CINXE.COM
Search results for: quadrature oscillator
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quadrature oscillator</title> <meta name="description" content="Search results for: quadrature oscillator"> <meta name="keywords" content="quadrature oscillator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quadrature oscillator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quadrature oscillator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 158</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quadrature oscillator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> First Order Filter Based Current-Mode Sinusoidal Oscillators Using Current Differencing Transconductance Amplifiers (CDTAs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Summart">S. Summart</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saetiaw"> C. Saetiaw</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Thosdeekoraphat"> T. Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thongsopa"> C. Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents new current-mode oscillator circuits using CDTAs which is designed from block diagram. The proposed circuits consist of two CDTAs and two grounded capacitors. The condition of oscillation and the frequency of oscillation can be adjusted by electronic method. The circuits have high output impedance and use only grounded capacitors without any external resistor which is very appropriate to future development into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current-mode" title="current-mode">current-mode</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator" title=" quadrature oscillator"> quadrature oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20diagram" title=" block diagram"> block diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=CDTA" title=" CDTA"> CDTA</a> </p> <a href="https://publications.waset.org/abstracts/8914/first-order-filter-based-current-mode-sinusoidal-oscillators-using-current-differencing-transconductance-amplifiers-cdtas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Kemmer Oscillator in Cosmic String Background</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Messai">N. Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumali"> A. Boumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we aim to solve the two dimensional Kemmer equation including Dirac oscillator interaction term, in the background space-time generated by a cosmic string which is submitted to an uniform magnetic field. Eigenfunctions and eigenvalues of our problem have been found and the influence of the cosmic string space-time on the energy spectrum has been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemmer%20oscillator" title="Kemmer oscillator">Kemmer oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20string" title=" cosmic string"> cosmic string</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title=" Dirac oscillator"> Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a> </p> <a href="https://publications.waset.org/abstracts/22318/kemmer-oscillator-in-cosmic-string-background" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zara%20L.%20Sheady">Zara L. Sheady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title="ANSYS CFX">ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillators" title=" fluidic oscillators"> fluidic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/86615/computational-fluid-dynamic-investigation-into-the-relationship-between-pressure-and-velocity-distributions-within-a-microfluidic-feedback-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Periodically Forced Oscillator with Noisy Chaotic Dynamics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedayo%20Oke%20Adelakun">Adedayo Oke Adelakun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chaotic dynamics of periodically forced oscillators with smooth potential has been extensively investigated via theoretical, numerical and experimental simulations. With the advent of the study of chaotic dynamics by means of method of multiple time scale analysis, Melnikov theory, bifurcation diagram, Poincare's map, bifurcation diagrams and Lyapunov exponents, it has become necessary to seek for a better understanding of nonlinear oscillator with noisy term. In this paper, we examine the influence of noise on complex dynamical behaviour of periodically forced F6 - Duffing oscillator for specific choice of noisy parameters. The inclusion of noisy term improves the dynamical behaviour of the oscillator which may have wider application in secure communication than smooth potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure" title="hierarchical structure">hierarchical structure</a>, <a href="https://publications.waset.org/abstracts/search?q=periodically%20forced%20oscillator" title=" periodically forced oscillator"> periodically forced oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=noisy%20parameters" title=" noisy parameters"> noisy parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20behaviour" title=" dynamical behaviour"> dynamical behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=F6%20-%20duffing%20oscillator" title=" F6 - duffing oscillator"> F6 - duffing oscillator</a> </p> <a href="https://publications.waset.org/abstracts/47494/periodically-forced-oscillator-with-noisy-chaotic-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> A Nanoelectromechanical Tunable Oscillator Base on a High-Q Optical Cavity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Huang">Jianguo Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cai"> Hong Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Dong"> Bin Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jifang%20Tao"> Jifang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiqun%20Liu"> Aiqun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dim-Lee%20Kwong"> Dim-Lee Kwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuandong%20Gu"> Yuandong Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed a miniaturized tunable optomechanical oscillator based on the nanoelectromechanical systems (NEMS) technology, and its frequencies can be electrostatically tuned by as much as 10%. By taking both advantages of optical and electrical spring, the oscillator achieves a high tuning sensitivity without resorting to mechanical tension. In particular, the proposed high-Q optical cavity design greatly enhances the system sensitivity, making it extremely sensitive to the small motional signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoelectromechanical%20systems%20%28NEMS%29" title="nanoelectromechanical systems (NEMS)">nanoelectromechanical systems (NEMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20force" title=" optical force"> optical force</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator" title=" oscillator"> oscillator</a> </p> <a href="https://publications.waset.org/abstracts/37879/a-nanoelectromechanical-tunable-oscillator-base-on-a-high-q-optical-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> A Low Phase Noise CMOS LC Oscillator with Tail Current-Shaping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mahdavi">Amir Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a circuit topology of voltage-controlled oscillators (VCO) which is suitable for ultra-low-phase noise operations is introduced. To do so, a new low phase noise cross-coupled oscillator by using the general topology of cross-coupled oscillator and adding a differential stage for tail current shaping is designed. In addition, a tail current shaping technique to improve phase noise in differential LC VCOs is presented. The tail current becomes large when the oscillator output voltage arrives at the maximum or minimum value and when the sensitivity of the output phase to the noise is the smallest. Also, the tail current becomes small when the phase noise sensitivity is large. The proposed circuit does not use extra power and extra noisy active devices. Furthermore, this topology occupies small area. Simulation results show the improvement in phase noise by 2.5dB under the same conditions and at the carrier frequency of 1 GHz for GSM applications. The power consumption of the proposed circuit is 2.44 mW and the figure of merit (FOM) with -192.2 dBc/Hz is achieved for the new oscillator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LC%20oscillator" title="LC oscillator">LC oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20phase%20noise" title=" low phase noise"> low phase noise</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20shaping" title=" current shaping"> current shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=diff%20mode" title=" diff mode"> diff mode</a> </p> <a href="https://publications.waset.org/abstracts/75354/a-low-phase-noise-cmos-lc-oscillator-with-tail-current-shaping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Output Voltage Analysis of CMOS Colpitts Oscillator with Short Channel Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ebrahimpour">Maryam Ebrahimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ebrahimi"> Amir Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the steady-state amplitude analysis of MOS Colpitts oscillator with short channel device. The proposed method is based on a large signal analysis and the nonlinear differential equations that govern the oscillator circuit behaviour. Also, the short channel effects are considered in the proposed analysis and analytical equations for finding the steady-state oscillation amplitude are derived. The output voltage calculated from this analysis is in excellent agreement with simulations for a wide range of circuit parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colpitts%20oscillator" title="colpitts oscillator">colpitts oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOS" title=" CMOS"> CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=electronics" title=" electronics"> electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=circuits" title=" circuits"> circuits</a> </p> <a href="https://publications.waset.org/abstracts/8691/output-voltage-analysis-of-cmos-colpitts-oscillator-with-short-channel-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chin-Yun%20Chen">Chin-Yun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20quadrature" title="numerical quadrature">numerical quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimation" title=" error estimation"> error estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=derivative%20free%20method" title=" derivative free method"> derivative free method</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20computation" title=" interval computation "> interval computation </a> </p> <a href="https://publications.waset.org/abstracts/17210/using-derivative-free-method-to-improve-the-error-estimation-of-numerical-quadrature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Abata">Maryam Abata</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulhime%20El%20Bekkali"> Moulhime El Bekkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mazer"> Said Mazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Algani"> Catherine Algani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Mehdi"> Mahmoud Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15渭m pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mm-wave%20band" title="Mm-wave band">Mm-wave band</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20oscillator" title=" local oscillator"> local oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrupler" title=" frequency quadrupler"> frequency quadrupler</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20amplifier" title=" buffer amplifier"> buffer amplifier</a> </p> <a href="https://publications.waset.org/abstracts/26079/design-of-a-phemt-buffer-amplifier-in-mm-wave-band-around-60-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Analysis of Injection-Lock in Oscillators versus Phase Variation of Injected Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yousefi">M. Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Nasirzadeh"> N. Nasirzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, behavior of an oscillator under injection of another signal has been investigated. Also, variation of output signal amplitude versus injected signal phase variation, the effect of varying the amplitude of injected signal and quality factor of the oscillator has been investigated. The results show that the locking time depends on phase and the best locking time happens at 180-degrees phase. Also, the effect of injected lock has been discussed. Simulations show that the locking time decreases with signal injection to bulk. Locking time has been investigated versus various phase differences. The effect of phase and amplitude changes on locking time of a typical LC oscillator in 180 nm technology has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator" title=" oscillator"> oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=injection-lock%20oscillator" title=" injection-lock oscillator"> injection-lock oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20modulation" title=" phase modulation"> phase modulation</a> </p> <a href="https://publications.waset.org/abstracts/53354/analysis-of-injection-lock-in-oscillators-versus-phase-variation-of-injected-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Approximate Solution to Non-Linear Schr枚dinger Equation with Harmonic Oscillator by Elzaki Decomposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20K.%20Jaradat">Emad K. Jaradat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%E2%80%99a%20Al-Faqih"> Ala鈥檃 Al-Faqih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20Schrodinger%20equation" title="non-linear Schrodinger equation">non-linear Schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Elzaki%20decomposition%20method" title=" Elzaki decomposition method"> Elzaki decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20oscillator" title=" harmonic oscillator"> harmonic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation" title=" one and two-dimensional Schrodinger equation"> one and two-dimensional Schrodinger equation</a> </p> <a href="https://publications.waset.org/abstracts/102537/approximate-solution-to-non-linear-schrodinger-equation-with-harmonic-oscillator-by-elzaki-decomposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Symbolic Analysis of Power Spectrum of CMOS Cross Couple Oscillator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes for the first time symbolic formula of the power spectrum of cross couple oscillator and its modified circuit. Many principle existed to derived power spectrum in microwave textbook such as impedance, admittance parameters, ABCD, H parameters, etc. It can be compared by graph of power spectrum which methodology is the best from the point of view of practical measurement setup such as condition of impedance parameter which used superposition of current to derived (its current injection of the other port of the circuit is zero, which is impossible in reality). Four Graphs of impedance parameters of cross couple oscillator is proposed. After that four graphs of Scattering parameters of cross couple oscillator will be shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectrum" title=" power spectrum"> power spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20parameters" title=" impedance parameters"> impedance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20parameter" title=" scattering parameter"> scattering parameter</a> </p> <a href="https://publications.waset.org/abstracts/36614/symbolic-analysis-of-power-spectrum-of-cmos-cross-couple-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Generalized Dirac oscillators Associated to Non-Hermitian Quantum Mechanical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjit%20Dutta">Debjit Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Roy"> P. Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Panella"> O. Panella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, non Hermitian interaction in non relativistic as well as relativistic quantum mechanics have been examined from various aspect. We can observe interesting fact that for such systems a class of potentials, namely the PT symmetric and 畏-pseudo Hermitian admit real eigenvalues despite being non Hermitian and analogues of those system have been experimentally verified. Point to be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical structures and also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator. We have thoroughly studied generalized Dirac oscillators with non Hermitian interactions in (1 + 1) dimensions. To be more specific, we have examined 畏 pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) dimensions. In particular, we have obtained a class of interactions which are 畏-pseudo Hermitian and the metric operator 畏 could have been also found explicitly. It is possible to have exact solutions of the generalized Dirac oscillator for some choices of the interactions. Subsequently we have employed the mapping between the generalized Dirac oscillator and the Jaynes Cummings (JC) model by spin flip to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings (AJC) type models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title="Dirac oscillator">Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Hermitian%20quantum%20system" title=" non-Hermitian quantum system"> non-Hermitian quantum system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermitian" title=" Hermitian"> Hermitian</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic" title=" relativistic "> relativistic </a> </p> <a href="https://publications.waset.org/abstracts/4071/generalized-dirac-oscillators-associated-to-non-hermitian-quantum-mechanical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Voltage Controlled Ring Oscillator for RF Applications in 0.18 碌m CMOS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arif%20Sobhan%20Bhuiyan">Mohammad Arif Sobhan Bhuiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainal%20Abidin%20Nordin"> Zainal Abidin Nordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamun%20Bin%20Ibne%20Reaz"> Mamun Bin Ibne Reaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact and power efficient high performance Voltage Controlled Oscillator (VCO) is a must in analog and digital circuits especially in the communication system, but the best trade-off among the performance parameters is a challenge for researchers. In this paper, a design of a compact 3-stage differential voltage controlled ring oscillator (VCRO) with low phase noise, low power and higher tuning bandwidth is proposed in 0.18 碌m CMOS technology. The VCRO is designed with symmetric load and positive feedback techniques to achieve higher gain and minimum delay. The proposed VCRO can operate at tuning range of 3.9-5.0 GHz at 1.6 V supply voltage. The circuit consumes only 1.0757 mW of power and produces -129 dbc/Hz. The total active area of the proposed VCRO is only 11.74 x 37.73 碌m2. Such a VCO can be the best choice for compact and low-power RF applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=VCO" title=" VCO"> VCO</a>, <a href="https://publications.waset.org/abstracts/search?q=VCRO" title=" VCRO"> VCRO</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator" title=" oscillator"> oscillator</a> </p> <a href="https://publications.waset.org/abstracts/2797/voltage-controlled-ring-oscillator-for-rf-applications-in-018-m-cmos-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Numerical Solution of Integral Equations by Using Discrete GHM Multiwavelet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archit%20Yajnik">Archit Yajnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustam%20Ali"> Rustam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, numerical method based on discrete GHM multiwavelets is presented for solving the Fredholm integral equations of second kind. There is hardly any article available in the literature in which the integral equations are numerically solved using discrete GHM multiwavelet. A number of examples are demonstrated to justify the applicability of the method. In GHM multiwavelets, the values of scaling and wavelet functions are calculated only at t = 0, 0.5 and 1. The numerical solution obtained by the present approach is compared with the traditional Quadrature method. It is observed that the present approach is more accurate and computationally efficient as compared to quadrature method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GHM%20multiwavelet" title="GHM multiwavelet">GHM multiwavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=fredholm%20integral%20equations" title=" fredholm integral equations"> fredholm integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrature%20method" title=" quadrature method"> quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=function%20approximation" title=" function approximation"> function approximation</a> </p> <a href="https://publications.waset.org/abstracts/36311/numerical-solution-of-integral-equations-by-using-discrete-ghm-multiwavelet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos">D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Antoniadis"> I. Antoniadis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Spitas"> V. Spitas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Koulocheris"> D. Koulocheris</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Polenta"> V. Polenta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title="wave propagation">wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structures" title=" periodic structures"> periodic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20damping" title=" wave damping"> wave damping</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/12429/drastic-increase-of-wave-dissipation-within-metastructures-having-negative-stiffness-inclusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> CFD modelling of Microdrops Manipulation by Microfluidic Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawfiq%20Chekifi">Tawfiq Chekifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Dennai"> Brahim Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Khelfaoui"> Rachid Khelfaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillator" title="fluidic oscillator">fluidic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=microdrops%20manipulation" title=" microdrops manipulation"> microdrops manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20%28volume%20of%20fluid%20method%29" title=" VOF (volume of fluid method)"> VOF (volume of fluid method)</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20oscillator" title=" microfluidic oscillator"> microfluidic oscillator</a> </p> <a href="https://publications.waset.org/abstracts/20878/cfd-modelling-of-microdrops-manipulation-by-microfluidic-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Micro-Oscillator: Passive Production and Manipulation of Microdrops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelfaoui%20Rachid">Khelfaoui Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chekifi%20Tawfiq"> Chekifi Tawfiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennai%20Brahim"> Dennai Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Maazouzi%20A.%20Hak"> Maazouzi A. Hak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical and experimental studies of passive micro drops production have been presented. This paper focuses on the modeling of micro-oscillators systems which are composed by passive amplifier without moving part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design that is based on a bistable fluidic amplifier is proposed. The characteristic size of the channels is generally about 35 microns of depth. The numerical results indicate that the production and manipulation of microdrops are possible with passive device within a typical oscillators chamber of 2.25 mm diameter and 0.20 mm length when the Reynolds number is Re = 490. The novel micro drops method that is presented in this study provides a simple solution about the production of microdrops problems in micro system. We undertake an experimental step. The first part is based on the realisation of sample oscillator; the second part is consisted of visualization, production and manipulation of microdrops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=miscible" title=" miscible"> miscible</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20drops" title=" micro drops"> micro drops</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator%20sample" title=" oscillator sample"> oscillator sample</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary" title=" capillary"> capillary</a> </p> <a href="https://publications.waset.org/abstracts/14075/micro-oscillator-passive-production-and-manipulation-of-microdrops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawfiq%20Chekifi">Tawfiq Chekifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Dennai"> Brahim Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Khelfaoui"> Rachid Khelfaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven鈥檛 well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillator" title="fluidic oscillator">fluidic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=microdrops%20manipulation" title=" microdrops manipulation"> microdrops manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid%20method" title=" volume of fluid method"> volume of fluid method</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20oscillator" title=" microfluidic oscillator"> microfluidic oscillator</a> </p> <a href="https://publications.waset.org/abstracts/19279/numerical-study-of-microdrops-manipulation-by-microfluidic-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Quantization of Damped Systems Based on the Doubling of Degrees of Freedom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20I.%20Nawafleh">Khaled I. Nawafleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it provide the canonical approach for studying dissipated oscillators based on the doubling of degrees of freedom. Clearly, expressions for Lagrangians of the elementary modes of the system are given, which ends with the familiar classical equations of motion for the dissipative oscillator. The equation for one variable is the time reversed of the motion of the second variable. it discuss in detail the extended Bateman Lagrangian specifically for a dual extended damped oscillator time-dependent. A Hamilton-Jacobi analysis showing the equivalence with the Lagrangian approach is also obtained. For that purpose, the techniques of separation of variables were applied, and the quantization process was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubling%20of%20degrees%20of%20freedom" title="doubling of degrees of freedom">doubling of degrees of freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipated%20harmonic%20oscillator" title=" dissipated harmonic oscillator"> dissipated harmonic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton-Jacobi" title=" Hamilton-Jacobi"> Hamilton-Jacobi</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20lagrangians" title=" time-dependent lagrangians"> time-dependent lagrangians</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/171405/quantization-of-damped-systems-based-on-the-doubling-of-degrees-of-freedom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Rahman">Saba Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain"> Arvind K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Bharti"> S. D. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Datta"> T. K. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimney" title="chimney">chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20model" title=" deterministic model"> deterministic model</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20der%20pol" title=" van der pol"> van der pol</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibration" title=" vortex-induced vibration"> vortex-induced vibration</a> </p> <a href="https://publications.waset.org/abstracts/141523/comparison-of-wake-oscillator-models-to-predict-vortex-induced-vibration-of-tall-chimneys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> The Construction of the Semigroup Which Is Chernoff Equivalent to Statistical Mixture of Quantizations for the Case of the Harmonic Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonid%20Borisov">Leonid Borisov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Orlov"> Yuri Orlov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We obtain explicit formulas of finitely multiple approximations of the equilibrium density matrix for the case of the harmonic oscillator using Chernoff's theorem and the notion of semigroup which is Chernoff equivalent to average semigroup. Also we found explicit formulas for the corresponding approximate Wigner functions and average values of the observable. We consider a superposition of 蟿 -quantizations representing a wide class of linear quantizations. We show that the convergence of the approximations of the average values of the observable is not uniform with respect to the Gibbs parameter. This does not allow to represent approximate expression as the sum of the exact limits and small deviations evenly throughout the temperature range with a given order of approximation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chernoff%20theorem" title="Chernoff theorem">Chernoff theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=Feynman%20formulas" title=" Feynman formulas"> Feynman formulas</a>, <a href="https://publications.waset.org/abstracts/search?q=finitely%20multiple%20approximation" title=" finitely multiple approximation"> finitely multiple approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20oscillator" title=" harmonic oscillator"> harmonic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=Wigner%20function" title=" Wigner function"> Wigner function</a> </p> <a href="https://publications.waset.org/abstracts/23625/the-construction-of-the-semigroup-which-is-chernoff-equivalent-to-statistical-mixture-of-quantizations-for-the-case-of-the-harmonic-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Current Starved Ring Oscillator Image Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devin%20Atkin">Devin Atkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Orly%20Yadid-Pecht"> Orly Yadid-Pecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continual demands for increasing resolution and dynamic range in CMOS image sensors have resulted in exponential increases in the amount of data that needs to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various new readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a new light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20image%20sensors" title="CMOS image sensors">CMOS image sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20capture" title=" high-speed capture"> high-speed capture</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20dynamic%20range" title=" wide dynamic range"> wide dynamic range</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20controlled%20oscillator" title=" light controlled oscillator"> light controlled oscillator</a> </p> <a href="https://publications.waset.org/abstracts/165110/current-starved-ring-oscillator-image-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Free Vibration Analysis of Pinned-Pinned and Clamped-Clamped Equal Strength Columns under Self-Weight and Tip Force Using Differential Quadrature Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Waffo%20Tchuimmo">F. Waffo Tchuimmo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Kwandio%20Dongoua"> G. S. Kwandio Dongoua</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20U.%20Yves%20Mbono%20Samba"> C. U. Yves Mbono Samba</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Dafounansou"> O. Dafounansou</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Nana"> L. Nana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strength criterion is an important condition of great interest to guarantee the stability of the structural elements. The present work is based on the study of the free vibration of Euler鈥檚 Bernoulli column of equal strength in compression while considering its own weight and the axial load in compression and tension subjected to symmetrical boundary conditions. We use the differential quadrature method to investigate the first fifth naturals frequencies parameters of the column according to the different forms of geometrical sections. The results of this work give help in making a judicious choice of type of cross-section and a better boundary condition to guarantee good stability of this type of column in civil constructions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title="free vibration">free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=equal%20strength" title=" equal strength"> equal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=self-weight" title=" self-weight"> self-weight</a>, <a href="https://publications.waset.org/abstracts/search?q=tip%20force" title=" tip force"> tip force</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20quadrature%20method" title=" differential quadrature method"> differential quadrature method</a> </p> <a href="https://publications.waset.org/abstracts/152024/free-vibration-analysis-of-pinned-pinned-and-clamped-clamped-equal-strength-columns-under-self-weight-and-tip-force-using-differential-quadrature-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yoneda">M. Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge" title="pedestrian bridge">pedestrian bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20lateral%20vibration" title=" human-induced lateral vibration"> human-induced lateral vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=neural-oscillator" title=" neural-oscillator"> neural-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20measurement" title=" full scale measurement"> full scale measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response%20analysis" title=" dynamic response analysis"> dynamic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/62163/dynamic-response-analyses-for-human-induced-lateral-vibration-on-congested-pedestrian-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadzamani">S. Mohammadzamani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kordi"> B. Kordi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20measurement" title="electric field measurement">electric field measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20radiating%20antenna" title=" impulse radiating antenna"> impulse radiating antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20oscillator" title=" switched oscillator"> switched oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20impulse%20generator" title=" wireless impulse generator"> wireless impulse generator</a> </p> <a href="https://publications.waset.org/abstracts/105070/wireless-integrated-switched-oscillator-impulse-generator-with-application-in-wireless-passive-electric-field-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Simple Multipath Compensation for Frequency Modulated Signals: A Case of Radio Frequency vs. Quadrature Baseband</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lusungu%20Ndovi">Lusungu Ndovi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio propagation from point-to-point is affected by the physical channel in many ways. A signal arriving at a destination travels through a number of different paths which are referred to as multi-paths. Research in this area of wireless communications has progressed well over the years with the research taking different angles of focus. By this is meant that some researchers focus on ways of reducing or eluding Multipath effects whilst others focus on ways of mitigating the effects of Multipath through compensation schemes. Baseband processing is seen as one field of signal processing that is cardinal to the advancement of software-defined radio technology. This has led to wide research into the carrying out certain algorithms at baseband. This paper considers compensating for Multipath for Frequency Modulated signals. The compensation process is carried out at Radio frequency (RF) and at Quadrature baseband (QBB) and the results are compared. Simulations are carried out using MatLab so as to show the benefits of working at lower QBB frequencies than at RF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quadrature%20baseband" title="quadrature baseband">quadrature baseband</a>, <a href="https://publications.waset.org/abstracts/search?q=qadio%20frequency" title=" qadio frequency"> qadio frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=qultipath%20compensation" title=" qultipath compensation"> qultipath compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20qodulation" title=" frequency qodulation"> frequency qodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/28979/simple-multipath-compensation-for-frequency-modulated-signals-a-case-of-radio-frequency-vs-quadrature-baseband" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hong%20Lee">Ju-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Chen%20Chung"> Ding-Chen Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quadrature%20mirror%20filter%20bank" title="quadrature mirror filter bank">quadrature mirror filter bank</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20all-pass%20filter" title=" digital all-pass filter"> digital all-pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20least%20squares%20algorithm" title=" weighted least squares algorithm"> weighted least squares algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/6051/quadrature-mirror-filter-bank-design-using-population-based-stochastic-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Design of Low Power FSK Receiver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Aeysha%20Parvin">M. Aeysha Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Asha"> J. Asha</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Jenifer"> J. Jenifer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This letter presents a novel frequency-shift keying(FSK) receiver using PLL-based FSK demodulator, thereby achieving high sensitivity and low power consumption. The proposed receiver comprises a power amplifier, mixer, 3-stage ring oscillator, PLL based demodulator. Moreover, the proposed receiver is fabricated using 0.12碌m CMOS process and consumes 0.7Mw. Measurement results demonstrate that the proposed receiver has a sensitivity of -93dbm with 1Mbps data rate in receiving a 2.4 GHz FSK signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20FSK%20receiver" title="CMOS FSK receiver">CMOS FSK receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20locked%20loop%20%28PLL%29" title=" phase locked loop (PLL)"> phase locked loop (PLL)</a>, <a href="https://publications.waset.org/abstracts/search?q=3-stage%20ring%20oscillator" title=" 3-stage ring oscillator"> 3-stage ring oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=FSK%20signal" title=" FSK signal"> FSK signal</a> </p> <a href="https://publications.waset.org/abstracts/29983/design-of-low-power-fsk-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Finding the Elastic Field in an Arbitrary Anisotropic Media by Implementing Accurate Generalized Gaussian Quadrature Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kabir">Hossein Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Hassanpour%20Mati-Kolaie"> Amir Hossein Hassanpour Mati-Kolaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, the elastic field in an anisotropic elastic media is determined by implementing a general semi-analytical method. In this specific methodology, the displacement field is computed as a sum of finite functions with unknown coefficients. These aforementioned functions satisfy exactly both the homogeneous and inhomogeneous boundary conditions in the proposed media. It is worth mentioning that the unknown coefficients are determined by implementing the principle of minimum potential energy. The numerical integration is implemented by employing the Generalized Gaussian Quadrature solution. Furthermore, with the aid of the calculated unknown coefficients, the displacement field, as well as the other parameters of the elastic field, are obtainable as well. Finally, the comparison of the previous analytical method with the current semi-analytical method proposes the efficacy of the present methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20elastic%20media" title="anisotropic elastic media">anisotropic elastic media</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-analytical%20method" title=" semi-analytical method"> semi-analytical method</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20field" title=" elastic field"> elastic field</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20gaussian%20quadrature%20solution" title=" generalized gaussian quadrature solution"> generalized gaussian quadrature solution</a> </p> <a href="https://publications.waset.org/abstracts/74780/finding-the-elastic-field-in-an-arbitrary-anisotropic-media-by-implementing-accurate-generalized-gaussian-quadrature-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quadrature%20oscillator&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>