CINXE.COM

Search results for: Electrospinning

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Electrospinning</title> <meta name="description" content="Search results for: Electrospinning"> <meta name="keywords" content="Electrospinning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Electrospinning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Electrospinning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 29</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Electrospinning</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Saehana">S. Saehana</a>, <a href="https://publications.waset.org/search?q=F.%20Iskandar"> F. Iskandar</a>, <a href="https://publications.waset.org/search?q=M.%20Abdullah"> M. Abdullah</a>, <a href="https://publications.waset.org/search?q=Khairurrijal"> Khairurrijal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker&rsquo;s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Diameter" title="Diameter">Diameter</a>, <a href="https://publications.waset.org/search?q=Electrospinning" title=" Electrospinning"> Electrospinning</a>, <a href="https://publications.waset.org/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/search?q=Nanofiber." title=" Nanofiber."> Nanofiber.</a> </p> <a href="https://publications.waset.org/17285/optimization-of-electrospinning-parameter-by-employing-genetic-algorithm-in-order-to-produce-desired-nanofiber-diameter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17285/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17285/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17285/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17285/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17285/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17285/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17285/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17285/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17285/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17285/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2955</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Polyurethane Nanofibers Obtained By Electrospinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Karaka%C5%9F">H. Karakaş</a>, <a href="https://publications.waset.org/search?q=A.S.%20Sara%C3%A7"> A.S. Saraç</a>, <a href="https://publications.waset.org/search?q=T.%20Polat"> T. Polat</a>, <a href="https://publications.waset.org/search?q=E.G.%20Budak"> E.G. Budak</a>, <a href="https://publications.waset.org/search?q=S.%20Bayram"> S. Bayram</a>, <a href="https://publications.waset.org/search?q=N.%20Da%C4%9F"> N. Dağ</a>, <a href="https://publications.waset.org/search?q=S.%20Jahangiri"> S. Jahangiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospinning is a broadly used technology to obtain polymeric nanofibers ranging from several micrometers down to several hundred nanometers for a wide range of applications. It offers unique capabilities to produce nanofibers with controllable porous structure. With smaller pores and higher surface area than regular fibers, electrospun fibers have been successfully applied in various fields, such as, nanocatalysis, tissue engineering scaffolds, protective clothing, filtration, biomedical, pharmaceutical, optical electronics, healthcare, biotechnology, defense and security, and environmental engineering. In this study, polyurethane nanofibers were obtained under different electrospinning parameters. Fiber morphology and diameter distribution were investigated in order to understand them as a function of process parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/search?q=nanofibers." title=" nanofibers."> nanofibers.</a> </p> <a href="https://publications.waset.org/5740/polyurethane-nanofibers-obtained-by-electrospinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5740/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5740/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5740/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5740/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5740/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5740/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5740/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5740/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5740/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5740/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4795</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> The Effect of Parameters on Productions of NiO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fatih%20Sevim">Fatih Sevim</a>, <a href="https://publications.waset.org/search?q=Emel%20Sevimli"> Emel Sevimli</a>, <a href="https://publications.waset.org/search?q=Fatih%20Demir"> Fatih Demir</a>, <a href="https://publications.waset.org/search?q=Turan%20%C3%87alban"> Turan Çalban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters about 500 nm could be successfully obtained. The fibers were characterized by XRD and SEM analyses.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofibers" title="Nanofibers">Nanofibers</a>, <a href="https://publications.waset.org/search?q=ceramics%20composite" title=" ceramics composite"> ceramics composite</a>, <a href="https://publications.waset.org/search?q=sol-gel%20processing" title=" sol-gel processing"> sol-gel processing</a>, <a href="https://publications.waset.org/search?q=electrospinning." title=" electrospinning."> electrospinning.</a> </p> <a href="https://publications.waset.org/10001197/the-effect-of-parameters-on-productions-of-nioal2o3b2o3sio2-composite-nanofibers-by-using-sol-gel-processing-and-electrospinning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001197/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001197/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001197/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001197/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001197/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001197/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001197/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001197/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001197/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001197/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2059</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Mesoporous Material Nanofibers by Electrospinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sh.%20Sohrabnezhad">Sh. Sohrabnezhad</a>, <a href="https://publications.waset.org/search?q=A.%20Jafarzadeh"> A. Jafarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption&ndash;desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m<sup>2</sup>/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/search?q=fiber%20technology" title=" fiber technology"> fiber technology</a>, <a href="https://publications.waset.org/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/search?q=X-ray%20techniques." title=" X-ray techniques."> X-ray techniques.</a> </p> <a href="https://publications.waset.org/10005119/mesoporous-material-nanofibers-by-electrospinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005119/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005119/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005119/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005119/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005119/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005119/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005119/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005119/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005119/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005119/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1820</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abbas%20Teimouri">Abbas Teimouri</a>, <a href="https://publications.waset.org/search?q=Leila%20Ghorbanian"> Leila Ghorbanian</a>, <a href="https://publications.waset.org/search?q=Iren%20Dabirian"> Iren Dabirian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/search?q=silk%20fibroin" title=" silk fibroin"> silk fibroin</a>, <a href="https://publications.waset.org/search?q=diopside" title=" diopside"> diopside</a>, <a href="https://publications.waset.org/search?q=composite%20scaffold." title=" composite scaffold."> composite scaffold.</a> </p> <a href="https://publications.waset.org/10004845/preparation-and-characterization-of-silkdiopside-composite-nanofibers-via-electrospinning-for-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004845/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004845/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004845/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004845/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004845/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004845/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004845/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004845/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004845/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004845/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1304</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Atilla%20Evcin">Atilla Evcin</a>, <a href="https://publications.waset.org/search?q=Bahri%20Ersoy"> Bahri Ersoy</a>, <a href="https://publications.waset.org/search?q=S%C3%BCleyman%20Akp%C4%B1nar"> Süleyman Akpınar</a>, <a href="https://publications.waset.org/search?q=I.%20Sinan%20Atl%C4%B1"> I. Sinan Atlı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 &deg;C for 2 h in air and carbonized at 750 &deg;C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/search?q=nanofiber." title=" nanofiber. "> nanofiber. </a> </p> <a href="https://publications.waset.org/10009599/characterization-of-electrospun-carbon-nanofiber-doped-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009599/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009599/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009599/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009599/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009599/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009599/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009599/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009599/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009599/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009599/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">945</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Optimizing Electrospinning Parameters for Finest Diameter of Nano Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Maleki">M. Maleki</a>, <a href="https://publications.waset.org/search?q=M.%20Latifi"> M. Latifi</a>, <a href="https://publications.waset.org/search?q=M.%20Amani-Tehran"> M. Amani-Tehran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nano fibers produced by electrospinning are of industrial and scientific attention due to their special characteristics such as long length, small diameter and high surface area. Applications of electrospun structures in nanotechnology are included tissue scaffolds, fibers for drug delivery, composite reinforcement, chemical sensing, enzyme immobilization, membrane-based filtration, protective clothing, catalysis, solar cells, electronic devices and others. Many polymer and ceramic precursor nano fibers have been successfully electrospun with diameters in the range from 1 nm to several microns. The process is complex so that fiber diameter is influenced by various material, design and operating parameters. The objective of this work is to apply genetic algorithm on the parameters of electrospinning which have the most significant effect on the nano fiber diameter to determine the optimum parameter values before doing experimental set up. Effective factors including initial polymer concentration, initial jet radius, electrical potential, relaxation time, initial elongation, viscosity and distance between nozzle and collector are considered to determine finest diameter which is selected by user.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/search?q=nano%20fiber%20diameter" title=" nano fiber diameter"> nano fiber diameter</a>, <a href="https://publications.waset.org/search?q=optimization." title=" optimization."> optimization.</a> </p> <a href="https://publications.waset.org/15685/optimizing-electrospinning-parameters-for-finest-diameter-of-nano-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15685/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15685/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15685/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15685/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15685/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15685/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15685/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15685/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15685/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15685/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2033</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Mohammadzadehmoghadam">S. Mohammadzadehmoghadam</a>, <a href="https://publications.waset.org/search?q=Y.%20Dong"> Y. Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young&rsquo;s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=silk%20fibroin." title=" silk fibroin. "> silk fibroin. </a> </p> <a href="https://publications.waset.org/10009441/electrospinning-and-characterization-of-silk-fibroingelatin-nanofibre-mats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009441/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009441/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009441/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009441/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009441/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009441/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009441/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009441/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009441/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009441/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">891</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Divyanka%20Sontakke">Divyanka Sontakke</a>, <a href="https://publications.waset.org/search?q=Arpit%20Thakre"> Arpit Thakre</a>, <a href="https://publications.waset.org/search?q=D.%20K%20Shinde"> D. K Shinde</a>, <a href="https://publications.waset.org/search?q=Sujata%20Parmeshwaran"> Sujata Parmeshwaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=polyacrylonitrile%20carbon%20nanofibres" title=" polyacrylonitrile carbon nanofibres"> polyacrylonitrile carbon nanofibres</a>, <a href="https://publications.waset.org/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/search?q=electrical%20conductivity." title=" electrical conductivity."> electrical conductivity.</a> </p> <a href="https://publications.waset.org/10010495/morphological-and-electrical-characterization-of-polyacrylonitrile-nanofibers-synthesized-using-electrospinning-method-for-electrical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010495/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010495/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010495/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010495/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010495/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010495/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010495/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010495/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010495/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010495/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">688</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Fabrication and Characterization of Gelatin Nanofibers Dissolved in Concentrated Acetic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kooshina%20Koosha">Kooshina Koosha</a>, <a href="https://publications.waset.org/search?q=Sima%20Habibi"> Sima Habibi</a>, <a href="https://publications.waset.org/search?q=Azam%20Talebian"> Azam Talebian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Electrospinning is a simple, versatile and widely accepted technique to produce ultra-fine fibers ranging from nanometer to micron. Recently there has been great interest in developing this technique to produce nanofibers with novel properties and functionalities. The electrospinning field is extremely broad, and consequently there have been many useful reviews discussing various aspects from detailed fiber formation mechanism to the formation of nanofibers and to discussion on a wide range of applications. On the other hand, the focus of this study is quite narrow, highlighting electrospinning parameters. This work will briefly cover the solution and processing parameters (for instance; concentration, solvent type, voltage, flow rate, distance between the collector and the tip of the needle) impacting the morphological characteristics of nanofibers, such as diameter. In this paper, a comprehensive work would be presented on the research of producing nanofibers from natural polymer entitled Gelatin.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electro%20spinning" title="Electro spinning">Electro spinning</a>, <a href="https://publications.waset.org/search?q=solution%20parameters" title=" solution parameters"> solution parameters</a>, <a href="https://publications.waset.org/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/search?q=natural%20fiber." title=" natural fiber."> natural fiber.</a> </p> <a href="https://publications.waset.org/10007525/fabrication-and-characterization-of-gelatin-nanofibers-dissolved-in-concentrated-acetic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007525/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007525/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007525/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007525/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007525/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007525/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007525/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007525/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007525/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007525/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1348</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Properties of Composite Nanofiber Produced by Single and Coaxial Nozzle Method used for Electrospinning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Onur%20Ayaz">Onur Ayaz</a>, <a href="https://publications.waset.org/search?q=Nuray%20Ucar"> Nuray Ucar</a>, <a href="https://publications.waset.org/search?q=Elif%20Bahar"> Elif Bahar</a>, <a href="https://publications.waset.org/search?q=Oguzhan%20Ucar"> Oguzhan Ucar</a>, <a href="https://publications.waset.org/search?q=Mustafa%20Oksuz"> Mustafa Oksuz</a>, <a href="https://publications.waset.org/search?q=Aysen%20Onen"> Aysen Onen</a>, <a href="https://publications.waset.org/search?q=Mehmet%20Ucar"> Mehmet Ucar</a>, <a href="https://publications.waset.org/search?q=Ezgi%0A%C4%B0%C5%9Fmar"> Ezgi İşmar</a>, <a href="https://publications.waset.org/search?q=Ali%20Demir"> Ali Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, single nozzle method used for electrospinning technique which composite polymer solution with cellulose nanowiskers (CNW) was treated by ultrasonic sonificator have been compared with coaxial (double) nozzle method, in terms of mechanical, thermal and morphological properties of composite nanofiber. The effect of water content in composite polymer solution on properties of nanofiber has also been examined. It has been seen that single nozzle method which polymer solution does not contain water has better results than that of coaxial method, in terms of mechanical, thermal and morphological properties of nanofiber. However, it is necessary to make an optimization study on setting condition of ultrasonic treatment to get better dispersion of CNW in composite nanofiber and to get better mechanical and thermal properties <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=cellulose%20nanowhiskers" title="cellulose nanowhiskers">cellulose nanowhiskers</a>, <a href="https://publications.waset.org/search?q=coaxial%20nozzle" title=" coaxial nozzle"> coaxial nozzle</a>, <a href="https://publications.waset.org/search?q=composite%0Ananofiber" title=" composite nanofiber"> composite nanofiber</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a> </p> <a href="https://publications.waset.org/1235/properties-of-composite-nanofiber-produced-by-single-and-coaxial-nozzle-method-used-for-electrospinning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1235/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1235/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1235/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1235/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1235/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1235/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1235/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1235/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1235/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1235/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2088</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Advantages of a New Manufacturing Facility for the Production of Nanofiber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Knizek">R. Knizek</a>, <a href="https://publications.waset.org/search?q=D.%20Karhankova"> D. Karhankova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions Nanospider<sup>TM</sup> from the company Elmarco, which came into being in 2008. Most of the production facilities, like Nanospider<sup>TM</sup>, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanomachine" title="Nanomachine">Nanomachine</a>, <a href="https://publications.waset.org/search?q=nanospider" title=" nanospider"> nanospider</a>, <a href="https://publications.waset.org/search?q=spinning%20slat" title=" spinning slat"> spinning slat</a>, <a href="https://publications.waset.org/search?q=electrospinning." title=" electrospinning. "> electrospinning. </a> </p> <a href="https://publications.waset.org/10004172/advantages-of-a-new-manufacturing-facility-for-the-production-of-nanofiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004172/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004172/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004172/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004172/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004172/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004172/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004172/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004172/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004172/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004172/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1519</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zeynep%20R.%20Ege">Zeynep R. Ege</a>, <a href="https://publications.waset.org/search?q=Aydin%20Akan"> Aydin Akan</a>, <a href="https://publications.waset.org/search?q=Faik%20N.%20Oktar"> Faik N. Oktar</a>, <a href="https://publications.waset.org/search?q=Betul%20Karademir"> Betul Karademir</a>, <a href="https://publications.waset.org/search?q=Oguzhan%20Gunduz"> Oguzhan Gunduz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chitosan" title="Chitosan">Chitosan</a>, <a href="https://publications.waset.org/search?q=coaxial%20electrospinning" title=" coaxial electrospinning"> coaxial electrospinning</a>, <a href="https://publications.waset.org/search?q=controlled%20releasing" title=" controlled releasing"> controlled releasing</a>, <a href="https://publications.waset.org/search?q=indocyanine%20green" title=" indocyanine green"> indocyanine green</a>, <a href="https://publications.waset.org/search?q=nanoprobe" title=" nanoprobe"> nanoprobe</a>, <a href="https://publications.waset.org/search?q=polyethylene%20oxide." title=" polyethylene oxide."> polyethylene oxide.</a> </p> <a href="https://publications.waset.org/10009595/fabrication-of-polyethylene-oxidechitosanindocyanine-green-nanoprobe-by-co-axial-electrospinning-method-for-early-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009595/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009595/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009595/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009595/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009595/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009595/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009595/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009595/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009595/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009595/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">764</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20Yalcin%20Enis">I. Yalcin Enis</a>, <a href="https://publications.waset.org/search?q=J.%20Vojtech"> J. Vojtech</a>, <a href="https://publications.waset.org/search?q=T.%20Gok%20Sadikoglu"> T. Gok Sadikoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, polycaprolactone (PCL) was dissolved in chloroform:ethanol solvent system at a concentration of 18 w/v %. 1, 2, 4, and 6 droplets of formic acid were added to the prepared 10ml PCL-chloroform:ethanol solutions separately. Fibrous webs were produced by electrospinning technique based on the horizontal working principle. Morphology of the webs was investigated by using scanning electron microscopy (SEM) whereas fiber diameters were measured by Image J Software System. The effect of formic acid addition to the mostly used chloroform solvent on fiber morphology was examined. Results indicate that there is a distinct fall in fiber diameter with the addition of formic acid drops. The average fiber diameter was measured as 2.22&mu;m in PCL /chloroform:ethanol solution system. On the other hand, 328nm and 256 nm average fiber diameters were measured for the samples of 4 drops and 6 drops formic acid added. This study offers alternative solvent systems to produce nanoscaled, nontoxic PCL fibrous webs by electrospinning technique.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chloroform" title="Chloroform">Chloroform</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/search?q=formic%20acid%0D%0Apolycaprolactone." title=" formic acid polycaprolactone."> formic acid polycaprolactone.</a> </p> <a href="https://publications.waset.org/10001167/chloroform-formic-acid-solvent-systems-for-nanofibrous-polycaprolactone-webs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001167/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001167/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001167/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001167/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001167/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001167/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001167/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001167/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001167/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001167/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2812</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Evcin">A. Evcin</a>, <a href="https://publications.waset.org/search?q=N.%20%C3%87i%C3%A7ek%20Bezir"> N. Çiçek Bezir</a>, <a href="https://publications.waset.org/search?q=R.%20Duman"> R. Duman</a>, <a href="https://publications.waset.org/search?q=N.%20Duman"> N. Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 &deg;C for 2 h in air and carbonized at 750 &deg;C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=carbon%20nanofiber" title=" carbon nanofiber"> carbon nanofiber</a>, <a href="https://publications.waset.org/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/search?q=ultraviolet%20radiation." title=" ultraviolet radiation."> ultraviolet radiation.</a> </p> <a href="https://publications.waset.org/10009698/uv-resistibility-of-a-carbon-nanofiber-reinforced-polymer-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009698/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009698/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009698/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009698/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009698/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009698/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009698/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009698/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009698/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009698/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">810</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Demirsoy">N. Demirsoy</a>, <a href="https://publications.waset.org/search?q=N.%20U%C3%A7ar"> N. Uçar</a>, <a href="https://publications.waset.org/search?q=A.%20%C3%96nen"> A. Önen</a>, <a href="https://publications.waset.org/search?q=N.%20K%C4%B1z%C4%B1lda%C4%9F"> N. Kızıldağ</a>, <a href="https://publications.waset.org/search?q=%C3%96.%20F.%20Vurur"> Ö. F. Vurur</a>, <a href="https://publications.waset.org/search?q=O.%20Eren"> O. Eren</a>, <a href="https://publications.waset.org/search?q=%C4%B0.%20Karacan"> İ. Karacan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution have been prepared and the amount of silver nitrate have been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 m&Omega;-100 M&Omega;), Tensile tester, Differential scanning calorimeter DSC (Q10) and SEM respectively. Also antimicrobial efficiency test (ASTM E2149-10) was done against to Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Composite%20polyacrylonitrile%20nano-fiber" title="Composite polyacrylonitrile nano-fiber">Composite polyacrylonitrile nano-fiber</a>, <a href="https://publications.waset.org/search?q=electrical%0D%0Aconductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/search?q=mechanical%20and%20thermal%20properties" title=" mechanical and thermal properties"> mechanical and thermal properties</a>, <a href="https://publications.waset.org/search?q=silver%20nano-particles." title=" silver nano-particles."> silver nano-particles.</a> </p> <a href="https://publications.waset.org/9998964/investigation-of-electrical-thermal-and-structural-properties-on-polyacrylonitrile-nano-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998964/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998964/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998964/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998964/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998964/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998964/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998964/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998964/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998964/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998964/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2604</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khryslyn%20Ara%C3%B1o">Khryslyn Araño</a>, <a href="https://publications.waset.org/search?q=Dela%20Cruz"> Dela Cruz</a>, <a href="https://publications.waset.org/search?q=Michael%20Leo"> Michael Leo</a>, <a href="https://publications.waset.org/search?q=Dela%20Pena"> Dela Pena</a>, <a href="https://publications.waset.org/search?q=Eden%20May"> Eden May</a>, <a href="https://publications.waset.org/search?q=Leslie%20Joy%20Diaz"> Leslie Joy Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 &Aring; to 13.6 &Aring; and 12.6 &Aring; after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/search?q=montmorillonite." title=" montmorillonite. "> montmorillonite. </a> </p> <a href="https://publications.waset.org/9998144/synthesis-of-iron-modified-montmorillonite-as-filler-for-electrospun-nanocomposite-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998144/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998144/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998144/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998144/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998144/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998144/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998144/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998144/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998144/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998144/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2756</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lu-Chen%20Yeh%E2%80%9A%20Jui-Ming%20Yeh">Lu-Chen Yeh‚ Jui-Ming Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this manuscript, we produced neat electrospun poly(<em>o</em>-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers was characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multipotentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospun" title="Electrospun">Electrospun</a>, <a href="https://publications.waset.org/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/search?q=neural%20stem%20cell" title=" neural stem cell"> neural stem cell</a>, <a href="https://publications.waset.org/search?q=differentiation." title=" differentiation. "> differentiation. </a> </p> <a href="https://publications.waset.org/9996794/preparation-of-poma-nanofibers-by-electrospinning-and-its-applications-in-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996794/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996794/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996794/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996794/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996794/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996794/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996794/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996794/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996794/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996794/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1785</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/search?q=N.%20Ucar"> N. Ucar</a>, <a href="https://publications.waset.org/search?q=A.%20Onen"> A. Onen</a>, <a href="https://publications.waset.org/search?q=N.%20K%C4%B1z%C4%B1ldag"> N. Kızıldag</a>, <a href="https://publications.waset.org/search?q=O.%20F.%20Vurur"> O. F. Vurur</a>, <a href="https://publications.waset.org/search?q=N.%20Demirsoy"> N. Demirsoy</a>, <a href="https://publications.waset.org/search?q=I.%20Karacan"> I. Karacan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to decrease of diameter of nanofiber.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Amine%20functionalized%20carbon%20nanotube" title="Amine functionalized carbon nanotube">Amine functionalized carbon nanotube</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/search?q=polyacrylonitrile." title=" polyacrylonitrile."> polyacrylonitrile.</a> </p> <a href="https://publications.waset.org/9998966/effect-of-amine-functionalized-carbon-nanotubes-on-the-properties-of-cnt-pan-composite-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998966/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998966/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998966/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998966/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998966/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998966/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998966/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998966/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998966/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998966/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4182</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Physical and Chemical Investigation of Polycaprolactone, Nanohydroxyapatite and Poly (Vinyl Alcohol) Nanocomposite Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.Doustgani">A.Doustgani</a>, <a href="https://publications.waset.org/search?q=E.Vasheghani-%20Farahani"> E.Vasheghani- Farahani</a>, <a href="https://publications.waset.org/search?q=M.%20Soleimani"> M. Soleimani</a>, <a href="https://publications.waset.org/search?q=S.%20Hashemi-Najafabadi"> S. Hashemi-Najafabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aligned and random nanofibrous scaffolds of PVA/PCL/nHA were fabricated by electrospinning method. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters of aligned and random scaffolds were 135.5 and 290 nm, respectively. The obtained scaffolds have a porous structure with porosity of 88 and 76% for random and aligned nanofibers, respectively. Furthermore, FTIR analysis demonstrated that there were strong intramolecular interactions between the molecules of PVA/PCL/nHA. On the other hand, mechanical characterizations show that aligning the nanofibers, could significantly improve the rigidity of the resultant biocomposite nanofibrous scaffolds.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinnig" title="Electrospinnig">Electrospinnig</a>, <a href="https://publications.waset.org/search?q=nanofibrous%20scaffold" title=" nanofibrous scaffold"> nanofibrous scaffold</a>, <a href="https://publications.waset.org/search?q=poly%20%28vinyl%20alcohol%29" title=" poly (vinyl alcohol)"> poly (vinyl alcohol)</a>, <a href="https://publications.waset.org/search?q=polycaprolactone." title=" polycaprolactone."> polycaprolactone.</a> </p> <a href="https://publications.waset.org/211/physical-and-chemical-investigation-of-polycaprolactone-nanohydroxyapatite-and-poly-vinyl-alcohol-nanocomposite-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/211/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/211/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/211/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/211/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/211/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/211/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/211/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/211/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/211/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/211/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2717</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Two and Three Layer Lamination of Nanofiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Roman%20Knizek">Roman Knizek</a>, <a href="https://publications.waset.org/search?q=Denisa%20Karhankova"> Denisa Karhankova</a>, <a href="https://publications.waset.org/search?q=Ludmila%20Fridrichova"> Ludmila Fridrichova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofiber%20layer" title="Nanofiber layer">Nanofiber layer</a>, <a href="https://publications.waset.org/search?q=nanomembrane" title=" nanomembrane"> nanomembrane</a>, <a href="https://publications.waset.org/search?q=lamination" title=" lamination"> lamination</a>, <a href="https://publications.waset.org/search?q=electrospinning." title=" electrospinning."> electrospinning.</a> </p> <a href="https://publications.waset.org/10006778/two-and-three-layer-lamination-of-nanofiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006778/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006778/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006778/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006778/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006778/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006778/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006778/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006778/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006778/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006778/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1344</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Nanofibrous Ion Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jarom%C3%ADr%20Marek">Jaromír Marek</a>, <a href="https://publications.waset.org/search?q=Jakub%20Wiener"> Jakub Wiener</a>, <a href="https://publications.waset.org/search?q=Yan%20Wang"> Yan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The main goal of this study was to find simple and industrially applicable production of ion exchangers based on nanofibrous polystyrene matrix and characterization of prepared material. Starting polystyrene nanofibers were sulfonated and crosslinked under appropriate conditions at the same time by sulfuric acid. Strongly acidic cation exchanger was obtained in such a way. The polymer matrix was made from polystyrene nanofibers prepared by Nanospider<sup>TM</sup> technology.</p> <p>Various types postpolymerization reactions and other methods of crosslinking were studied. Greatly different behavior between nano- and microsize materials was observed. The final nanofibrous material was characterized and compared to common granular ion exchangers and available microfibrous ion exchangers. The sorption properties of nanofibrous ion exchangers were compared with the granular ion exchangers. For nanofibrous ion exchangers of comparable ion exchange capacity was observed considerably faster adsorption kinetics.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=ion%20exchangers" title=" ion exchangers"> ion exchangers</a>, <a href="https://publications.waset.org/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/search?q=polystyrene." title=" polystyrene. "> polystyrene. </a> </p> <a href="https://publications.waset.org/9998172/nanofibrous-ion-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998172/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998172/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998172/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998172/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998172/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998172/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998172/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998172/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998172/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998172/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2030</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20N.%20Okafor">C. N. Okafor</a>, <a href="https://publications.waset.org/search?q=M.%20Maaza"> M. Maaza</a>, <a href="https://publications.waset.org/search?q=T.%20A.%20E.%20Mokrani"> T. A. E. Mokrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25&deg;C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Composite%20membrane" title="Composite membrane">Composite membrane</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/search?q=nanofibers." title=" nanofibers."> nanofibers.</a> </p> <a href="https://publications.waset.org/9998170/nafion-nanofiber-composite-membrane-fabrication-for-fuel-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998170/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998170/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998170/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998170/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998170/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998170/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998170/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998170/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998170/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998170/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2916</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Kheirandish">M. Kheirandish</a>, <a href="https://publications.waset.org/search?q=S.%20Borhani"> S. Borhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospininng" title="Electrospininng">Electrospininng</a>, <a href="https://publications.waset.org/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/search?q=ZnO." title=" ZnO."> ZnO.</a> </p> <a href="https://publications.waset.org/9997621/green-prossesing-of-psnanoparticle-fibers-and-studying-morphology-and-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997621/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997621/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997621/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997621/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997621/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997621/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997621/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997621/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997621/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997621/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2240</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber/Nanoparticle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kevser%20Dincer">Kevser Dincer</a>, <a href="https://publications.waset.org/search?q=Basma%20Waisi"> Basma Waisi</a>, <a href="https://publications.waset.org/search?q=M.%20Ozan%20Ozdemir"> M. Ozan Ozdemir</a>, <a href="https://publications.waset.org/search?q=Ugur%20Pasaogullari"> Ugur Pasaogullari</a>, <a href="https://publications.waset.org/search?q=Jeffrey%20McCutcheon"> Jeffrey McCutcheon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofibers are defined as fibers with diameters less than 100 nanometers. In this study, behaviours of activated carbon nanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile/ carbon nanotube (PAN/CNT), polyvinyl alcohol/nanosilver (PVA/Ag) in proton exchange membrane (PEM) fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. In this study, the electrical conductivities of nanofiber and nanofiber/nanoparticles have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag (at UConn condition). The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Proton%20exchange%20membrane%20fuel%20cells" title="Proton exchange membrane fuel cells">Proton exchange membrane fuel cells</a>, <a href="https://publications.waset.org/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/search?q=carbon%20nanofiber" title=" carbon nanofiber"> carbon nanofiber</a>, <a href="https://publications.waset.org/search?q=activate%20carbon%20nanofiber" title=" activate carbon nanofiber"> activate carbon nanofiber</a>, <a href="https://publications.waset.org/search?q=PVA%0D%0Afiber" title=" PVA fiber"> PVA fiber</a>, <a href="https://publications.waset.org/search?q=pan%20fiber" title=" pan fiber"> pan fiber</a>, <a href="https://publications.waset.org/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/search?q=nanocomposites." title=" nanocomposites."> nanocomposites.</a> </p> <a href="https://publications.waset.org/10003310/experimental-investigation-of-proton-exchange-membrane-fuel-cells-operated-with-nanofiber-and-nanofibernanoparticle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003310/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003310/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003310/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003310/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003310/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003310/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003310/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003310/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003310/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003310/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2509</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dattaji%20K.%20Shinde">Dattaji K. Shinde</a>, <a href="https://publications.waset.org/search?q=Ajit%20D.%20Kelkar"> Ajit D. Kelkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospun%20nanofibers" title="Electrospun nanofibers">Electrospun nanofibers</a>, <a href="https://publications.waset.org/search?q=H-VARTM" title=" H-VARTM"> H-VARTM</a>, <a href="https://publications.waset.org/search?q=Interlaminar%20shear%20strength%20%28ILSS%29" title=" Interlaminar shear strength (ILSS)"> Interlaminar shear strength (ILSS)</a>, <a href="https://publications.waset.org/search?q=Matrix%20modification." title=" Matrix modification."> Matrix modification.</a> </p> <a href="https://publications.waset.org/9997246/effect-of-teos-electrospun-nanofiber-modified-resin-on-interlaminar-shear-strength-of-glass-fiberepoxy-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997246/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997246/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997246/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997246/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997246/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997246/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997246/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997246/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997246/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997246/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3249</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z.%20Mazrouei-Sebdani">Z. Mazrouei-Sebdani</a>, <a href="https://publications.waset.org/search?q=A.%20Khoddami"> A. Khoddami</a>, <a href="https://publications.waset.org/search?q=H.%20Hadadzadeh"> H. Hadadzadeh</a>, <a href="https://publications.waset.org/search?q=M.%20Zarrebini"> M. Zarrebini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this research, waterglass based aerogel powder was prepared by sol&ndash;gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9&ordm;. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147&ordm;. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Superhydrophobicity" title="Superhydrophobicity">Superhydrophobicity</a>, <a href="https://publications.waset.org/search?q=Insulation" title=" Insulation"> Insulation</a>, <a href="https://publications.waset.org/search?q=Sol-gel" title=" Sol-gel"> Sol-gel</a>, <a href="https://publications.waset.org/search?q=Surface%20energy" title=" Surface energy"> Surface energy</a>, <a href="https://publications.waset.org/search?q=Roughness." title=" Roughness."> Roughness.</a> </p> <a href="https://publications.waset.org/10000241/a-novel-method-to-manufacture-superhydrophobic-and-insulating-polyester-nanofibers-via-a-meso-porous-aerogel-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000241/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000241/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000241/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000241/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000241/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000241/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000241/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000241/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000241/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000241/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2968</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Review on Application of Phase Change Materials in Textiles Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mazyar%20Ahrari">Mazyar Ahrari</a>, <a href="https://publications.waset.org/search?q=Ramin%20Khajavi"> Ramin Khajavi</a>, <a href="https://publications.waset.org/search?q=Mehdi%20Kamali%20Dolatabadi"> Mehdi Kamali Dolatabadi</a>, <a href="https://publications.waset.org/search?q=Tayebeh%20Toliyat"> Tayebeh Toliyat</a>, <a href="https://publications.waset.org/search?q=Abosaeed%20Rashidi"> Abosaeed Rashidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermoregulation" title="Thermoregulation">Thermoregulation</a>, <a href="https://publications.waset.org/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/search?q=nanoencapsulation." title=" nanoencapsulation."> nanoencapsulation.</a> </p> <a href="https://publications.waset.org/10007167/a-review-on-application-of-phase-change-materials-in-textiles-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007167/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007167/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007167/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007167/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007167/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007167/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007167/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007167/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007167/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007167/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1946</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Joon%20Y.%20Lee">Joon Y. Lee</a>, <a href="https://publications.waset.org/search?q=Seung%20H.%20Shin"> Seung H. Shin</a>, <a href="https://publications.waset.org/search?q=Ho%20H.%20Chun"> Ho H. Chun</a>, <a href="https://publications.waset.org/search?q=Wan%20K.%20Jo"> Wan K. Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Poly vinyl acetate (PVA)-based titania (TiO2)&ndash;carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixing%20ratio" title="Mixing ratio">Mixing ratio</a>, <a href="https://publications.waset.org/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/search?q=reference%0D%0Aphotocatalyst." title=" reference photocatalyst."> reference photocatalyst.</a> </p> <a href="https://publications.waset.org/10000922/control-of-airborne-aromatic-hydrocarbons-over-tio2-carbon-nanotube-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000922/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000922/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000922/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000922/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000922/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000922/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000922/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000922/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000922/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000922/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2237</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10