. the southwest summer monsoon and the mid-latitude westerlies, however, the influence of these systems is yet to be understood. Nevertheless, existing chronology (mostly exposure ages) indicate that irrespective of the geographical position, glaciers seem to grow during enhanced Indian summer monsoon (ISM). The Himalayan mountain glaciers are referred to the third pole or water tower of Asia as they form a huge reservoir of the fresh water supplies for the Asian countries. Mountain glaciers are sensitive probes of the local climate, and, thus, they present an opportunity and a challenge to interpret climates of the past as well as to predict future changes. The principle object of all the palaeoclimatic studies is to develop a futuristic models/scenario. However, it has been found that the glacial chronologies bracket the major phases of climatic events only, and other climatic proxies are sparse in Himalaya. This is the reason that compilation of data for rapid climatic change during the Holocene shows major gaps in this region. The sedimentation in proglacial lakes, conversely, is more continuous and, hence, can be used to reconstruct a more complete record of past climatic variability that is modulated by changing ice volume of the valley glacier. The Himalayan region has numerous proglacial lacustrine deposits formed during the late Quaternary period. However, there are only few such deposits which have been studied so far. Therefore, this is the high time when efforts have to be made to systematically map the moraines located in different climatic zones, reconstruct the local and regional moraine stratigraphy and use multiple dating techniques to bracket the events of glaciation. Besides this, emphasis must be given on carrying multiproxy studies on the lacustrine sediments that will provide a high resolution palaeoclimatic data from the alpine region of the Himalaya. Although the Himalayan glaciers fluctuated in accordance with the changing climatic conditions (natural forcing), however, it is too early to arrive at any conclusion. It is very crucial to generate multiproxy data sets covering wider geographical and ecological domains taking into consideration multiple parameters that directly or indirectly influence the glacier mass balance as well as the local climate of a region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glacial%20chronology" title="glacial chronology">glacial chronology</a>, <a href="https://publications.waset.org/abstracts/search?q=palaeoclimate" title=" palaeoclimate"> palaeoclimate</a>, <a href="https://publications.waset.org/abstracts/search?q=multiproxy" title=" multiproxy"> multiproxy</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalaya" title=" Himalaya"> Himalaya</a> </p> <a href="https://publications.waset.org/abstracts/54079/need-for-elucidation-of-palaeoclimatic-variability-in-the-high-himalayan-mountains-a-multiproxy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9308</span> Relationships of Plasma Lipids, Lipoproteins and Cardiovascular Outcomes with Climatic Variations: A Large 8-Year Period Brazilian Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20H.%20S.%20Zago">Vanessa H. S. Zago</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20H.%20de%20Avila"> Ana Maria H. de Avila</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20P.%20Costa"> Paula P. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Welington%20Corozolla"> Welington Corozolla</a>, <a href="https://publications.waset.org/abstracts/search?q=Liriam%20S.%20Teixeira"> Liriam S. Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliana%20C.%20de%20Faria"> Eliana C. de Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The outcome of cardiovascular disease is affected by environment and climate. This study evaluated the possible relationships between climatic and environmental changes and the occurrence of biological rhythms in serum lipids and lipoproteins in a large population sample in the city of Campinas, State of Sao Paulo, Brazil. In addition, it determined the temporal variations of death due to atherosclerotic events in Campinas during the time window examined. Methods: A large 8-year retrospective study was carried out to evaluate the lipid profiles of individuals attended at the University of Campinas (Unicamp). The study population comprised 27.543 individuals of both sexes and of all ages. Normolipidemic and dyslipidemic individuals classified according to Brazilian guidelines on dyslipidemias, participated in the study. For the same period, the temperature, relative humidity and daily brightness records were obtained from the Centro de Pesquisas Meteorologicas e Climaticas Aplicadas a Agricultura/Unicamp and frequencies of death due to atherosclerotic events in Campinas were acquired from the Brazilian official database DATASUS, according to the International Classification of Diseases. Statistical analyses were performed using both Cosinor and ARIMA temporal analysis methods. For cross-correlation analysis between climatic and lipid parameters, cross-correlation functions were used. Results: Preliminary results indicated that rhythmicity was significant for LDL-C and HDL-C in the cases of both normolipidemic and dyslipidemic subjects (n =respectively 11.892 and 15.651 both measures increasing in the winter and decreasing in the summer). On the other hand, for dyslipidemic subjects triglycerides increased in summer and decreased in winter, in contrast to normolipidemic ones, in which triglycerides did not show rhythmicity. The number of deaths due to atherosclerotic events showed significant rhythmicity, with maximum and minimum frequencies in winter and summer, respectively. Cross-correlation analyzes showed that low humidity and temperature, higher thermal amplitude and dark cycles are associated with increased levels of LDL-C and HDL-C during winter. In contrast, TG showed moderate cross-correlations with temperature and minimum humidity in an inverse way: maximum temperature and humidity increased TG during the summer. Conclusions: This study showed a coincident rhythmicity between low temperatures and high concentrations of LDL-C and HDL-C and the number of deaths due to atherosclerotic cardiovascular events in individuals from the city of Campinas. The opposite behavior of cholesterol and TG suggest different physiological mechanisms in their metabolic modulation by climate parameters change. Thus, new analyses are underway to better elucidate these mechanisms, as well as variations in lipid concentrations in relation to climatic variations and their associations with atherosclerotic disease and death outcomes in Campinas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20variations" title=" climatic variations"> climatic variations</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids%20and%20lipoproteins" title=" lipids and lipoproteins"> lipids and lipoproteins</a>, <a href="https://publications.waset.org/abstracts/search?q=associations" title=" associations"> associations</a> </p> <a href="https://publications.waset.org/abstracts/98540/relationships-of-plasma-lipids-lipoproteins-and-cardiovascular-outcomes-with-climatic-variations-a-large-8-year-period-brazilian-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=311">311</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=312">312</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20parameters&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10