CINXE.COM
Search results for: chemistry classes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chemistry classes</title> <meta name="description" content="Search results for: chemistry classes"> <meta name="keywords" content="chemistry classes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chemistry classes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chemistry classes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1877</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chemistry classes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1877</span> Comparisons between Student Leaning Achievements and Their Problem Solving Skills on Stoichiometry Issue with the Think-Pair-Share Model and Stem Education Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Thachitasing">P. Thachitasing</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Jansawang"> N. Jansawang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Rakrai"> W. Rakrai</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Santiboon"> T. Santiboon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate of the comparing the instructional design models between the Think-Pair-Share and Conventional Learning (5E Inquiry Model) Processes to enhance students’ learning achievements and their problem solving skills on stoichiometry issue for concerning the 2-instructional method with a sample consisted of 80 students in 2 classes at the 11th grade level in Chaturaphak Phiman Ratchadaphisek School. Students’ different learning outcomes in chemistry classes with the cluster random sampling technique were used. Instructional Methods designed with the 40-experimenl student group by Think-Pair-Share process and the 40-controlling student group by the conventional learning (5E Inquiry Model) method. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of Think-Pair-Share and STEM Education Method, students’ learning achievements and their problem solving skills were assessed with the pretest and posttest techniques, students’ outcomes of their instructional the Think-Pair-Share (TPSM) and the STEM Education Methods were compared. Statistically significant was differences with the paired t-test and F-test between posttest and pretest technique of the whole students in chemistry classes were found, significantly. Associations between student learning outcomes in chemistry and two methods of their learning to students’ learning achievements and their problem solving skills also were found. The use of two methods for this study is revealed that the students perceive their learning achievements to their problem solving skills to be differently learning achievements in different groups are guiding practical improvements in chemistry classrooms to assist teacher in implementing effective approaches for improving instructional methods. Students’ learning achievements of mean average scores to their controlling group with the Think-Pair-Share Model (TPSM) are lower than experimental student group for the STEM education method, evidence significantly. The E1/E2 process were revealed evidence of 82.56/80.44, and 83.02/81.65 which results based on criteria are higher than of 80/80 standard level with the IOC, consequently. The predictive efficiency (R2) values indicate that 61% and 67% and indicate that 63% and 67% of the variances in chemistry classes to their learning achievements on posttest in chemistry classes of the variances in students’ problem solving skills to their learning achievements to their chemistry classrooms on Stoichiometry issue with the posttest were attributable to their different learning outcomes for the TPSM and STEMe instructional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparisons" title="comparisons">comparisons</a>, <a href="https://publications.waset.org/abstracts/search?q=students%E2%80%99%20learning%20achievements" title=" students’ learning achievements"> students’ learning achievements</a>, <a href="https://publications.waset.org/abstracts/search?q=think-pare-share%20model%20%28TPSM%29" title=" think-pare-share model (TPSM)"> think-pare-share model (TPSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20education" title=" stem education"> stem education</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20solving%20skills" title=" problem solving skills"> problem solving skills</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20classes" title=" chemistry classes"> chemistry classes</a>, <a href="https://publications.waset.org/abstracts/search?q=stoichiometry%20issue" title=" stoichiometry issue"> stoichiometry issue</a> </p> <a href="https://publications.waset.org/abstracts/52631/comparisons-between-student-leaning-achievements-and-their-problem-solving-skills-on-stoichiometry-issue-with-the-think-pair-share-model-and-stem-education-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1876</span> Designing the Lesson Instructional Plans for Exploring the STEM Education and Creative Learning Processes to Students' Logical Thinking Abilities with Different Learning Outcomes in Chemistry Classes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pajaree%20Naramitpanich">Pajaree Naramitpanich</a>, <a href="https://publications.waset.org/abstracts/search?q=Natchanok%20Jansawang"> Natchanok Jansawang</a>, <a href="https://publications.waset.org/abstracts/search?q=Panwilai%20Chomchid"> Panwilai Chomchid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of this are compared between the students’ logical thinking abilities of their learning for designing the 5-lesson instructional plans of the 2-instructional methods, namely; the STEM Education and the Creative Learning Process (CLP) for developing students’ logical thinking abilities that a sample consisted of 90 students from two chemistry classes of different learning outcomes in Wapi Phathum School with the cluster random sampling technique was used at the 11th grade level. To administer of their learning environments with the 45-experimenl student group by the STEM Education method and the 45-controlling student group by the Creative Learning Process. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of the STEM Education and the Creative Learning Process to enhance the logical thinking tests on Mineral issue were used. The efficiency of the Creative Learning Processes (CLP) Model and the STEM Education’s innovations of these each five instructional lesson plans based on criteria are higher than of 80/80 standard level with the IOC index from the expert educators. The averages mean scores of students’ learning achievement motives were assessed with the Pre and Post Techniques and Logical Thinking Ability Test (LTAT) and dependent t-test analysis were differentiated between the CLP and the STEM, significantly. Students’ perceptions of their chemistry classroom environment inventories with the MCI with the CLP and the STEM methods also were found, differently. Associations between students’ perceptions of their chemistry classroom learning environment inventories on the CLP Model and the STEM Education learning designs toward their logical thinking abilities toward chemistry, the predictive efficiency of R2 values indicate that 68% and 76% of the variances in students’ logical thinking abilities toward chemistry to their controlling and experimental chemistry classroom learning environmental groups with the MCI were correlated at .05 levels, significantly. Implementations of this result are showed the students’ learning by the CLP of the potential thinking life-changing roles in most their logical thinking abilities that it is revealed that the students perceive their abilities to be highly learning achievement in chemistry group are differentiated with the STEM education of students’ outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20lesson%20instructional%20plans" title=" the lesson instructional plans"> the lesson instructional plans</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20stem%20education" title=" the stem education"> the stem education</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20creative%20learning%20process" title=" the creative learning process"> the creative learning process</a>, <a href="https://publications.waset.org/abstracts/search?q=logical%20thinking%20ability" title=" logical thinking ability"> logical thinking ability</a>, <a href="https://publications.waset.org/abstracts/search?q=different" title=" different"> different</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20outcome" title=" learning outcome"> learning outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=student" title=" student"> student</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20class" title=" chemistry class"> chemistry class</a> </p> <a href="https://publications.waset.org/abstracts/51459/designing-the-lesson-instructional-plans-for-exploring-the-stem-education-and-creative-learning-processes-to-students-logical-thinking-abilities-with-different-learning-outcomes-in-chemistry-classes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1875</span> Small-Group Case-Based Teaching: Effects on Student Achievement, Critical Thinking, and Attitude toward Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reynante%20E.%20Autida">Reynante E. Autida</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Ana%20T.%20Quimbo"> Maria Ana T. Quimbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemistry education curriculum provides an excellent avenue where students learn the principles and concepts in chemistry and at the same time, as a central science, better understand related fields. However, the teaching approach used by teachers affects student learning. Cased-based teaching (CBT) is one of the various forms of inductive method. The teacher starts with specifics then proceeds to the general principles. The students’ role in inductive learning shifts from being passive in the traditional approach to being active in learning. In this paper, the effects of Small-Group Case-Based Teaching (SGCBT) on college chemistry students’ achievement, critical thinking, and attitude toward chemistry including the relationships between each of these variables were determined. A quasi-experimental counterbalanced design with pre-post control group was used to determine the effects of SGCBT on Engineering students of four intact classes (two treatment groups and two control groups) in one of the State Universities in Mindanao. The independent variables are the type of teaching approach (SGCBT versus pure lecture-discussion teaching or PLDT) while the dependent variables are chemistry achievement (exam scores) and scores in critical thinking and chemistry attitude. Both Analysis of Covariance (ANCOVA) and t-tests (within and between groups and gain scores) were used to compare the effects of SGCBT versus PLDT on students’ chemistry achievement, critical thinking, and attitude toward chemistry, while Pearson product-moment correlation coefficients were calculated to determine the relationships between each of the variables. Results show that the use of SGCBT fosters positive attitude toward chemistry and provides some indications as well on improved chemistry achievement of students compared with PLDT. Meanwhile, the effects of PLDT and SGCBT on critical thinking are comparable. Furthermore, correlational analysis and focus group interviews indicate that the use of SGCBT not only supports development of positive attitude towards chemistry but also improves chemistry achievement of students. Implications are provided in view of the recent findings on SGCBT and topics for further research are presented as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case-based%20teaching" title="case-based teaching">case-based teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=small-group%20learning" title=" small-group learning"> small-group learning</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20cases" title=" chemistry cases"> chemistry cases</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20achievement" title=" chemistry achievement"> chemistry achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20thinking" title=" critical thinking"> critical thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20attitude" title=" chemistry attitude"> chemistry attitude</a> </p> <a href="https://publications.waset.org/abstracts/41209/small-group-case-based-teaching-effects-on-student-achievement-critical-thinking-and-attitude-toward-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1874</span> Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiptunya%20Duangsri">Tiptunya Duangsri</a>, <a href="https://publications.waset.org/abstracts/search?q=Panwilai%20Chomchid"> Panwilai Chomchid</a>, <a href="https://publications.waset.org/abstracts/search?q=Natchanok%20Jansawang"> Natchanok Jansawang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20instructional%20design%20model" title=" the instructional design model"> the instructional design model</a>, <a href="https://publications.waset.org/abstracts/search?q=students%20learning%20achievement%20motives" title=" students learning achievement motives"> students learning achievement motives</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20attitudes%20with%20STEM%20educational%20model" title=" science attitudes with STEM educational model"> science attitudes with STEM educational model</a>, <a href="https://publications.waset.org/abstracts/search?q=stoichiometry%20issue" title=" stoichiometry issue"> stoichiometry issue</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20classes" title=" chemistry classes"> chemistry classes</a>, <a href="https://publications.waset.org/abstracts/search?q=genders" title=" genders"> genders</a> </p> <a href="https://publications.waset.org/abstracts/51551/integrations-of-the-instructional-system-design-for-students-learning-achievement-motives-and-science-attitudes-with-stem-educational-model-on-stoichiometry-issue-in-chemistry-classes-with-different-genders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1873</span> Integrations of Students' Learning Achievements and Their Analytical Thinking Abilities with the Problem-Based Learning and the Concept Mapping Instructional Methods on Gene and Chromosome Issue at the 12th Grade Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waraporn%20Thaimit">Waraporn Thaimit</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwadee%20Insamran"> Yuwadee Insamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Natchanok%20Jansawang"> Natchanok Jansawang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Focusing on Analytical Thinking and Learning Achievement are the critical component of visual thinking that gives one the ability to solve problems quickly and effectively that allows to complex problems into components, and the result had been achieved or acquired form of the subject students of which resulted in changes within the individual as a result of activity in learning. The aims of this study are to administer on comparisons between students’ analytical thinking abilities and their learning achievements sample size consisted of 80 students who sat at the 12th grade level in 2 classes from Chaturaphak Phiman Ratchadaphisek School, the 40-student experimental group with the Problem-Based Learning (PBL) and 40-student controlling group with the Concept Mapping Instructional (CMI) methods were designed. Research instruments composed with the 5-lesson instructional plans to be assessed with the pretest and posttest techniques on each instructional method. Students’ responses of their analytical thinking abilities were assessed with the Analytical Thinking Tests and students’ learning achievements were tested of the Learning Achievement Tests. Statistically significant differences with the paired t-test and F-test (Two-way MANCOVA) between post- and pre-tests of the whole students in two chemistry classes were found. Associations between student learning outcomes in each instructional method and their analytical thinking abilities to their learning achievements also were found (ρ < .05). The use of two instructional methods for this study is revealed that the students perceive their abilities to be highly learning achievement in chemistry classes with the PBL group ought to higher than the CMI group. Suggestions that analytical thinking ability involves the process of gathering relevant information and identifying key issues related to the learning achievement information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparisons" title="comparisons">comparisons</a>, <a href="https://publications.waset.org/abstracts/search?q=students%20learning%20achievements" title=" students learning achievements"> students learning achievements</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20thinking%20abilities" title=" analytical thinking abilities"> analytical thinking abilities</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20problem-based%20learning%20method" title=" the problem-based learning method"> the problem-based learning method</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20concept%20mapping%20instructional%20method" title=" the concept mapping instructional method"> the concept mapping instructional method</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue" title=" gene and chromosome issue"> gene and chromosome issue</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20classes" title=" chemistry classes"> chemistry classes</a> </p> <a href="https://publications.waset.org/abstracts/51451/integrations-of-students-learning-achievements-and-their-analytical-thinking-abilities-with-the-problem-based-learning-and-the-concept-mapping-instructional-methods-on-gene-and-chromosome-issue-at-the-12th-grade-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1872</span> Unseen Classes: The Paradigm Shift in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vani%20Singhal">Vani Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Parmar"> Jitendra Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20Singh%20Chouhan"> Satyendra Singh Chouhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20sampling" title="active sampling">active sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20clustering" title=" hierarchical clustering"> hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20world%20learning" title=" open world learning"> open world learning</a>, <a href="https://publications.waset.org/abstracts/search?q=unseen%20class%20discovery" title=" unseen class discovery"> unseen class discovery</a> </p> <a href="https://publications.waset.org/abstracts/137110/unseen-classes-the-paradigm-shift-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1871</span> Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yenni%20Kurniawati">Yenni Kurniawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20chemistry%20laboratory" title="virtual chemistry laboratory">virtual chemistry laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20experiments" title=" chemistry experiments"> chemistry experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20skill" title=" prediction skill"> prediction skill</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-lab%20experiences" title=" pre-lab experiences"> pre-lab experiences</a> </p> <a href="https://publications.waset.org/abstracts/50653/virtual-chemistry-laboratory-as-pre-lab-experiences-stimulating-students-prediction-skill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1870</span> Students’ Perception of Effort and Emotional Costs in Chemistry Courses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guizella%20Rocabado">Guizella Rocabado</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassidy%20Wilkes"> Cassidy Wilkes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that chemistry is one of the most feared courses in college. Although many students enjoy learning about science, most of them perceive that chemistry is “too difficult”. These perceptions of chemistry result in many students not considering Science, Technology, Engineering, and Mathematics (STEM) majors because they require chemistry courses. Ultimately, these perceptions are also thought to be related to high attrition rates of students who begin STEM majors but do not persist. Students perceived costs of a chemistry class can be many, such as task effort, loss of valued alternatives, emotional, and others. These costs might be overcome by students’ interests and goals, yet the level of perceived costs might have a lasting impact on the students’ overall perception of chemistry and their desire to pursue chemistry and other STEM careers in the future. In this mixed methods study, we investigated task effort and emotional cost, as well as a mastery or performance goal orientation, and the impact these constructs may have on achievement in general chemistry classrooms. Utilizing cluster analysis as well as student interviews, we investigated students’ profiles of perceived cost and goal orientation as it relates to their final grades. Our results show that students who are well prepared for general chemistry, such as those who have taken chemistry in high school, display less negative perceived costs and thus believe they can master the material more fully. Other interesting results have also emerged from this research, which has the potential to have an impact on future instruction of these courses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry%20education" title="chemistry education">chemistry education</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=affect" title=" affect"> affect</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20costs" title=" perceived costs"> perceived costs</a>, <a href="https://publications.waset.org/abstracts/search?q=goal%20orientations" title=" goal orientations"> goal orientations</a> </p> <a href="https://publications.waset.org/abstracts/166587/students-perception-of-effort-and-emotional-costs-in-chemistry-courses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1869</span> Effect of Chemistry Museum Artifacts on Students’ Memory Enhancement and Interest in Radioactivity in Calabar Education Zone, Cross River State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hope%20Amba%20Neji">Hope Amba Neji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study adopted a quasi-experimental design. Two schools were used for the experimental study, while one school was used for the control. The experimental groups were subjected to treatment for four weeks with chemistry museum artifacts and a visit as made to the museum so that learners would have real-life learning experiences with museum resources, while the control group was taught with the conventional method. The instrument for the study was a 20-item Chemistry Memory Test (CMT) and a 10-item Chemistry Interest Questionnaire (CIQ). The reliability was ascertained using (KR-20) and alpha reliability coefficient, which yielded a reliability coefficient of .83 and .81, respectively. Data obtained was analyzed using Analysis of Covariance (ANCOVA) and Analysis of variance (ANOVA) at 0.05 level of significance. Findings revealed that museum artifacts have a significant effect on students’ memory enhancement and interest in chemistry. It was recommended chemistry learning should be enhanced, motivating and real with museum artifacts, which significantly aid memory enhancement and interest in chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=museum%20artifacts" title="museum artifacts">museum artifacts</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=atitude" title=" atitude"> atitude</a> </p> <a href="https://publications.waset.org/abstracts/177785/effect-of-chemistry-museum-artifacts-on-students-memory-enhancement-and-interest-in-radioactivity-in-calabar-education-zone-cross-river-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1868</span> The Chemistry in the Video Game No Man’s Sky</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diogo%20Santos">Diogo Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Zagalo"> Nelson Zagalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Morais"> Carla Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> No Man’s Sky (NMS) is a sci-fi video game about survival and exploration where players fly spaceships, search for elements, and use them to survive. NMS isn’t a serious game, and not all the science in the game is presented with scientific evidence. To find how players felt about the scientific content in the game and how they perceive the chemistry in it, a survey was sent to NMS’s players, from which were collected answers from 124 respondents from 23 countries. Chemophobia is still a phenomenon when chemistry or chemicals are a subject of discussion, but 68,9% of our respondents showed a positive attitude towards the presence of chemistry in NMS, with 57% stating that playing the video game motivated them to know more about science. 8% of the players stated that NMS often prompted conversations about the science in the video game between them and teachers, parents, or friends. These results give us ideas on how an entertainment game can potentially help scientists, educators, and science communicators reach a growing, evolving, vibrant, diverse, and demanding audience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20games" title="digital games">digital games</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20communication" title=" science communication"> science communication</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=informal%20learning" title=" informal learning"> informal learning</a>, <a href="https://publications.waset.org/abstracts/search?q=No%20Man%E2%80%99s%20Sky" title=" No Man’s Sky"> No Man’s Sky</a> </p> <a href="https://publications.waset.org/abstracts/156533/the-chemistry-in-the-video-game-no-mans-sky" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1867</span> Perceptions and Experiences of Students and Their Instructors on Online versus Face-To-Face Classrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahime%20Filiz%20Kiremit">Rahime Filiz Kiremit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study involves investigating the comparisons of both online and face-to-face classes, along with providing their respective differences. The research project contains information pertaining to the two courses, provided with testimony from students and instructors alike. There were a total of 37 participants involved within the study from San Jacinto College; 35 students and the two instructors of their respective courses. The online instructor has a total of four years of teaching experience, while the face-to-face instructor has accrued 11 years of instructional education. The both instructors were interviewed and the samples were collected from three different classes - TECA 1311-702 (Educating Young Children 13 week distance learning), TECA 1311-705 (Educating Young Children 13 week distance learning) and TECA 1354 (Child Growth and Development). Among all three classes, 13 of the 29 students enrolled in either of the online courses considered participation within the survey, while 22 of the 28 students enrolled in the face-to-face course elected to do the same thing. With regards to the students’ prior class enrollment, 25 students had taken online classes previously, 9 students had taken early-childhood courses, 4 students had taken general classes, 11 students had taken both types of classes, 10 students had not yet taken online classes, and only 1 of them had taken a hybrid course. 10 of the participants professed that they like face-to-face classes, because they find that they can interact with their classmates and teachers. They find that online classes have more work to do, because they need to read the chapters and instructions on their own time. They said that during the face-to-face instruction, they could take notes and converse concerns with professors and fellow peers. They can have hands-on activities during face-to-face classes, and, as a result, improve their abilities to retain what they have learned within that particular time. Some of the students even mentioned that they are supposed to discipline themselves, because the online classes require more work. According to the remaining six students, online classes are easier than face-to-face classes. Most of them believe that the easiness of a course is dependent on the types of classes, the instructors, and the respective subjects of which they teach. With considerations of all 35 students, almost 63% of the students agreed that they interact more with their classmates in face-to-face classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distance%20education" title="distance education">distance education</a>, <a href="https://publications.waset.org/abstracts/search?q=face-to-face%20education" title=" face-to-face education"> face-to-face education</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20classroom" title=" online classroom"> online classroom</a>, <a href="https://publications.waset.org/abstracts/search?q=students%27%20perceptions" title=" students' perceptions"> students' perceptions</a> </p> <a href="https://publications.waset.org/abstracts/58751/perceptions-and-experiences-of-students-and-their-instructors-on-online-versus-face-to-face-classrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1866</span> Examination of Readiness of Teachers in the Use of Information-Communication Technologies in the Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolina%20Ribari%C4%87">Nikolina Ribarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the readiness of chemistry teachers to use information and communication technologies in chemistry in 2018. and 2021. A survey conducted in 2018 on a sample of teachers showed that most teachers occasionally use visualization and digitization tools in chemistry teaching (65%) but feel that they are not educated enough to use them (56%). Also, most teachers do not have adequate equipment in their schools and are not able to use ICT in teaching or digital tools for visualization and digitization of content (44%). None of the teachers find the use of digitization and visualization tools useless. Furthermore, a survey conducted in 2021 shows that most teachers occasionally use visualization and digitization tools in chemistry teaching (83%). Also, the research shows that some teachers still do not have adequate equipment in their schools and are not able to use ICT in chemistry teaching or digital tools for visualization and digitization of content (14%). Advances in the use of ICT in chemistry teaching are linked to pandemic conditions and the obligation to conduct online teaching. The share of 14% of teachers who still do not have adequate equipment to use digital tools in teaching is worrying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20content" title=" digital content"> digital content</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/144099/examination-of-readiness-of-teachers-in-the-use-of-information-communication-technologies-in-the-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1865</span> Evaluating the Prominence of Chemical Phenomena in Chemistry Courses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20R.%20Ralph">Vanessa R. Ralph</a>, <a href="https://publications.waset.org/abstracts/search?q=Leah%20J.%20Scharlott"> Leah J. Scharlott</a>, <a href="https://publications.waset.org/abstracts/search?q=Megan%20Y.%20Deshaye"> Megan Y. Deshaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20L.%20Stowe"> Ryan L. Stowe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20educational%20practices" title="equitable educational practices">equitable educational practices</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20curriculum" title=" chemistry curriculum"> chemistry curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20organization" title=" content organization"> content organization</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment%20design" title=" assessment design"> assessment design</a> </p> <a href="https://publications.waset.org/abstracts/137218/evaluating-the-prominence-of-chemical-phenomena-in-chemistry-courses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1864</span> Approximation of Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means of Fourier Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Sonker">Smita Sonker</a>, <a href="https://publications.waset.org/abstracts/search?q=Uaday%20Singh"> Uaday Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various investigators have determined the degree of approximation of functions belonging to the classes W(L r , ξ(t)), Lip(ξ(t), r), Lip(α, r), and Lipα using different summability methods with monotonocity conditions. Recently, Lal has determined the degree of approximation of the functions belonging to Lipα and W(L r , ξ(t)) classes by using Ces`aro-N¨orlund (C 1 .Np)- summability with non-increasing weights {pn}. In this paper, we shall determine the degree of approximation of 2π - periodic functions f belonging to the function classes Lipα and W(L r , ξ(t)) by C 1 .T - means of Fourier series of f. Our theorems generalize the results of Lal and we also improve these results in the light off. From our results, we also derive some corollaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lipschitz%20classes" title="Lipschitz classes">Lipschitz classes</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20matrix%20operator" title=" product matrix operator"> product matrix operator</a>, <a href="https://publications.waset.org/abstracts/search?q=signals" title=" signals"> signals</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20Fourier%20approximation" title=" trigonometric Fourier approximation"> trigonometric Fourier approximation</a> </p> <a href="https://publications.waset.org/abstracts/4757/approximation-of-periodic-functions-belonging-to-lipschitz-classes-by-product-matrix-means-of-fourier-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1863</span> Professional Ambitions of Students of Faculty of Chemistry, Adam Mickiewicz University in the Context of Teaching Profession</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Bartoszewicz">Malgorzata Bartoszewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Krzysko"> Grzegorz Krzysko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemistry students plan a career path based on their interests, predispositions, and preferences. This study aims to determine what percentage of all chemistry students selected teaching as a career. There is a lack of science teachers (especially physics and chemistry) in Poland, and there is limited research on students' choices and professional preferences. At the Faculty of Chemistry of the Adam Mickiewicz University in the academic year 2019/2020, changes were introduced to the study program resulting from legal regulations and as part of the funds raised from the project "Teacher - competent practitioner, supervisor, expert", No. POWR.03.01.00-00-KN40/18. The aim of the study was to determine how many first-cycle and second-cycle studies students declare the teaching profession as a career. In the case of first-cycle studies students, 9.5% of respondents choose the teaching profession and 9.2% of second-cycle studies students. It was found that the number of students who chose the teacher preparation programme at Faculty of Chemistry of the Adam Mickiewicz University has decreased since 5 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faculty%20of%20chemistry" title="faculty of chemistry">faculty of chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Mickiewicz%20University" title=" Adam Mickiewicz University"> Adam Mickiewicz University</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20ambitions" title=" professional ambitions"> professional ambitions</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher" title=" teacher"> teacher</a> </p> <a href="https://publications.waset.org/abstracts/121371/professional-ambitions-of-students-of-faculty-of-chemistry-adam-mickiewicz-university-in-the-context-of-teaching-profession" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1862</span> Implementation of an Undergraduate Integrated Biology and Chemistry Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayson%20G.%20Balansag">Jayson G. Balansag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An integrated biology and chemistry (iBC) course for freshmen college students was developed in University of Delaware. This course will prepare students to (1) become interdisciplinary thinkers in the field of biology and (2) collaboratively work with others from multiple disciplines in the future. This paper documents and describes the implementation of the course. The information gathered from reading literature, classroom observations, and interviews were used to carry out the purpose of this paper. The major goal of the iBC course is to align the concepts between Biology and Chemistry, so that students can draw science concepts from both disciplines which they can apply in their interdisciplinary researches. This course is offered every fall and spring semesters of each school year. Students enrolled in Biology are also enrolled in Chemistry during the same semester. The iBC is composed of lectures, laboratories, studio sessions, and workshops and is taught by the faculty from the biology and chemistry departments. In addition, the preceptors, graduate teaching assistants, and studio fellows facilitate the laboratory and studio sessions. These roles are interdependent with each other. The iBC can be used as a model for higher education institutions who wish to implement an integrated biology course. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20biology%20and%20chemistry" title="integrated biology and chemistry">integrated biology and chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20research" title=" interdisciplinary research"> interdisciplinary research</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20biology" title=" new biology"> new biology</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduate%20science%20education" title=" undergraduate science education"> undergraduate science education</a> </p> <a href="https://publications.waset.org/abstracts/76611/implementation-of-an-undergraduate-integrated-biology-and-chemistry-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1861</span> Uncovering the Relationship between EFL Students' Self-Concept and Their Willingness to Communicate in Language Classes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Khadijeh%20Amirian">Seyedeh Khadijeh Amirian</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Reza%20Amirian"> Seyed Mohammad Reza Amirian</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Hekmati"> Narges Hekmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study aims at examining the relationship between English as a foreign language (EFL) students' self-concept and their willingness to communicate (WTC) in EFL classes. To this effect, two questionnaires, namely 'Willingness to Communicate' (MacIntyre et al., 2001) and 'Self-Concept Scale' (Liu and Wang, 2005), were distributed among 174 (45 males and 129 females) Iranian EFL university students. Correlation and regression analyses were conducted to examine the relationship between the two variables. The results indicated that there was a significantly positive correlation between EFL students' self-concept and their WTC in EFL classes (p < .0.05). Moreover, regression analyses indicated that self-concept has a significantly positive influence on students’ WTC in language classes (B= .302, p < .0.05) and explains .302 percent of the variance in the dependent variable (WTC). The results are discussed with regards to the individual differences in educational contexts, and implications are offered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EFL%20students" title="EFL students">EFL students</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20classes" title=" language classes"> language classes</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness%20to%20communicate" title=" willingness to communicate"> willingness to communicate</a>, <a href="https://publications.waset.org/abstracts/search?q=self-concept" title=" self-concept"> self-concept</a> </p> <a href="https://publications.waset.org/abstracts/129646/uncovering-the-relationship-between-efl-students-self-concept-and-their-willingness-to-communicate-in-language-classes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1860</span> The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tshaudi%20Motsima">Tshaudi Motsima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=class%20attendance" title="class attendance">class attendance</a>, <a href="https://publications.waset.org/abstracts/search?q=examination%20performance" title=" examination performance"> examination performance</a>, <a href="https://publications.waset.org/abstracts/search?q=final%20outcome" title=" final outcome"> final outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a> </p> <a href="https://publications.waset.org/abstracts/120712/the-relationship-between-class-attendance-and-performance-of-industrial-engineering-students-enrolled-for-a-statistics-subject-at-the-university-of-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1859</span> Deep Learning Based-Object-classes Semantic Classification of Arabic Texts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Elleuch">Imen Elleuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ouarda"> Wael Ouarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Gargouri%20Bilel"> Gargouri Bilel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep-learning%20approach" title="deep-learning approach">deep-learning approach</a>, <a href="https://publications.waset.org/abstracts/search?q=object-classes" title=" object-classes"> object-classes</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20classification" title=" semantic classification"> semantic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic" title=" Arabic"> Arabic</a> </p> <a href="https://publications.waset.org/abstracts/176532/deep-learning-based-object-classes-semantic-classification-of-arabic-texts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Assessment of Online Web-Based Learning for Enhancing Student Grades in Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Marc%20Gealon%20Cabugsa">Ian Marc Gealon Cabugsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleanor%20Pastrano%20Corcino"> Eleanor Pastrano Corcino</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20Lapaza%20Montalan"> Gina Lapaza Montalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the effect of Online Web-Learning (OWL) in the performance of the freshmen Civil Engineering Students of Ateneo de Davao University in their Chem 12 subject. The grades of the students that were required to use OWL were compared to students without OWL. The result of the study suggests promising result for the use of OWL in increasing the performance rate of students taking up Chem 12. Furthermore, there was a positive correlation between the final grade and OWL grade of the students that had OWL. While the majority of the students find OWL to be helpful in supporting their chemistry knowledge needs, most of them still prefer to learn using the traditional face-to-face instruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry%20education" title="chemistry education">chemistry education</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20performance" title=" enhanced performance"> enhanced performance</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20chemistry" title=" engineering chemistry"> engineering chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20web-based%20learning" title=" online web-based learning"> online web-based learning</a> </p> <a href="https://publications.waset.org/abstracts/33395/assessment-of-online-web-based-learning-for-enhancing-student-grades-in-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> Effect of Large English Studies Classes on Linguistic Achievement and Classroom Discourse at Junior Secondary Level in Yobe State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clifford%20Irikefe%20Gbeyonron">Clifford Irikefe Gbeyonron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applied linguists concur that there is low-level achievement in English language use among Nigerian secondary school students. One of the factors that exacerbate this is classroom feature of which large class size is obvious. This study investigated the impact of large classes on learning English as a second language (ESL) at junior secondary school (JSS) in Yobe State. To achieve this, Solomon four-group experimental design was used. 382 subjects were divided into four groups and taught ESL for thirteen weeks. 356 subjects wrote the post-test. Data from the systematic observation and post-test were analyzed via chi square and ANOVA. Results indicated that learners in large classes (LLC) attain lower linguistic progress than learners in small classes (LSC). Furthermore, LSC have more chances to access teacher evaluation and participate actively in classroom discourse than LLC. In consequence, large classes have adverse effects on learning ESL in Yobe State. This is inimical to English language education given that each learner of ESL has their individual peculiarity within each class. It is recommended that strategies that prioritize individualization, grouping, use of language teaching aides, and theorization of innovative models in respect of large classes be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20classes" title="large classes">large classes</a>, <a href="https://publications.waset.org/abstracts/search?q=achievement" title=" achievement"> achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=classroom%20discourse" title=" classroom discourse"> classroom discourse</a> </p> <a href="https://publications.waset.org/abstracts/11145/effect-of-large-english-studies-classes-on-linguistic-achievement-and-classroom-discourse-at-junior-secondary-level-in-yobe-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Teachers’ Emotional Experience in Online Classes in Adult Education in Selected European Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Ahrens">Andreas Ahrens</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Zascerinska"> Jelena Zascerinska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emotions are crucial in online classes in adult education. Despite that, little attention was devoted to the emotional experience of being an online teacher in the field of andragogy, and the online teacher’s emotional perspectives in ever-changing environments have to be analysed. The paper aims the analysis of teachers’ emotional experience in online classes in adult education in selected European countries. The research tends to propose implications for training teachers who work in online classes in adult education. The survey was conducted in April 2022. In the selected European countries, 78 respondents took part in the study. Among them, 30 respondents represented Germany, 28 respondents participated in the study in Greece, and 20 respondents from Italy took part in the survey. The theoretical findings allow for defining teacher emotional experience. The analysis of the elements of the respondents’ emotional experience allows concluding that teachers’ attitude to online classes has to be developed. The key content for teacher training is presented. Directions for further work are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20education" title="adult education">adult education</a>, <a href="https://publications.waset.org/abstracts/search?q=emotions" title=" emotions"> emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20classes" title=" online classes"> online classes</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20emotional%20experience" title=" teacher emotional experience"> teacher emotional experience</a> </p> <a href="https://publications.waset.org/abstracts/153780/teachers-emotional-experience-in-online-classes-in-adult-education-in-selected-european-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> An Approach to Improve Pre University Students' Responsible Environmental Behaviour through Science Writing Heuristic in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheila%20Shamuganathan">Sheila Shamuganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mageswary%20Karpudewan"> Mageswary Karpudewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effectiveness of green chemistry integrated with Science Writing Heuristic (SWH) in enhancing matriculation students’ responsible environmental behaviour. For this purpose 207 matriculation students were randomly assigned into experimental (N=118) and control (N=89) group. For the experimental group the chemistry concepts were taught using the instructional approach of green chemistry integrated with Science Writing Heuristic (SWH) while for the control group the same content was taught using green chemistry. The data was analysed using ANCOVA and findings obtained from the quantitative analysis reveals that there is significant changes in responsible environmental behaviour (F 1,204) = 32.13 (ηp² = 0.14) which favours the experimental group. The responses of the qualitative data obtained from an interview with the experimental group also further strengthen and indicated a significant improvement in responsible environmental behaviour. The outcome of the study suggests that using green chemistry integrated with Science Writing Heuristic (SWH) could be an alternative approach to improve students’ responsible environmental behaviour towards the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=science%20writing%20heuristic" title="science writing heuristic">science writing heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=pro%20environmental%20behaviour" title=" pro environmental behaviour"> pro environmental behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory" title=" laboratory"> laboratory</a> </p> <a href="https://publications.waset.org/abstracts/58798/an-approach-to-improve-pre-university-students-responsible-environmental-behaviour-through-science-writing-heuristic-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tejasri">K. Tejasri</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Suvarna%20Vani"> K. Suvarna Vani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Prathyusha"> S. Prathyusha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ramya"> S. Ramya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proteins" title="proteins">proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20structure%20elements" title=" secondary structure elements"> secondary structure elements</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-sheets" title=" beta-sheets"> beta-sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-strands" title=" beta-strands"> beta-strands</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-helices" title=" alpha-helices"> alpha-helices</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20algorithms" title=" machine learning algorithms"> machine learning algorithms</a> </p> <a href="https://publications.waset.org/abstracts/158938/prediction-of-all-beta-protein-secondary-structure-using-garnier-osguthorpe-robson-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> A Green Analytical Curriculum for Renewable STEM Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mian%20Jiang">Mian Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyi%20Wu"> Zhenyi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20analytical%20chemistry" title="green analytical chemistry">green analytical chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=pencil%20lead" title=" pencil lead"> pencil lead</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable" title=" renewable"> renewable</a> </p> <a href="https://publications.waset.org/abstracts/48969/a-green-analytical-curriculum-for-renewable-stem-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> Initial Observations of the Utilization of Zoom Software for Synchronous English as a Foreign Language Oral Communication Classes at a Japanese University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Nadasdy">Paul Nadasdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2020, oral communication classes at many universities in Japan switched to online and hybrid lessons because of the coronavirus pandemic. Teachers had to adapt their practices immediately and deal with the challenges of the online environment. Even for experienced teachers, this still presented a problem as many had not conducted online classes before. Simultaneously, for many students, this type of learning was completely alien to them, and they had to adapt to the challenges faced by communicating in English online. This study collected data from 418 first grade students in the first semester of English communication classes at a technical university in Tokyo, Japan. Zoom software was used throughout the learning period. Though there were many challenges in the setting up and implementation of Zoom classes at the university, the results indicated that the students enjoyed the format and made the most of the circumstances. This proved the robustness of the course that was taught in regular lessons and the adaptability of teachers and students to challenges in a very short timeframe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zoom" title="zoom">zoom</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20lessons" title=" hybrid lessons"> hybrid lessons</a>, <a href="https://publications.waset.org/abstracts/search?q=communicative%20english" title=" communicative english"> communicative english</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20teaching" title=" online teaching"> online teaching</a> </p> <a href="https://publications.waset.org/abstracts/152795/initial-observations-of-the-utilization-of-zoom-software-for-synchronous-english-as-a-foreign-language-oral-communication-classes-at-a-japanese-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Effect of Three Instructional Strategies on Pre-service Teachers’ Learning Outcomes in Practical Chemistry in Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akpokiere%20Ugbede%20Roseline">Akpokiere Ugbede Roseline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemistry is an activity oriented subject in which many students achievement over the years are not encouraging. Among the reasons found to be responsible for student’s poor performance in chemistry are ineffective teaching strategies. This study, therefore, sought to determine the effect of guided inquiry, guided inquiry with demonstration, and demonstration with conventional approach on pre-service teachers’ cognitive attainment and practical skills acquisition on stoichiometry and chemical reactions in practical chemistry, Two research questions and hypotheses were each answered and tested respectively. The study was a quasi-experimental research involving 50 students in each of the experimental groups and 50 students in the control group. Out of the five instruments used for the study, three were on stimulus and two on response (Test of Cognitive Attainment and Test of Practical Skills in Chemistry) instruments administered, and dataobtained were analyzed with t-test and Analysis of Variance. Findings revealed, among others, that there was a significant effect of treatments on students' cognitive attainment and on practical skills acquisition. Students exposed to guided inquiry (with/without demonstration) strategies achieved better than those exposed to demonstration with conventional strategy. It is therefore recommended, among others, that Lecturers in Colleges of Education should utilize the guided inquiry strategy for teaching concepts in chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instructional%20strategy" title="instructional strategy">instructional strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=practical%20chemistry" title=" practical chemistry"> practical chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20outcomes" title=" learning outcomes"> learning outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-service%20teachers" title=" pre-service teachers"> pre-service teachers</a> </p> <a href="https://publications.waset.org/abstracts/150981/effect-of-three-instructional-strategies-on-pre-service-teachers-learning-outcomes-in-practical-chemistry-in-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> Perceived Teaching Effectiveness in Online Versus Classroom Contexts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shona%20Tritt">Shona Tritt</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Cunningham"> William Cunningham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study examines whether teaching effectiveness is perceived differently in online versus traditional classroom contexts. To do so, we analyzed teaching evaluations from courses that were offered as web options and as in-person classes simultaneously at the University of [removed for blinding] (N=87). Although teaching evaluations were on average lower for larger classes, we found that learning context (traditional versus online) moderated this effect. Specifically, we found a crossover effect such that in relatively smaller classes, teaching was perceived to be more effective in-person versus online, whereas, in relatively larger classes, teaching was perceived to be more effective when engaged online versus in-person. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teaching%20evaluations" title="teaching evaluations">teaching evaluations</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20effectiveness" title=" teaching effectiveness"> teaching effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=web-option" title=" web-option"> web-option</a> </p> <a href="https://publications.waset.org/abstracts/143787/perceived-teaching-effectiveness-in-online-versus-classroom-contexts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> Systematic Exploration and Modulation of Nano-Bio Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Yan">Bing Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotoxicity" title=" nanotoxicity"> nanotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-bio" title=" nano-bio"> nano-bio</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-combinatorial%20chemistry" title=" nano-combinatorial chemistry"> nano-combinatorial chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20library" title=" nanoparticle library"> nanoparticle library</a> </p> <a href="https://publications.waset.org/abstracts/22780/systematic-exploration-and-modulation-of-nano-bio-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> Flipped Learning Application on the Development of Capabilities for Civil Engineering Education in Labs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hector%20Barrios-Pi%C3%B1a">Hector Barrios-Piña</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Garc%C3%ADa-Arellano"> Georgia García-Arellano</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Garc%C3%ADa-Rodr%C3%ADguez"> Salvador García-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerardo%20Bocanegra-Garc%C3%ADa"> Gerardo Bocanegra-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Kant"> Shashi Kant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work shows the methodology of application and the effectiveness of the <em>Flipped Learning</em> technique for Civil Engineering laboratory classes. It was experimented by some of the professors of the Department of Civil Engineering at Tecnológico de Monterrey while teaching their laboratory classes. A total of 28 videos were created. The videos primarily demonstrate instructions of the experimental practices other than the usage of tools and materials. The technique allowed the students to prepare for their classes in advance. A survey was conducted on the participating professors and students (semester of August-December 2019) to quantify the effectiveness of the <em>Flipped Learning</em> technique. The students reported it as an excellent way of improving their learning aptitude, including self-learning whereas, the professors felt it as an efficient technique for optimizing their class session, which also provided an extra slot for class-interaction. A comparison of grades was analyzed between the students of the traditional classes and with <em>Flipped Learning</em>. It did not distinguish the benefits of <em>Flipped Learning</em>. However, the positive responses from the students and the professors provide an impetus for continuing and promoting the <em>Flipped Learning</em> technique in future classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flipped%20learning" title="flipped learning">flipped learning</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20classes" title=" laboratory classes"> laboratory classes</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=competences%20development" title=" competences development"> competences development</a> </p> <a href="https://publications.waset.org/abstracts/124027/flipped-learning-application-on-the-development-of-capabilities-for-civil-engineering-education-in-labs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemistry%20classes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>