CINXE.COM

Construction of the real numbers - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Construction of the real numbers - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"5e57e465-2cd9-454f-bdbd-7f1eccc1781d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Construction_of_the_real_numbers","wgTitle":"Construction of the real numbers","wgCurRevisionId":1272702424,"wgRevisionId":1272702424,"wgArticleId":296666,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Pages displaying short descriptions of redirect targets via Module:Annotated link","Real numbers","Constructivism (mathematics)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Construction_of_the_real_numbers","wgRelevantArticleId":296666,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2584477","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Construction of the real numbers - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Construction_of_the_real_numbers"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Construction_of_the_real_numbers"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Construction_of_the_real_numbers rootpage-Construction_of_the_real_numbers skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Construction+of+the+real+numbers" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Construction+of+the+real+numbers" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Construction+of+the+real+numbers" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Construction+of+the+real+numbers" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Axiomatic_definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Axiomatic_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Axiomatic definitions</span> </div> </a> <button aria-controls="toc-Axiomatic_definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Axiomatic definitions subsection</span> </button> <ul id="toc-Axiomatic_definitions-sublist" class="vector-toc-list"> <li id="toc-Axioms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Axioms</span> </div> </a> <ul id="toc-Axioms-sublist" class="vector-toc-list"> <li id="toc-On_the_least_upper_bound_property" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#On_the_least_upper_bound_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.1</span> <span>On the least upper bound property</span> </div> </a> <ul id="toc-On_the_least_upper_bound_property-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-On_models" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#On_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.2</span> <span>On models</span> </div> </a> <ul id="toc-On_models-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tarski&#039;s_axiomatization_of_the_reals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tarski&#039;s_axiomatization_of_the_reals"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Tarski's axiomatization of the reals</span> </div> </a> <ul id="toc-Tarski&#039;s_axiomatization_of_the_reals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Explicit_constructions_of_models" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Explicit_constructions_of_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Explicit constructions of models</span> </div> </a> <button aria-controls="toc-Explicit_constructions_of_models-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Explicit constructions of models subsection</span> </button> <ul id="toc-Explicit_constructions_of_models-sublist" class="vector-toc-list"> <li id="toc-Construction_from_Cauchy_sequences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_from_Cauchy_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Construction from Cauchy sequences</span> </div> </a> <ul id="toc-Construction_from_Cauchy_sequences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction_by_Dedekind_cuts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_by_Dedekind_cuts"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Construction by Dedekind cuts</span> </div> </a> <ul id="toc-Construction_by_Dedekind_cuts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction_using_hyperreal_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_using_hyperreal_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Construction using hyperreal numbers</span> </div> </a> <ul id="toc-Construction_using_hyperreal_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction_from_surreal_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_from_surreal_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Construction from surreal numbers</span> </div> </a> <ul id="toc-Construction_from_surreal_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction_from_integers_(Eudoxus_reals)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_from_integers_(Eudoxus_reals)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Construction from integers (Eudoxus reals)</span> </div> </a> <ul id="toc-Construction_from_integers_(Eudoxus_reals)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_constructions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Other constructions</span> </div> </a> <ul id="toc-Other_constructions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Construction of the real numbers</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 10 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-10" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">10 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A5%D9%86%D8%B4%D8%A7%D8%A1_%D8%A7%D9%84%D8%A3%D8%B9%D8%AF%D8%A7%D8%AF_%D8%A7%D9%84%D8%AD%D9%82%D9%8A%D9%82%D9%8A%D8%A9" title="إنشاء الأعداد الحقيقية – Arabic" lang="ar" hreflang="ar" data-title="إنشاء الأعداد الحقيقية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Construcci%C3%B3_dels_nombres_reals" title="Construcció dels nombres reals – Catalan" lang="ca" hreflang="ca" data-title="Construcció dels nombres reals" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Axiomas_de_los_n%C3%BAmeros_reales" title="Axiomas de los números reales – Spanish" lang="es" hreflang="es" data-title="Axiomas de los números reales" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Construction_des_nombres_r%C3%A9els" title="Construction des nombres réels – French" lang="fr" hreflang="fr" data-title="Construction des nombres réels" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EA%B5%AC%EC%84%B1" title="실수의 구성 – Korean" lang="ko" hreflang="ko" data-title="실수의 구성" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Konstruksi_bilangan_riil" title="Konstruksi bilangan riil – Indonesian" lang="id" hreflang="id" data-title="Konstruksi bilangan riil" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Costruzione_dei_numeri_reali" title="Costruzione dei numeri reali – Italian" lang="it" hreflang="it" data-title="Costruzione dei numeri reali" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%91%D7%A0%D7%99%D7%99%D7%AA_%D7%94%D7%9E%D7%A1%D7%A4%D7%A8%D7%99%D7%9D_%D7%94%D7%9E%D7%9E%D7%A9%D7%99%D7%99%D7%9D" title="בניית המספרים הממשיים – Hebrew" lang="he" hreflang="he" data-title="בניית המספרים הממשיים" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B5_%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D1%8B_%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F_%D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" title="Конструктивные способы определения вещественного числа – Russian" lang="ru" hreflang="ru" data-title="Конструктивные способы определения вещественного числа" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8%E7%9A%84%E6%A7%8B%E9%80%A0" title="實數的構造 – Chinese" lang="zh" hreflang="zh" data-title="實數的構造" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2584477#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Construction_of_the_real_numbers" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Construction_of_the_real_numbers" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Construction_of_the_real_numbers"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Construction_of_the_real_numbers"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Construction_of_the_real_numbers" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Construction_of_the_real_numbers" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;oldid=1272702424" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Construction_of_the_real_numbers&amp;id=1272702424&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConstruction_of_the_real_numbers"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConstruction_of_the_real_numbers"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Construction_of_the_real_numbers&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2584477" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p> In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, there are several equivalent ways of defining the <a href="/wiki/Real_number" title="Real number">real numbers</a>. One of them is that they form a <a href="/wiki/Complete_ordered_field" class="mw-redirect" title="Complete ordered field">complete ordered field</a> that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structure</a> that satisfies the definition. </p><p>The article presents several such constructions.<sup id="cite_ref-FOOTNOTEWeiss2015_1-0" class="reference"><a href="#cite_note-FOOTNOTEWeiss2015-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> They are equivalent in the sense that, given the result of any two such constructions, there is a unique <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> of <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a> between them. This results from the above definition and is independent of particular constructions. These isomorphisms allow identifying the results of the constructions, and, in practice, to forget which construction has been chosen. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Axiomatic_definitions">Axiomatic definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=1" title="Edit section: Axiomatic definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <a href="/wiki/Axiomatic_method" class="mw-redirect" title="Axiomatic method">axiomatic definition</a> of the real numbers consists of defining them as the elements of a complete ordered field.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> This means the following: The real numbers form a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>, commonly denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, containing two distinguished elements denoted 0 and 1, and on which are defined two <a href="/wiki/Binary_operation" title="Binary operation">binary operations</a> and one <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a>; the operations are called <i>addition</i> and <i>multiplication</i> of real numbers and denoted respectively with <span class="texhtml">+</span> and <span class="texhtml">×</span>; the binary relation is <i>inequality</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad34d009daf13edc6fd9207e76f6c9f1ed17fb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.455ex; height:2.176ex;" alt="{\displaystyle \leq .}" /></span> Moreover, the following properties called <a href="/wiki/Axiom" title="Axiom">axioms</a> must be satisfied. </p><p>The existence of such a <a href="/wiki/Mathematical_structure" title="Mathematical structure">structure</a> is a <a href="/wiki/Theorem" title="Theorem">theorem</a>, which is proved by constructing such a structure. A consequence of the axioms is that this structure is unique <a href="/wiki/Up_to" title="Up to">up to</a> an isomorphism, and thus, the real numbers can be used and manipulated, without referring to the method of construction. </p> <div class="mw-heading mw-heading3"><h3 id="Axioms">Axioms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=2" title="Edit section: Axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> under addition and multiplication. In other words, <ul><li>For all <i>x</i>, <i>y</i>, and <i>z</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> + (<i>y</i> + <i>z</i>) = (<i>x</i> + <i>y</i>) + <i>z</i> and <i>x</i> × (<i>y</i> × <i>z</i>) = (<i>x</i> × <i>y</i>) × <i>z</i>. (<a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associativity</a> of addition and multiplication)</li> <li>For all <i>x</i> and <i>y</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> + <i>y</i> = <i>y</i> + <i>x</i> and <i>x</i> × <i>y</i> = <i>y</i> × <i>x</i>. (<a href="/wiki/Commutative_operation" class="mw-redirect" title="Commutative operation">commutativity</a> of addition and multiplication)</li> <li>For all <i>x</i>, <i>y</i>, and <i>z</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> × (<i>y</i> + <i>z</i>) = (<i>x</i> × <i>y</i>) + (<i>x</i> × <i>z</i>). (<a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributivity</a> of multiplication over addition)</li> <li>For all <i>x</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> + 0 = <i>x</i>. (existence of additive <a href="/wiki/Identity_element" title="Identity element">identity</a>)</li> <li>0 is not equal to 1, and for all <i>x</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> × 1 = <i>x</i>. (existence of multiplicative identity)</li> <li>For every <i>x</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, there exists an element &#8722;<i>x</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, such that <i>x</i> + (&#8722;<i>x</i>) = 0. (existence of additive <a href="/wiki/Inverse_element" title="Inverse element">inverses</a>)</li> <li>For every <i>x</i> ≠ 0 in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, there exists an element <i>x</i><sup>&#8722;1</sup> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, such that <i>x</i> × <i>x</i><sup>&#8722;1</sup> = 1. (existence of multiplicative inverses)</li></ul></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> is <a href="/wiki/Totally_ordered_set" class="mw-redirect" title="Totally ordered set">totally ordered</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/440568a09c3bfdf0e1278bfa79eb137c04e94035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \leq }" /></span>. In other words, <ul><li>For all <i>x</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> ≤ <i>x</i>. (<a href="/wiki/Reflexive_relation" title="Reflexive relation">reflexivity</a>)</li> <li>For all <i>x</i> and <i>y</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, if <i>x</i> ≤ <i>y</i> and <i>y</i> ≤ <i>x</i>, then <i>x</i> = <i>y</i>. (<a href="/wiki/Antisymmetric_relation" title="Antisymmetric relation">antisymmetry</a>)</li> <li>For all <i>x</i>, <i>y</i>, and <i>z</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, if <i>x</i> ≤ <i>y</i> and <i>y</i> ≤ <i>z</i>, then <i>x</i> ≤ <i>z</i>. (<a href="/wiki/Transitive_relation" title="Transitive relation">transitivity</a>)</li> <li>For all <i>x</i> and <i>y</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, <i>x</i> ≤ <i>y</i> or <i>y</i> ≤ <i>x</i>. (<a href="/wiki/Total_order" title="Total order">totality</a>)</li></ul></li> <li>Addition and multiplication are compatible with the order. In other words, <ul><li>For all <i>x</i>, <i>y</i> and <i>z</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, if <i>x</i> ≤ <i>y</i>, then <i>x</i> + <i>z</i> ≤ <i>y</i> + <i>z</i>. (preservation of order under addition)</li> <li>For all <i>x</i> and <i>y</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, if 0 ≤ <i>x</i> and 0 ≤ <i>y</i>, then 0 ≤ <i>x</i> × <i>y</i> (preservation of order under multiplication)</li></ul></li> <li>The order ≤ is <i>complete</i> in the following sense: every non-empty subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> that is <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">bounded above</a> has a <a href="/wiki/Least_upper_bound" class="mw-redirect" title="Least upper bound">least upper bound</a>. In other words, <ul><li>If <i>A</i> is a non-empty subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, and if <i>A</i> has an <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0522388d36b55de7babe4bbfc49475eaf590c2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} ,}" /></span> then <i>A</i> has a least upper bound <i>u</i>, such that for every upper bound <i>v</i> of <i>A</i>, <i>u</i> ≤ <i>v</i>.</li></ul></li></ol> <div class="mw-heading mw-heading4"><h4 id="On_the_least_upper_bound_property">On the least upper bound property</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=3" title="Edit section: On the least upper bound property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Axiom 4, which requires the order to be <a href="/wiki/Dedekind-complete" class="mw-redirect" title="Dedekind-complete">Dedekind-complete</a>, implies the <a href="/wiki/Archimedean_property" title="Archimedean property">Archimedean property</a>. </p><p>The axiom is crucial in the characterization of the reals. For example, the totally <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a> of the rational numbers <b>Q</b> satisfies the first three axioms, but not the fourth. In other words, models of the rational numbers are also models of the first three axioms. </p><p>Note that the axiom is <a href="/wiki/Nonfirstorderizability" title="Nonfirstorderizability">nonfirstorderizable</a>, as it expresses a statement about collections of reals and not just individual such numbers. As such, the reals are not given by a <a href="/wiki/List_of_first-order_theories" title="List of first-order theories">first-order logic theory</a>. </p> <div class="mw-heading mw-heading4"><h4 id="On_models">On models</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=4" title="Edit section: On models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <i>model of real numbers</i> is a <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structure</a> that satisfies the above axioms. Several models are given <a href="#Explicit_constructions_of_models">below</a>. Any two models are isomorphic; so, the real numbers are unique <a href="/wiki/Up_to" title="Up to">up to</a> isomorphisms. </p><p>Saying that any two models are isomorphic means that for any two models <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,0_{\mathbb {R} },1_{\mathbb {R} },+_{\mathbb {R} },\times _{\mathbb {R} },\leq _{\mathbb {R} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,0_{\mathbb {R} },1_{\mathbb {R} },+_{\mathbb {R} },\times _{\mathbb {R} },\leq _{\mathbb {R} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfb0262f2acad4040068856c5cb0bf5715fa6579" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.501ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ,0_{\mathbb {R} },1_{\mathbb {R} },+_{\mathbb {R} },\times _{\mathbb {R} },\leq _{\mathbb {R} })}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,0_{S},1_{S},+_{S},\times _{S},\leq _{S}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>,</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>,</mo> <msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>,</mo> <msub> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>,</mo> <msub> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,0_{S},1_{S},+_{S},\times _{S},\leq _{S}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd148e3d4df34f3adb07ce21debae68ff619a461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.336ex; height:2.843ex;" alt="{\displaystyle (S,0_{S},1_{S},+_{S},\times _{S},\leq _{S}),}" /></span> there is a <a href="/wiki/Bijection" title="Bijection">bijection</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon \mathbb {R} \to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x3a;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon \mathbb {R} \to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3262d1bff8b7358b8b8752264225f386d14e2840" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.104ex; height:2.509ex;" alt="{\displaystyle f\colon \mathbb {R} \to S}" /></span> that preserves both the field operations and the order. Explicitly, </p> <ul><li><span class="texhtml"><i>f</i></span> is both <a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a> and <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a>.</li> <li><span class="texhtml"><i>f</i>(0<sub>ℝ</sub>) = 0<sub><i>S</i></sub></span> and <span class="texhtml"><i>f</i>(1<sub>ℝ</sub>) = 1<sub><i>S</i></sub></span>.</li> <li><span class="texhtml"><i>f</i>(<i>x</i> +<sub>ℝ</sub> <i>y</i>) = <i>f</i>(<i>x</i>) +<sub><i>S</i></sub> <i>f</i>(<i>y</i>)</span> and <span class="texhtml"><i>f</i>(<i>x</i> ×<sub>ℝ</sub> <i>y</i>) = <i>f</i>(<i>x</i>) ×<sub><i>S</i></sub> <i>f</i>(<i>y</i>)</span>, for all <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}" /></span></li> <li><span class="texhtml"><i>x</i> ≤<sub>ℝ</sub> <i>y</i></span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml"><i>f</i>(<i>x</i>) ≤<sub><i>S</i></sub> <i>f</i>(<i>y</i>)</span>, for all <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9de9049e03e5e5a0cab57076dbe4a369c1e3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} .}" /></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Tarski's_axiomatization_of_the_reals"><span id="Tarski.27s_axiomatization_of_the_reals"></span>Tarski's axiomatization of the reals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=5" title="Edit section: Tarski&#39;s axiomatization of the reals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski's axiomatization of the reals</a></div> <p>An alternative synthetic <a href="/wiki/Axiomatization" class="mw-redirect" title="Axiomatization">axiomatization</a> of the real numbers and their arithmetic was given by <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a>, consisting of only the 8 <a href="/wiki/Axiom" title="Axiom">axioms</a> shown below and a mere four <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notions</a>: a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> called <i>the real numbers</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> called <i>order</i>, denoted by the <a href="/wiki/Infix_operator" class="mw-redirect" title="Infix operator">infix operator</a> &lt;, a <a href="/wiki/Binary_operation" title="Binary operation">binary operation</a> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> called <i>addition</i>, denoted by the infix operator +, and the constant 1. </p><p><i>Axioms of order</i> (primitives: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, &lt;): </p><p><b>Axiom 1</b>. If <i>x</i> &lt; <i>y</i>, then not <i>y</i> &lt; <i>x</i>. That is, "&lt;" is an <a href="/wiki/Asymmetric_relation" title="Asymmetric relation">asymmetric relation</a>. </p><p><b>Axiom 2</b>. If <i>x</i>&#160;&lt;&#160;<i>z</i>, there exists a <i>y</i> such that <i>x</i>&#160;&lt;&#160;<i>y</i> and <i>y</i>&#160;&lt;&#160;<i>z</i>. In other words, "&lt;" is <a href="/wiki/Dense_order" title="Dense order">dense</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>. </p><p><b>Axiom 3</b>. "&lt;" is <a href="/wiki/Dedekind-complete" class="mw-redirect" title="Dedekind-complete">Dedekind-complete</a>. More formally, for all <i>X</i>,&#160;<i>Y</i>&#160;⊆&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, if for all <i>x</i>&#160;∈&#160;<i>X</i> and <i>y</i>&#160;∈&#160;<i>Y</i>, <i>x</i>&#160;&lt;&#160;<i>y</i>, then there exists a <i>z</i> such that for all <i>x</i>&#160;∈&#160;<i>X</i> and <i>y</i>&#160;∈&#160;<i>Y</i>, if <i>z</i>&#160;≠&#160;<i>x</i> and <i>z</i>&#160;≠&#160;<i>y</i>, then <i>x</i>&#160;&lt;&#160;<i>z</i> and <i>z</i>&#160;&lt;&#160;<i>y</i>. </p><p>To clarify the above statement somewhat, let <i>X</i>&#160;⊆&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> and <i>Y</i>&#160;⊆&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>. We now define two common English verbs in a particular way that suits our purpose: </p> <dl><dd><i>X precedes Y</i> if and only if for every <i>x</i>&#160;&#8712;&#160;<i>X</i> and every <i>y</i>&#160;&#8712;&#160;<i>Y</i>, <i>x</i>&#160;&lt;&#160;<i>y</i>.</dd></dl> <dl><dd>The real number <i>z separates</i> <i>X</i> and <i>Y</i> if and only if for every <i>x</i>&#160;&#8712;&#160;<i>X</i> with <i>x</i>&#160;&#8800;&#160;<i>z</i> and every <i>y</i>&#160;&#8712;&#160;<i>Y</i> with <i>y</i>&#160;&#8800;&#160;<i>z</i>, <i>x</i>&#160;&lt;&#160;<i>z</i> and <i>z</i>&#160;&lt;&#160;<i>y</i>.</dd></dl> <p>Axiom 3 can then be stated as: </p> <dl><dd>"If a set of reals precedes another set of reals, then there exists at least one real number separating the two sets."</dd></dl> <p><i>Axioms of addition</i> (primitives: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, &lt;, +): </p><p><b>Axiom 4</b>. <i>x</i>&#160;+&#160;(<i>y</i>&#160;+&#160;<i>z</i>)&#160;=&#160;(<i>x</i>&#160;+&#160;<i>z</i>)&#160;+&#160;<i>y</i>. </p><p><b>Axiom 5</b>. For all <i>x</i>, <i>y</i>, there exists a <i>z</i> such that <i>x</i>&#160;+&#160;<i>z</i>&#160;=&#160;<i>y</i>. </p><p><b>Axiom 6</b>. If <i>x</i>&#160;+&#160;<i>y</i>&#160;&lt;&#160;<i>z</i>&#160;+&#160;<i>w</i>, then <i>x</i>&#160;&lt;&#160;<i>z</i> or <i>y</i>&#160;&lt;&#160;<i>w</i>. </p><p><i>Axioms for one</i> (primitives: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>, &lt;, +, 1): </p><p><b>Axiom 7</b>. 1&#160;∈&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>. </p><p><b>Axiom 8</b>. 1&#160;&lt;&#160;1&#160;+&#160;1. </p><p>These axioms imply that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> is a <a href="/wiki/Linearly_ordered_group" title="Linearly ordered group">linearly ordered</a> <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> under addition with distinguished element 1. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> is also <a href="/wiki/Dedekind-complete" class="mw-redirect" title="Dedekind-complete">Dedekind-complete</a> and <a href="/wiki/Divisible_group" title="Divisible group">divisible</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Explicit_constructions_of_models">Explicit constructions of models</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=6" title="Edit section: Explicit constructions of models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We shall not prove that any models of the axioms are isomorphic. Such a proof can be found in any number of modern analysis or set theory textbooks. We will sketch the basic definitions and properties of a number of constructions, however, because each of these is important for both mathematical and historical reasons. The first three, due to <a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a>/<a href="/wiki/Charles_M%C3%A9ray" title="Charles Méray">Charles Méray</a>, <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a>/<a href="/wiki/Joseph_Bertrand" title="Joseph Bertrand">Joseph Bertrand</a> and <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Karl Weierstrass</a> all occurred within a few years of each other. Each has advantages and disadvantages. </p> <div class="mw-heading mw-heading3"><h3 id="Construction_from_Cauchy_sequences">Construction from Cauchy sequences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=7" title="Edit section: Construction from Cauchy sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A standard procedure to force all <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequences</a> in a <a href="/wiki/Metric_space" title="Metric space">metric space</a> to converge is adding new points to the metric space in a process called <a href="/wiki/Completeness_(topology)" class="mw-redirect" title="Completeness (topology)">completion</a>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> is defined as the completion of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }" /></span> of the rational numbers with respect to the metric <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i> − <i>y</i></span>&#124;</span> Normally, metrics are defined with real numbers as values, but this does not make the construction/definition circular, since all numbers that are implied (even implicitly) are rational numbers.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let <i>R</i> be the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of Cauchy sequences of rational numbers. That is, sequences </p> <dl><dd><span class="texhtml">(<i>x</i><sub><i>1</i></sub>, <i>x</i><sub><i>2</i></sub>, <i>x</i><sub><i>3</i></sub>,...)</span></dd></dl> <p>of rational numbers such that for every rational <span class="texhtml"><i>ε</i> &gt; 0</span>, there exists an integer <span class="texhtml"><i>N</i></span> such that for all natural numbers <span class="texhtml"><i>m</i>, <i>n</i> &gt; <i>N</i></span>, one has <span class="texhtml"> |<i>x</i><sub><i>m</i></sub> − <i>x</i><sub><i>n</i></sub>| &lt; <i>ε</i></span>. Here the vertical bars denote the absolute value. </p><p>Cauchy sequences <span class="texhtml">(<i>x</i><sub><i>n</i></sub>)</span> and <span class="texhtml">(<i>y</i><sub><i>n</i></sub>)</span> can be added and multiplied as follows: </p> <dl><dd><span class="texhtml">(<i>x</i><sub><i>n</i></sub>) + (<i>y</i><sub><i>n</i></sub>) = (<i>x</i><sub><i>n</i></sub> + <i>y</i><sub><i>n</i></sub>)</span></dd> <dd><span class="texhtml">(<i>x</i><sub><i>n</i></sub>) &#215; (<i>y</i><sub><i>n</i></sub>) = (<i>x</i><sub><i>n</i></sub> &#215; <i>y</i><sub><i>n</i></sub>)</span>.</dd></dl> <p>Two Cauchy sequences <span class="texhtml">(<i>x</i><sub><i>n</i></sub>)</span> and <span class="texhtml">(<i>y</i><sub><i>n</i></sub>)</span> are called <i>equivalent</i> if and only if the difference between them tends to zero; that is, for every rational number <span class="texhtml"><i>ε</i> &gt; 0</span>, there exists an integer <span class="texhtml"><i>N</i></span> such that for all natural numbers <span class="texhtml"><i>n</i> &gt; <i>N</i></span>, one has <span class="texhtml"> |<i>x</i><sub><i>n</i></sub> − <i>y</i><sub><i>n</i></sub>| &lt; <i>ε</i></span>. </p><p>This defines an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> that is compatible with the operations defined above, and the set <b>R</b> of all <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> can be shown to satisfy <a href="#Axiomatic_definitions">all axioms of the real numbers</a>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }" /></span> can be considered as a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> by identifying a rational number <span class="texhtml"><i>r</i></span> with the equivalence class of the Cauchy sequence <span class="texhtml"> (<i>r</i>, <i>r</i>, <i>r</i>, ...)</span>. </p><p>Comparison between real numbers is obtained by defining the following comparison between Cauchy sequences: <span class="texhtml">(<i>x</i><sub><i>n</i></sub>) ≥ (<i>y</i><sub><i>n</i></sub>)</span> if and only if <span class="texhtml"><i>x</i></span> is equivalent to <span class="texhtml"><i>y</i></span> or there exists an integer <span class="texhtml"><i>N</i></span> such that <span class="texhtml"><i>x</i><sub><i>n</i></sub> ≥ <i>y</i><sub><i>n</i></sub></span> for all <span class="texhtml"><i>n</i> &gt; <i>N</i></span>. </p><p>By construction, every real number <span class="texhtml"><i>x</i></span> is represented by a Cauchy sequence of rational numbers. This representation is far from unique; every rational sequence that converges to <span class="texhtml"><i>x</i></span> is a Cauchy sequence representing <span class="texhtml"><i>x</i></span>. This reflects the observation that one can often use different sequences to approximate the same real number.<sup id="cite_ref-FOOTNOTEKemp2016_6-0" class="reference"><a href="#cite_note-FOOTNOTEKemp2016-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>The only real number axiom that does not follow easily from the definitions is the completeness of <span class="texhtml">≤</span>, i.e. the <a href="/wiki/Least_upper_bound_property" class="mw-redirect" title="Least upper bound property">least upper bound property</a>. It can be proved as follows: Let <span class="texhtml"><i>S</i></span> be a non-empty subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46cdef1d27a06f81352c0aa015ac7b8c6de72a19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} &#39;}" /></span> and <span class="texhtml"><i>U</i></span> be an upper bound for <span class="texhtml"><i>S</i></span>. Substituting a larger value if necessary, we may assume <span class="texhtml"><i>U</i></span> is rational. Since <span class="texhtml"><i>S</i></span> is non-empty, we can choose a rational number <span class="texhtml"><i>L</i></span> such that <span class="texhtml"><i>L</i> &lt; <i>s</i></span> for some <span class="texhtml"><i>s</i></span> in <span class="texhtml"><i>S</i></span>. Now define sequences of rationals <span class="texhtml">(<i>u</i><sub><i>n</i></sub>)</span> and <span class="texhtml">(<i>l</i><sub><i>n</i></sub>)</span> as follows: </p><p>Set <span class="texhtml"><i>u</i><sub>0</sub> = <i>U</i></span> and <span class="texhtml"><i>l</i><sub>0</sub> = <i>L</i></span>. For each <span class="texhtml"><i>n</i></span> consider the number <span class="texhtml"><i>m</i><sub><i>n</i></sub> = (<i>u</i><sub><i>n</i></sub> + <i>l</i><sub><i>n</i></sub>)/2</span>. If <span class="texhtml"><i>m</i><sub><i>n</i></sub></span> is an upper bound for <span class="texhtml"><i>S</i></span>, set <span class="texhtml"><i>u</i><sub><i>n</i>+1</sub> = <i>m</i><sub><i>n</i></sub></span> and <span class="texhtml"><i>l</i><sub><i>n</i>+1</sub> = <i>l</i><sub><i>n</i></sub></span>. Otherwise set <span class="texhtml"><i>l</i><sub><i>n</i>+1</sub> = <i>m</i><sub><i>n</i></sub></span> and <span class="texhtml"><i>u</i><sub><i>n</i>+1</sub> = <i>u</i><sub><i>n</i></sub></span>. </p><p>This defines two Cauchy sequences of rationals, and so the real numbers <span class="texhtml"><i>l</i> = (<i>l</i><sub><i>n</i></sub>)</span> and <span class="texhtml"><i>u</i> = (<i>u</i><sub><i>n</i></sub>)</span>. It is easy to prove, by induction on <span class="texhtml"><i>n</i></span> that <span class="texhtml"><i>u</i><sub><i>n</i></sub></span> is an upper bound for <span class="texhtml"><i>S</i></span> for all <span class="texhtml"><i>n</i></span> and <span class="texhtml"><i>l</i><sub><i>n</i></sub></span> is never an upper bound for <span class="texhtml"><i>S</i></span> for any <span class="texhtml"><i>n</i></span> </p><p>Thus <span class="texhtml"><i>u</i></span> is an upper bound for <span class="texhtml"><i>S</i></span>. To see that it is a least upper bound, notice that the limit of <span class="texhtml">(<i>u</i><sub><i>n</i></sub> − <i>l</i><sub><i>n</i></sub>)</span> is <span class="texhtml">0</span>, and so <span class="texhtml"><i>l</i> = <i>u</i></span>. Now suppose <span class="texhtml"><i>b</i> &lt; <i>u</i> = <i>l</i></span> is a smaller upper bound for <span class="texhtml"><i>S</i></span>. Since <span class="texhtml">(<i>l</i><sub><i>n</i></sub>)</span> is monotonic increasing it is easy to see that <span class="texhtml"> <i>b</i> &lt; <i>l</i><sub><i>n</i></sub></span> for some <span class="texhtml"><i>n</i></span>. But <span class="texhtml"><i>l</i><sub><i>n</i></sub></span> is not an upper bound for <span class="texhtml mvar" style="font-style:italic;">S</span> and so neither is <span class="texhtml"><i>b</i></span>. Hence <span class="texhtml"><i>u</i></span> is a least upper bound for <span class="texhtml"><i>S</i></span> and <span class="texhtml">≤</span> is complete. </p><p>The usual <a href="/wiki/Decimal_notation" class="mw-redirect" title="Decimal notation">decimal notation</a> can be translated to Cauchy sequences in a natural way. For example, the notation <span class="texhtml"><i>π</i> = 3.1415...</span> means that <span class="texhtml mvar" style="font-style:italic;">π</span> is the equivalence class of the Cauchy sequence <span class="texhtml">(3, 3.1, 3.14, 3.141, 3.1415, ...)</span>. The equation <span class="texhtml"><a href="/wiki/0.999..." title="0.999...">0.999...</a> = 1</span> states that the sequences <span class="texhtml">(0, 0.9, 0.99, 0.999,...)</span> and <span class="texhtml">(1, 1, 1, 1,...)</span> are equivalent, i.e., their difference converges to <span class="texhtml">0</span>. </p><p>An advantage of constructing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> as the completion of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }" /></span> is that this construction can be used for every other metric space. </p> <div class="mw-heading mw-heading3"><h3 id="Construction_by_Dedekind_cuts">Construction by Dedekind cuts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=8" title="Edit section: Construction by Dedekind cuts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Dedekind_cut_at_square_root_of_two.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Dedekind_cut_at_square_root_of_two.svg/350px-Dedekind_cut_at_square_root_of_two.svg.png" decoding="async" width="350" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Dedekind_cut_at_square_root_of_two.svg/525px-Dedekind_cut_at_square_root_of_two.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/Dedekind_cut_at_square_root_of_two.svg/700px-Dedekind_cut_at_square_root_of_two.svg.png 2x" data-file-width="850" data-file-height="376" /></a><figcaption> Dedekind used his cut to construct the <a href="/wiki/Irrational_number" title="Irrational number">irrational</a>, <a href="/wiki/Real_number" title="Real number">real numbers</a>.</figcaption></figure> <p>A <a href="/wiki/Dedekind_cut" title="Dedekind cut">Dedekind cut</a> in an ordered field is a <a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a> of it, (<i>A</i>, <i>B</i>), such that <i>A</i> is nonempty and closed downwards, <i>B</i> is nonempty and closed upwards, and <i>A</i> contains no <a href="/wiki/Greatest_element" class="mw-redirect" title="Greatest element">greatest element</a>. Real numbers can be constructed as Dedekind cuts of rational numbers.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>For convenience we may take the lower set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> as the representative of any given Dedekind cut <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,B)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,B)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9fa8309a05c1e3d625eeae87ccf5f452e70dd63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.737ex; height:2.843ex;" alt="{\displaystyle (A,B)\,}" /></span>, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}" /></span> completely determines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}" /></span>. By doing this we may think intuitively of a real number as being represented by the set of all smaller rational numbers. In more detail, a real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}" /></span> is any subset of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe2cebb770192c93ef809f66373735e307b0595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle {\textbf {Q}}}" /></span> of rational numbers that fulfills the following conditions:<sup id="cite_ref-FOOTNOTEPugh2002_9-0" class="reference"><a href="#cite_note-FOOTNOTEPugh2002-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}" /></span> is not empty</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\neq {\textbf {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\neq {\textbf {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b69ab70069c15e74db10ae13da3235fa27dbdac8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.155ex; height:2.676ex;" alt="{\displaystyle r\neq {\textbf {Q}}}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}" /></span> is closed downwards. In other words, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in {\textbf {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in {\textbf {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46f1e6640c8ad45b49265625959e34d82d4432de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.368ex; height:2.509ex;" alt="{\displaystyle x,y\in {\textbf {Q}}}" /></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&lt;y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&lt;</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&lt;y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb239de6fee56ea8b6a65f7858d95b87632069f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x&lt;y}" /></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff293f5871b6477970fb1499cfa6b8b6dadcb6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.045ex; height:2.176ex;" alt="{\displaystyle y\in r}" /></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656cc65bdd3b8c63f070da9acb19b9e9def8f3e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.219ex; height:1.843ex;" alt="{\displaystyle x\in r}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}" /></span> contains no greatest element. In other words, there is no <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656cc65bdd3b8c63f070da9acb19b9e9def8f3e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.219ex; height:1.843ex;" alt="{\displaystyle x\in r}" /></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff293f5871b6477970fb1499cfa6b8b6dadcb6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.045ex; height:2.176ex;" alt="{\displaystyle y\in r}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\leq x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\leq x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7de6a6e4f44d9dfcbfaadbdcf388d4b8a6fed109" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.343ex;" alt="{\displaystyle y\leq x}" /></span></li></ol> <ul><li>We form the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">R</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/110532b0727e9c4bc5b8e0ac19bb8fe581939162" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle {\textbf {R}}}" /></span> of real numbers as the set of all Dedekind cuts <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}" /></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe2cebb770192c93ef809f66373735e307b0595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle {\textbf {Q}}}" /></span>, and define a <a href="/wiki/Total_ordering" class="mw-redirect" title="Total ordering">total ordering</a> on the real numbers as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\leq y\Leftrightarrow x\subseteq y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo stretchy="false">&#x21d4;<!-- ⇔ --></mo> <mi>x</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\leq y\Leftrightarrow x\subseteq y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19f4f37413b587896d2f7406e2fb163a9850aadf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.781ex; height:2.343ex;" alt="{\displaystyle x\leq y\Leftrightarrow x\subseteq y}" /></span></li> <li>We <a href="/wiki/Embedding" title="Embedding">embed</a> the rational numbers into the reals by identifying the rational number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}" /></span> with the set of all smaller rational numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in {\textbf {Q}}:x&lt;q\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo>:</mo> <mi>x</mi> <mo>&lt;</mo> <mi>q</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in {\textbf {Q}}:x&lt;q\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80dbaaae982559db0ae3f63728d230379d8b56c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.938ex; height:2.843ex;" alt="{\displaystyle \{x\in {\textbf {Q}}:x&lt;q\}}" /></span>.<sup id="cite_ref-FOOTNOTEPugh2002_9-1" class="reference"><a href="#cite_note-FOOTNOTEPugh2002-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Since the rational numbers are <a href="/wiki/Dense_order" title="Dense order">dense</a>, such a set can have no greatest element and thus fulfills the conditions for being a real number laid out above.</li> <li><a href="/wiki/Addition" title="Addition">Addition</a>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B:=\{a+b:a\in A\land b\in B\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>:</mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B:=\{a+b:a\in A\land b\in B\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ea4f9e637833df82d89bbfdea390f89aee6fbb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.421ex; height:2.843ex;" alt="{\displaystyle A+B:=\{a+b:a\in A\land b\in B\}}" /></span><sup id="cite_ref-FOOTNOTEPugh2002_9-2" class="reference"><a href="#cite_note-FOOTNOTEPugh2002-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Subtraction" title="Subtraction">Subtraction</a>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-B:=\{a-b:a\in A\land b\in ({\textbf {Q}}\setminus B)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo>:</mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-B:=\{a-b:a\in A\land b\in ({\textbf {Q}}\setminus B)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e177dd99ddc30fd982cba6ed502599a9cd2cff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.433ex; height:2.843ex;" alt="{\displaystyle A-B:=\{a-b:a\in A\land b\in ({\textbf {Q}}\setminus B)\}}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {Q}}\setminus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {Q}}\setminus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fc7037b5ba6aa51258259b53dc80f95dda34ef7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.967ex; height:2.843ex;" alt="{\displaystyle {\textbf {Q}}\setminus B}" /></span> denotes the <a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">relative complement</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}" /></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe2cebb770192c93ef809f66373735e307b0595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle {\textbf {Q}}}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x:x\in {\textbf {Q}}\land x\notin B\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mi>x</mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x:x\in {\textbf {Q}}\land x\notin B\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/166f1b4ef654de75dd5c194b20deb7837e43e946" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.287ex; height:2.843ex;" alt="{\displaystyle \{x:x\in {\textbf {Q}}\land x\notin B\}}" /></span></li> <li><a href="/wiki/Negation_of_a_number" class="mw-redirect" title="Negation of a number">Negation</a> is a special case of subtraction: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -B:=\{a-b:a&lt;0\land b\in ({\textbf {Q}}\setminus B)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo>:</mo> <mi>a</mi> <mo>&lt;</mo> <mn>0</mn> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -B:=\{a-b:a&lt;0\land b\in ({\textbf {Q}}\setminus B)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b4cb97d4846de4ee736d352ebf07bb2ce94749e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.335ex; height:2.843ex;" alt="{\displaystyle -B:=\{a-b:a&lt;0\land b\in ({\textbf {Q}}\setminus B)\}}" /></span></li> <li>Defining <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> is less straightforward.<sup id="cite_ref-FOOTNOTEPugh2002_9-3" class="reference"><a href="#cite_note-FOOTNOTEPugh2002-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <ul><li>if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eaa663f3ae395e714dc6df465c3204174f85abfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.802ex; height:2.509ex;" alt="{\displaystyle A,B\geq 0}" /></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B:=\{a\times b:a\geq 0\land a\in A\land b\geq 0\land b\in B\}\cup \{x\in \mathrm {Q} :x&lt;0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mi>B</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>&#xd7;<!-- × --></mo> <mi>b</mi> <mo>:</mo> <mi>a</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>&#x2227;<!-- ∧ --></mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> <mo>&#x222a;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Q</mi> </mrow> <mo>:</mo> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B:=\{a\times b:a\geq 0\land a\in A\land b\geq 0\land b\in B\}\cup \{x\in \mathrm {Q} :x&lt;0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f24807ee10d9e6d8374df07e1a49cbc8ea2d917f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:67.749ex; height:2.843ex;" alt="{\displaystyle A\times B:=\{a\times b:a\geq 0\land a\in A\land b\geq 0\land b\in B\}\cup \{x\in \mathrm {Q} :x&lt;0\}}" /></span></li> <li>if either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a72cbbfdbb8b9d0dad053538c330994b308bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.176ex;" alt="{\displaystyle B\,}" /></span> is negative, we use the identities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B=-(A\times -B)=-(-A\times B)=(-A\times -B)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mi>B</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B=-(A\times -B)=-(-A\times B)=(-A\times -B)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5faf52d7cca19df2f5925e01c825d356e574af42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.349ex; height:2.843ex;" alt="{\displaystyle A\times B=-(A\times -B)=-(-A\times B)=(-A\times -B)\,}" /></span> to convert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> and/or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a72cbbfdbb8b9d0dad053538c330994b308bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.176ex;" alt="{\displaystyle B\,}" /></span> to positive numbers and then apply the definition above.</li></ul></li> <li>We define <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a> in a similar manner: <ul><li>if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\geq 0{\mbox{ and }}B&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xa0;and&#xa0;</mtext> </mstyle> </mrow> <mi>B</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\geq 0{\mbox{ and }}B&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94903b16765e2015703f2b4dae907f5594124ab0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.938ex; height:2.343ex;" alt="{\displaystyle A\geq 0{\mbox{ and }}B&gt;0}" /></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/B:=\{a/b:a\in A\land b\in ({\textbf {Q}}\setminus B)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>B</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> <mo>:</mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/B:=\{a/b:a\in A\land b\in ({\textbf {Q}}\setminus B)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3be23430ebb1de221541a48d8a6a9786c1d4223f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.077ex; height:2.843ex;" alt="{\displaystyle A/B:=\{a/b:a\in A\land b\in ({\textbf {Q}}\setminus B)\}}" /></span></li> <li>if either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a72cbbfdbb8b9d0dad053538c330994b308bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.176ex;" alt="{\displaystyle B\,}" /></span> is negative, we use the identities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/B=-(A/{-B})=-(-A/B)=-A/{-B}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>B</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> </mrow> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/B=-(A/{-B})=-(-A/B)=-A/{-B}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6864b99952e8ff65fc371cda33e62b3d070d7f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.828ex; height:2.843ex;" alt="{\displaystyle A/B=-(A/{-B})=-(-A/B)=-A/{-B}\,}" /></span> to convert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> to a non-negative number and/or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a72cbbfdbb8b9d0dad053538c330994b308bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.176ex;" alt="{\displaystyle B\,}" /></span> to a positive number and then apply the definition above.</li></ul></li> <li><a href="/wiki/Supremum" class="mw-redirect" title="Supremum">Supremum</a>. If a nonempty set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}" /></span> of real numbers has any upper bound in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">R</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/110532b0727e9c4bc5b8e0ac19bb8fe581939162" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle {\textbf {R}}}" /></span>, then it has a least upper bound in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">R</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/110532b0727e9c4bc5b8e0ac19bb8fe581939162" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle {\textbf {R}}}" /></span> that is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigcup S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22c3;<!-- ⋃ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigcup S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bee5de6dfb89da11866e7f6d4a1af6fb403dfeac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.468ex; height:3.843ex;" alt="{\displaystyle \bigcup S}" /></span>.<sup id="cite_ref-FOOTNOTEPugh2002_9-4" class="reference"><a href="#cite_note-FOOTNOTEPugh2002-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>As an example of a Dedekind cut representing an <a href="/wiki/Irrational_number" title="Irrational number">irrational number</a>, we may take the <a href="/wiki/Square_root_of_2" title="Square root of 2">positive square root of 2</a>. This can be defined by the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\{x\in {\textbf {Q}}:x&lt;0\lor x\times x&lt;2\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> <mo>:</mo> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> <mo>&#x2228;<!-- ∨ --></mo> <mi>x</mi> <mo>&#xd7;<!-- × --></mo> <mi>x</mi> <mo>&lt;</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\{x\in {\textbf {Q}}:x&lt;0\lor x\times x&lt;2\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddf3157dc5e967e42b31d15768328b6323db9e54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.216ex; height:2.843ex;" alt="{\displaystyle A=\{x\in {\textbf {Q}}:x&lt;0\lor x\times x&lt;2\}}" /></span>.<sup id="cite_ref-FOOTNOTEHersh1997_10-0" class="reference"><a href="#cite_note-FOOTNOTEHersh1997-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> It can be seen from the definitions above that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}" /></span> is a real number, and that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times A=2\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times A=2\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bf3685b8ba87a001cdbad6bafa638762261b962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.975ex; height:2.176ex;" alt="{\displaystyle A\times A=2\,}" /></span>. However, neither claim is immediate. Showing that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> is real requires showing that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}" /></span> has no greatest element, i.e. that for any positive rational <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab34739435d9d9d99cddf4041740b107343b1398" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.717ex; height:1.676ex;" alt="{\displaystyle x\,}" /></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\times x&lt;2\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#xd7;<!-- × --></mo> <mi>x</mi> <mo>&lt;</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\times x&lt;2\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4c7a8e2024948f11b1adb31a1945e4c882b50c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.148ex; height:2.176ex;" alt="{\displaystyle x\times x&lt;2\,}" /></span>, there is a rational <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c8c233e7cc39fac816991250d86e09b515d02e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.543ex; height:2.009ex;" alt="{\displaystyle y\,}" /></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&lt;y\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&lt;</mo> <mi>y</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&lt;y\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef3ce4ac40139ac6343aec4897ccfc9606dcbecf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.971ex; height:2.176ex;" alt="{\displaystyle x&lt;y\,}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\times y&lt;2\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#xd7;<!-- × --></mo> <mi>y</mi> <mo>&lt;</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\times y&lt;2\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43391e9bb678d08cc1388350221aee1078b2a876" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.446ex; height:2.509ex;" alt="{\displaystyle y\times y&lt;2\,.}" /></span> The choice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y={\frac {2x+2}{x+2}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </mrow> <mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y={\frac {2x+2}{x+2}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/172837d44574c114f29a7a760f6c806df0059768" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.972ex; height:5.343ex;" alt="{\displaystyle y={\frac {2x+2}{x+2}}\,}" /></span> works. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times A\leq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#xd7;<!-- × --></mo> <mi>A</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times A\leq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7fc57b2ab3614d41c06995e3babf1fe612f1fe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.588ex; height:2.343ex;" alt="{\displaystyle A\times A\leq 2}" /></span> but to show equality requires showing that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f08ce4d4c86c5b43f36c8435fb598da6471047c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.436ex; height:1.676ex;" alt="{\displaystyle r\,}" /></span> is any rational number with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&lt;2\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&lt;</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&lt;2\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/811e751050b8fd8ef08f8feddd72a4f49c33f808" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.697ex; height:2.176ex;" alt="{\displaystyle r&lt;2\,}" /></span>, then there is positive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab34739435d9d9d99cddf4041740b107343b1398" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.717ex; height:1.676ex;" alt="{\displaystyle x\,}" /></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}" /></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&lt;x\times x\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&lt;</mo> <mi>x</mi> <mo>&#xd7;<!-- × --></mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&lt;x\times x\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/101adb922e38964f4a8341fc8c76368fc6b799e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.034ex; height:1.843ex;" alt="{\displaystyle r&lt;x\times x\,}" /></span>. </p><p>An advantage of this construction is that each real number corresponds to a unique cut. Furthermore, by relaxing the first two requirements of the definition of a cut, the <a href="/wiki/Extended_real_number" class="mw-redirect" title="Extended real number">extended real number</a> system may be obtained by associating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221e;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }" /></span> with the empty set and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221e;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }" /></span> with all of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">Q</mtext> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe2cebb770192c93ef809f66373735e307b0595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle {\textbf {Q}}}" /></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Construction_using_hyperreal_numbers">Construction using hyperreal numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=9" title="Edit section: Construction using hyperreal numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As in the <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal numbers</a>, one constructs the hyperrationals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{*}\mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{*}\mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5937515b3d1e4fda68bd1b932d15e0f718dee650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.862ex; height:2.676ex;" alt="{\displaystyle ^{*}\mathbb {Q} }" /></span> from the rational numbers by means of an <a href="/wiki/Ultrafilter" title="Ultrafilter">ultrafilter</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Here a hyperrational is by definition a ratio of two <a href="/wiki/Hyperinteger" title="Hyperinteger">hyperintegers</a>. Consider the <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}" /></span> of all limited (i.e. finite) elements in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{*}\mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{*}\mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5937515b3d1e4fda68bd1b932d15e0f718dee650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.862ex; height:2.676ex;" alt="{\displaystyle ^{*}\mathbb {Q} }" /></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}" /></span> has a unique <a href="/wiki/Maximal_ideal" title="Maximal ideal">maximal ideal</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}" /></span>, the <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> hyperrational numbers. The quotient ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e247d9e33f9921ba42fd3219101cd637e0097b6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.098ex; height:2.843ex;" alt="{\displaystyle B/I}" /></span> gives the <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span> of real numbers.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> This construction uses a non-principal ultrafilter over the set of natural numbers, the existence of which is guaranteed by the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>. </p><p>It turns out that the maximal ideal respects the order on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{*}\mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{*}\mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5937515b3d1e4fda68bd1b932d15e0f718dee650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.862ex; height:2.676ex;" alt="{\displaystyle ^{*}\mathbb {Q} }" /></span>. Hence the resulting field is an ordered field. Completeness can be proved in a similar way to the construction from the Cauchy sequences. </p> <div class="mw-heading mw-heading3"><h3 id="Construction_from_surreal_numbers">Construction from surreal numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=10" title="Edit section: Construction from surreal numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every ordered field can be embedded in the <a href="/wiki/Surreal_number" title="Surreal number">surreal numbers</a>. The real numbers form a maximal subfield that is <a href="/wiki/Archimedean_group" title="Archimedean group">Archimedean</a> (meaning that no real number is infinitely large or infinitely small). This embedding is not unique, though it can be chosen in a canonical way. </p> <div class="mw-heading mw-heading3"><h3 id="Construction_from_integers_(Eudoxus_reals)"><span id="Construction_from_integers_.28Eudoxus_reals.29"></span>Construction from integers (Eudoxus reals)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=11" title="Edit section: Construction from integers (Eudoxus reals)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A relatively less known construction allows to define real numbers using only the additive group of integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }" /></span> with different versions.<sup id="cite_ref-FOOTNOTEArthan2004_13-0" class="reference"><a href="#cite_note-FOOTNOTEArthan2004-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEA&#39;Campo2003_14-0" class="reference"><a href="#cite_note-FOOTNOTEA&#39;Campo2003-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEStreet2003_15-0" class="reference"><a href="#cite_note-FOOTNOTEStreet2003-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <a href="#CITEREFArthan2004">Arthan (2004)</a>, who attributes this construction to unpublished work by <a href="/wiki/Stephen_Schanuel" title="Stephen Schanuel">Stephen Schanuel</a>, refers to this construction as the <i>Eudoxus reals</i>, naming them after ancient Greek astronomer and mathematician <a href="/wiki/Eudoxus_of_Cnidus" title="Eudoxus of Cnidus">Eudoxus of Cnidus</a>. As noted by <a href="#CITEREFShenitzer1987">Shenitzer (1987)</a> and <a href="#CITEREFArthan2004">Arthan (2004)</a>, Eudoxus's treatment of quantity using the behavior of <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportions</a> became the basis for this construction. This construction has been <a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">formally verified</a> to give a Dedekind-complete ordered field by the IsarMathLib project.<sup id="cite_ref-FOOTNOTEIsarMathLib_16-0" class="reference"><a href="#cite_note-FOOTNOTEIsarMathLib-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let an <b>almost homomorphism</b> be a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {Z} \to \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {Z} \to \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08222a32dbc48971408c22a1019a8141d34c33d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.93ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {Z} \to \mathbb {Z} }" /></span> such that the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f(n+m)-f(m)-f(n):n,m\in \mathbb {Z} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f(n+m)-f(m)-f(n):n,m\in \mathbb {Z} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a914e1f6bd2f640dc77332ad8f84894df6d2d341" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.777ex; height:2.843ex;" alt="{\displaystyle \{f(n+m)-f(m)-f(n):n,m\in \mathbb {Z} \}}" /></span> is finite. (Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=\lfloor \alpha n\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x230a;<!-- ⌊ --></mo> <mi>&#x3b1;<!-- α --></mi> <mi>n</mi> <mo fence="false" stretchy="false">&#x230b;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=\lfloor \alpha n\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb1410adf6a02e2fd7addf728847038dadbd555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.528ex; height:2.843ex;" alt="{\displaystyle f(n)=\lfloor \alpha n\rfloor }" /></span> is an almost homomorphism for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7988141e89a37e7f4deb883dbd74d9bbd6d11317" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.006ex; height:2.176ex;" alt="{\displaystyle \alpha \in \mathbb {R} }" /></span>.) Almost homomorphisms form an abelian group under pointwise addition. We say that two almost homomorphisms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b6ab1762925585cd7605809caa8b1b5284177b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.429ex; height:2.509ex;" alt="{\displaystyle f,g}" /></span> are <b>almost equal</b> if the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f(n)-g(n):n\in \mathbb {Z} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f(n)-g(n):n\in \mathbb {Z} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc2d409a4a83f82264e4d0f9e23bd41c77b0489c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.691ex; height:2.843ex;" alt="{\displaystyle \{f(n)-g(n):n\in \mathbb {Z} \}}" /></span> is finite. This defines an equivalence relation on the set of almost homomorphisms. Real numbers are defined as the equivalence classes of this relation. Alternatively, the almost homomorphisms taking only finitely many values form a subgroup, and the underlying additive group of the real number is the quotient group. To add real numbers defined this way we add the almost homomorphisms that represent them. Multiplication of real numbers corresponds to functional composition of almost homomorphisms. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7414a730e8157655ff770265ec3a03ec9f09dd54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.572ex; height:2.843ex;" alt="{\displaystyle [f]}" /></span> denotes the real number represented by an almost homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}" /></span> we say that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq [f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq [f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a619cad56c3597fafd65950aa99007a14efaa385" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.833ex; height:2.843ex;" alt="{\displaystyle 0\leq [f]}" /></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}" /></span> is bounded or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}" /></span> takes an infinite number of positive values on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/628778fcf14bd3629e9b9ebacffa172b0ad6ce41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.061ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ^{+}}" /></span>. This defines the <a href="/wiki/Total_order" title="Total order">linear order</a> relation on the set of real numbers constructed this way. </p> <div class="mw-heading mw-heading3"><h3 id="Other_constructions">Other constructions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=12" title="Edit section: Other constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="#CITEREFFaltinMetropolisRossRota1975">Faltin et al. (1975)</a> write: "Few mathematical structures have undergone as many revisions or have been presented in as many guises as the real numbers. Every generation reexamines the reals in the light of its values and mathematical objectives."<sup id="cite_ref-FOOTNOTEFaltinMetropolisRossRota1975_17-0" class="reference"><a href="#cite_note-FOOTNOTEFaltinMetropolisRossRota1975-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>A number of other constructions have been given, by: </p> <ul><li><a href="#CITEREFde_Bruijn1976">de Bruijn (1976)</a>, <a href="#CITEREFde_Bruijn1977">de Bruijn (1977)</a></li> <li><a href="#CITEREFRieger1982">Rieger (1982)</a></li> <li><a href="#CITEREFKnopfmacherKnopfmacher1987">Knopfmacher &amp; Knopfmacher (1987)</a>, <a href="#CITEREFKnopfmacherKnopfmacher1988">Knopfmacher &amp; Knopfmacher (1988)</a></li></ul> <p>For an overview, see <a href="#CITEREFWeiss2015">Weiss (2015)</a>. </p><p>As a reviewer of one noted: "The details are all included, but as usual they are tedious and not too instructive."<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=13" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Constructivism_(mathematics)#Example_from_real_analysis" class="mw-redirect" title="Constructivism (mathematics)">Constructivism (mathematics)#Example from real analysis</a>&#160;– Mathematical viewpoint that existence proofs must be constructive<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Decidability_of_first-order_theories_of_the_real_numbers" title="Decidability of first-order theories of the real numbers">Decidability of first-order theories of the real numbers</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTEWeiss2015-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWeiss2015_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWeiss2015">Weiss 2015</a>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://math.colorado.edu/~nita/RealNumbers.pdf">"Real Numbers"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/University_of_Colorado_Boulder" title="University of Colorado Boulder">University of Colorado Boulder</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+Colorado+Boulder&amp;rft.atitle=Real+Numbers&amp;rft_id=http%3A%2F%2Fmath.colorado.edu%2F~nita%2FRealNumbers.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSaunders2015" class="citation web cs1">Saunders, Bonnie (August 21, 2015). <a rel="nofollow" class="external text" href="http://homepages.math.uic.edu/~saunders/MATH313/INRA/INRA_chapters0and1.pdf">"Interactive Notes for Real Analysis"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/University_of_Illinois_at_Chicago" class="mw-redirect" title="University of Illinois at Chicago">University of Illinois at Chicago</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+Illinois+at+Chicago&amp;rft.atitle=Interactive+Notes+for+Real+Analysis&amp;rft.date=2015-08-21&amp;rft.aulast=Saunders&amp;rft.aufirst=Bonnie&amp;rft_id=http%3A%2F%2Fhomepages.math.uic.edu%2F~saunders%2FMATH313%2FINRA%2FINRA_chapters0and1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20101226005339/http://math.uci.edu/~mfinkels/140A/Introduction%20and%20Logic%20Notes.pdf">"Axioms of the Real Number System"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/University_of_California,_Irvine" title="University of California, Irvine">University of California, Irvine</a></i>. Archived from <a rel="nofollow" class="external text" href="https://www.math.uci.edu/~mfinkels/140A/Introduction%2520and%2520Logic%2520Notes.pdf">the original</a> <span class="cs1-format">(PDF)</span> on December 26, 2010.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+California%2C+Irvine&amp;rft.atitle=Axioms+of+the+Real+Number+System&amp;rft_id=https%3A%2F%2Fwww.math.uci.edu%2F~mfinkels%2F140A%2FIntroduction%252520and%252520Logic%252520Notes.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">For completions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }" /></span> with respect to other metrics, see <a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers"><i>p</i>-adic numbers</a>).</span> </li> <li id="cite_note-FOOTNOTEKemp2016-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKemp2016_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKemp2016">Kemp 2016</a>.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.math.ucdavis.edu/~temple/MAT25/HomeworkProblems.pdf">Math 25 Exercises</a> ucdavis.edu</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://math.furman.edu/~tlewis/math41/Pugh/chap1/sec2.pdf">1.2–Cuts</a> furman.edu</span> </li> <li id="cite_note-FOOTNOTEPugh2002-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPugh2002_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPugh2002_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPugh2002_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPugh2002_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPugh2002_9-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPugh2002">Pugh 2002</a>.</span> </li> <li id="cite_note-FOOTNOTEHersh1997-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHersh1997_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHersh1997">Hersh 1997</a>.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKrakoff2015" class="citation web cs1">Krakoff, Gianni (June 8, 2015). <a rel="nofollow" class="external text" href="https://sites.math.washington.edu/~morrow/336_15/papers/gianni.pdf">"Hyperreals and a Brief Introduction to Non-Standard Analysis"</a> <span class="cs1-format">(PDF)</span>. <i>Department of Mathematics, <a href="/wiki/University_of_Washington" title="University of Washington">University of Washington</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Department+of+Mathematics%2C+University+of+Washington&amp;rft.atitle=Hyperreals+and+a+Brief+Introduction+to+Non-Standard+Analysis&amp;rft.date=2015-06-08&amp;rft.aulast=Krakoff&amp;rft.aufirst=Gianni&amp;rft_id=https%3A%2F%2Fsites.math.washington.edu%2F~morrow%2F336_15%2Fpapers%2Fgianni.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGoldblatt1998" class="citation book cs1">Goldblatt, Robert (1998). "Exercise 5.7 (4)". <i>Lectures on the Hyperreals: An introduction to nonstandard analysis</i>. Graduate Texts in Mathematics. Vol.&#160;188. New York: Springer-Verlag. p.&#160;54. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-0615-6">10.1007/978-1-4612-0615-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98464-X" title="Special:BookSources/0-387-98464-X"><bdi>0-387-98464-X</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1643950">1643950</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Exercise+5.7+%284%29&amp;rft.btitle=Lectures+on+the+Hyperreals%3A+An+introduction+to+nonstandard+analysis&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pages=54&amp;rft.pub=Springer-Verlag&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1643950%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0615-6&amp;rft.isbn=0-387-98464-X&amp;rft.aulast=Goldblatt&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEArthan2004-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArthan2004_13-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArthan2004">Arthan 2004</a>.</span> </li> <li id="cite_note-FOOTNOTEA&#39;Campo2003-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEA&#39;Campo2003_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFA&#39;Campo2003">A'Campo 2003</a>.</span> </li> <li id="cite_note-FOOTNOTEStreet2003-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStreet2003_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStreet2003">Street 2003</a>.</span> </li> <li id="cite_note-FOOTNOTEIsarMathLib-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEIsarMathLib_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFIsarMathLib">IsarMathLib</a>.</span> </li> <li id="cite_note-FOOTNOTEFaltinMetropolisRossRota1975-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFaltinMetropolisRossRota1975_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFaltinMetropolisRossRota1975">Faltin et al. 1975</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=693180">693180</a> (84j:26002) review of <a href="#CITEREFRieger1982">Rieger1982</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Construction_of_the_real_numbers&amp;action=edit&amp;section=15" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFA&#39;Campo2003" class="citation arxiv cs1"><a href="/wiki/Norbert_A%27Campo" title="Norbert A&#39;Campo">A'Campo, Norbert</a> (2003). "A natural construction for the real numbers". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0301015">math/0301015</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+natural+construction+for+the+real+numbers&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath%2F0301015&amp;rft.aulast=A%27Campo&amp;rft.aufirst=Norbert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFArthan2004" class="citation arxiv cs1">Arthan, R.D. (2004). "The Eudoxus Real Numbers". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0405454">math/0405454</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=The+Eudoxus+Real+Numbers&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fmath%2F0405454&amp;rft.aulast=Arthan&amp;rft.aufirst=R.D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFde_Bruijn1976" class="citation journal cs1">de Bruijn, N.G. (1976). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/138572587690055X/pdf">"Defining reals without the use of rationals"</a>. <i>Indagationes Mathematicae (Proceedings)</i>. <b>79</b> (2): <span class="nowrap">100–</span>108. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F1385-7258%2876%2990055-X">10.1016/1385-7258(76)90055-X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Indagationes+Mathematicae+%28Proceedings%29&amp;rft.atitle=Defining+reals+without+the+use+of+rationals&amp;rft.volume=79&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E100-%3C%2Fspan%3E108&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1016%2F1385-7258%2876%2990055-X&amp;rft.aulast=de+Bruijn&amp;rft.aufirst=N.G.&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2F138572587690055X%2Fpdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span> also at <a rel="nofollow" class="external free" href="http://alexandria.tue.nl/repository/freearticles/597556.pdf">http://alexandria.tue.nl/repository/freearticles/597556.pdf</a></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFde_Bruijn1977" class="citation journal cs1">de Bruijn, N.G. (1977). "Construction of the system of real numbers". <i>Nederl. Akad. Wetensch. Verslag Afd. Natuurk</i>. <b>86</b> (9): <span class="nowrap">121–</span>125.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nederl.+Akad.+Wetensch.+Verslag+Afd.+Natuurk.&amp;rft.atitle=Construction+of+the+system+of+real+numbers&amp;rft.volume=86&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E121-%3C%2Fspan%3E125&amp;rft.date=1977&amp;rft.aulast=de+Bruijn&amp;rft.aufirst=N.G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFaltinMetropolisRossRota1975" class="citation journal cs1">Faltin, F.; Metropolis, M.; Ross, B.; Rota, G.-C. (1975). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-8708%2875%2990115-2">"The real numbers as a wreath product"</a>. <i><a href="/wiki/Advances_in_Mathematics" title="Advances in Mathematics">Advances in Mathematics</a></i>. <b>16</b> (3): <span class="nowrap">278–</span>304. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-8708%2875%2990115-2">10.1016/0001-8708(75)90115-2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Mathematics&amp;rft.atitle=The+real+numbers+as+a+wreath+product&amp;rft.volume=16&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E278-%3C%2Fspan%3E304&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.1016%2F0001-8708%2875%2990115-2&amp;rft.aulast=Faltin&amp;rft.aufirst=F.&amp;rft.au=Metropolis%2C+M.&amp;rft.au=Ross%2C+B.&amp;rft.au=Rota%2C+G.-C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0001-8708%252875%252990115-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHersh1997" class="citation book cs1">Hersh, Reuben (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=R-qgdx2A5b0C"><i>What is Mathematics, Really?</i></a>. New York: Oxford University Press US. p.&#160;274. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-513087-4" title="Special:BookSources/978-0-19-513087-4"><bdi>978-0-19-513087-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=What+is+Mathematics%2C+Really%3F&amp;rft.place=New+York&amp;rft.pages=274&amp;rft.pub=Oxford+University+Press+US&amp;rft.date=1997&amp;rft.isbn=978-0-19-513087-4&amp;rft.aulast=Hersh&amp;rft.aufirst=Reuben&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DR-qgdx2A5b0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFIsarMathLib" class="citation web cs1">IsarMathLib (2022). <a rel="nofollow" class="external text" href="https://isarmathlib.org/">"IsarMathLib"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=IsarMathLib&amp;rft.date=2022&amp;rft.au=IsarMathLib&amp;rft_id=https%3A%2F%2Fisarmathlib.org%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKemp2016" class="citation web cs1">Kemp, Todd (2016). <a rel="nofollow" class="external text" href="https://mathweb.ucsd.edu/~tkemp/140A/Construction.of.R.pdf">"Cauchy's construction of R"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Cauchy%27s+construction+of+R&amp;rft.date=2016&amp;rft.aulast=Kemp&amp;rft.aufirst=Todd&amp;rft_id=https%3A%2F%2Fmathweb.ucsd.edu%2F~tkemp%2F140A%2FConstruction.of.R.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKnopfmacherKnopfmacher1987" class="citation journal cs1">Knopfmacher, Arnold; Knopfmacher, John (1987). "A new construction of the real numbers (via infinite products)". <i>Nieuw Arch. Wisk</i>. <b>4</b> (5): <span class="nowrap">19–</span>31.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nieuw+Arch.+Wisk.&amp;rft.atitle=A+new+construction+of+the+real+numbers+%28via+infinite+products%29&amp;rft.volume=4&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E19-%3C%2Fspan%3E31&amp;rft.date=1987&amp;rft.aulast=Knopfmacher&amp;rft.aufirst=Arnold&amp;rft.au=Knopfmacher%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKnopfmacherKnopfmacher1988" class="citation journal cs1">Knopfmacher, Arnold; Knopfmacher, John (1988). <a rel="nofollow" class="external text" href="https://doi.org/10.1216%2FRMJ-1988-18-4-813">"Two concrete new constructions of the real numbers"</a>. <i><a href="/wiki/Rocky_Mountain_Journal_of_Mathematics" title="Rocky Mountain Journal of Mathematics">Rocky Mountain Journal of Mathematics</a></i>. <b>18</b> (4): <span class="nowrap">813–</span>824. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1216%2FRMJ-1988-18-4-813">10.1216/RMJ-1988-18-4-813</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122161507">122161507</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rocky+Mountain+Journal+of+Mathematics&amp;rft.atitle=Two+concrete+new+constructions+of+the+real+numbers&amp;rft.volume=18&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E813-%3C%2Fspan%3E824&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.1216%2FRMJ-1988-18-4-813&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122161507%23id-name%3DS2CID&amp;rft.aulast=Knopfmacher&amp;rft.aufirst=Arnold&amp;rft.au=Knopfmacher%2C+John&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1216%252FRMJ-1988-18-4-813&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPugh2002" class="citation book cs1">Pugh, Charles Chapman (2002). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/realmathematical00char"><i>Real Mathematical Analysis</i></a></span>. New York: Springer. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/realmathematical00char/page/11">11</a>–15. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95297-0" title="Special:BookSources/978-0-387-95297-0"><bdi>978-0-387-95297-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+Mathematical+Analysis&amp;rft.place=New+York&amp;rft.pages=11-15&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=978-0-387-95297-0&amp;rft.aulast=Pugh&amp;rft.aufirst=Charles+Chapman&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Frealmathematical00char&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRieger1982" class="citation journal cs1">Rieger, Georg Johann (1982). <a rel="nofollow" class="external text" href="https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00031201/Rieger_A_new_approach_to_the_real_numbers.pdf">"A new approach to the real numbers (motivated by continued fractions)"</a> <span class="cs1-format">(PDF)</span>. <i>Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft</i>. <b>33</b>: <span class="nowrap">205–</span>217.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Abhandlungen+der+Braunschweigischen+Wissenschaftlichen+Gesellschaft&amp;rft.atitle=A+new+approach+to+the+real+numbers+%28motivated+by+continued+fractions%29&amp;rft.volume=33&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E205-%3C%2Fspan%3E217&amp;rft.date=1982&amp;rft.aulast=Rieger&amp;rft.aufirst=Georg+Johann&amp;rft_id=https%3A%2F%2Fpublikationsserver.tu-braunschweig.de%2Fservlets%2FMCRFileNodeServlet%2Fdbbs_derivate_00031201%2FRieger_A_new_approach_to_the_real_numbers.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFShenitzer1987" class="citation journal cs1">Shenitzer, A (1987). "A topics course in mathematics". <i>The Mathematical Intelligencer</i>. <b>9</b> (3): <span class="nowrap">44–</span>52. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf03023955">10.1007/bf03023955</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122199850">122199850</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=A+topics+course+in+mathematics&amp;rft.volume=9&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E44-%3C%2Fspan%3E52&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1007%2Fbf03023955&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122199850%23id-name%3DS2CID&amp;rft.aulast=Shenitzer&amp;rft.aufirst=A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStreet2003" class="citation web cs1">Street, Ross (September 2003). <a rel="nofollow" class="external text" href="http://www.maths.mq.edu.au/~street/reals.pdf">"Update on the efficient reals"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">2010-10-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Update+on+the+efficient+reals&amp;rft.date=2003-09&amp;rft.aulast=Street&amp;rft.aufirst=Ross&amp;rft_id=http%3A%2F%2Fwww.maths.mq.edu.au%2F~street%2Freals.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWeiss2015" class="citation journal cs1">Weiss, Ittay (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1216%2FRMJ-2015-45-3-737">"The real numbers-a survey of constructions"</a>. <i><a href="/wiki/Rocky_Mountain_Journal_of_Mathematics" title="Rocky Mountain Journal of Mathematics">Rocky Mountain Journal of Mathematics</a></i>. <b>45</b> (3): <span class="nowrap">737–</span>762. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1506.03467">1506.03467</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1216%2FRMJ-2015-45-3-737">10.1216/RMJ-2015-45-3-737</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rocky+Mountain+Journal+of+Mathematics&amp;rft.atitle=The+real+numbers-a+survey+of+constructions&amp;rft.volume=45&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E737-%3C%2Fspan%3E762&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1506.03467&amp;rft_id=info%3Adoi%2F10.1216%2FRMJ-2015-45-3-737&amp;rft.aulast=Weiss&amp;rft.aufirst=Ittay&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1216%252FRMJ-2015-45-3-737&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConstruction+of+the+real+numbers" class="Z3988"></span></li></ul> </div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c6f46dcf‐wftrn Cached time: 20250330021225 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.582 seconds Real time usage: 0.752 seconds Preprocessor visited node count: 7622/1000000 Post‐expand include size: 61667/2097152 bytes Template argument size: 9447/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 66328/5000000 bytes Lua time usage: 0.307/10.000 seconds Lua memory usage: 15931333/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 506.202 1 -total 20.68% 104.702 1 Template:Reflist 18.66% 94.455 2 Template:Annotated_link 17.59% 89.051 7 Template:Cite_web 14.39% 72.853 92 Template:Math 12.78% 64.715 1 Template:Short_description 9.95% 50.362 13 Template:Sfn 8.18% 41.402 2 Template:Pagetype 7.26% 36.775 8 Template:Cite_journal 5.07% 25.675 108 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:296666:|#|:idhash:canonical and timestamp 20250330021225 and revision id 1272702424. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Construction_of_the_real_numbers&amp;oldid=1272702424">https://en.wikipedia.org/w/index.php?title=Construction_of_the_real_numbers&amp;oldid=1272702424</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Real_numbers" title="Category:Real numbers">Real numbers</a></li><li><a href="/wiki/Category:Constructivism_(mathematics)" title="Category:Constructivism (mathematics)">Constructivism (mathematics)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 29 January 2025, at 22:18<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Construction_of_the_real_numbers&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Construction of the real numbers</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>10 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c6f46dcf-mrh5d","wgBackendResponseTime":171,"wgPageParseReport":{"limitreport":{"cputime":"0.582","walltime":"0.752","ppvisitednodes":{"value":7622,"limit":1000000},"postexpandincludesize":{"value":61667,"limit":2097152},"templateargumentsize":{"value":9447,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":66328,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 506.202 1 -total"," 20.68% 104.702 1 Template:Reflist"," 18.66% 94.455 2 Template:Annotated_link"," 17.59% 89.051 7 Template:Cite_web"," 14.39% 72.853 92 Template:Math"," 12.78% 64.715 1 Template:Short_description"," 9.95% 50.362 13 Template:Sfn"," 8.18% 41.402 2 Template:Pagetype"," 7.26% 36.775 8 Template:Cite_journal"," 5.07% 25.675 108 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.307","limit":"10.000"},"limitreport-memusage":{"value":15931333,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFA\u0026#039;Campo2003\"] = 1,\n [\"CITEREFArthan2004\"] = 1,\n [\"CITEREFFaltinMetropolisRossRota1975\"] = 1,\n [\"CITEREFGoldblatt1998\"] = 1,\n [\"CITEREFHersh1997\"] = 1,\n [\"CITEREFIsarMathLib\"] = 1,\n [\"CITEREFKemp2016\"] = 1,\n [\"CITEREFKnopfmacherKnopfmacher1987\"] = 1,\n [\"CITEREFKnopfmacherKnopfmacher1988\"] = 1,\n [\"CITEREFKrakoff2015\"] = 1,\n [\"CITEREFPugh2002\"] = 1,\n [\"CITEREFRieger1982\"] = 1,\n [\"CITEREFSaunders2015\"] = 1,\n [\"CITEREFShenitzer1987\"] = 1,\n [\"CITEREFStreet2003\"] = 1,\n [\"CITEREFWeiss2015\"] = 1,\n [\"CITEREFde_Bruijn1976\"] = 1,\n [\"CITEREFde_Bruijn1977\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 4,\n [\"Abs\"] = 1,\n [\"Annotated link\"] = 2,\n [\"Cite arXiv\"] = 2,\n [\"Cite book\"] = 3,\n [\"Cite journal\"] = 8,\n [\"Cite web\"] = 7,\n [\"DEFAULTSORT:Construction Of The Real Numbers\"] = 1,\n [\"Harvtxt\"] = 11,\n [\"MR\"] = 1,\n [\"Main\"] = 1,\n [\"Math\"] = 92,\n [\"Mvar\"] = 1,\n [\"Not typo\"] = 1,\n [\"Pi\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 13,\n [\"SfnRef\"] = 1,\n [\"Short description\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-5c6f46dcf-wftrn","timestamp":"20250330021225","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Construction of the real numbers","url":"https:\/\/en.wikipedia.org\/wiki\/Construction_of_the_real_numbers","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2584477","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2584477","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-14T23:10:05Z","dateModified":"2025-01-29T22:18:16Z","headline":"any constructive definition of the real numbers"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10