CINXE.COM
Search results for: color quality
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: color quality</title> <meta name="description" content="Search results for: color quality"> <meta name="keywords" content="color quality"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="color quality" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="color quality"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10549</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: color quality</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10549</span> Experimental Characterization of the Color Quality and Error Rate for an Red, Green, and Blue-Based Light Emission Diode-Fixture Used in Visible Light Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Gutierrez">Juan F. Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesus%20M.%20Quintero"> Jesus M. Quintero</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Sandoval"> Diego Sandoval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important feature of LED technology is the fast on-off commutation, which allows data transmission. Visible Light Communication (VLC) is a wireless method to transmit data with visible light. Modulation formats such as On-Off Keying (OOK) and Color Shift Keying (CSK) are used in VLC. Since CSK is based on three color bands uses red, green, and blue monochromatic LED (RGB-LED) to define a pattern of chromaticities. This type of CSK provides poor color quality in the illuminated area. This work presents the design and implementation of a VLC system using RGB-based CSK with 16, 8, and 4 color points, mixing with a steady baseline of a phosphor white-LED, to improve the color quality of the LED-Fixture. The experimental system was assessed in terms of the Color Rendering Index (CRI) and the Symbol Error Rate (SER). Good color quality performance of the LED-Fixture was obtained with an acceptable SER. The laboratory setup used to characterize and calibrate an LED-Fixture is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VLC" title="VLC">VLC</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20lighting" title=" indoor lighting"> indoor lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20quality" title=" color quality"> color quality</a>, <a href="https://publications.waset.org/abstracts/search?q=symbol%20error%20rate" title=" symbol error rate"> symbol error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20shift%20keying" title=" color shift keying"> color shift keying</a> </p> <a href="https://publications.waset.org/abstracts/158336/experimental-characterization-of-the-color-quality-and-error-rate-for-an-red-green-and-blue-based-light-emission-diode-fixture-used-in-visible-light-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10548</span> Evaluating the Performance of Color Constancy Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damanjit%20Kaur">Damanjit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Avani%20Bhatia"> Avani Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20constancy" title="color constancy">color constancy</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20world" title=" gray world"> gray world</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20patch" title=" white patch"> white patch</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20white%20patch" title=" modified white patch "> modified white patch </a> </p> <a href="https://publications.waset.org/abstracts/4799/evaluating-the-performance-of-color-constancy-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10547</span> Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=SunWoo%20Lee">SunWoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=TaeBum%20Lee"> TaeBum Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YoonHwa%20Park"> YoonHwa Park</a>, <a href="https://publications.waset.org/abstracts/search?q=YooJeong%20Kim"> YooJeong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depigmentation" title="depigmentation">depigmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lentigine" title=" lentigine"> lentigine</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20switched%20ruby%20laser" title=" quality switched ruby laser"> quality switched ruby laser</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20color" title=" skin color"> skin color</a> </p> <a href="https://publications.waset.org/abstracts/48368/clinical-factors-of-quality-switched-ruby-laser-therapy-for-lentigo-depigmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10546</span> A Way of Converting Color Images to Gray Scale Ones for the Color-Blind: Applying to the part of the Tokyo Subway Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsuhiro%20Narikiyo">Katsuhiro Narikiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shota%20Hashikawa"> Shota Hashikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color-blind. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them. Therefore we try to convert color images to monochrome images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color-blind" title="color-blind">color-blind</a>, <a href="https://publications.waset.org/abstracts/search?q=JPEG" title=" JPEG"> JPEG</a>, <a href="https://publications.waset.org/abstracts/search?q=monochrome%20image" title=" monochrome image"> monochrome image</a>, <a href="https://publications.waset.org/abstracts/search?q=denoise" title=" denoise"> denoise</a> </p> <a href="https://publications.waset.org/abstracts/2968/a-way-of-converting-color-images-to-gray-scale-ones-for-the-color-blind-applying-to-the-part-of-the-tokyo-subway-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10545</span> Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Huang">William Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20implants" title="retinal implants">retinal implants</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20processing%20unit" title=" virtual processing unit"> virtual processing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=saliency%20maps" title=" saliency maps"> saliency maps</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20quantization" title=" color quantization"> color quantization</a> </p> <a href="https://publications.waset.org/abstracts/147972/enhancing-the-bionic-eye-a-real-time-image-optimization-framework-to-encode-color-and-spatial-information-into-retinal-prostheses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10544</span> 3D Point Cloud Model Color Adjustment by Combining Terrestrial Laser Scanner and Close Range Photogrammetry Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pepe">M. Pepe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ackermann"> S. Ackermann</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Fregonese"> L. Fregonese</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Achille"> C. Achille</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D models obtained with advanced survey techniques such as close-range photogrammetry and laser scanner are nowadays particularly appreciated in Cultural Heritage and Archaeology fields. In order to produce high quality models representing archaeological evidences and anthropological artifacts, the appearance of the model (i.e. color) beyond the geometric accuracy, is not a negligible aspect. The integration of the close-range photogrammetry survey techniques with the laser scanner is still a topic of study and research. By combining point cloud data sets of the same object generated with both technologies, or with the same technology but registered in different moment and/or natural light condition, could construct a final point cloud with accentuated color dissimilarities. In this paper, a methodology to uniform the different data sets, to improve the chromatic quality and to highlight further details by balancing the point color will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20models" title="color models">color models</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20scanner" title=" laser scanner"> laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a> </p> <a href="https://publications.waset.org/abstracts/54399/3d-point-cloud-model-color-adjustment-by-combining-terrestrial-laser-scanner-and-close-range-photogrammetry-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10543</span> Towards Integrating Statistical Color Features for Human Skin Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zamri%20Osman">Mohd Zamri Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Aizaini%20Maarof"> Mohd Aizaini Maarof</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Foad%20Rohani"> Mohd Foad Rohani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20space" title="color space">color space</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title=" skin detection"> skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20feature" title=" statistical feature"> statistical feature</a> </p> <a href="https://publications.waset.org/abstracts/43485/towards-integrating-statistical-color-features-for-human-skin-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10542</span> FISCEAPP: FIsh Skin Color Evaluation APPlication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Urban">J. Urban</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81.%20S.%20Botella"> Á. S. Botella</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Robaina"> L. E. Robaina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B%C3%A1rta"> A. Bárta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sou%C4%8Dek"> P. Souček</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C%C3%ADsa%C5%99"> P. Císař</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%A0.%20Pap%C3%A1%C4%8Dek"> Š. Papáček</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Dom%C3%ADnguez"> L. M. Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20distribution" title="color distribution">color distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20skin%20color" title=" fish skin color"> fish skin color</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20transformation" title=" piecewise transformation"> piecewise transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20to%20background%20segmentation" title=" object to background segmentation"> object to background segmentation</a> </p> <a href="https://publications.waset.org/abstracts/15406/fisceapp-fish-skin-color-evaluation-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10541</span> Application of UV-C Irradiation on Quality and Textural Properties of Button Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Varnamkhasti">M. Ghasemi-Varnamkhasti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoosefian.%20A.%20Mohammad-%20Razdari"> S. H. Yoosefian. A. Mohammad- Razdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of 1.0 kJ/m<sup>2</sup> Ultraviolet-C (UV-C) light on pH, weight loss, color, and firmness of button mushroom (<em>Agaricus bisporus</em>) tissues during 21-days storage at 4 ºC was studied. UV-C irradiation enhanced pH, weight, color parameters, and firmness of mushroom during storage compared to control treatment. However, application of 1.0 kJ/m<sup>2</sup> UV-C treatment could effectively induce the increase of weight loss, firmness, and pH to 14.53%, 49.82%, and 10.39%, respectively. These results suggest that the application of UV-C irradiation could be an effective method to maintain the postharvest quality of mushrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mushroom" title="mushroom">mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20film" title=" polyethylene film"> polyethylene film</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-c%20irradiation" title=" UV-c irradiation"> UV-c irradiation</a> </p> <a href="https://publications.waset.org/abstracts/54384/application-of-uv-c-irradiation-on-quality-and-textural-properties-of-button-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10540</span> Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Hasegawa">Makoto Hasegawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Seika%20Tokumitsu"> Seika Tokumitsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20sky%20demonstration" title="blue sky demonstration">blue sky demonstration</a>, <a href="https://publications.waset.org/abstracts/search?q=sunset%20color%20demonstration" title=" sunset color demonstration"> sunset color demonstration</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20LED%20torch" title=" white LED torch"> white LED torch</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20education" title=" physics education"> physics education</a> </p> <a href="https://publications.waset.org/abstracts/47625/spectra-analysis-in-sunset-color-demonstrations-with-a-white-color-led-as-a-light-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10539</span> A Neural Approach for Color-Textured Images Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Salhi">Khalid Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Miloud%20Jaara"> El Miloud Jaara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Talibi%20Alaoui"> Mohammed Talibi Alaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=color-texture" title=" color-texture"> color-texture</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/51740/a-neural-approach-for-color-textured-images-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10538</span> The Impact of the “Cold Ambient Color = Healthy” Intuition on Consumer Food Choice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yining%20Yu">Yining Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Li"> Bingjie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Miaolei%20Jia"> Miaolei Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ambient color temperature is one of the most ubiquitous factors in retailing. However, there is limited research regarding the effect of cold versus warm ambient color on consumers’ food consumption. This research investigates an unexplored lay belief named the “cold ambient color = healthy” intuition and its impact on food choice. We demonstrate that consumers have built the “cold ambient color = healthy” intuition, such that they infer that a restaurant with a cold-colored ambiance is more likely to sell healthy food than a warm-colored restaurant. This deep-seated intuition also guides consumers’ food choices. We find that using a cold (vs. warm) ambient color increases the choice of healthy food, which offers insights into healthy diet promotion for retailers and policymakers. Theoretically, our work contributes to the literature on color psychology, sensory marketing, and food consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20color%20temperature" title="ambient color temperature">ambient color temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20ambient%20color" title=" cold ambient color"> cold ambient color</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20choice" title=" food choice"> food choice</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20wellbeing" title=" consumer wellbeing"> consumer wellbeing</a> </p> <a href="https://publications.waset.org/abstracts/148864/the-impact-of-the-cold-ambient-color-healthy-intuition-on-consumer-food-choice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10537</span> Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Javanmard">M. Javanmard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO<sub>2</sub> percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelled%20walnut" title="shelled walnut">shelled walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=MAP" title=" MAP"> MAP</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20temperature" title=" storage temperature"> storage temperature</a> </p> <a href="https://publications.waset.org/abstracts/20267/effect-of-modified-atmosphere-packaging-and-storage-temperatures-on-quality-of-shelled-raw-walnuts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10536</span> Identifying of Hybrid Lines for Lpx-B1 Gene in Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu">Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi"> Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y%C4%B1ld%C4%B1r%C4%B1m"> Ahmet Yıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20%C3%96zbey"> Ramazan Özbey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic criteria which determine durum wheat quality is its suitability for pasta processing that is pasta making quality. Bright yellow color is a desired property in pasta products. Durum wheat pasta making quality is affected by grain pigment content and oxidative enzymes which affect adversely bright yellow color. Of the oxidative enzymes, lipoxygenase LOX is the most effective one on oxidative bleaching of yellow pigments in durum wheat products. Thus, wheat cultivars that are high in yellow pigments but low in LOX enzyme activity should be preferred for the production of pasta with high color quality. The aim of this study was to reduce lipoxygenase activities of the backcross durum wheat lines that were previously improved for their protein quality. For this purpose, two advanced lines with different parents (TMB2 and TMB3) were used recurrent parents. Also, Gediz-75 wheat with low LOX enzyme activity was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region (Lpx-B1.1) were selected using SSR markers by marker assisted selection method. As a result, the study will be completed in three years instead of six years required in a classical backcross breeding study, leading to the development of high-quality candidate varieties. This research has been financially supported by TÜBİTAK (Project No: 112T910). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title="durum wheat">durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=lipoxygenase" title=" lipoxygenase"> lipoxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=LOX" title=" LOX"> LOX</a>, <a href="https://publications.waset.org/abstracts/search?q=Lpx-B1.1" title=" Lpx-B1.1"> Lpx-B1.1</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20durum" title=" Triticum durum"> Triticum durum</a> </p> <a href="https://publications.waset.org/abstracts/68345/identifying-of-hybrid-lines-for-lpx-b1-gene-in-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10535</span> Colors and Interiority - A Study on the Relationship of Colors and Interior Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahwish%20Ghulam%20Rasool">Mahwish Ghulam Rasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of a space is a complex process that involves multiple stages, from conceptualization, identifying design problems to understanding the context, materiality, and functionality of the space. Out of all the design elements, color is one of the most dominant and expressive factors that affect the spatial dynamics of the interior space. Color affects aesthetic comfort in space and has a lasting impact on human perception and psychology. Using color as a tool for creating spatial experiences is a new paradigm. Color semantics in spaces are not only used for surface treatment or aesthetics, but it also has more powerful functional characteristics. As interior spaces are evolving and becoming experiential with each decade, designers are looking for new processes to enhance the spatial and experiential quality of interior spaces. The relationship between color and interior typologies is a relatively new paradigm. This paper discusses the role of colors in interior spaces from various perspectives, exploring their impact on the formation of interior typologies and the use of colors in space design. The paper analyzes interior typologies worldwide, from residential to commercial interior spaces, where color semantics plays a prominent role in the design. The paper also emphasizes the design process and the creation of design language, unveiling the possibilities of applying colors in interior spaces that can be in harmony with the building context, space functionality, or in opposition to the existing building envelope or environment. The paper aims to contribute to the field of interior design education and practices. By using experimental and various research methodologies for investigation, it aims to fill the gap in the literature regarding color semantics and the relationship between interior typologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20psychology" title="color psychology">color psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20semantics" title=" color semantics"> color semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20environments" title=" interior environments"> interior environments</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20typologies" title=" interior typologies"> interior typologies</a> </p> <a href="https://publications.waset.org/abstracts/171292/colors-and-interiority-a-study-on-the-relationship-of-colors-and-interior-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10534</span> Costume Design Influenced by Seventeenth Century Color Palettes on a Contemporary Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michele%20L.%20Dormaier">Michele L. Dormaier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the research was to design costumes based on historic colors used by artists during the seventeenth century. The researcher investigated European art, primarily paintings and portraiture, as well as the color palettes used by the artists. The methodology examined the artists, their work, the color palettes used in their work, and the practices of color usage within their palettes. By examining portraits of historic figures, as well as paintings of ordinary scenes, subjects, and people, further information about color palettes was revealed. Related to the color palettes, was the use of ‘broken colors’ which was a relatively new practice, dating from the sixteenth century. The color palettes used by the artists of the seventeenth century had their limitations due to available pigments. With an examination of not only their artwork, and with a closer look at their palettes, the researcher discovered the exciting choices they made, despite those restrictions. The research was also initiated with the historical elements of the era’s clothing, as well as that of available materials and dyes. These dyes were also limited in much the same manner as the pigments which the artist had at their disposal. The color palettes of the paintings have much to tell us about the lives, status, conditions, and relationships from the past. From this research, informed decisions regarding color choices for a production on a contemporary stage of a period piece could then be made. The designer’s choices were a historic gesture to the colors which might have been worn by the character’s real-life counterparts of the era. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broken%20color%20palette" title="broken color palette">broken color palette</a>, <a href="https://publications.waset.org/abstracts/search?q=costume%20color%20research" title=" costume color research"> costume color research</a>, <a href="https://publications.waset.org/abstracts/search?q=costume%20design" title=" costume design"> costume design</a>, <a href="https://publications.waset.org/abstracts/search?q=costume%20history" title=" costume history"> costume history</a>, <a href="https://publications.waset.org/abstracts/search?q=seventeenth%20century%20color%20palette" title=" seventeenth century color palette"> seventeenth century color palette</a>, <a href="https://publications.waset.org/abstracts/search?q=sixteenth%20century%20color%20palette" title=" sixteenth century color palette"> sixteenth century color palette</a> </p> <a href="https://publications.waset.org/abstracts/87451/costume-design-influenced-by-seventeenth-century-color-palettes-on-a-contemporary-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10533</span> Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Radha%20Krishnan">K. Radha Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirajul%20Alom"> Mirajul Alom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title="chlorophyll">chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20stability" title=" color stability"> color stability</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20kinetics" title=" degradation kinetics"> degradation kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/44880/effect-of-blanching-and-drying-methods-on-the-degradation-kinetics-and-color-stability-of-radish-raphanus-sativus-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10532</span> Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouanan%20Mohammed"> Ouanan Mohammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20analysis" title=" hierarchical analysis"> hierarchical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=2-D%20histogram" title=" 2-D histogram"> 2-D histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/42096/image-segmentation-using-2-d-histogram-in-rgb-color-space-in-digital-libraries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10531</span> Parallel Version of Reinhard’s Color Transfer Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Bhardwaj">Abhishek Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reinhard%20et%20al%E2%80%99s%20algorithm" title="Reinhard et al’s algorithm">Reinhard et al’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20transferring" title=" color transferring"> color transferring</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelism" title=" parallelism"> parallelism</a>, <a href="https://publications.waset.org/abstracts/search?q=speedup" title=" speedup"> speedup</a> </p> <a href="https://publications.waset.org/abstracts/21874/parallel-version-of-reinhards-color-transfer-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10530</span> Content-Based Image Retrieval Using HSV Color Space Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Qazanfari">Hamed Qazanfari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Hassanpour"> Hamid Hassanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Qazanfari"> Kazem Qazanfari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content-based%20image%20retrieval" title="content-based image retrieval">content-based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20difference%20histogram" title=" color difference histogram"> color difference histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20features%20selection" title=" efficient features selection"> efficient features selection</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/75068/content-based-image-retrieval-using-hsv-color-space-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10529</span> Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bengi%20Hakguder%20Taze">Bengi Hakguder Taze</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevcan%20Unluturk"> Sevcan Unluturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color" title="color">color</a>, <a href="https://publications.waset.org/abstracts/search?q=firmness" title=" firmness"> firmness</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20heat" title=" mild heat"> mild heat</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20flora" title=" natural flora"> natural flora</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20quality" title=" physical quality"> physical quality</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Falak%20apricot" title=" şalak apricot"> şalak apricot</a> </p> <a href="https://publications.waset.org/abstracts/95007/effects-of-mild-heat-treatment-on-the-physical-and-microbial-quality-of-salak-apricot-cultivar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10528</span> The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo-Gaun%20Chen">Bo-Gaun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiung-Hui%20Huang"> Chiung-Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Ching%20Chiang"> Mei-Ching Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Hsing%20Lee"> Kuo-Hsing Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chen%20Ho"> Chia-Chen Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Ping%20Huang"> Chin-Ping Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Heng%20Tien"> Chin-Heng Tien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20energy" title="binding energy">binding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20fastness" title=" color fastness"> color fastness</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory%20%28DFT%29" title=" density functional theory (DFT)"> density functional theory (DFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyeing" title=" natural dyeing"> natural dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20mordant" title=" metallic mordant"> metallic mordant</a> </p> <a href="https://publications.waset.org/abstracts/37833/the-role-of-metallic-mordant-in-natural-dyeing-process-experimental-and-quantum-study-on-color-fastness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10527</span> Effect of Color on Anagram Solving Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khushi%20Chhajed">Khushi Chhajed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Color has been found to have an impact on cognitive performance. Due to the negative connotation associated with red, it has been found to impair performance on intellectual tasks. Aim: This study aims to assess the effect of color on individuals' anagram solving ability. Methodology: An experimental study was conducted on 66 participants in the age group of 18–24 years. A self-made anagram assessment tool was administered. Participants were expected to solve the tool in three colors- red, blue and grey. Results: A lower score was found when presented with the color blue as compared to red. The study also found that participants took relatively greater time to solve the red colored sheet. However these results are inconsistent with pre-existing literature. Conclusion: Hence, an association between color and performance on cognitive tasks can be seen. Future directions and potential limitations are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20psychology" title="color psychology">color psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=anagram" title=" anagram"> anagram</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/160096/effect-of-color-on-anagram-solving-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10526</span> Understanding Perceptual Differences and Preferences of Urban Color in New Taipei City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuheng%20Tao">Yuheng Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization has brought the consequences of incompatible and excessive homogeneity of urban system, and urban color planning has become one of the most effective ways to restore the characteristics of cities. Among the many urban color design research, the establishment of urban theme colors has rarely been discussed. This study took the "New Taipei City Environmental Aesthetic Color” project as a research case and conducted mixed-method research that included expert interviews and quantitative survey data. This study introduces how theme colors were selected by the experts and investigates public’s perception and preference of the selected theme colors. Several findings include 1) urban memory plays a significant role in determining urban theme colors; 2) When establishing urban theme colors, areas/cities with relatively weak urban memory are given priority to be defined; 3) Urban theme colors that imply cultural attributes are more widely accepted by the public; 4) A representative city theme color helps conserve culture rather than guiding innovation. In addition, this research rearranges the urban color symbolism and specific content of urban theme colors and provides a more scientific urban theme color selection scheme for urban planners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20theme%20color" title="urban theme color">urban theme color</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20color%20attribute" title=" urban color attribute"> urban color attribute</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20perception" title=" public perception"> public perception</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20preferences" title=" public preferences"> public preferences</a> </p> <a href="https://publications.waset.org/abstracts/156583/understanding-perceptual-differences-and-preferences-of-urban-color-in-new-taipei-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10525</span> Perceptual Image Coding by Exploiting Internal Generative Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuo-Cheng%20Liu">Kuo-Cheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20generative%20mechanism" title="internal generative mechanism">internal generative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-based%20spatial%20masking" title=" structure-based spatial masking"> structure-based spatial masking</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility%20threshold" title=" visibility threshold"> visibility threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20domain" title=" wavelet domain"> wavelet domain</a> </p> <a href="https://publications.waset.org/abstracts/75216/perceptual-image-coding-by-exploiting-internal-generative-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10524</span> Tomato Fruit Color Changes during Ripening of Vine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Radzevi%C4%8Dius">A.Radzevičius</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vi%C5%A1kelis"> P. Viškelis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vi%C5%A1kelis"> J. Viškelis</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Karklelien%C4%97"> R. Karklelienė</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ju%C5%A1kevi%C4%8Dien%C4%97"> D. Juškevičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato (Lycopersicon esculentum Mill.) hybrid 'Brooklyn' was investigated at the LRCAF Institute of Horticulture. For investigation, five green tomatoes, which were grown on vine, were selected. Color measurements were made in the greenhouse with the same selected tomato fruits (fruits were not harvested and were growing and ripening on tomato vine through all experiment) in every two days while tomatoes fruits became fully ripen. Study showed that color index L has tendency to decline and established determination coefficient (R2) was 0.9504. Also, hue angle has tendency to decline during tomato fruit ripening on vine and it’s coefficient of determination (R2) reached–0.9739. Opposite tendency was determined with color index a, which has tendency to increase during tomato ripening and that was expressed by polynomial trendline where coefficient of determination (R2) reached–0.9592. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color" title="color">color</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20index" title=" color index"> color index</a>, <a href="https://publications.waset.org/abstracts/search?q=ripening" title=" ripening"> ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/5502/tomato-fruit-color-changes-during-ripening-of-vine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10523</span> Contrast Enhancement of Color Images with Color Morphing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Khan">Javed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Saeed%20Malik"> Aamir Saeed Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Kamel"> Nidal Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarat%20Chandra%20Dass"> Sarat Chandra Dass</a>, <a href="https://publications.waset.org/abstracts/search?q=Azura%20Mohd%20Affandi"> Azura Mohd Affandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhacement" title="contrast enhacement">contrast enhacement</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20RGB" title=" normalized RGB"> normalized RGB</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20histogram%20equalization" title=" adaptive histogram equalization"> adaptive histogram equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20variance." title=" cumulative variance."> cumulative variance.</a> </p> <a href="https://publications.waset.org/abstracts/42755/contrast-enhancement-of-color-images-with-color-morphing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10522</span> Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atef%20A.%20Ata">Atef A. Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohair%20F.%20Rezeka"> Sohair F. Rezeka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Shenawy"> Ahmed El-Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Diab"> Mohammed Diab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronics color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to be main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam attached at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works very accurate under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics%20manipulator" title="robotics manipulator">robotics manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=5-DOF%20manipulator" title=" 5-DOF manipulator"> 5-DOF manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20sorting" title=" color sorting"> color sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=pick-and-place" title=" pick-and-place"> pick-and-place</a> </p> <a href="https://publications.waset.org/abstracts/1473/design-and-development-of-5-dof-color-sorting-manipulator-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10521</span> Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supatchalee%20Sirichokworrakit">Supatchalee Sirichokworrakit </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fishbone of Nile tilapia (Tilapia nilotica), waste from the frozen Nile tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p≤0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p≤0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tilapia%20bone%20flour" title="tilapia bone flour">tilapia bone flour</a>, <a href="https://publications.waset.org/abstracts/search?q=noodles" title=" noodles"> noodles</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20quality" title=" cooking quality"> cooking quality</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium "> calcium </a> </p> <a href="https://publications.waset.org/abstracts/9991/physical-textural-and-sensory-properties-of-noodles-supplemented-with-tilapia-bone-flour-tilapia-nilotica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10520</span> Effect of Air Temperatures (°C) and Slice Thickness (mm) on Drying Characteristics and Some Quality Properties of Omani Banana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atheer%20Al-Maqbali">Atheer Al-Maqbali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Rizeiqi"> Mohammed Al-Rizeiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Pathare"> Pankaj Pathare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an ever-increased demand for the consumption of banana products in Oman and elsewhere in the region due to the nutritional value and the decent taste of the product. There are approximately 3,751 acres of land designated for banana cultivation in the Sultanate of Oman, which produces approximately 18,447 tons of banana product. The fresh banana product is extremely perishable, resulting in a significant post-harvest economic loss. Since the product has high sensory acceptability, the drying method is a common method for processing fresh banana products. This study aims to use the drying technology in the production of dried bananas to preserve the largest amount of natural color and delicious taste for the consumer. The study also aimed to assess the shelf stability of both water activity (aw) and color (L*, a*, b*) for fresh and finished dried bananas by using a Conventional Air Drying System. Water activity aw, color characteristic L a b, and product’s hardness were analyzed for 3mm, 5mm, and7 mm thickness at different temperaturesoC. All data were analyzed statistically using STATA 13.0, and α ≤ 0.05 was considered for the significance level. The study is useful to banana farmers to improve cultivation, food processors to optimize producer’s output and policy makers in the optimization of banana processing and post-harvest management of the products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banana" title="banana">banana</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=oman" title=" oman"> oman</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a> </p> <a href="https://publications.waset.org/abstracts/154491/effect-of-air-temperatures-c-and-slice-thickness-mm-on-drying-characteristics-and-some-quality-properties-of-omani-banana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=351">351</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=352">352</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=color%20quality&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>