CINXE.COM
Search results for: the number of axle
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: the number of axle</title> <meta name="description" content="Search results for: the number of axle"> <meta name="keywords" content="the number of axle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="the number of axle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="the number of axle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10059</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: the number of axle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10059</span> Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jooyoung%20Park"> Jooyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%20%28BWIM%29%20system" title="bridge weigh-in-motion (BWIM) system">bridge weigh-in-motion (BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20conditions" title=" driving conditions"> driving conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20analysis%20model" title=" precision analysis model"> precision analysis model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle" title=" the number of axle"> the number of axle</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20speed%20of%20vehicle" title=" the speed of vehicle"> the speed of vehicle</a> </p> <a href="https://publications.waset.org/abstracts/57266/improvement-of-brige-weigh-in-motion-technique-considering-the-driving-conditions-of-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10058</span> Measured versus Default Interstate Traffic Data in New Mexico, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasan">M. A. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Islam"> M. R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Tarefder"> R. A. Tarefder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AASHTOWare" title="AASHTOWare">AASHTOWare</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=weigh-in-motion" title=" weigh-in-motion"> weigh-in-motion</a>, <a href="https://publications.waset.org/abstracts/search?q=axle%20load%20distribution" title=" axle load distribution"> axle load distribution</a> </p> <a href="https://publications.waset.org/abstracts/42451/measured-versus-default-interstate-traffic-data-in-new-mexico-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10057</span> Reduced Vibration in a Levitating Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazadi">S. Kazadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20An"> A. An</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shen"> B. Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=levitating%20motor" title="levitating motor">levitating motor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation%20support" title=" magnetic levitation support"> magnetic levitation support</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness" title=" fitness"> fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=axle" title=" axle"> axle</a> </p> <a href="https://publications.waset.org/abstracts/24674/reduced-vibration-in-a-levitating-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10056</span> Compilation of Load Spectrum of Loader Drive Axle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yongxiang">Wei Yongxiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Haoyue"> Zhu Haoyue</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Heng"> Tang Heng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Qunwei"> Yuan Qunwei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20spectrum" title="load spectrum">load spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=axle" title=" axle"> axle</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-flow%20counting%20method" title=" rain-flow counting method"> rain-flow counting method</a>, <a href="https://publications.waset.org/abstracts/search?q=extrapolation" title=" extrapolation"> extrapolation</a> </p> <a href="https://publications.waset.org/abstracts/78796/compilation-of-load-spectrum-of-loader-drive-axle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10055</span> Neural Network Approach to Classifying Truck Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Moses">Ren Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title=" vehicle classification"> vehicle classification</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20analysis" title=" traffic analysis"> traffic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20highway%20opera-tions" title=" and highway opera-tions"> and highway opera-tions</a> </p> <a href="https://publications.waset.org/abstracts/15762/neural-network-approach-to-classifying-truck-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10054</span> Modeling of Crack Growth in Railway Axles under Static Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zellagui%20Redouane">Zellagui Redouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Bellaouar%20Ahmed"> Bellaouar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Lachi%20Mohammed"> Lachi Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The railway axles are the essential parts in the bogie of train, and its failure creates a big problem in the railway transport; during the work of this parts we noticed a premature deterioration. The aim has been presented a predictive model allowing the identification of the probable causes that are the cause of these premature deterioration. The results are employed for predicting fatigue crack growth in the railway axle, Also we want to present the variation value of stress intensity factor in different positions of elliptical crack tip. The modeling of axle in performed by the SOLID WORKS software and imported into ANSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title="crack growth">crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20load" title=" static load"> static load</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20axle" title=" railway axle"> railway axle</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a> </p> <a href="https://publications.waset.org/abstracts/63837/modeling-of-crack-growth-in-railway-axles-under-static-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10053</span> Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Schramm">Tobias Schramm</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnther%20Prokop"> Günther Prokop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20dynamics" title="vehicle dynamics">vehicle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20simulation" title=" vehicle simulation"> vehicle simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20component%20degradation" title=" vehicle component degradation"> vehicle component degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber%20model" title=" shock absorber model"> shock absorber model</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber%20degradation" title=" shock absorber degradation"> shock absorber degradation</a> </p> <a href="https://publications.waset.org/abstracts/154108/simulative-study-of-the-influence-of-degraded-twin-tube-shock-absorbers-on-the-lateral-forces-of-vehicle-axles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10052</span> Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed%20railway%20vehicle" title="high-speed railway vehicle">high-speed railway vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hunting%20motion" title=" hunting motion"> hunting motion</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20axle" title=" wheel axle"> wheel axle</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20model" title=" vibration model"> vibration model</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis." title=" analysis."> analysis.</a> </p> <a href="https://publications.waset.org/abstracts/78472/clarifications-on-the-damping-mechanism-related-to-the-hunting-motion-of-the-wheel-axle-of-a-high-speed-railway-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10051</span> Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bullet%20train" title="bullet train">bullet train</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20wheels" title=" cylindrical wheels"> cylindrical wheels</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20hunting" title=" dynamical hunting"> dynamical hunting</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/96999/damping-and-stability-evaluation-for-the-dynamical-hunting-motion-of-the-bullet-train-wheel-axle-equipped-with-cylindrical-wheel-treads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10050</span> Significant Stressed Zone of Highway Embankment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharifullah%20Ahmed">Sharifullah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Eng"> P. Eng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Axle Pressure and the Consolidation Pressure decrease with the height of the highway embankment and the depth of subsoil. This reduction of pressure depends on the height and width of the embankment. The depth is defined as the significantly stressed zone at which the pressure is reduced to 0.2 or 20%. The axle pressure is reduced to 7% for embankment height 1-3m and to 0.7% for embankment height 4-12m at the bottom level of Highway Embankment. This observation implies that, the portion of axle pressure transferred to subsoil underlying the embankment is not significant for ESAL factor 4.8. The 70% consolidation to have occurred after the construction of the surface layer of pavement. Considering this ratio of post construction settlement, 70% consolidation pressure (Δσ70) is used in this analysis. The magnitude of influence depth or Significant Stressed Zone (Ds) had been obtained for the range of crest width (at the top level of the embankment) is kept between 5m and 50m and for the range of embankment height from 1.0m to 12.0m considering 70% of consolidation pressure (Δσ70). Significantly stressed zones (Ds) for 70% embankment pressure are found as 2-6.2He for embankment top width 5-50m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation%20pressure" title="consolidation pressure">consolidation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation%20settlement" title=" consolidation settlement"> consolidation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=ESAL" title=" ESAL"> ESAL</a>, <a href="https://publications.waset.org/abstracts/search?q=highway%20embankment" title=" highway embankment"> highway embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=HS%2020-44" title=" HS 20-44"> HS 20-44</a>, <a href="https://publications.waset.org/abstracts/search?q=significant%20stressed%20zone" title=" significant stressed zone"> significant stressed zone</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/152356/significant-stressed-zone-of-highway-embankment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10049</span> Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Keshavarzian">Hasan Keshavarzian</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayebeh%20Nesari"> Tayebeh Nesari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail-wheel%20tribology" title="rail-wheel tribology">rail-wheel tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact%20mechanic" title=" rolling contact mechanic"> rolling contact mechanic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a> </p> <a href="https://publications.waset.org/abstracts/63597/reliability-analysis-for-cyclic-fatigue-life-prediction-in-railroad-bolt-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10048</span> Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Imtiaz%20S">Mohd Imtiaz S</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Jain"> Saurabh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Pothiraj%20K."> Pothiraj K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20thrust" title="axial thrust">axial thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=b10%20life" title=" b10 life"> b10 life</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-groove%20ball%20bearing" title=" deep-groove ball bearing"> deep-groove ball bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20roller%20bearing" title=" taper roller bearing"> taper roller bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-floating%20layout." title=" semi-floating layout."> semi-floating layout.</a> </p> <a href="https://publications.waset.org/abstracts/169297/double-row-taper-roller-bearing-wheel-end-system-in-rigid-rear-drive-axle-in-heavy-duty-suv-passenger-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10047</span> Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sittampalam%20Manoharan">Sittampalam Manoharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Chai"> Gary Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanaul%20Chowdhury"> Sanaul Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Golding"> Andrew Golding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjusted%20structural%20number%20%28SNP%29" title="adjusted structural number (SNP)">adjusted structural number (SNP)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20deflection%20%28D0%29" title=" maximum deflection (D0)"> maximum deflection (D0)</a>, <a href="https://publications.waset.org/abstracts/search?q=equant%20standard%20axle%20%28ESA%29" title=" equant standard axle (ESA)"> equant standard axle (ESA)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20speed%20deflectometer%20%28TSD%29" title=" traffic speed deflectometer (TSD)"> traffic speed deflectometer (TSD)</a> </p> <a href="https://publications.waset.org/abstracts/88655/development-of-structural-deterioration-models-for-flexible-pavement-using-traffic-speed-deflectometer-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10046</span> Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulraaof%20H.%20Alqaili">Abdulraaof H. Alqaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanistic-empirical%20pavement%20design%20guide%20%28MEPDG%29" title="mechanistic-empirical pavement design guide (MEPDG)">mechanistic-empirical pavement design guide (MEPDG)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20characteristics" title=" traffic characteristics"> traffic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20properties" title=" materials properties"> materials properties</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh" title=" Riyadh"> Riyadh</a> </p> <a href="https://publications.waset.org/abstracts/63089/preparing-data-for-calibration-of-mechanistic-empirical-pavement-design-guide-in-central-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10045</span> Height of Highway Embankment for Tolerable Residual Settlement of Loose Cohesionless Subsoil Overlain by Stronger Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharifullah%20Ahmed">Sharifullah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual settlement of cohesionless or non-plastic soil of different strength underlying highway embankment overlain by stronger soil layer highway embankment is studied. A parametric study is carried out for different height of embankment and for different ESAL factor. The sum of elastic settlements of cohesionless subsoil due to axle induced stress and due to self-weight of pavement layers is termed as the residual settlement. The values of residual settlement (Sr) for different heights of road embankment (He) are obtained and presented as design charts for different SPT Value (N60) and ESAL factor. For rigid pavement and flexible pavement in approach to bridge or culvert, the tolerable residual settlement is 0.100m. This limit is taken as 0.200m for flexible pavement in general sections of highway without approach to bridge or culvert. A simplified guideline is developed for design of highway embankment underlain by very loose to loose cohesionless subsoil overlain by a stronger soil layer for limiting value of the residual settlement. In the current research study range of ESAL factor is 1-10 and range of SPT value (N60) is 1-10. That is found that, ground improvement is not required if the overlying stronger layer is minimum 1.5m and 4.0m for general road section of flexible pavement except bridge or culvert approach and for rigid pavement or flexible pavement in bridge or culvert approach. Tables and charts are included in the prepared guideline to obtain minimum allowable height of highway embankment to limit the residual settlement with in mentioned tolerable limit. Allowable values of the embankment height (He) are obtained corresponding to tolerable or limiting level of the residual settlement of loose subsoil for different SPT value, thickness of stronger layer (d) and ESAL factor. The developed guideline is may be issued to be used in assessment of the necessity of ground improvement in case of cohesionless subsoil underlying highway embankment overlain by stronger subsoil layer for limiting residual settlement. The ground improvement is only to be required if the residual settlement of subsoil is more than tolerable limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axle%20pressure" title="axle pressure">axle pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20single%20axle%20load" title=" equivalent single axle load"> equivalent single axle load</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=highway%20embankment" title=" highway embankment"> highway embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerable%20residual%20settlement" title=" tolerable residual settlement"> tolerable residual settlement</a> </p> <a href="https://publications.waset.org/abstracts/155761/height-of-highway-embankment-for-tolerable-residual-settlement-of-loose-cohesionless-subsoil-overlain-by-stronger-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10044</span> Investigating Effects of Vehicle Speed and Road PSDs on Response of a 35-Ton Heavy Commercial Vehicle (HCV) Using Mathematical Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20G.%20Kurian">Amal G. Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mathematical modeling has seen a considerable boost in recent times with the development of many advanced algorithms and mathematical modeling capabilities. The advantages this method has over other methods are that they are much closer to standard physics theories and thus represent a better theoretical model. They take lesser solving time and have the ability to change various parameters for optimization, which is a big advantage, especially in automotive industry. This thesis work focuses on a thorough investigation of the effects of vehicle speed and road roughness on a heavy commercial vehicle ride and structural dynamic responses. Since commercial vehicles are kept in operation continuously for longer periods of time, it is important to study effects of various physical conditions on the vehicle and its user. For this purpose, various experimental as well as simulation methodologies, are adopted ranging from experimental transfer path analysis to various road scenario simulations. To effectively investigate and eliminate several causes of unwanted responses, an efficient and robust technique is needed. Carrying forward this motivation, the present work focuses on the development of a mathematical model of a 4-axle configuration heavy commercial vehicle (HCV) capable of calculating responses of the vehicle on different road PSD inputs and vehicle speeds. Outputs from the model will include response transfer functions and PSDs and wheel forces experienced. A MATLAB code will be developed to implement the objectives in a robust and flexible manner which can be exploited further in a study of responses due to various suspension parameters, loading conditions as well as vehicle dimensions. The thesis work resulted in quantifying the effect of various physical conditions on ride comfort of the vehicle. An increase in discomfort is seen with velocity increase; also the effect of road profiles has a considerable effect on comfort of the driver. Details of dominant modes at each frequency are analysed and mentioned in work. The reduction in ride height or deflection of tire and suspension with loading along with load on each axle is analysed and it is seen that the front axle supports a greater portion of vehicle weight while more of payload weight comes on fourth and third axles. The deflection of the vehicle is seen to be well inside acceptable limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=HCV" title=" HCV"> HCV</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension" title=" suspension"> suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20analysis" title=" ride analysis"> ride analysis</a> </p> <a href="https://publications.waset.org/abstracts/139231/investigating-effects-of-vehicle-speed-and-road-psds-on-response-of-a-35-ton-heavy-commercial-vehicle-hcv-using-mathematical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10043</span> Novel Animal Drawn Wheel-Axle Mechanism Actuated Knapsack Boom Sprayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20O.%20Abdulmalik">Ibrahim O. Abdulmalik</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20C.%20Amonye"> Michael C. Amonye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Makoyo"> Mahdi Makoyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manual knapsack sprayer is the most popular means of farm spraying in Nigeria. It has its limitations. Apart from the human fatigue, which leads to unsteady walking steps, their field capacities are small. They barely cover about 0.2hectare per hour. Their small swath implies that a sizeable farm would take several days to cover. Weather changes are erratic and often it is desired to spray a large farm within hours or few days for even effect, uniformity and to avoid adverse weather interference. It is also often required that a large farm be covered within a short period to avoid re-emergence of weeds before crop emergence. Deployment of many knapsack operators to large farms has not been successful. Human error in taking equally spaced swaths usually result in over dosage of overlaps and in unapplied areas due to error at edges overlaps. Large farm spraying require boom equipment with larger swath. Reduced error in swath overlaps and spraying within the shortest possible time are then assured. Tractor boom sprayers would readily overcome these problems and achieve greater coverage, but they are not available in the country. Tractor hire for cultivation is very costly with the attendant lack of spare parts and specialized technicians for maintenance wherefore farmers find it difficult to engage tractors for cultivation and would avoid considering the employment of a tractor boom sprayer. Animal traction in farming is predominant in Nigeria, especially in the Northern part of the country. Development of boom sprayers drawn by work animals surely implies the maximization of animal utilization in farming. The Hydraulic Equipment Development Institute, Kano, in keeping to its mandate of targeted R&D in hydraulic and pneumatic systems, has developed an Animal Drawn Knapsack Boom Sprayer with four nozzles using the axle mechanism of a two wheeled cart to actuate the piston pump of two knapsack sprayers in line with appropriate technology demand of the country. It is hoped that the introduction of this novel contrivance shall enhance crop protection practice and lead to greater crop and food production in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boom" title="boom">boom</a>, <a href="https://publications.waset.org/abstracts/search?q=knapsack" title=" knapsack"> knapsack</a>, <a href="https://publications.waset.org/abstracts/search?q=farm" title=" farm"> farm</a>, <a href="https://publications.waset.org/abstracts/search?q=sprayer" title=" sprayer"> sprayer</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20axle" title=" wheel axle "> wheel axle </a> </p> <a href="https://publications.waset.org/abstracts/27405/novel-animal-drawn-wheel-axle-mechanism-actuated-knapsack-boom-sprayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10042</span> Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim"> Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihwan%20Park"> Jihwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%20%28BWIM%29%20system" title="bridge weigh-in-motion (BWIM) system">bridge weigh-in-motion (BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20conditions" title=" environmental conditions"> environmental conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20of%20bridges" title=" type of bridges"> type of bridges</a> </p> <a href="https://publications.waset.org/abstracts/81022/artificial-neural-network-based-bridge-weigh-in-motion-technique-considering-environmental-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10041</span> Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudeny%20Simone%20Alves%20Santana">Claudeny Simone Alves Santana</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Simas%20De%20Medeiros"> Alexandre Simas De Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelino%20Aur%C3%A9lio%20Vieira%20Da%20Silva"> Marcelino Aurélio Vieira Da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20paving" title=" urban paving"> urban paving</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20cost" title=" service cost"> service cost</a> </p> <a href="https://publications.waset.org/abstracts/174892/analysis-of-pavement-lifespan-cost-and-emissions-of-greenhouse-gases-a-comparative-study-of-10-year-vs-30-year-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10040</span> The Effect of Degraded Shock Absorbers on the Safety-Critical Stationary and Non-Stationary Lateral Dynamics of Passenger Cars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Schramm">Tobias Schramm</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnther%20Prokop"> Günther Prokop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The average age of passenger cars is rising steadily around the world. Older vehicles are more sensitive to the degradation of chassis components. A higher age and a higher mileage of passenger cars correlate with an increased failure rate of vehicle shock absorbers. The most common degradation mechanism of vehicle shock absorbers is the loss of oil and gas. It is not yet fully understood how the loss of oil and gas in twin-tube shock absorbers affects the lateral dynamics of passenger cars. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers of passenger cars on their safety-critical lateral dynamics. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was used to simulate stationary cornering and steering wheel angle step maneuvers on road classes A to D. The simulations were carried out in a realistic parameter space in order to demonstrate the influence of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the understeer gradient of vehicles. For stationary lateral dynamics, degraded shock absorbers for high road excitations reduce the maximum lateral accelerations. Degraded rear axle shock absorbers can change the understeer gradient of a vehicle in the direction of oversteer. Degraded shock absorbers also lead to increased rolling angles. Furthermore, degraded shock absorbers have a major impact on driving stability during steering wheel angle steps. Degraded rear axle shock absorbers, in particular, can lead to unstable handling. Especially the tire stiffness, the unsprung mass and the stabilizer stiffness influence the effect of degraded shock absorbers on the lateral dynamics of passenger cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20dynamics" title="driving dynamics">driving dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber%20degradation" title=" shock absorber degradation"> shock absorber degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20and%20nonstationary%20lateral%20dynamics." title=" stationary and nonstationary lateral dynamics."> stationary and nonstationary lateral dynamics.</a> </p> <a href="https://publications.waset.org/abstracts/194638/the-effect-of-degraded-shock-absorbers-on-the-safety-critical-stationary-and-non-stationary-lateral-dynamics-of-passenger-cars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10039</span> Productivity Improvement in the Propeller Shaft Manufacturing Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Jung">Won Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In automotive, propeller shaft is the device for transferring power from engine to axle via transmission, and the slip yoke is one of the main parts in the component. Since the propeller shafts are subject to torsion and shear stress, they need to be strong enough to bear the stress. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. We present how to redesign the component that currently manufactured as a forged single body type. The research was focused on not only reducing processing time but insuring durability of the component simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive" title="automotive">automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller%20shaft" title=" propeller shaft"> propeller shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20yoke" title=" slip yoke"> slip yoke</a> </p> <a href="https://publications.waset.org/abstracts/17015/productivity-improvement-in-the-propeller-shaft-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10038</span> The Theory of Number "0"</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iryna%20Shevchenko">Iryna Shevchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The science of mathematics was originated at the order of count of objects and subsequently for the measurement of size and quality of objects using the logical or abstract means. The laws of mathematics are based on the study of absolute values. The number 0 or "nothing" is the purely logical (as the opposite to absolute) value as the "nothing" should always assume the space for the something that had existed there; otherwise the "something" would never come to existence. In this work we are going to prove that the number "0" is the abstract (logical) and not an absolute number and it has the absolute value of “∞” (infinity). Therefore, the number "0" might not stand in the row of numbers that symbolically represents the absolute values, as it would be the mathematically incorrect. The symbolical value of number "0" in the row of numbers could be represented with symbol "∞" (infinity). As a result, we have the mathematical row of numbers: epsilon, ...4, 3, 2, 1, ∞. As the conclusions of the theory of number “0” we presented the statements: multiplication and division by fractions of numbers is illegal operation and the mathematical division by number “0” is allowed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=illegal%20operation%20of%20division%20and%20multiplication%20by%20fractions%20of%20number" title="illegal operation of division and multiplication by fractions of number">illegal operation of division and multiplication by fractions of number</a>, <a href="https://publications.waset.org/abstracts/search?q=infinity" title=" infinity"> infinity</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20row%20of%20numbers" title=" mathematical row of numbers"> mathematical row of numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20number%20%E2%80%9C0%E2%80%9D" title=" theory of number “0”"> theory of number “0”</a> </p> <a href="https://publications.waset.org/abstracts/27872/the-theory-of-number-0" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10037</span> Definition of Quality Indicators for Damascus Rose Oil (Rosa damascena) Flora of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serebryanaya%20Fatima">Serebryanaya Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Essaih%20Hind"> Essaih Hind</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Rosa damascena (Rosa damascena Mill.) is an interesting medicinal plant; it is famous in different countries and has medicinal use in many cultures. The main groups of pharmacological actions of rose oil are connected with anti-inflammatory, antifungal activity, also antioxidant and antibacterial, and antiparasitic properties. We have prepared the quality indicators analysis of the Damascus rose oil. An iodine number, acid number, and oil peroxide number were determined. The following indicators of the quality of rose oil have been studied. The determination was carried out according to the pharmacopoeic methods of analysis of essential oils, the definition of peroxide number (1,971%), iodine number (3,365%), and acid number (0,0526%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20damascene" title="Rosa damascene">Rosa damascene</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20damascena%20Mill." title=" Rosa damascena Mill."> Rosa damascena Mill.</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20number" title=" iodine number"> iodine number</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20number" title=" acid number"> acid number</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20peroxide%20number" title=" oil peroxide number"> oil peroxide number</a> </p> <a href="https://publications.waset.org/abstracts/159900/definition-of-quality-indicators-for-damascus-rose-oil-rosa-damascena-flora-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10036</span> Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok">N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20L.%20Aleng"> N. L. Aleng</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Senu"> N. Senu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet" title=" shrinking sheet"> shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20motion" title=" Brownian motion"> Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophoresis" title=" thermophoresis"> thermophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20solution" title=" similarity solution"> similarity solution</a> </p> <a href="https://publications.waset.org/abstracts/13057/flow-and-heat-transfer-of-a-nanofluid-over-a-shrinking-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10035</span> Failure of Agriculture Soil following the Passage of Tractors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20Eloud">Anis Eloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Chehaibi"> Sayed Chehaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compaction of agricultural soils as a result of the passage of heavy machinery on the fields is a problem that affects many agronomists and farmers since it results in a loss of yield of most crops. To remedy this, and raise the overall future of the food security challenge, we must study and understand the process of soil degradation. The present review is devoted to understanding the effect of repeated passages on agricultural land. The experiments were performed on a plot of the area of the ESIER, characterized by a clay texture in order to quantify the soil compaction caused by the wheels of the tractor during repeated passages on agricultural land. The test tractor CASE type puissance 110 hp and 5470 kg total mass of 3500 kg including the two rear axles and 1970 kg on the front axle. The state of soil compaction has been characterized by measuring its resistance to penetration by means of a penetrometer and direct manual reading, the density and permeability of the soil. Soil moisture was taken jointly. The measurements are made in the initial state before passing the tractor and after each pass varies from 1 to 7 on the track wheel inflated to 1.5 bar for the rear wheel and broke water to the level of valve and 4 bar for the front wheels. The passages are spaced to the average of one week. The results show that the passage of wheels on a farm tilled soil leads to compaction and the latter increases with the number of passages, especially for the upper 15 cm depth horizons. The first passage is characterized by the greatest effect. However, the effect of other passages do not follow a definite law for the complex behavior of granular media and the history of labor and the constraints it suffers from its formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheel%20traffic" title="wheel traffic">wheel traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=tractor" title=" tractor"> tractor</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title=" soil compaction"> soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/19836/failure-of-agriculture-soil-following-the-passage-of-tractors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10034</span> Mixed Number Algebra and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shah%20Alam">Md. Shah Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell’s equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20number" title="mixed number">mixed number</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20relativity" title=" special relativity"> special relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodynamics" title=" electrodynamics"> electrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=pauli%20matrix" title=" pauli matrix"> pauli matrix</a> </p> <a href="https://publications.waset.org/abstracts/39999/mixed-number-algebra-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10033</span> Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Karimzadeh%20Fard"> Afshin Karimzadeh Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=wavy%20wall" title=" wavy wall"> wavy wall</a> </p> <a href="https://publications.waset.org/abstracts/16580/numerical-investigation-of-the-effect-of-number-of-waves-on-heat-transfer-in-a-wavy-wall-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10032</span> Pavement Failures and Its Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maulik%20L.%20Sisodia">Maulik L. Sisodia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tirth%20K.%20Raval"> Tirth K. Raval</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarsh%20S.%20Mistry"> Aarsh S. Mistry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the ongoing researches about the defects in both flexible and rigid pavement and the maintenance in both flexible and rigid pavements. Various defects in pavements have been identified since the existence of both flexible and rigid pavement. Flexible Pavement failure is defined in terms of decreasing serviceability caused by the development of cracks, ruts, potholes etc. Flexible Pavement structure can be destroyed in a single season due to water penetration. Defects in flexible pavements is a problem of multiple dimensions, phenomenal growth of vehicular traffic (in terms of no. of axle loading of commercial vehicles), the rapid expansion in the road network, non-availability of suitable technology, material, equipment, skilled labor and poor funds allocation have all added complexities to the problem of flexible pavements. In rigid pavements due to different type of destress the failure like joint spalling, faulting, shrinkage cracking, punch out, corner break etc. Application of correction in the existing surface will enhance the life of maintenance works as well as that of strengthening layer. Maintenance of a road network involves a variety of operations, i.e., identification of deficiencies and planning, programming and scheduling for actual implementation in the field and monitoring. The essential objective should be to keep the road surface and appurtenances in good condition and to extend the life of the road assets to its design life. The paper describes lessons learnt from pavement failures and problems experienced during the last few years on a number of projects in India. Broadly, the activities include identification of defects and the possible cause there off, determination of appropriate remedial measures; implement these in the field and monitoring of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flexible%20Pavements" title="Flexible Pavements">Flexible Pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=Rigid%20Pavements" title=" Rigid Pavements"> Rigid Pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=Defects" title=" Defects"> Defects</a>, <a href="https://publications.waset.org/abstracts/search?q=Maintenance" title=" Maintenance"> Maintenance</a> </p> <a href="https://publications.waset.org/abstracts/120797/pavement-failures-and-its-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10031</span> Domination Parameters of Middle Graphs: Connected and Outer-Connected Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behnaz%20Pahlousay">Behnaz Pahlousay</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Kazemnejad"> Farshad Kazemnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisa%20Palezzato"> Elisa Palezzato</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Torielli"> Michele Torielli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the notions of connected domination number and of outer-connected domination number for middle graphs. Indeed, we obtain tight bounds for these numbers in terms of the order of the middle graph M(G). We also compute the outer-connected domination number of some families of graphs such as star graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and some operation on graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the outer-connected domination number of middle graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connected%20domination%20number" title="connected domination number">connected domination number</a>, <a href="https://publications.waset.org/abstracts/search?q=outer-connected%20dom-%20ination%20number" title=" outer-connected dom- ination number"> outer-connected dom- ination number</a>, <a href="https://publications.waset.org/abstracts/search?q=domination%20number" title=" domination number"> domination number</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20graph" title=" middle graph"> middle graph</a>, <a href="https://publications.waset.org/abstracts/search?q=nordhaus-%20gaddum-like%20relation." title=" nordhaus- gaddum-like relation."> nordhaus- gaddum-like relation.</a> </p> <a href="https://publications.waset.org/abstracts/189196/domination-parameters-of-middle-graphs-connected-and-outer-connected-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10030</span> Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homin%20Kim">Homin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjo%20Byun"> Hyungjo Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Do"> Jinyoung Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Lee"> Yongil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin"> Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbae%20Lee"> Seungbae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20room%20design" title=" engine room design"> engine room design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20hydraulics" title=" mobile hydraulics"> mobile hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/61957/thermal-and-acoustic-design-of-mobile-hydraulic-vehicle-engine-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=335">335</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=336">336</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>