CINXE.COM
Search results for: generalized hydrodynamic equations
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: generalized hydrodynamic equations</title> <meta name="description" content="Search results for: generalized hydrodynamic equations"> <meta name="keywords" content="generalized hydrodynamic equations"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="generalized hydrodynamic equations" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="generalized hydrodynamic equations"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2780</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: generalized hydrodynamic equations</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2780</span> Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Fedoseyev">Alex Fedoseyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison%20with%20experimental%20data.%20generalized%20hydrodynamic%20equations" title="comparison with experimental data. generalized hydrodynamic equations">comparison with experimental data. generalized hydrodynamic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20boundary%20layer" title=" turbulent boundary layer"> turbulent boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow%20in%20channel" title=" turbulent flow in channel"> turbulent flow in channel</a> </p> <a href="https://publications.waset.org/abstracts/179060/simulation-of-turbulent-flow-in-channel-using-generalized-hydrodynamic-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2779</span> Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Fedoseyev">Alex Fedoseyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backward-facing%20step" title="backward-facing step">backward-facing step</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison%20with%20experimental%20data" title=" comparison with experimental data"> comparison with experimental data</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations" title=" generalized hydrodynamic equations"> generalized hydrodynamic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=reattachment" title=" reattachment"> reattachment</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/179240/modeling-of-turbulent-flow-for-two-dimensional-backward-facing-step-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2778</span> A Fundamental Functional Equation for Lie Algebras</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ih-Ching%20Hsu">Ih-Ching Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fundamental%20functional%20equation" title="fundamental functional equation">fundamental functional equation</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20functional%20equations" title=" generalized functional equations"> generalized functional equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lie%20algebras" title=" Lie algebras"> Lie algebras</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternions" title=" quaternions"> quaternions</a> </p> <a href="https://publications.waset.org/abstracts/76600/a-fundamental-functional-equation-for-lie-algebras" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2777</span> Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadri%20Ko%C3%A7er">Kadri Koçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Sezer%20Kefeli"> Sezer Kefeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maneuverability" title="maneuverability">maneuverability</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20configuration" title=" tail configuration"> tail configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20design" title=" hydrodynamic design"> hydrodynamic design</a> </p> <a href="https://publications.waset.org/abstracts/144684/effects-of-x-and-tail-body-configurations-on-hydrodynamic-performance-and-stability-of-an-underwater-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2776</span> Finite Element Method for Solving the Generalized RLW Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel-Maksoud%20Abdel-Kader%20Soliman">Abdel-Maksoud Abdel-Kader Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20RLW%20equation" title="generalized RLW equation">generalized RLW equation</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=quartic%20b-spline" title=" quartic b-spline"> quartic b-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20partial%20differential%20equations" title=" nonlinear partial differential equations"> nonlinear partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title=" difference equations"> difference equations</a> </p> <a href="https://publications.waset.org/abstracts/9023/finite-element-method-for-solving-the-generalized-rlw-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2775</span> Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ali">S. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baccar"> M. Baccar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20ribbons" title=" helical ribbons"> helical ribbons</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20behavior" title=" hydrodynamic behavior"> hydrodynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=SSHE" title=" SSHE"> SSHE</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior" title=" thermal behavior"> thermal behavior</a> </p> <a href="https://publications.waset.org/abstracts/59515/performance-study-of-scraped-surface-heat-exchanger-with-helical-ribbons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2774</span> Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roslinda%20Nazar">Roslinda Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezad%20Hafidz%20Hafidzuddin"> Ezad Hafidz Hafidzuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norihan%20M.%20Arifin"> Norihan M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Pop"> Ioan Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretching%2Fshrinking%20sheet" title=" exponentially stretching/shrinking sheet"> exponentially stretching/shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20slip" title=" generalized slip"> generalized slip</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a> </p> <a href="https://publications.waset.org/abstracts/28361/numerical-solutions-of-boundary-layer-flow-over-an-exponentially-stretchingshrinking-sheet-with-generalized-slip-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2773</span> Study on Moisture-Induced-Damage of Semi-Rigid Base under Hydrodynamic Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baofeng%20Pan">Baofeng Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liu"> Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the high strength and large carrying capacity, the semi-rigid base is widely used in modern road engineering. However, hydrodynamic pressure, which is one of the main factors to cause early damage of semi-rigid base, cannot be avoided in the nature environment when pavement is subjected to some loadings such as the passing vehicles. In order to investigating how moisture-induced-damage of semi-rigid base influenced by hydrodynamic pressure, a new and effective experimental research method is provided in this paper. The results show that: (a) The washing action of high hydrodynamic pressure is the direct cause of strength reducing of road semi-rigid base. (b) The damage of high hydrodynamic pressure mainly occurs at the beginning of the scoring test and with the increasing of testing time the influence reduces. (c) Under the same hydrodynamic pressure, the longer the specimen health age, the stronger ability to resist moisture induced damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-rigid%20base" title="semi-rigid base">semi-rigid base</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20pressure" title=" hydrodynamic pressure"> hydrodynamic pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture-induced-damage" title=" moisture-induced-damage"> moisture-induced-damage</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20research" title=" experimental research"> experimental research</a> </p> <a href="https://publications.waset.org/abstracts/29849/study-on-moisture-induced-damage-of-semi-rigid-base-under-hydrodynamic-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2772</span> Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moonesun">Mohammad Moonesun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Asadi%20Asrami"> Ehsan Asadi Asrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Bodnarchuk"> Julia Bodnarchuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20vehicle" title="underwater vehicle">underwater vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20resistance" title=" hydrodynamic resistance"> hydrodynamic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a> </p> <a href="https://publications.waset.org/abstracts/126524/hydrodynamic-analysis-on-the-body-of-a-solar-autonomous-underwater-vehicle-by-numerical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2771</span> On the Fractional Integration of Generalized Mittag-Leffler Type Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Lavault">Christian Lavault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fox%E2%80%93Wright%20Psi%20function" title="Fox–Wright Psi function">Fox–Wright Psi function</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20hypergeometric%20function" title=" generalized hypergeometric function"> generalized hypergeometric function</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators" title=" generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators"> generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Saigo%27s%20generalized%20fractional%20calculus" title=" Saigo's generalized fractional calculus"> Saigo's generalized fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%27s%20M-series%20and%20K-function" title=" Sharma's M-series and K-function"> Sharma's M-series and K-function</a> </p> <a href="https://publications.waset.org/abstracts/60662/on-the-fractional-integration-of-generalized-mittag-leffler-type-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2770</span> The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Amamou">Amira Amamou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mnaouar%20Chouchane"> Mnaouar Chouchane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20journal%20bearing" title="hydrodynamic journal bearing">hydrodynamic journal bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20stability" title=" nonlinear stability"> nonlinear stability</a>, <a href="https://publications.waset.org/abstracts/search?q=continuation%20method" title=" continuation method"> continuation method</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcations" title=" bifurcations"> bifurcations</a> </p> <a href="https://publications.waset.org/abstracts/40937/the-nonlinear-dynamic-response-of-a-rotor-system-supported-by-hydrodynamic-journal-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2769</span> Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manideepa%20Saha">Manideepa Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jahnavi%20Chakrabarty"> Jahnavi Chakrabarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Seidel" title=" Gauss-Seidel"> Gauss-Seidel</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobi" title=" Jacobi"> Jacobi</a>, <a href="https://publications.waset.org/abstracts/search?q=SOR" title=" SOR"> SOR</a> </p> <a href="https://publications.waset.org/abstracts/97280/convergence-of-generalized-jacobi-gauss-seidel-and-successive-overrelaxation-methods-for-various-classes-of-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2768</span> A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Yang%20Wu">Jyh-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Gwo%20Chen"> Sheng-Gwo Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20laws" title="conservation laws">conservation laws</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20equations" title=" diffusion equations"> diffusion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20equations" title=" Cahn-Hilliard equations"> Cahn-Hilliard equations</a>, <a href="https://publications.waset.org/abstracts/search?q=evolving%20surfaces" title=" evolving surfaces"> evolving surfaces</a> </p> <a href="https://publications.waset.org/abstracts/56432/a-numerical-method-for-diffusion-and-cahn-hilliard-equations-on-evolving-spherical-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2767</span> Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manana%20Chumburidze">Manana Chumburidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-piezoelectricity" title="thermo-piezoelectricity">thermo-piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problems" title=" boundary value problems"> boundary value problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%27s%20series" title=" Fourier's series"> Fourier's series</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic%20homogeneous%20elastic%20media" title=" isotropic homogeneous elastic media "> isotropic homogeneous elastic media </a> </p> <a href="https://publications.waset.org/abstracts/33983/solution-of-some-boundary-value-problems-of-the-generalized-theory-of-thermo-piezoelectricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2766</span> Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xing%20Feng">Xing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanbin%20Li"> Yuanbin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20plane%20oil%20skimmer" title="curved plane oil skimmer">curved plane oil skimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20channel" title=" flow channel"> flow channel</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/76300/numerical-simulation-of-the-flow-channel-in-the-curved-plane-oil-skimmer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2765</span> Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win%20Ko%20Ko">Win Ko Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Temnov"> A. N. Temnov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20oscillations" title="nonlinear oscillations">nonlinear oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=two-layered%20liquid" title=" two-layered liquid"> two-layered liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=instability%20region" title=" instability region"> instability region</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20coefficients" title=" hydrodynamic coefficients"> hydrodynamic coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20frequency" title=" resonance frequency"> resonance frequency</a> </p> <a href="https://publications.waset.org/abstracts/115967/research-of-amplitude-frequency-characteristics-of-nonlinear-oscillations-of-the-interface-of-two-layered-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2764</span> Hydrodynamic Analysis of Journal Bearing Operating With Nanolubricants </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hariprakash">R. Hariprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Prabhakaran%20Nair"> K. Prabhakaran Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the static and dynamic characteristics of hydrodynamic journal bearings operating under nano lubricants are presented. Hydrodynamic journal bearings are used in turbo machines of power plants to support heavy load. In power plants, bearings are getting failure because of its inability to support the heavy load due to various reasons. Failures of bearings make the power plant to be shutdown. The load carrying capacity of journal bearing mainly depends upon the viscosity of the lubricants. The addition of nano particles on commercially available lubricant may enhance the viscosity of lubricant and in turn, change the performance characteristics. In the literature, though many studies have been carried out for the hydrodynamic bearing operating under Newtonian and non-Newtonian lubricants, studies on hydrodynamic bearings operating under nano lubricants is scarce. Thus, it is felt that there is a need to recompute the performance characteristics of journal bearings operating under nano lubricants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title="hydrodynamic">hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=journal" title=" journal"> journal</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a> </p> <a href="https://publications.waset.org/abstracts/2859/hydrodynamic-analysis-of-journal-bearing-operating-with-nanolubricants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2763</span> Hydrodynamic Study and Sizing of a Distillation Column by HYSYS Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derrouazin%20Mohammed%20Redhouane">Derrouazin Mohammed Redhouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Souakri%20Mohammed%20Lotfi"> Souakri Mohammed Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Henini%20Ghania"> Henini Ghania</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work consists, first of all, of mastering one of the powerful process simulation tools currently used in the industrial processes, which is the HYSYS sizing software, and second, of simulating a petroleum distillation column. This study is divided into two parts; where the first one consists of a dimensioning of the column with a fast approximating method using state equations, iterative calculations, and then a precise simulation method with the HYSYS software. The second part of this study is a hydrodynamic study in order to verify by obtained results the proper functioning of the plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%20process%20engineering" title="industry process engineering">industry process engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distillation" title=" water distillation"> water distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=HYSYS%20simulation%20tool" title=" HYSYS simulation tool"> HYSYS simulation tool</a> </p> <a href="https://publications.waset.org/abstracts/154967/hydrodynamic-study-and-sizing-of-a-distillation-column-by-hysys-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2762</span> On Boundary Value Problems of Fractional Differential Equations Involving Stieltjes Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdad%20Said">Baghdad Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Differential equations of fractional order have proved to be important tools to describe many physical phenomena and have been used in diverse fields such as engineering, mathematics as well as other applied sciences. On the other hand, the theory of differential equations involving the Stieltjes derivative (SD) with respect to a non-decreasing function is a new class of differential equations and has many applications as a unified framework for dynamic equations on time scales and differential equations with impulses at fixed times. The aim of this paper is to investigate the existence, uniqueness, and generalized Ulam-Hyers-Rassias stability (UHRS) of solutions for a boundary value problem of sequential fractional differential equations (SFDE) containing (SD). This study is based on the technique of noncompactness measures (MNCs) combined with Monch-Krasnoselski fixed point theorems (FPT), and the results are proven in an appropriate Banach space under sufficient hypotheses. We also give an illustrative example. In this work, we introduced a class of (SFDE) and the results are obtained under a few hypotheses. Future directions connected to this work could focus on another problem with different types of fractional integrals and derivatives, and the (SD) will be assumed under a more general hypothesis in more general functional spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SFDE" title="SFDE">SFDE</a>, <a href="https://publications.waset.org/abstracts/search?q=SD" title=" SD"> SD</a>, <a href="https://publications.waset.org/abstracts/search?q=UHRS" title=" UHRS"> UHRS</a>, <a href="https://publications.waset.org/abstracts/search?q=MNCs" title=" MNCs"> MNCs</a>, <a href="https://publications.waset.org/abstracts/search?q=FPT" title=" FPT"> FPT</a> </p> <a href="https://publications.waset.org/abstracts/187408/on-boundary-value-problems-of-fractional-differential-equations-involving-stieltjes-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2761</span> Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okuyade%20Ighoroje%20Wilson%20Ata">Okuyade Ighoroje Wilson Ata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title="chemical reaction">chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20effect" title=" hall effect"> hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-hydrodynamic" title=" magneto-hydrodynamic"> magneto-hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20plates%20channel" title=" vertical plates channel"> vertical plates channel</a> </p> <a href="https://publications.waset.org/abstracts/161571/magneto-hydrodynamic-mixed-convective-fluid-flow-through-two-parallel-vertical-plates-channel-with-hall-chemical-reaction-and-thermal-radiation-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2760</span> Caputo-Type Fuzzy Fractional Riccati Differential Equations with Fuzzy Initial Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trilok%20Mathur">Trilok Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivi%20Agarwal"> Shivi Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the solutions of fuzzy-fractional-order Riccati equations under Caputo-type fuzzy fractional derivatives. The Caputo-type fuzzy fractional derivatives are defined based on Hukuhura difference and strongly generalized fuzzy differentiability. The Laplace-Adomian-Pade method is used for solving fractional Riccati-type initial value differential equations of fractional order. Moreover, we also displayed some examples to illustrate our methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caputo-type%20fuzzy%20fractional%20derivative" title="Caputo-type fuzzy fractional derivative">Caputo-type fuzzy fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Riccati%20differential%20equations" title=" Fractional Riccati differential equations"> Fractional Riccati differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace-Adomian-Pade%20method" title=" Laplace-Adomian-Pade method"> Laplace-Adomian-Pade method</a>, <a href="https://publications.waset.org/abstracts/search?q=Mittag%20Leffler%20function" title=" Mittag Leffler function"> Mittag Leffler function</a> </p> <a href="https://publications.waset.org/abstracts/51080/caputo-type-fuzzy-fractional-riccati-differential-equations-with-fuzzy-initial-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2759</span> Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Lehaibi"> Eman A. Al-Lehaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adomian%E2%80%99s%20decomposition%20method" title="Adomian’s decomposition method">Adomian’s decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-thermoelasticity" title=" magneto-thermoelasticity"> magneto-thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20conductivity" title=" finite conductivity"> finite conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=iteration%20method" title=" iteration method"> iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20load" title=" thermal load"> thermal load</a> </p> <a href="https://publications.waset.org/abstracts/97851/adomians-decomposition-method-to-generalized-magneto-thermoelasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2758</span> Axisymmetric Rotating Flow over a Permeable Surface with Heat and Mass Transfer Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faraz">Muhammad Faraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Talat%20Rafique"> Talat Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang%20Min%20Park"> Jang Min Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, rotational flow above a permeable surface with a variable free stream angular velocity is considered. Main interest is to solve the associated heat/mass transport equations under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow are analyzed under two altered heating processes, namely, the (i) prescribed surface temperature and (ii) prescribed heat flux. The vortex motion imposed at infinity is assumed to follow a power-law form 〖(r/r_0)〗^((2n-1)) where r denotes the radial coordinate, r_0 the disk radius, and n is a power-law parameter. Assuming a similar solution, the governing Navier-Stokes equations transform into a set of coupled ODEs which are treated numerically for the aforementioned thermal conditions. Secondly, mass transport phenomena accompanied by activation energy are incorporated into the generalized vortex flow situation. After finding self-similar equations, a numerical solution is furnished by using MATLAB's built-in function bvp4c. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=b%C3%B6dewadt%20flow" title="bödewadt flow">bödewadt flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20flow" title=" vortex flow"> vortex flow</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20flows" title=" rotating flows"> rotating flows</a>, <a href="https://publications.waset.org/abstracts/search?q=prescribed%20heat%20flux" title=" prescribed heat flux"> prescribed heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20surface" title=" permeable surface"> permeable surface</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/179351/axisymmetric-rotating-flow-over-a-permeable-surface-with-heat-and-mass-transfer-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2757</span> Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Akgun">G. Akgun</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Algul"> I. Algul</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kurtaran"> H. Kurtaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20differential%20quadrature" title="generalized differential quadrature">generalized differential quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite" title=" laminated composite"> laminated composite</a>, <a href="https://publications.waset.org/abstracts/search?q=super-elliptic%20cross-section" title=" super-elliptic cross-section"> super-elliptic cross-section</a> </p> <a href="https://publications.waset.org/abstracts/74966/nonlinear-static-analysis-of-laminated-composite-hollow-beams-with-super-elliptic-cross-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2756</span> The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Krutil">Jaroslav Krutil</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Pochyl%C3%BD"> František Pochylý</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Fialov%C3%A1"> Simona Fialová</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Hab%C3%A1n"> Vladimír Habán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20gap" title=" hydrodynamic gap"> hydrodynamic gap</a>, <a href="https://publications.waset.org/abstracts/search?q=matrices%20of%20mass" title=" matrices of mass"> matrices of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping" title=" stiffness and damping"> stiffness and damping</a> </p> <a href="https://publications.waset.org/abstracts/22442/the-effects-of-a-thin-liquid-layer-on-the-hydrodynamic-machine-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2755</span> Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sezer%20Kefeli">Sezer Kefeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Serta%C3%A7%20Arslan"> Sertaç Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20envelope" title=" cavity envelope"> cavity envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20underwater%20vehicles" title=" high speed underwater vehicles"> high speed underwater vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=supercavitating%20flows" title=" supercavitating flows"> supercavitating flows</a>, <a href="https://publications.waset.org/abstracts/search?q=supercavitation" title=" supercavitation"> supercavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title=" drag reduction"> drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=supercavitation%20parameters" title=" supercavitation parameters"> supercavitation parameters</a> </p> <a href="https://publications.waset.org/abstracts/144705/numerical-modelling-of-hydrodynamic-drag-and-supercavitation-parameters-for-supercavitating-torpedoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2754</span> Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transverse%20magnetic" title="transverse magnetic">transverse magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20electric" title=" transverse electric"> transverse electric</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hydrodynamic%20model" title=" quantum hydrodynamic model"> quantum hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20exchange-correlation%20potential" title=" electron exchange-correlation potential"> electron exchange-correlation potential</a>, <a href="https://publications.waset.org/abstracts/search?q=single-wall%20carbon%20nanotubes" title=" single-wall carbon nanotubes"> single-wall carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/69939/implication-of-the-exchange-correlation-on-electromagnetic-wave-propagation-in-single-wall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2753</span> Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Guemmadi">M. Guemmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ouibrahim"> A. Ouibrahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=journal%20bearing" title="journal bearing">journal bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=lubrication" title=" lubrication"> lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20model" title=" Maxwell model"> Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20fluids" title=" viscoelastic fluids"> viscoelastic fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title=" computational modelling"> computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20capacity" title=" load capacity"> load capacity</a> </p> <a href="https://publications.waset.org/abstracts/13167/pressure-distribution-load-capacity-and-thermal-effect-with-generalized-maxwell-model-in-journal-bearing-lubrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2752</span> Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Zorgati">Riadh Zorgati</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Triboulet"> Thomas Triboulet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conditioning" title="conditioning">conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20inverse" title=" generalized inverse"> generalized inverse</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20system" title=" linear system"> linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=norms" title=" norms"> norms</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20matrix" title=" stochastic matrix"> stochastic matrix</a> </p> <a href="https://publications.waset.org/abstracts/110567/stochastic-matrices-and-lp-norms-for-ill-conditioned-linear-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2751</span> A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Hsiu%20Chi">Mei-Hsiu Chi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Yang%20Wu"> Jyh-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Gwo%20Chen"> Sheng-Gwo Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20surfaces" title="closed surfaces">closed surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20approachs" title=" high-order approachs"> high-order approachs</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion%20systems" title=" reaction-diffusion systems"> reaction-diffusion systems</a> </p> <a href="https://publications.waset.org/abstracts/56431/a-study-of-numerical-reaction-diffusion-systems-on-closed-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=93">93</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>