CINXE.COM
Dependentia (statistica) - Vicipaedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="la" dir="ltr"> <head> <meta charset="UTF-8"> <title>Dependentia (statistica) - Vicipaedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )lawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t."],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Ianuarius","Februarius","Martius","Aprilis","Maius","Iunius","Iulius","Augustus","September","October","November","December"],"wgRequestId":"0dd74987-3e08-4a71-9605-d36e952826b1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Dependentia_(statistica)","wgTitle":"Dependentia (statistica)","wgCurRevisionId":3823975,"wgRevisionId":3823975,"wgArticleId":311752,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Latinitas -2 (dubium)","L -2","Latinitas dubia (dubsig)","Pages using ISBN magic links","Res statisticae"],"wgPageViewLanguage":"la","wgPageContentLanguage":"la","wgPageContentModel":"wikitext","wgRelevantPageName":"Dependentia_(statistica)","wgRelevantArticleId":311752,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"la","pageLanguageDir":"ltr","pageVariantFallbacks":"la"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q186290","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=la&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=la&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=la&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Dependentia (statistica) - Vicipaedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//la.m.wikipedia.org/wiki/Dependentia_(statistica)"> <link rel="alternate" type="application/x-wiki" title="Recensere" href="/w/index.php?title=Dependentia_(statistica)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Vicipaedia (la)"> <link rel="EditURI" type="application/rsd+xml" href="//la.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://la.wikipedia.org/wiki/Dependentia_(statistica)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.la"> <link rel="alternate" type="application/atom+xml" title="Vicipaedia Fluxus Atom" href="/w/index.php?title=Specialis:Nuper_mutata&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Dependentia_statistica rootpage-Dependentia_statistica skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigatio </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Vicipaedia:Pagina_prima" title="Ire ad paginam primam [z]" accesskey="z"><span>Pagina prima</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Vicipaedia:Novissima" title="Eventus novissimi"><span>Novissima</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Specialis:Pagina_fortuita" title="Ire ad paginam fortuitam [x]" accesskey="x"><span>Pagina fortuita</span></a></li><li id="n-categories" class="mw-list-item"><a href="/wiki/Categoria:Omnia"><span>Categoriae</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Specialis:Nuper_mutata" title="Index nuper mutatorum in hac vici [r]" accesskey="r"><span>Nuper mutata</span></a></li> </ul> </div> </div> <div id="p-communitas" class="vector-menu mw-portlet mw-portlet-communitas" > <div class="vector-menu-heading"> Communitas </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Invitatio" class="mw-list-item"><a href="/wiki/Vicipaedia:Invitatio"><span>Invitatio</span></a></li><li id="n-Taberna" class="mw-list-item"><a href="/wiki/Vicipaedia:Taberna"><span>Taberna</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Vicipaedia:Praefatio" title="Adiumentum ad hoc incepto utendum"><span>Auxilium</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Vicipaedia:Pagina_prima" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Vicipaedia" src="/static/images/mobile/copyright/wikipedia-wordmark-la.svg" style="width: 7.5em; height: 1.25em;"> <img class="mw-logo-tagline" alt="Libera encyclopaedia" src="/static/images/mobile/copyright/wikipedia-tagline-la.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Specialis:Quaerere" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Quaerere apud Vicipaediam [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Quaerere</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Quaerere apud Vicipaediam" aria-label="Quaerere apud Vicipaediam" autocapitalize="sentences" title="Quaerere apud Vicipaediam [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Specialis:Quaerere"> </div> <button class="cdx-button cdx-search-input__end-button">Quaerere</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Instrumenta personalia"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_la.wikipedia.org&uselang=la" class=""><span>Donationes</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Specialis:Rationem_creare&returnto=Dependentia+%28statistica%29" title="Suademus, ut nomen tibi imponas, neque cogeris" class=""><span>Sibi nomen imponere</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Specialis:Conventum_aperire&returnto=Dependentia+%28statistica%29" title="Te nomen dare hortamur neque cogimus [o]" accesskey="o" class=""><span>Nomen dare</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="More options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Instrumenta personalia" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Instrumenta personalia</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_la.wikipedia.org&uselang=la"><span>Donationes</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Specialis:Rationem_creare&returnto=Dependentia+%28statistica%29" title="Suademus, ut nomen tibi imponas, neque cogeris"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Sibi nomen imponere</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Specialis:Conventum_aperire&returnto=Dependentia+%28statistica%29" title="Te nomen dare hortamur neque cogimus [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Nomen dare</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Auxilium:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Specialis:Conlationes_meae" title="Ostendit recensiones ex hoc loco IP factas [y]" accesskey="y"><span>Conlationes</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Specialis:Disputatio_mea" title="Disputatio de recensionibus ex hoc loco IP factis [n]" accesskey="n"><span>Disputatio huius IP</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Index" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Index</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Initium</div> </a> </li> <li id="toc-Distributiones_duplae" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Distributiones_duplae"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Distributiones duplae</span> </div> </a> <button aria-controls="toc-Distributiones_duplae-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Distributiones duplae subsection</span> </button> <ul id="toc-Distributiones_duplae-sublist" class="vector-toc-list"> <li id="toc-Distributio_marginalis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributio_marginalis"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Distributio marginalis</span> </div> </a> <ul id="toc-Distributio_marginalis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distributio_conditionata" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distributio_conditionata"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Distributio conditionata</span> </div> </a> <ul id="toc-Distributio_conditionata-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Independentia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Independentia"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Independentia</span> </div> </a> <button aria-controls="toc-Independentia-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Independentia subsection</span> </button> <ul id="toc-Independentia-sublist" class="vector-toc-list"> <li id="toc-Tabella_independentiae" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tabella_independentiae"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Tabella independentiae</span> </div> </a> <ul id="toc-Tabella_independentiae-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Normalizatio_indicis_dependentiae" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Normalizatio_indicis_dependentiae"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Normalizatio indicis dependentiae</span> </div> </a> <ul id="toc-Normalizatio_indicis_dependentiae-sublist" class="vector-toc-list"> <li id="toc-Demonstratio_indicis_Cramériani_valendi" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Demonstratio_indicis_Cramériani_valendi"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Demonstratio indicis Cramériani valendi</span> </div> </a> <ul id="toc-Demonstratio_indicis_Cramériani_valendi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Dependentia_media" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Dependentia_media"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Dependentia media</span> </div> </a> <button aria-controls="toc-Dependentia_media-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Dependentia media subsection</span> </button> <ul id="toc-Dependentia_media-sublist" class="vector-toc-list"> <li id="toc-Decompositio_deviantiae" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decompositio_deviantiae"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Decompositio deviantiae</span> </div> </a> <ul id="toc-Decompositio_deviantiae-sublist" class="vector-toc-list"> <li id="toc-Demonstratio_decompositionis_deviantiae" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Demonstratio_decompositionis_deviantiae"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>Demonstratio decompositionis deviantiae</span> </div> </a> <ul id="toc-Demonstratio_decompositionis_deviantiae-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Bibliographia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliographia"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Bibliographia</span> </div> </a> <ul id="toc-Bibliographia-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Index" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Dependentia (statistica)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 66 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-66" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">66 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%B1%D8%AA%D8%A8%D8%A7%D8%B7_(%D8%A5%D8%AD%D8%B5%D8%A7%D8%A1)" title="ارتباط (إحصاء) – Arabica" lang="ar" hreflang="ar" data-title="ارتباط (إحصاء)" data-language-autonym="العربية" data-language-local-name="Arabica" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%B8%E0%A6%B9-%E0%A6%B8%E0%A6%AE%E0%A7%8D%E0%A6%AC%E0%A6%A8%E0%A7%8D%E0%A6%A7" title="সহ-সম্বন্ধ – Assamica" lang="as" hreflang="as" data-title="সহ-সম্বন্ধ" data-language-autonym="অসমীয়া" data-language-local-name="Assamica" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Correlaci%C3%B3n" title="Correlación – Asturian" lang="ast" hreflang="ast" data-title="Correlación" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Korrelyasiya" title="Korrelyasiya – Atropatenica" lang="az" hreflang="az" data-title="Korrelyasiya" data-language-autonym="Azərbaycanca" data-language-local-name="Atropatenica" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%8D%D0%BB%D1%8F%D1%86%D1%8B%D1%8F" title="Карэляцыя – Ruthenica Alba" lang="be" hreflang="be" data-title="Карэляцыя" data-language-autonym="Беларуская" data-language-local-name="Ruthenica Alba" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%8D%D0%BB%D1%8F%D1%86%D1%8B%D1%8F" title="Карэляцыя – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Карэляцыя" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BB%D0%B0%D1%86%D0%B8%D1%8F" title="Корелация – Bulgarica" lang="bg" hreflang="bg" data-title="Корелация" data-language-autonym="Български" data-language-local-name="Bulgarica" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%95%E0%A5%8B%E0%A4%B0%E0%A4%BF%E0%A4%B2%E0%A5%87%E0%A4%B6%E0%A4%A8" title="कोरिलेशन – Bihari" lang="bh" hreflang="bh" data-title="कोरिलेशन" data-language-autonym="भोजपुरी" data-language-local-name="Bihari" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%82%E0%A6%B6%E0%A7%8D%E0%A6%B2%E0%A7%87%E0%A6%B7_%E0%A6%93_%E0%A6%A8%E0%A6%BF%E0%A6%B0%E0%A7%8D%E0%A6%AD%E0%A6%B0%E0%A6%B6%E0%A7%80%E0%A6%B2%E0%A6%A4%E0%A6%BE" title="সংশ্লেষ ও নির্ভরশীলতা – Bengalica" lang="bn" hreflang="bn" data-title="সংশ্লেষ ও নির্ভরশীলতা" data-language-autonym="বাংলা" data-language-local-name="Bengalica" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Koeficijent_korelacije" title="Koeficijent korelacije – Bosnica" lang="bs" hreflang="bs" data-title="Koeficijent korelacije" data-language-autonym="Bosanski" data-language-local-name="Bosnica" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Correlaci%C3%B3" title="Correlació – Catalana" lang="ca" hreflang="ca" data-title="Correlació" data-language-autonym="Català" data-language-local-name="Catalana" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Korelace" title="Korelace – Bohemica" lang="cs" hreflang="cs" data-title="Korelace" data-language-autonym="Čeština" data-language-local-name="Bohemica" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Korrelation" title="Korrelation – Danica" lang="da" hreflang="da" data-title="Korrelation" data-language-autonym="Dansk" data-language-local-name="Danica" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Korrelation" title="Korrelation – Germanica" lang="de" hreflang="de" data-title="Korrelation" data-language-autonym="Deutsch" data-language-local-name="Germanica" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CF%83%CF%87%CE%AD%CF%84%CE%B9%CF%83%CE%B7_%CE%BA%CE%B1%CE%B9_%CE%B5%CE%BE%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7_(%CE%A3%CF%84%CE%B1%CF%84%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AE)" title="Συσχέτιση και εξάρτηση (Στατιστική) – Graeca" lang="el" hreflang="el" data-title="Συσχέτιση και εξάρτηση (Στατιστική)" data-language-autonym="Ελληνικά" data-language-local-name="Graeca" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Correlation" title="Correlation – Anglica" lang="en" hreflang="en" data-title="Correlation" data-language-autonym="English" data-language-local-name="Anglica" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Korelacio" title="Korelacio – Esperantica" lang="eo" hreflang="eo" data-title="Korelacio" data-language-autonym="Esperanto" data-language-local-name="Esperantica" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Correlaci%C3%B3n" title="Correlación – Hispanica" lang="es" hreflang="es" data-title="Correlación" data-language-autonym="Español" data-language-local-name="Hispanica" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Korrelatsioon" title="Korrelatsioon – Estonica" lang="et" hreflang="et" data-title="Korrelatsioon" data-language-autonym="Eesti" data-language-local-name="Estonica" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Korrelazio" title="Korrelazio – Vasconica" lang="eu" hreflang="eu" data-title="Korrelazio" data-language-autonym="Euskara" data-language-local-name="Vasconica" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%85%D8%A8%D8%B3%D8%AA%DA%AF%DB%8C_%D9%88_%D9%88%D8%A7%D8%A8%D8%B3%D8%AA%DA%AF%DB%8C" title="همبستگی و وابستگی – Persica" lang="fa" hreflang="fa" data-title="همبستگی و وابستگی" data-language-autonym="فارسی" data-language-local-name="Persica" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Korrelaatio" title="Korrelaatio – Finnica" lang="fi" hreflang="fi" data-title="Korrelaatio" data-language-autonym="Suomi" data-language-local-name="Finnica" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Corr%C3%A9lation_(statistiques)" title="Corrélation (statistiques) – Francogallica" lang="fr" hreflang="fr" data-title="Corrélation (statistiques)" data-language-autonym="Français" data-language-local-name="Francogallica" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Comhghaol%C3%BA" title="Comhghaolú – Hibernica" lang="ga" hreflang="ga" data-title="Comhghaolú" data-language-autonym="Gaeilge" data-language-local-name="Hibernica" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Correlaci%C3%B3n" title="Correlación – Gallaica" lang="gl" hreflang="gl" data-title="Correlación" data-language-autonym="Galego" data-language-local-name="Gallaica" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%AA%D7%90%D7%9D" title="מתאם – Hebrew" lang="he" hreflang="he" data-title="מתאם" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%B9%E0%A4%B8%E0%A4%AE%E0%A5%8D%E0%A4%AC%E0%A4%A8%E0%A5%8D%E0%A4%A7" title="सहसम्बन्ध – Hindica" lang="hi" hreflang="hi" data-title="सहसम्बन्ध" data-language-autonym="हिन्दी" data-language-local-name="Hindica" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Korelacija" title="Korelacija – Croatica" lang="hr" hreflang="hr" data-title="Korelacija" data-language-autonym="Hrvatski" data-language-local-name="Croatica" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Korrel%C3%A1ci%C3%B3" title="Korreláció – Hungarica" lang="hu" hreflang="hu" data-title="Korreláció" data-language-autonym="Magyar" data-language-local-name="Hungarica" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%B8%D5%BC%D5%A5%D5%AC%D5%B5%D5%A1%D6%81%D5%AB%D5%A1_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Կոռելյացիա (մաթեմատիկա) – Armenica" lang="hy" hreflang="hy" data-title="Կոռելյացիա (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="Armenica" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Korelasi" title="Korelasi – Indonesian" lang="id" hreflang="id" data-title="Korelasi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Correlazione_(statistica)" title="Correlazione (statistica) – Italiana" lang="it" hreflang="it" data-title="Correlazione (statistica)" data-language-autonym="Italiano" data-language-local-name="Italiana" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%9B%B8%E9%96%A2" title="相関 – Iaponica" lang="ja" hreflang="ja" data-title="相関" data-language-autonym="日本語" data-language-local-name="Iaponica" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Analisis_kor%C3%A9lasi" title="Analisis korélasi – Iavensis" lang="jv" hreflang="jv" data-title="Analisis korélasi" data-language-autonym="Jawa" data-language-local-name="Iavensis" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F" title="Корреляция – Cazachica" lang="kk" hreflang="kk" data-title="Корреляция" data-language-autonym="Қазақша" data-language-local-name="Cazachica" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%83%81%EA%B4%80_%EB%B6%84%EC%84%9D" title="상관 분석 – Coreana" lang="ko" hreflang="ko" data-title="상관 분석" data-language-autonym="한국어" data-language-local-name="Coreana" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F" title="Корреляция – Chirgisica" lang="ky" hreflang="ky" data-title="Корреляция" data-language-autonym="Кыргызча" data-language-local-name="Chirgisica" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Koreliacija" title="Koreliacija – Lithuanica" lang="lt" hreflang="lt" data-title="Koreliacija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanica" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Korel%C4%81cija" title="Korelācija – Lettonica" lang="lv" hreflang="lv" data-title="Korelācija" data-language-autonym="Latviešu" data-language-local-name="Lettonica" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BB%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Корелација – Macedonica" lang="mk" hreflang="mk" data-title="Корелација" data-language-autonym="Македонски" data-language-local-name="Macedonica" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Correlatie" title="Correlatie – Batava" lang="nl" hreflang="nl" data-title="Correlatie" data-language-autonym="Nederlands" data-language-local-name="Batava" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Korrelasjon" title="Korrelasjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Korrelasjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Korrelasjon" title="Korrelasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Korrelasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zale%C5%BCno%C5%9B%C4%87_zmiennych_losowych" title="Zależność zmiennych losowych – Polonica" lang="pl" hreflang="pl" data-title="Zależność zmiennych losowych" data-language-autonym="Polski" data-language-local-name="Polonica" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Correla%C3%A7%C3%A3o" title="Correlação – Lusitana" lang="pt" hreflang="pt" data-title="Correlação" data-language-autonym="Português" data-language-local-name="Lusitana" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Corela%C8%9Bie" title="Corelație – Dacoromanica" lang="ro" hreflang="ro" data-title="Corelație" data-language-autonym="Română" data-language-local-name="Dacoromanica" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F" title="Корреляция – Russica" lang="ru" hreflang="ru" data-title="Корреляция" data-language-autonym="Русский" data-language-local-name="Russica" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%DA%AF%DA%8F%D9%8A%D9%84_%D9%84%D8%A7%DA%B3%D8%A7%D9%BE%D9%88" title="گڏيل لاڳاپو – Sindhuica" lang="sd" hreflang="sd" data-title="گڏيل لاڳاپو" data-language-autonym="سنڌي" data-language-local-name="Sindhuica" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Korelacija" title="Korelacija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Korelacija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Correlation" title="Correlation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Correlation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Korel%C3%A1cia_(%C5%A1tatistika)" title="Korelácia (štatistika) – Slovaca" lang="sk" hreflang="sk" data-title="Korelácia (štatistika)" data-language-autonym="Slovenčina" data-language-local-name="Slovaca" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Korelacija" title="Korelacija – Slovena" lang="sl" hreflang="sl" data-title="Korelacija" data-language-autonym="Slovenščina" data-language-local-name="Slovena" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Korrelacioni" title="Korrelacioni – Albanica" lang="sq" hreflang="sq" data-title="Korrelacioni" data-language-autonym="Shqip" data-language-local-name="Albanica" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BB%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Корелација – Serbica" lang="sr" hreflang="sr" data-title="Корелација" data-language-autonym="Српски / srpski" data-language-local-name="Serbica" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Kor%C3%A9lasi" title="Korélasi – Sundanese" lang="su" hreflang="su" data-title="Korélasi" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Korrelation" title="Korrelation – Suecica" lang="sv" hreflang="sv" data-title="Korrelation" data-language-autonym="Svenska" data-language-local-name="Suecica" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Uhusiano_(Takwimu)" title="Uhusiano (Takwimu) – Suahili" lang="sw" hreflang="sw" data-title="Uhusiano (Takwimu)" data-language-autonym="Kiswahili" data-language-local-name="Suahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%AB%E0%B8%AA%E0%B8%B1%E0%B8%A1%E0%B8%9E%E0%B8%B1%E0%B8%99%E0%B8%98%E0%B9%8C" title="สหสัมพันธ์ – Thai" lang="th" hreflang="th" data-title="สหสัมพันธ์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Korelasyon_at_dependiyensiya" title="Korelasyon at dependiyensiya – Tagalog" lang="tl" hreflang="tl" data-title="Korelasyon at dependiyensiya" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Korelasyon" title="Korelasyon – Turcica" lang="tr" hreflang="tr" data-title="Korelasyon" data-language-autonym="Türkçe" data-language-local-name="Turcica" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D1%96%D1%8F" title="Кореляція – Ucrainica" lang="uk" hreflang="uk" data-title="Кореляція" data-language-autonym="Українська" data-language-local-name="Ucrainica" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B1%D8%AA%D8%A8%D8%A7%D8%B7" title="ارتباط – Urdu" lang="ur" hreflang="ur" data-title="ارتباط" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%E1%BB%87_s%E1%BB%91_t%C6%B0%C6%A1ng_quan" title="Hệ số tương quan – Vietnamica" lang="vi" hreflang="vi" data-title="Hệ số tương quan" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamica" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%9B%B8%E5%85%B3" title="相关 – Wu" lang="wuu" hreflang="wuu" data-title="相关" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%9B%B8%E5%85%B3_(%E6%A6%82%E7%8E%87%E8%AE%BA)" title="相关 (概率论) – Sinica" lang="zh" hreflang="zh" data-title="相关 (概率论)" data-language-autonym="中文" data-language-local-name="Sinica" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%B5%B1%E8%A8%88%E7%9B%B8%E9%97%9C" title="統計相關 – Cantonese" lang="yue" hreflang="yue" data-title="統計相關" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q186290#sitelinks-wikipedia" title="Nexus inter linguas recensere" class="wbc-editpage">Nexus recensere</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Spatia nominalia"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dependentia_(statistica)" title="Videre paginam [c]" accesskey="c"><span>Res</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Disputatio:Dependentia_(statistica)" rel="discussion" title="Disputatio de hac pagina [t]" accesskey="t"><span>Disputatio</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Latina</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visae"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dependentia_(statistica)"><span>Legere</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit" title="Hanc paginam recensere [v]" accesskey="v"><span>Recensere</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&action=edit" title="Fontem huius paginae recensere [e]" accesskey="e"><span>Fontem recensere</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&action=history" title="Superiores huius paginae versiones [h]" accesskey="h"><span>Historiam inspicere</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Instrumenta" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Instrumenta</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Dependentia_(statistica)"><span>Legere</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit" title="Hanc paginam recensere [v]" accesskey="v"><span>Recensere</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&action=edit" title="Fontem huius paginae recensere [e]" accesskey="e"><span>Fontem recensere</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&action=history"><span>Historiam inspicere</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Specialis:Nexus_ad_paginam/Dependentia_(statistica)" title="Index paginarum quae hic nectunt [j]" accesskey="j"><span>Nexus ad paginam</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Specialis:Nuper_mutata_annexorum/Dependentia_(statistica)" rel="nofollow" title="Nuper mutata in paginis quibus haec pagina nectit [k]" accesskey="k"><span>Nuper mutata annexorum</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=la" title="Fasciculos imponere [u]" accesskey="u"><span>Fasciculum imponere</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Specialis:Paginae_speciales" title="Index paginarum specialium [q]" accesskey="q"><span>Paginae speciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&oldid=3823975" title="Nexus perpetuus ad hanc paginae redactionem"><span>Nexus perpetuus</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&action=info" title="More information about this page"><span>De hac pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Specialis:CiteThisPage&page=Dependentia_%28statistica%29&id=3823975&wpFormIdentifier=titleform" title="Institutiones de hac pagina citanda"><span>Hanc paginam citare</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Specialis:UrlShortener&url=https%3A%2F%2Fla.wikipedia.org%2Fwiki%2FDependentia_%28statistica%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Specialis:QrCode&url=https%3A%2F%2Fla.wikipedia.org%2Fwiki%2FDependentia_%28statistica%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimere vel exportare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Specialis:Book&bookcmd=book_creator&referer=Dependentia+%28statistica%29"><span>Librum creare</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Specialis:DownloadAsPdf&page=Dependentia_%28statistica%29&action=show-download-screen"><span>Paginam prehendere formá PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Dependentia_(statistica)&printable=yes" title="Forma impressibilis huius paginae [p]" accesskey="p"><span>Forma impressibilis</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Inceptis aliis </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Correlation" hreflang="en"><span>Vicimedia Communia</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q186290" title="Nexus ad rem repositorii Vicibasis [g]" accesskey="g"><span>Res Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">E Vicipaedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="la" dir="ltr"><div><span typeof="mw:File"><a href="/wiki/Fasciculus:Mining_Yellow.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Mining_Yellow.svg/20px-Mining_Yellow.svg.png" decoding="async" width="20" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Mining_Yellow.svg/30px-Mining_Yellow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Mining_Yellow.svg/40px-Mining_Yellow.svg.png 2x" data-file-width="679" data-file-height="655" /></a></span> -2 <i><a href="/wiki/Vicipaedia:Latinitas" class="mw-redirect" title="Vicipaedia:Latinitas">Latinitas</a> huius rei dubia est. Corrige si potes. Vide {{<a href="/wiki/Formula:Latinitas" title="Formula:Latinitas">latinitas</a>}}.</i></div> <p><b>Dependentia</b> <a href="/wiki/Distributio_probabilistica" title="Distributio probabilistica">distributionis</a> <a href="/wiki/Frequentia_(statistica)" title="Frequentia (statistica)">frequentiarum</a> duobus <a href="/wiki/Character" class="mw-redirect" title="Character">characteribus</a> in <a href="/wiki/Statistica" title="Statistica">statistica</a> est <a href="/wiki/Proprietas" class="mw-disambig" title="Proprietas">proprietas</a> qua valores unius <a href="/wiki/Character_(statistica)" title="Character (statistica)">characteris</a> illos alterius inflectunt. </p><p>Singillatim dicitur <i>distributio frequentiarum dupla</i> distributio cui inscribuntur frequentiae elementorum binis valoribus duorum characterum, tamquam: </p> <table class="wikitable"> <caption> </caption> <tbody><tr> <th> </th> <th>Valor primus, <p>secundi characteris </p> </th> <th>Valor secundus, <p>secundi characteris </p> </th> <th>Valor tertius, <p>secundi characteris </p> </th></tr> <tr> <td>Valor primus, <p>primi characteris </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{11}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{11}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7feeffa876d13ae14826ec01911a668afd0f661e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{11}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{12}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{12}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb19e934c4227b9b1278d745c30f17d5301ba18c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{12}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{13}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{13}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/022d2e1915311e72b8549da8459be27052bafb84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{13}}"></span> </td></tr> <tr> <td>Valor secundus, <p>primi characteris </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/822a6e34d09207988666ee368ff2e98cc48d37e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{21}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{22}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{22}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d2b67f1e9a84b28cea74c9051408398d81839c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{22}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{23}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{23}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad3066f81e9829e370d440f65f3266e9fdd9b3bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{23}}"></span> </td></tr> <tr> <td>Valor tertius, <p>primi characteris </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{31}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{31}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7786c405dacc62d14b7531266c384fa1f04dea7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{31}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{32}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{32}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f824e91b75b30174f1d7ac0c78d896ba97d5dc66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{32}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{33}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{33}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6da217864a9e122e36333e464607ca1c566674f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle f_{33}}"></span> </td></tr></tbody></table> <p>Tabella haec <b>tabella duplici ingressu</b> vel <b>tabella contingentiae</b> dicitur. </p><p>Itaque licet dependentiam mentiri, exempli gratia, ut investigemus<sup style="font-size: .75em; font-weight: normal; text-decoration: none;"><a href="/wiki/Disputatio:Dependentia_(statistica)" title="Disputatio:Dependentia (statistica)">?</a></sup> <a href="/wiki/Mulier" title="Mulier">mulieribusne</a> stipendium minus persolvatur quam viris ("ergo stipendiine<sup style="font-size: .75em; font-weight: normal; text-decoration: none;"><a href="/wiki/Disputatio:Dependentia_(statistica)" title="Disputatio:Dependentia (statistica)">?</a></sup> <a href="/wiki/Magnitudo" title="Magnitudo">magnitudo</a> a <a href="/wiki/Sexus" title="Sexus">sexu</a> dependat"), vel generane quaedam alumnorum maius examinationibus proficiant alteris, vel quandocumque suspicemur valorem unius characteris ab altero dependere. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Distributiones_duplae">Distributiones duplae</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=1" title="Recensere partem: Distributiones duplae" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=1" title="Edit section's source code: Distributiones duplae"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Distributio dupla fere binis his elementis describitur: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},y_{1}),...,(x_{N},y_{N})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},y_{1}),...,(x_{N},y_{N})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d085ddd9839dcce48a03b336f5089e47814b43a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.285ex; height:2.843ex;" alt="{\displaystyle (x_{1},y_{1}),...,(x_{N},y_{N})}"></span> </p><p>ubi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> signum valorem characteris X designat atque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67d30d30b6c2dbe4d6f150d699de040937ecc95f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.939ex; height:2.009ex;" alt="{\displaystyle y_{i}}"></span> characteris Y. Binis tamen quibusque valoribus adhibere potest <b>frequentia coniuncta</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fe0c890f9b1fa32445c5fabf93574fee42b30f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.872ex; height:2.343ex;" alt="{\displaystyle n_{ij}}"></span>, quae numerum elementorum designat valoribus characterum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i},y_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i},y_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58db36c71df5b8985d9058eeb3de47d282173026" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.212ex; height:2.343ex;" alt="{\displaystyle x_{i},y_{j}}"></span>. </p><p>Exempli gratia ita potest tabella contingentiae fieri: </p> <table class="wikitable"> <caption> </caption> <tbody><tr> <th> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1}={\text{stipendio demisso}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>stipendio demisso</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1}={\text{stipendio demisso}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f3a66f544e67cda660171837af219b2c5d7821f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.962ex; height:2.509ex;" alt="{\displaystyle y_{1}={\text{stipendio demisso}}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2}={\text{stipendio medio}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>stipendio medio</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2}={\text{stipendio medio}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d332bc4fcbe7e7c849e37be9c840b7643365154" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.13ex; height:2.509ex;" alt="{\displaystyle y_{2}={\text{stipendio medio}}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{3}={\text{stipendio alto}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>stipendio alto</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{3}={\text{stipendio alto}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0e07c1b3a53897e251c1e277a76c78d6387455e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.936ex; height:2.509ex;" alt="{\displaystyle y_{3}={\text{stipendio alto}}}"></span> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}={\text{viri}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>viri</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}={\text{viri}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e2322dc9f20410b834bf087f41ea9bc32c18568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.915ex; height:2.509ex;" alt="{\displaystyle x_{1}={\text{viri}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{11}=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{11}=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d3b055139aba9ad6902c83a9a7d266201f6ed65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.694ex; height:2.509ex;" alt="{\displaystyle n_{11}=10}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{12}=20}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>=</mo> <mn>20</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{12}=20}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5b4415b6287d3ce66f6e5ef06aa2333add1a78d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.694ex; height:2.509ex;" alt="{\displaystyle n_{12}=20}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{13}=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{13}=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1374ff0bfa62cbb0eb1ac2059f804eceefe52851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.532ex; height:2.509ex;" alt="{\displaystyle n_{13}=5}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}={\text{mulieres}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>mulieres</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}={\text{mulieres}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50c3bcb032aa2ad2e30ab793632d213cc99a535e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.897ex; height:2.509ex;" alt="{\displaystyle x_{2}={\text{mulieres}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{21}=15}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>=</mo> <mn>15</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{21}=15}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/527fbbddc391dd29dd8b18b407d26ec31b91a11f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.694ex; height:2.509ex;" alt="{\displaystyle n_{21}=15}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{22}=24}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>=</mo> <mn>24</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{22}=24}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87be12788ac3de57a481c508257ed00a022a5323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.694ex; height:2.509ex;" alt="{\displaystyle n_{22}=24}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{23}=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{23}=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0cfe6d4ee908765c8b01c85dbc7ce4405ba8648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.532ex; height:2.509ex;" alt="{\displaystyle n_{23}=4}"></span> </td></tr></tbody></table> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Fasciculus:Dispersion-nula.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Dispersion-nula.png/188px-Dispersion-nula.png" decoding="async" width="188" height="126" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Dispersion-nula.png/282px-Dispersion-nula.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/42/Dispersion-nula.png/376px-Dispersion-nula.png 2x" data-file-width="575" data-file-height="386" /></a><figcaption>Exemplum graphi dispersionis.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fasciculus:Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg/220px-Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg" decoding="async" width="220" height="141" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg/330px-Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg/440px-Bubble_Chart_of_Crime_versus_Poverty_in_50_states.jpg 2x" data-file-width="750" data-file-height="480" /></a><figcaption>Exemplum graphi bullarum.</figcaption></figure> <p>Hae depingi possunt <a href="/w/index.php?title=Graphum_dispersionis&action=edit&redlink=1" class="new" title="Graphum dispersionis (non est haec pagina)">grapho dispersionis</a> vel <a href="/w/index.php?title=Grahum_bullarum&action=edit&redlink=1" class="new" title="Grahum bullarum (non est haec pagina)">graho bullarum</a>, hoc aptiore distributioni frequentiarum. Grapho dispersionis depinguntur omnia elementa singulo <a href="/wiki/Punctum_(mathematica)" title="Punctum (mathematica)">puncto</a> coordinatis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{i},y_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{i},y_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6dbb919b91ccacf17ed47898048428a1baf9703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.912ex; height:2.843ex;" alt="{\displaystyle (x_{i},y_{i})}"></span> (nec indecet duobus punctis esse easdem coordinatas); grapho bullarum depinguntur bini valores <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{i},y_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{i},y_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6dbb919b91ccacf17ed47898048428a1baf9703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.912ex; height:2.843ex;" alt="{\displaystyle (x_{i},y_{i})}"></span> circulo cuius magnitudo frequentiae coniunctae <a href="/w/index.php?title=Proportio&action=edit&redlink=1" class="new" title="Proportio (non est haec pagina)">proportionalis</a> est, coordinataeque valoribus aequales sunt. </p> <div class="mw-heading mw-heading3"><h3 id="Distributio_marginalis">Distributio marginalis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=2" title="Recensere partem: Distributio marginalis" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=2" title="Edit section's source code: Distributio marginalis"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Appellatur <b>distributio marginalis</b> characteris X, distributione frequentiarum dupla, distributio simplex elementorum secundum hoc character. Itaque a tabella duplici ingressu deducitur, valores versuum aut columnarum summando. </p><p>Exempli gratia, tabella summi huius subcapituli in distributiones has marginales dissolvitur: </p> <table class="wikitable"> <caption>Frequentiae stipendiorum </caption> <tbody><tr> <th> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef4db76d658a98219aca14df06d9869d2b43c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{1}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7377c7399e662562cd420fa5c7ce49cfba574998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{2}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e73a90104a9b6484a6bc2df35edf469d6307b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{3}}"></span> </th></tr> <tr> <td>Frequentia </td> <td>10+15=25 </td> <td>20+24=44 </td> <td>5+4=9 </td></tr></tbody></table> <table class="wikitable"> <caption>Frequentiae sexuum </caption> <tbody><tr> <th> </th> <th>Frequentia </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8788bf85d532fa88d1fb25eff6ae382a601c308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{1}}"></span> </td> <td>10+20+5=45 </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af1b928f06e4c7e3e8ebfd60704656719bd766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{2}}"></span> </td> <td>15+24+4=43 </td></tr></tbody></table> <p>Praecipue distributio marginalis characteris X littera <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17fd6605a04f97c6bedb0a9632f9f023cb18dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.772ex; height:2.509ex;" alt="{\displaystyle f_{X}}"></span> designatur, eiusque frequentiae signis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{0j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{0j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50b1ee97f33a404235b5cf1b8bca19b3c8457c7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.126ex; height:2.343ex;" alt="{\displaystyle n_{0j}}"></span> aut <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{i0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{i0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ef1136b1b8fd2d7b04805522190c37f3d4c45ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.016ex; height:2.009ex;" alt="{\displaystyle n_{i0}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Distributio_conditionata">Distributio conditionata</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=3" title="Recensere partem: Distributio conditionata" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=3" title="Edit section's source code: Distributio conditionata"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Characteris <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> <b>distributio conditionata valori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> characteris <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span></b> dicitur distributio secundum character <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> elementorum cuius valor est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> charactere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. Itaque e tabella contingentiae educitur versibus aut columnis quibusdam eligendis, fereque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{Y|x_{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{Y|x_{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1565b58c7ba1994fce210ffeaea57dc883c2da84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.648ex; height:3.009ex;" alt="{\displaystyle f_{Y|x_{i}}}"></span> signo designatur. </p><p>Exempli gratia, haec sunt distributiones conditionatae stipendiorum ipsius tabellae prioris singulis sexibus: </p> <table class="wikitable"> <caption>Stipendia virorum (distributio conditionata valori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8788bf85d532fa88d1fb25eff6ae382a601c308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{1}}"></span>) </caption> <tbody><tr> <th> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef4db76d658a98219aca14df06d9869d2b43c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{1}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7377c7399e662562cd420fa5c7ce49cfba574998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{2}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e73a90104a9b6484a6bc2df35edf469d6307b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{3}}"></span> </th></tr> <tr> <td>Frequentia </td> <td>10 </td> <td>20 </td> <td>5 </td></tr></tbody></table> <table class="wikitable"> <caption>Stipendia mulierum (distributio conditionata valori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af1b928f06e4c7e3e8ebfd60704656719bd766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{2}}"></span>) </caption> <tbody><tr> <th> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef4db76d658a98219aca14df06d9869d2b43c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{1}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7377c7399e662562cd420fa5c7ce49cfba574998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{2}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e73a90104a9b6484a6bc2df35edf469d6307b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{3}}"></span> </th></tr> <tr> <td>Frequentia </td> <td>15 </td> <td>24 </td> <td>4 </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Independentia">Independentia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=4" title="Recensere partem: Independentia" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=4" title="Edit section's source code: Independentia"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Charactera <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> atque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> distributionis frequentiarum duplae <b>statistice independentia</b> dicuntur si subdicta aequatio vera habetur cunctis frequentiis coniunctis: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{ij}={\frac {n_{i0}\times n_{0j}}{N}},\forall (i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> <mi>N</mi> </mfrac> </mrow> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{ij}={\frac {n_{i0}\times n_{0j}}{N}},\forall (i,j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83b02f06a881a4035479d9eb363cfa38d941e940" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.72ex; height:5.176ex;" alt="{\displaystyle n_{ij}={\frac {n_{i0}\times n_{0j}}{N}},\forall (i,j)}"></span> </p><p>Potest enim demonstrari tabella contingentiae tres has sententias una veras aut falsas esse <i>(aequivalere):</i> </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{X|y_{i}}=f_{X},\forall i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{X|y_{i}}=f_{X},\forall i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a880a9210137dde8b5befe355399c5444fcfec24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.658ex; height:3.009ex;" alt="{\displaystyle f_{X|y_{i}}=f_{X},\forall i}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{ij}=(n_{i0}\times n_{0j})/N,\forall (i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{ij}=(n_{i0}\times n_{0j})/N,\forall (i,j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31bdf69f497dd3486c03f992a491ea9838db1489" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.919ex; height:3.009ex;" alt="{\displaystyle n_{ij}=(n_{i0}\times n_{0j})/N,\forall (i,j)}"></span>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{Y|X_{i}},\forall j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{Y|X_{i}},\forall j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c18ea6d6a4a773f343485cfcf9f6a2fe0596d2da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.353ex; height:3.009ex;" alt="{\displaystyle f_{Y|X_{i}},\forall j}"></span>.</li></ol> <p>Indipendentia enim <i>quaeque distributio conditionata aequalis est marginali.</i> Nisi una earum sententiarum vera est, omnes igitur tres falsae sunt, haberi dicitur <b>dependentia statistica.</b> </p> <div class="mw-heading mw-heading3"><h3 id="Tabella_independentiae">Tabella independentiae</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=5" title="Recensere partem: Tabella independentiae" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=5" title="Edit section's source code: Tabella independentiae"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ad dependentiam distributionis duplae mentiendam, fere oportet eius tabellam contingentiae conferre et illam tabellam contingentiae, quae haberetur characteribus duobus ipsis independentibus. </p><p>Itaque definimus frequentias <b>tabellae independentiae:</b> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {n}}_{ij}={\frac {n_{i0}\times n_{0j}}{N}},\forall (i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> <mi>N</mi> </mfrac> </mrow> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {n}}_{ij}={\frac {n_{i0}\times n_{0j}}{N}},\forall (i,j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdf172f3b1a26598adeda3bb12239d2ee7ba028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.72ex; height:5.176ex;" alt="{\displaystyle {\hat {n}}_{ij}={\frac {n_{i0}\times n_{0j}}{N}},\forall (i,j)}"></span> </p><p>Exempli gratia haec est tabella independentiae ipsius distributionis paragraphi prioris: </p> <table class="wikitable"> <caption> </caption> <tbody><tr> <th> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef4db76d658a98219aca14df06d9869d2b43c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{1}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7377c7399e662562cd420fa5c7ce49cfba574998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{2}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e73a90104a9b6484a6bc2df35edf469d6307b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{3}}"></span> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8788bf85d532fa88d1fb25eff6ae382a601c308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{1}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (25\times 45)/88\approx 12.78}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>25</mn> <mo>×<!-- × --></mo> <mn>45</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>88</mn> <mo>≈<!-- ≈ --></mo> <mn>12.78</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (25\times 45)/88\approx 12.78}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/070d5947562867a3f83acb1285b3bacfd1fe75e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.182ex; height:2.843ex;" alt="{\displaystyle (25\times 45)/88\approx 12.78}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (44\times 45)/88=22.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>44</mn> <mo>×<!-- × --></mo> <mn>45</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>88</mn> <mo>=</mo> <mn>22.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (44\times 45)/88=22.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0f134d922d88f3c5e1e129bcd549172277801aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.02ex; height:2.843ex;" alt="{\displaystyle (44\times 45)/88=22.5}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (9\times 45)/88\approx 4.6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>9</mn> <mo>×<!-- × --></mo> <mn>45</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>88</mn> <mo>≈<!-- ≈ --></mo> <mn>4.6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (9\times 45)/88\approx 4.6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e73971f0e9e5e88d0bebfb55ad67b3d56fa8af0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.695ex; height:2.843ex;" alt="{\displaystyle (9\times 45)/88\approx 4.6}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af1b928f06e4c7e3e8ebfd60704656719bd766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{2}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (25\times 43)/88\approx 12.21}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>25</mn> <mo>×<!-- × --></mo> <mn>43</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>88</mn> <mo>≈<!-- ≈ --></mo> <mn>12.21</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (25\times 43)/88\approx 12.21}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0dda14fee3dde2b4f512bb20be96cad5ed0801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.182ex; height:2.843ex;" alt="{\displaystyle (25\times 43)/88\approx 12.21}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (44\times 43)/88=21.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>44</mn> <mo>×<!-- × --></mo> <mn>43</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>88</mn> <mo>=</mo> <mn>21.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (44\times 43)/88=21.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc8c28f04157e918ad0735c8cf6dad5bea5748c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.02ex; height:2.843ex;" alt="{\displaystyle (44\times 43)/88=21.5}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (9\times 43)/88\approx 4.4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>9</mn> <mo>×<!-- × --></mo> <mn>43</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>88</mn> <mo>≈<!-- ≈ --></mo> <mn>4.4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (9\times 43)/88\approx 4.4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef112807df69338868a850776a08b50dc5429dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.695ex; height:2.843ex;" alt="{\displaystyle (9\times 43)/88\approx 4.4}"></span> </td></tr></tbody></table> <p>Ex his frequentiis etiam licet definire <b>contingentias:</b> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{ij}={\frac {n_{ij}-{\hat {n}}_{ij}}{{\hat {n}}_{ij}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{ij}={\frac {n_{ij}-{\hat {n}}_{ij}}{{\hat {n}}_{ij}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6171706de7629da452a6e45f886c8cf5263fdc89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.003ex; height:6.509ex;" alt="{\displaystyle c_{ij}={\frac {n_{ij}-{\hat {n}}_{ij}}{{\hat {n}}_{ij}}}}"></span> </p><p>Itaque possumus nunc indicem dependentiae characterum definire per <a href="/wiki/Medietas#Medietas_quadratica" title="Medietas">medietatem quadraticam</a> <a href="/wiki/Medietas#Medietates_analyticae_ponderatae" title="Medietas">ponderatam</a> contingentiarum ad secundam potentiam dignatarum numeris <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {n}}_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {n}}_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb59a0f4dde84f43aff40c9cc0fd12af9a147550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.872ex; height:2.843ex;" alt="{\displaystyle {\hat {n}}_{ij}}"></span> ponderibus: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ={\sqrt {{\frac {1}{N}}\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {(n_{ij}-{\hat {n}}_{ij})^{2}}{{\hat {n}}_{ij}}}}}={\sqrt {\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}\times n_{0j}}}-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ={\sqrt {{\frac {1}{N}}\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {(n_{ij}-{\hat {n}}_{ij})^{2}}{{\hat {n}}_{ij}}}}}={\sqrt {\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}\times n_{0j}}}-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c86bf87306e513766d538c0c6174b7f91069f986" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:56.979ex; height:8.343ex;" alt="{\displaystyle \psi ={\sqrt {{\frac {1}{N}}\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {(n_{ij}-{\hat {n}}_{ij})^{2}}{{\hat {n}}_{ij}}}}}={\sqrt {\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}\times n_{0j}}}-1}}}"></span> </p><p>Hic index cum tabella contingentiae longius a tabella independentiae differat, magis augetur, nullusque est independentia. </p><p>Alter index priori conexus est: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi ^{2}=N\psi ^{2}=\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {(n_{ij}-{\hat {n}}_{ij})^{2}}{{\hat {n}}_{ij}}}=N\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}\times n_{0j}}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>N</mi> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mi>N</mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi ^{2}=N\psi ^{2}=\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {(n_{ij}-{\hat {n}}_{ij})^{2}}{{\hat {n}}_{ij}}}=N\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}\times n_{0j}}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00b284e2a5eedac7c345424e18cd1bc65c90311f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:59.961ex; height:7.676ex;" alt="{\displaystyle \chi ^{2}=N\psi ^{2}=\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {(n_{ij}-{\hat {n}}_{ij})^{2}}{{\hat {n}}_{ij}}}=N\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}\times n_{0j}}}-1}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Normalizatio_indicis_dependentiae">Normalizatio indicis dependentiae</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=6" title="Recensere partem: Normalizatio indicis dependentiae" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=6" title="Edit section's source code: Normalizatio indicis dependentiae"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Primum dicendum est, indicem supradictum valorem suum maximum attingere cum tabella contingentiae sit <b>tabella dependentiae perfectae.</b> </p><p>Singillatim, si plus est valorum characteri X quam characteri Y, dicitur <i>tabella dependentiae perfectae characteris Y a charactere X</i> tabella contingentiae cui (si columnae ad character Y pertinent) omni columnae solae frequentiae nullae sint omni versu excepto uno. Exempli gratia: </p> <table class="wikitable"> <caption> </caption> <tbody><tr> <th> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef4db76d658a98219aca14df06d9869d2b43c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{1}}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7377c7399e662562cd420fa5c7ce49cfba574998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{2}}"></span> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8788bf85d532fa88d1fb25eff6ae382a601c308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{1}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af1b928f06e4c7e3e8ebfd60704656719bd766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{2}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td></tr></tbody></table> <p>Si numerus valorum duorum characterum adaequat, potest haberi dependentia perfecta characteris X ab Y versaque vice. </p><p>Valorem tamen maximum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {t-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {t-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa15bc60ee122b268cb6b8852a02131befbb1815" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.778ex; height:3.009ex;" alt="{\displaystyle {\sqrt {t-1}}}"></span>, si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\leq s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>≤<!-- ≤ --></mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\leq s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6304a0df3f879340e23b4392f9b0da08e32e11e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.029ex; height:2.176ex;" alt="{\displaystyle t\leq s}"></span>, adipiscitur index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> cum tabella contingentiae sit tabella dependentiae perfectae characteris Y a charactere X, ubi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> littera numerum valorum characteris Y designat, atque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> valorum characteris X. </p><p>Ab hac definitione itaque potest definiri <b>index Cramérianus</b>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C={\frac {\psi }{\sqrt {min[(s-1),(t-1)]}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ψ<!-- ψ --></mi> <msqrt> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C={\frac {\psi }{\sqrt {min[(s-1),(t-1)]}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c13a9677b9f1d1be966f6e6fcca18e2c483cb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.144ex; height:6.676ex;" alt="{\displaystyle C={\frac {\psi }{\sqrt {min[(s-1),(t-1)]}}}}"></span> </p><p>Qui inter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> comprehenditur. </p> <div class="mw-heading mw-heading4"><h4 id="Demonstratio_indicis_Cramériani_valendi"><span id="Demonstratio_indicis_Cram.C3.A9riani_valendi"></span>Demonstratio indicis Cramériani valendi</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=7" title="Recensere partem: Demonstratio indicis Cramériani valendi" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=7" title="Edit section's source code: Demonstratio indicis Cramériani valendi"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Primum ad secundam dignemus indicem dependentiae potentiam: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{2}=\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{2}=\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78ed169df7248c62eb08fce8b27846b992b21661" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:24.132ex; height:7.676ex;" alt="{\displaystyle \psi ^{2}=\sum _{i=1}^{s}\sum _{j=1}^{t}{\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}-1}"></span> </p><p>Cum uno sit fractio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{ij}/n_{i0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{ij}/n_{i0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa6568118719fe13b350a841384e849c4bbfd49b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.051ex; height:3.009ex;" alt="{\displaystyle n_{ij}/n_{i0}}"></span> minor, scribi potest: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}\leq {\frac {n_{ij}}{n_{0j}}}\rightarrow \psi ^{2}\leq \sum _{i=1}^{s}\sum _{j=2}^{t}{\frac {n_{ij}}{n_{0j}}}-1=\sum _{j=1}^{t}{\frac {1}{n_{0j}}}\sum _{i=1}^{s}n_{ij}-1=\sum _{j=1}^{t}1-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mn>1</mn> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}\leq {\frac {n_{ij}}{n_{0j}}}\rightarrow \psi ^{2}\leq \sum _{i=1}^{s}\sum _{j=2}^{t}{\frac {n_{ij}}{n_{0j}}}-1=\sum _{j=1}^{t}{\frac {1}{n_{0j}}}\sum _{i=1}^{s}n_{ij}-1=\sum _{j=1}^{t}1-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57657c040586ea05d49f8de7678448ba27ebab35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:72.582ex; height:7.676ex;" alt="{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}\leq {\frac {n_{ij}}{n_{0j}}}\rightarrow \psi ^{2}\leq \sum _{i=1}^{s}\sum _{j=2}^{t}{\frac {n_{ij}}{n_{0j}}}-1=\sum _{j=1}^{t}{\frac {1}{n_{0j}}}\sum _{i=1}^{s}n_{ij}-1=\sum _{j=1}^{t}1-1}"></span> </p><p>quod scimus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{s}n_{ij}=n_{0j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{s}n_{ij}=n_{0j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22c584a2ff035b3f93680830b04efba98f5e7efd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.839ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{s}n_{ij}=n_{0j}}"></span>. Valet igitur: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{2}\leq t-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{2}\leq t-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76aff6c004106195960dd06f81d8fb04e790691d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.508ex; height:3.009ex;" alt="{\displaystyle \psi ^{2}\leq t-1}"></span>; quae duo membra modo adaequant, si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}={\frac {n_{ij}}{n_{0j}}}\rightarrow n_{ij}=n_{i0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}={\frac {n_{ij}}{n_{0j}}}\rightarrow n_{ij}=n_{i0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e6eda1e92b1d9ad658371f7dc8544b3f50d033" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.641ex; height:6.843ex;" alt="{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}={\frac {n_{ij}}{n_{0j}}}\rightarrow n_{ij}=n_{i0}}"></span>, quod sola dependentia perfecta characteris Y a charactere X evenit. </p><p>Item a <a href="/w/index.php?title=Disaequatio&action=edit&redlink=1" class="new" title="Disaequatio (non est haec pagina)">disaequatione</a> supradicta videmus valere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}\leq {\frac {n_{ij}}{n_{i0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}\leq {\frac {n_{ij}}{n_{i0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58787966b96eea1a6b5adf133d8c1a08611ac544" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.93ex; height:6.843ex;" alt="{\displaystyle {\frac {n_{ij}^{2}}{n_{i0}n_{0j}}}\leq {\frac {n_{ij}}{n_{i0}}}}"></span>, et eisdem computationibus edici potest <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{2}\leq s-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{2}\leq s-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e8aab88205ea81f51721b88f2d3a8f2fc04d973" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.759ex; height:3.009ex;" alt="{\displaystyle \psi ^{2}\leq s-1}"></span> membraque adaequare sola dependentia perfecta characteris X a charactere Y. </p><p>E quo duobus deducitur: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{2}\leq min(s-1,t-1),\exists \psi :\psi ^{2}=min(s-1,t-1)\rightarrow max\psi ={\sqrt {min(s-1,t-1)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>ψ<!-- ψ --></mi> <mo>:</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{2}\leq min(s-1,t-1),\exists \psi :\psi ^{2}=min(s-1,t-1)\rightarrow max\psi ={\sqrt {min(s-1,t-1)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/273767b5106f7bd8a397f232a8495244801e533b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:83.308ex; height:4.843ex;" alt="{\displaystyle \psi ^{2}\leq min(s-1,t-1),\exists \psi :\psi ^{2}=min(s-1,t-1)\rightarrow max\psi ={\sqrt {min(s-1,t-1)}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Dependentia_media">Dependentia media</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=8" title="Recensere partem: Dependentia media" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=8" title="Edit section's source code: Dependentia media"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Notandum est facilius computari ita medietas <a href="/wiki/Arithmetica" title="Arithmetica">arithmetica</a> distributionum conditionatarum marginaliumque: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{Y}(x_{i})={\frac {1}{n_{i0}}}\sum _{j=1}^{t}y_{j}n_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{Y}(x_{i})={\frac {1}{n_{i0}}}\sum _{j=1}^{t}y_{j}n_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9310ad8c316ddb798d65c701423e9ac5a8ddaf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:22.827ex; height:7.509ex;" alt="{\displaystyle \mu _{Y}(x_{i})={\frac {1}{n_{i0}}}\sum _{j=1}^{t}y_{j}n_{ij}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{Y}={\frac {1}{N}}\sum _{j=0}^{t}y_{j}n_{0j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{Y}={\frac {1}{N}}\sum _{j=0}^{t}y_{j}n_{0j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/321d9722c62e777a00453622fcad7c208e9e5cec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:18.191ex; height:7.509ex;" alt="{\displaystyle \mu _{Y}={\frac {1}{N}}\sum _{j=0}^{t}y_{j}n_{0j}}"></span> </p><p>Itaque ab his potest definiri <b>dependentia media</b>. Singillatim character Y dicitur medie dependere a charactere X medietatibus arithmeticis distributionum conditionatarum characteris Y inter se differentibus. </p><p>Ad hanc mentiendam, oportet scire medietatem distributionis marginalis esse medietatem ponderatam medietatum distributionum conditionatarum: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{Y}={\frac {1}{N}}\sum _{i=1}^{s}\mu _{Y}(x_{i})n_{i0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{Y}={\frac {1}{N}}\sum _{i=1}^{s}\mu _{Y}(x_{i})n_{i0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ca423d5ef6fd35518f405408e4407ab3ae5123" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.858ex; height:6.843ex;" alt="{\displaystyle \mu _{Y}={\frac {1}{N}}\sum _{i=1}^{s}\mu _{Y}(x_{i})n_{i0}}"></span> </p><p>Itaque dependentiam mediam sumus mensuri <i>deviantia medietatum conditionatarum</i>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{E}=\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})n_{i0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{E}=\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})n_{i0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c6af57487bd9b83f0b67b1a056e6970a528e0f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.246ex; height:6.843ex;" alt="{\displaystyle D_{E}=\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})n_{i0}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Decompositio_deviantiae">Decompositio deviantiae</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=9" title="Recensere partem: Decompositio deviantiae" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=9" title="Edit section's source code: Decompositio deviantiae"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Index supradictus invenitur in <b>decompositio deviantiae totalis</b> distributionis marginalis, in <i>deviantiam explicitam</i> ac <i>deviantiam residuam</i>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{Y}=D_{E}+D_{R}=\sum _{i=0}^{t}(y_{i}-\mu _{Y})^{2}n_{0j}=\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{i0}+\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{Y}=D_{E}+D_{R}=\sum _{i=0}^{t}(y_{i}-\mu _{Y})^{2}n_{0j}=\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{i0}+\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6df547cf465f938cdb00ee655fb2ff5c8f53a41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:88.553ex; height:7.509ex;" alt="{\displaystyle D_{Y}=D_{E}+D_{R}=\sum _{i=0}^{t}(y_{i}-\mu _{Y})^{2}n_{0j}=\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{i0}+\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}}"></span> </p><p>Ab hac definiri potest <b>corrationalitas correlationis</b>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{Y}^{2}={\frac {D_{E}}{D_{Y}}}=1-{\frac {D_{R}}{D_{Y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{Y}^{2}={\frac {D_{E}}{D_{Y}}}=1-{\frac {D_{R}}{D_{Y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3a9e65d71aababf4ffb6be568929f9500c16b28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.336ex; height:5.676ex;" alt="{\displaystyle \eta _{Y}^{2}={\frac {D_{E}}{D_{Y}}}=1-{\frac {D_{R}}{D_{Y}}}}"></span> </p><p>quae inter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> comprehenditur. </p> <div class="mw-heading mw-heading4"><h4 id="Demonstratio_decompositionis_deviantiae">Demonstratio decompositionis deviantiae</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=10" title="Recensere partem: Demonstratio decompositionis deviantiae" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=10" title="Edit section's source code: Demonstratio decompositionis deviantiae"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Patet: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{0j}=\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}\sum _{i=1}^{s}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{0j}=\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}\sum _{i=1}^{s}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd84c15fd3bf2f7ceadc3bd387f61c01725aeafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:64.925ex; height:7.509ex;" alt="{\displaystyle \sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{0j}=\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}\sum _{i=1}^{s}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{ij}}"></span> </p><p>Medietatesque conditionatas cum addiderimus subtraxerimusque in differentiam illam, id fit: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{s}\sum _{j=1}^{t}((y_{j}-\mu _{Y}(x_{i}))+(\mu _{Y}(x_{i})-\mu _{Y}))^{2}n_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{s}\sum _{j=1}^{t}((y_{j}-\mu _{Y}(x_{i}))+(\mu _{Y}(x_{i})-\mu _{Y}))^{2}n_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3490a7dd5a2a55ec9cf333b400905bd45f10e89b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:43.562ex; height:7.509ex;" alt="{\displaystyle \sum _{i=1}^{s}\sum _{j=1}^{t}((y_{j}-\mu _{Y}(x_{i}))+(\mu _{Y}(x_{i})-\mu _{Y}))^{2}n_{ij}}"></span> </p><p>Et binomio quadrato evoluto sic membrum expanditur: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{s}\sum _{j=1}^{t}(y_{i}-\mu _{Y})^{2}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}+\sum _{i=1}^{s}\sum _{j=1}^{t}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{ij}+2\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))(\mu _{Y}(x_{i})-\mu _{Y})n_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{s}\sum _{j=1}^{t}(y_{i}-\mu _{Y})^{2}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}+\sum _{i=1}^{s}\sum _{j=1}^{t}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{ij}+2\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))(\mu _{Y}(x_{i})-\mu _{Y})n_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b60d2de115a79b1fffc31536e5624b49e97c8e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:118.622ex; height:7.509ex;" alt="{\displaystyle \sum _{i=1}^{s}\sum _{j=1}^{t}(y_{i}-\mu _{Y})^{2}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}+\sum _{i=1}^{s}\sum _{j=1}^{t}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{ij}+2\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))(\mu _{Y}(x_{i})-\mu _{Y})n_{ij}}"></span> </p><p>Ubi postremum membrum nullum. Multiplicatio enim est differentiarum inter elementa medietatesque: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))(\mu _{Y}(x_{i})-\mu _{Y})n_{ij}=2\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))n_{ij}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))(\mu _{Y}(x_{i})-\mu _{Y})n_{ij}=2\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))n_{ij}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/585b9432c034e6dd6df86f7ea182bdcb521882f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:86.175ex; height:7.509ex;" alt="{\displaystyle 2\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))(\mu _{Y}(x_{i})-\mu _{Y})n_{ij}=2\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))n_{ij}=0}"></span> </p><p>Computationibus peractis videmus: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{0j}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}+\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{i0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{0j}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}+\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{i0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f7f6f14628488fdbb65e1908fb8b03705203d60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:93.107ex; height:7.509ex;" alt="{\displaystyle \sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{0j}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y})^{2}n_{ij}=\sum _{i=1}^{s}\sum _{j=1}^{t}(y_{j}-\mu _{Y}(x_{i}))^{2}n_{ij}+\sum _{i=1}^{s}(\mu _{Y}(x_{i})-\mu _{Y})^{2}n_{i0}}"></span> </p><p>quod erat demonstrandum. </p> <div class="mw-heading mw-heading2"><h2 id="Bibliographia">Bibliographia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dependentia_(statistica)&veaction=edit&section=11" title="Recensere partem: Bibliographia" class="mw-editsection-visualeditor"><span>recensere</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dependentia_(statistica)&action=edit&section=11" title="Edit section's source code: Bibliographia"><span>fontem recensere</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Cicchitelli, D'Urso, Minozzo, <a href="/wiki/2018" title="2018">2018</a>. <i>Statistica: principi e metodi.</i> Pearson. <a href="/wiki/Specialis:Librorum_fontes/9788891902788" class="internal mw-magiclink-isbn">ISBN 9788891902788</a>.</li></ul> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐z6kbw Cached time: 20241125053910 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.098 seconds Real time usage: 0.210 seconds Preprocessor visited node count: 625/1000000 Post‐expand include size: 926/2097152 bytes Template argument size: 29/2097152 bytes Highest expansion depth: 6/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 3888/5000000 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 8.710 1 -total 60.00% 5.226 1 Formula:Latinitas 33.21% 2.893 1 Formula:Fn 30.98% 2.698 2 Formula:Dubsig --> <!-- Saved in parser cache with key lawiki:pcache:idhash:311752-0!canonical and timestamp 20241125053910 and revision id 3823975. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Receptum de "<a dir="ltr" href="https://la.wikipedia.org/w/index.php?title=Dependentia_(statistica)&oldid=3823975">https://la.wikipedia.org/w/index.php?title=Dependentia_(statistica)&oldid=3823975</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Specialis:Categoriae" title="Specialis:Categoriae">Categoria</a>: <ul><li><a href="/wiki/Categoria:Res_statisticae" title="Categoria:Res statisticae">Res statisticae</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categoriae celatae: <ul><li><a href="/wiki/Categoria:Latinitas_-2_(dubium)" title="Categoria:Latinitas -2 (dubium)">Latinitas -2 (dubium)</a></li><li><a href="/wiki/Categoria:L_-2" title="Categoria:L -2">L -2</a></li><li><a href="/wiki/Categoria:Latinitas_dubia_(dubsig)" title="Categoria:Latinitas dubia (dubsig)">Latinitas dubia (dubsig)</a></li><li><a href="/wiki/Categoria:Pages_using_ISBN_magic_links" title="Categoria:Pages using ISBN magic links">Pages using ISBN magic links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Novissima mutatio die 24 Martii 2024 hora 22:03 facta.</li> <li id="footer-info-copyright">Nonobstantibus ceteris condicionibus hunc textum tractare licet secundum <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/">"Creative Commons Attribution-ShareAlike License"</a>. Vide <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">modos et condiciones</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Consilium de secreto</a></li> <li id="footer-places-about"><a href="/wiki/Vicipaedia:De_Vicipaedia">De Vicipaedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Vicipaedia:Repudiationes">Repudiationes</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Elaboratores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/la.wikipedia.org">Statistica</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//la.m.wikipedia.org/w/index.php?title=Dependentia_(statistica)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Pagina mobilis</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-ggd95","wgBackendResponseTime":202,"wgPageParseReport":{"limitreport":{"cputime":"0.098","walltime":"0.210","ppvisitednodes":{"value":625,"limit":1000000},"postexpandincludesize":{"value":926,"limit":2097152},"templateargumentsize":{"value":29,"limit":2097152},"expansiondepth":{"value":6,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":3888,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 8.710 1 -total"," 60.00% 5.226 1 Formula:Latinitas"," 33.21% 2.893 1 Formula:Fn"," 30.98% 2.698 2 Formula:Dubsig"]},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-z6kbw","timestamp":"20241125053910","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Dependentia (statistica)","url":"https:\/\/la.wikipedia.org\/wiki\/Dependentia_(statistica)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q186290","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q186290","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2024-02-25T16:25:56Z","dateModified":"2024-03-24T22:03:58Z"}</script> </body> </html>