CINXE.COM
Predicting Bankruptcy Using Machine Learning Algorithms
<!DOCTYPE html> <html lang="en"> <head> <!--Import Google Icon Font--> <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet"> <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.0.13/css/all.css" integrity="sha384-DNOHZ68U8hZfKXOrtjWvjxusGo9WQnrNx2sqG0tfsghAvtVlRW3tvkXWZh58N9jp" crossorigin="anonymous"> <link href="https://fonts.googleapis.com/css?family=Roboto" rel="stylesheet"> <!--Import materialize.css--> <link type="text/css" rel="stylesheet" href="../css/materialize.min.css" media="screen,projection" /> <link type="text/css" rel="stylesheet" href="../css/main.css" /> <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js"></script> <link rel="icon" type="image/png" href="../aircc.png"> <!--SEO--> <html xmlns="http://www.w3.org/1999/xhtml"> <head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Predicting Bankruptcy Using Machine Learning Algorithms</title> <!-- common meta tags --> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <meta name="title" content="Predicting Bankruptcy Using Machine Learning Algorithms"> <meta name="description" content="This paper is written for predicting Bankruptcy using different Machine Learning Algorithms. Whether the company will go bankrupt or not is one of the most challenging and toughest question to answer in the 21st Century. Bankruptcy is defined as the final stage of failure for a firm. A company declares that it has gone bankrupt when at that present moment it does not have enough funds to pay the creditors. It is a global problem. This paper provides a unique methodology to classify companies as bankrupt or healthy by applying predictive analytics. The prediction model stated in this paper yields better accuracy with standard parameters used for bankruptcy prediction than previously applied prediction methodologies."/> <meta name="keywords" content="Machine Learning, Classification, Regression, Correlation, Error Matrix, ROC"/> <!-- end common meta tags --> <!-- Dublin Core(DC) meta tags --> <meta name="dc.title" content="Predicting Bankruptcy Using Machine Learning Algorithms"> <meta name="citation_author" content="Abhishek Karan"> <meta name="citation_author" content="Preetham Kumar"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="International Journal on Cybernetics & Informatics (IJCI),Vol. 5, No. 1"> <meta name="dc.date" content="2016/2/28"> <meta name="dc.identifier" content="10.5121/ijci.2016.5110"> <meta name="dc.publisher" content="AIRCC Publishing Corporation"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="This paper is written for predicting Bankruptcy using different Machine Learning Algorithms. Whether the company will go bankrupt or not is one of the most challenging and toughest question to answer in the 21st Century. Bankruptcy is defined as the final stage of failure for a firm. A company declares that it has gone bankrupt when at that present moment it does not have enough funds to pay the creditors. It is a global problem. This paper provides a unique methodology to classify companies as bankrupt or healthy by applying predictive analytics. The prediction model stated in this paper yields better accuracy with standard parameters used for bankruptcy prediction than previously applied prediction methodologies."/> <meta name="dc.subject" content="Machine Learning"> <meta name="dc.subject" content="Classification"> <meta name="dc.subject" content="Correlation"> <meta name="dc.subject" content="Error Matrix"> <meta name="dc.subject" content="ROC"> <!-- End Dublin Core(DC) meta tags --> <!-- Prism meta tags --> <meta name="prism.publicationName" content="International Journal on Cybernetics & Informatics (IJCI),Vol. 5, No. 1"> <meta name="prism.publicationDate" content="2016/2/28"> <meta name="prism.volume" content="5"> <meta name="prism.number" content="1"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="91"> <!-- End Prism meta tags --> <!-- citation meta tags --> <meta name="citation_journal_title" content="International Journal on Cybernetics & Informatics (IJCI),Vol. 5, No. 1"> <meta name="citation_publisher" content="AIRCC Publishing Corporation"> <meta name="citation_author" content="Abhishek Karan"> <meta name="citation_author" content="Preetham Kumar"> <meta name="citation_title" content="Predicting Bankruptcy Using Machine Learning Algorithms"> <meta name="citation_online_date" content="2016/2/28"> <meta name="citation_volume" content="5"> <meta name="citation_issue" content="1"> <meta name="citation_firstpage" content="91"> <meta name="citation_author" content="Abhishek Karan"> <meta name="citation_author" content="Preetham Kumar"> <meta name="citation_doi" content="10.5121/ijci.2016.5110"> <meta name="citation_abstract_html_url" content="https://ijcionline.com/abstract/5116ijci10"> <meta name="citation_pdf_url" content="https://aircconline.com/ijci/V5N1/5116ijci10.pdf"> <!-- end citation meta tags --> <!-- Og meta tags --> <meta property="og:site_name" content="AIRCC" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://ijcionline.com/abstract/5116ijci10"/> <meta property="og:title" content="Predicting Bankruptcy Using Machine Learning Algorithms"> <meta property="og:description" content="This paper is written for predicting Bankruptcy using different Machine Learning Algorithms. Whether the company will go bankrupt or not is one of the most challenging and toughest question to answer in the 21st Century. Bankruptcy is defined as the final stage of failure for a firm. A company declares that it has gone bankrupt when at that present moment it does not have enough funds to pay the creditors. It is a global problem. This paper provides a unique methodology to classify companies as bankrupt or healthy by applying predictive analytics. The prediction model stated in this paper yields better accuracy with standard parameters used for bankruptcy prediction than previously applied prediction methodologies."/> <!-- end og meta tags --> <!-- INDEX meta tags --> <meta name="google-site-verification" content="t8rHIcM8EfjIqfQzQ0IdYIiA9JxDD0uUZAitBCzsOIw" /> <meta name="yandex-verification" content="e3d2d5a32c7241f4" /> <!-- end INDEX meta tags --> <!--END SEO--> </head> <body> <!-- Responsive NavBar --> <div class="navbar-fixed"> <nav class="cyan lighten-2 z-depth-5"> <div class="container"> <div class="nav-wrapper"> <ul> <li id="b-logo"> <img id="brand-logo" href="/index" class="hide-on-med-and-down" src="/img/aircc-logo1.jpg" width="60" height="60" style="vertical-align:middle"> </li> </ul> <a class="brand-logo " href="/index"><h5>IJCI <span class="hide-on-med-and-down">Conference Proceedings</span></h5></a> <a data-activates="side-nav" class="button-collapse show-on-small left"> <i class="material-icons">menu</i> </a> <ul class="right hide-on-med-and-down"> <li class=""> <a href="/index">Home</a> </li> <li class=""> <a href="/volume13">Current issue</a> </li> <li> <a href="/archives">Archives</a> </li> <li class=""> <a href="/contact">Contact</a> </li> </ul> </div> </div> </nav> </div> <!-- SIDE NAVBAR --> <ul class="side-nav" id="side-nav"> <li> <div class="user-view arc"> <div class="background"> <img class="mobile-overlay" > </div> <a href="/index"> <i id="cl" class="material-icons cyan-text text-lighten-2 right">close</i> </a> <a href="/index"> <img class="circle" src="/img/aircc-logo1.jpg"> </a> <h5 class="">IJCI Conference Proceedings</h5> </div> </li> <li class=""> <a href="/index">Home <i class="fas fa-user"></i> </a> </li> <li class=""> <a href="/volume13">Current issue <i class="fas fa-user"></i> </a> </li> <li> <a href="/archives">Archives <i class="fas fa-user"></i> </a> </li> <li class=""> <a href="/contact">Contact <i class="fas fa-user"></i> </a> </li> </ul> <div class="fixed-action-btn" id="scrollTop"> <a class="btn btn-small btn-floating waves-effect waves-light blue lighten-1 pulse" onclick="topFunction()"> <i class="material-icons">keyboard_arrow_up</i> </a> </div> <!-- Main Section - Left --> <section class="section-main" > <div class="container"> <div class="row"> <div class="col s12 m9"> <!-- start 2020 --> <div class="card z-depth-2"> <div class="card-content"> <h5 class="cyan-text center text-darken-1"> PREDICTING BANKRUPTCY USING MACHINE LEARNING ALGORITHMS </h5> </div> </div> <br> <div class="card"> <h5 id="about" class="brown-text text-darken-2 text-center" style="padding-bottom:0px">Authors</h5> <!-- <div class="divider"></div> --> <div class="card-content"> <p class="left-text" style="text-align:justify"> Abhishek Karan<sup>1</sup> and Preetham Kumar<sup>2</sup> <br><sup>1</sup>Department of Information & Communications Technology, Manipal Institute of Technology, Manipal University, Manipal, Karnataka, India <sup>2</sup>Professor & Head Department of Information & Communications Technology, Manipal Institute of Technology, Manipal University, Manipal, Karnataka, India </br> </p> </div> </div> <!-- end 2020 --> <!-- Start of London United Kingdom--> <div class="card"> <h5 id="about" class="brown-text text-darken-2 text-center" style="padding-bottom:0px">Abstract</h5> <!-- <div class="divider"></div> --> <div class="card-content"> <p class="left-text" style="text-align:justify"> This paper is written for predicting Bankruptcy using different Machine Learning Algorithms. Whether the company will go bankrupt or not is one of the most challenging and toughest question to answer in the 21st Century. Bankruptcy is defined as the final stage of failure for a firm. A company declares that it has gone bankrupt when at that present moment it does not have enough funds to pay the creditors. It is a global problem. This paper provides a unique methodology to classify companies as bankrupt or healthy by applying predictive analytics. The prediction model stated in this paper yields better accuracy with standard parameters used for bankruptcy prediction than previously applied prediction methodologies </p> </div> </div> <div class="card"> <h5 id="about" class="brown-text text-darken-2 text-center" style="padding-bottom:0px">Keywords</h5> <!-- <div class="divider"></div> --> <div class="card-content"> <p class="left-text" style="text-align:justify"> Machine Learning, Classification, Regression, Correlation, Error Matrix, ROC</p></div> </div> <div class="card-content"> <a href="https://aircconline.com/ijci/V5N1/5116ijci10.pdf" target="blank" class="btn btn-small lighten-2 cyan lig">Full Text</a> <a href="https://ijcionline.com/vol5" class="btn btn-small lighten-2 cyan lig">Volume 5</a> </div> </div> <!-- Right Side Bar --> <div id="side-bar" class="col s12 m3"> <div id="section-main"> <br> <br> <div class="card side cyan lighten-2"> <div class="card-content"> <ul> <li class="ax waves-effect waves-light"> <a class="white-text" href="/editorial" > <i class="material-icons left">account_circle</i>Editorial Board</a> <br> </li> <br> <br> <div class="divider"></div> <br> <li class="ax waves-effect waves-light"> <a class="white-text" href="/mostcitedarticels" > <i class="material-icons left">book</i>Most Cited Articels </a> <br> </li> <br> <br> <div class="divider"></div> <br> <li class="ax waves-effect waves-light"> <a class="white-text" href="/indexing" > <i class="material-icons left">list</i>Indexing </a> <br> </li> <br> <br> <div class="divider"></div> <br> <li class="ax waves-effect waves-light"> <a class="white-text" href="/faq" > <i class="material-icons left">help</i>FAQ </a> <br> </li> <br> <br> <div class="divider"></div> <br> </div> </div> </div> </div> </div> </div> </div> </section> <br> <br> <br> <br> <div id="txtcnt"></div> <!-- Section: Footer --> <footer class="page-footer cyan lighten-3"> <div class="nav-wrapper"> <div class="container"> <ul> <li> <a target="_blank" href="http://airccse.org/"> <img src="/img/since2008.png" alt="since2008"></a> </li> </ul> <h6> Free Open Access Conference Proceedings <br> Computer Science & Engineering - Information Technology - Information Systems</h6> </div> <div class="footer-m col m3 s12 offset-m1"> </div> <div class="social col m3 offset-m1 s12"> </div> </div> </div> <div class="col s12 m10 offset-m1"> <div class="grey darken-3 center-align"> <small class="white-text">Designed and Developed by NNN Team</small> </div> </div> </footer> </body> <!--Import jQuery before materialize.js--> <script type="text/javascript" src="https://code.jquery.com/jquery-3.2.1.min.js"></script> <script type="text/javascript" src="/js/materialize.min.js"></script> <script src="/js/search.js"></script> <script src="/js/scrolltop.js"></script> <script src="/js/popup.js"></script> <script src="/js/main.jquery.js"></script> </html>