CINXE.COM

Search results for: impact response

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: impact response</title> <meta name="description" content="Search results for: impact response"> <meta name="keywords" content="impact response"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="impact response" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="impact response"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15576</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: impact response</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15576</span> Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hyung%20Kim">Ju-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Ho%20Mun"> Dae-Ho Mun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gun%20Park"> Hong-Gun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20floor" title="floating floor">floating floor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-weight%20impact" title=" heavy-weight impact"> heavy-weight impact</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/60227/prediction-of-heavy-weight-impact-noise-and-vibration-of-floating-floor-using-modified-impact-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15575</span> Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Li">C. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Coates"> G. Coates</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Johnson"> N. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mc%20Guinness"> M. Mc Guinness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABM" title="ABM">ABM</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20response" title=" flood response"> flood response</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20continuity" title=" business continuity"> business continuity</a> </p> <a href="https://publications.waset.org/abstracts/13770/designing-an-agent-based-model-of-smes-to-assess-flood-response-strategies-and-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15574</span> Time Effective Structural Frequency Response Testing with Oblique Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khoo%20Shin%20Yee">Khoo Shin Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Yee%20Cheng"> Lian Yee Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Zhi%20Chao"> Ong Zhi Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubaidah%20Ismail"> Zubaidah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Noroozi"> Siamak Noroozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as &ldquo;impulse testing&rdquo;) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function" title="frequency response function">frequency response function</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20testing" title=" impact testing"> impact testing</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle" title=" oblique angle"> oblique angle</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20impact" title=" oblique impact"> oblique impact</a> </p> <a href="https://publications.waset.org/abstracts/90683/time-effective-structural-frequency-response-testing-with-oblique-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15573</span> Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ardali">Amin Ardali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khalili"> Mohammadreza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rezai"> Mohammadreza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shell" title="doubly curved shell">doubly curved shell</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA%20wire" title=" SMA wire"> SMA wire</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title=" smart material"> smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/49593/dynamic-response-of-doubly-curved-composite-shell-with-embedded-shape-memory-alloys-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15572</span> An Approach to Low Velocity Impact Damage Modelling of Variable Stiffness Curved Composite Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buddhi%20Arachchige">Buddhi Arachchige</a>, <a href="https://publications.waset.org/abstracts/search?q=Hessam%20Ghasemnejad"> Hessam Ghasemnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the post impact behavior of curved composite plates subjected to low velocity impact was studied analytically and numerically. Approaches to damage modelling are proposed through the degradation of stiffness in the damaged region by reduction of thickness in the damage region. Spring-mass models were used to model the impact response of the plate and impactor. The study involved designing two damage models to compare and contrast the model best fitted with the numerical results. The theoretical force-time responses were compared with the numerical results obtained through a detailed study carried out in LS-DYNA. The modified damage model established a good prediction with the analytical force-time response for different layups and geometry. This study provides a gateway in selecting the most effective layups for variable stiffness curved composite panels able to withstand a higher impact damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20modelling" title="analytical modelling">analytical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20damage" title=" composite damage"> composite damage</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20stiffness" title=" variable stiffness"> variable stiffness</a> </p> <a href="https://publications.waset.org/abstracts/55172/an-approach-to-low-velocity-impact-damage-modelling-of-variable-stiffness-curved-composite-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15571</span> Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Yunus">Sulaiman Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20moment" title="delay moment">delay moment</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20disaster" title=" fire disaster"> fire disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reflex%20sequence" title=" reflex sequence"> reflex sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20delay%20moment" title=" response delay moment"> response delay moment</a> </p> <a href="https://publications.waset.org/abstracts/111201/response-delay-model-bridging-the-gap-in-urban-fire-disaster-response-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15570</span> A Methodology of Testing Beam to Column Connection under Lateral Impact Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Rifaie">A. Al-Rifaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Guan"> Z. W. Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Jones"> S. W. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20hammer" title=" drop hammer"> drop hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20methods" title=" testing methods"> testing methods</a> </p> <a href="https://publications.waset.org/abstracts/76082/a-methodology-of-testing-beam-to-column-connection-under-lateral-impact-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15569</span> Impact Load Response of Light Rail Train Rail Guard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyob%20Hundessa%20Gose">Eyob Hundessa Gose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title="impact load">impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymer" title=" fiber reinforced polymer"> fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20guard" title=" rail guard"> rail guard</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title=" LS-DYNA"> LS-DYNA</a> </p> <a href="https://publications.waset.org/abstracts/183199/impact-load-response-of-light-rail-train-rail-guard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15568</span> The Influence of Language on Music Consumption in Japan: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timur%20Zhukov">Timur Zhukov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuko%20Yamashita"> Yuko Yamashita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Music as a product of hedonic consumption has been researched at least since the early 20th century, but little light has been shed on how language affects its consumption process. At the intersection of music consumption, language impact, and consumer behavior, this research explores the influence of language on music consumption in Japan. Its aim is to clarify how listening to music in different languages affects the listener’s purchase intention and sharing intention by conducting a survey where respondents listen to three versions of the same song in different languages in random order. It uses an existing framework that views the flow of music consumption as a combination of responses (emotional response, sensory response, imaginal response, analytical responses) affecting the experiential response, which then affects the overall affective response, followed by the need to reexperience and lastly the purchase intention. In this research, the sharing intention has been added to the model to better fit the modern consumption model (e.g., AISAS). This research shows how positive and negative emotions and imaginal and analytical responses change depending on the language and what impact it has on consumer behavior. It concludes by proposing how modern music businesses can learn from the language differences and cater to the needs of the audiences who speak different languages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISAS" title="AISAS">AISAS</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title=" consumer behavior"> consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20language" title=" first language"> first language</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20consumption" title=" music consumption"> music consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language" title=" second language"> second language</a> </p> <a href="https://publications.waset.org/abstracts/147893/the-influence-of-language-on-music-consumption-in-japan-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15567</span> Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Naderpour">H. Naderpour</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Barros"> R. C. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Khatami"> S. M. Khatami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pounding" title="pounding">pounding</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipated%20energy" title=" dissipated energy"> dissipated energy</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20restitution" title=" coefficient of restitution"> coefficient of restitution</a> </p> <a href="https://publications.waset.org/abstracts/43715/investigation-of-building-pounding-during-earthquake-and-calculation-of-impact-force-between-two-adjacent-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15566</span> Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Ma">Wen Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Peng"> Yong Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhixiang%20Li"> Zhixiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title="constitutive model">constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20properties" title=" mechanism properties"> mechanism properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PVB%20film" title=" PVB film"> PVB film</a>, <a href="https://publications.waset.org/abstracts/search?q=tempered%20glass" title=" tempered glass"> tempered glass</a> </p> <a href="https://publications.waset.org/abstracts/96056/experimental-and-numerical-investigations-of-impact-response-on-high-speed-train-windshield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15565</span> Quality Standards for Emergency Response: A Methodological Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20E.%20Lynette">Jennifer E. Lynette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the development process of a methodological framework for quality standards used to measure the efficiency and quality of response efforts of trained personnel at emergency events. This paper describes the techniques used to develop the initial framework and its potential application to professions under the broader field of emergency management. The example described in detail in this paper applies the framework specifically to fire response activities by firefighters. Within the quality standards framework, the fire response process is chronologically mapped. Individual variables within the sequence of events are identified. Through in-person data collection, questionnaires, interviews, and the expansion of the incident reporting system, this study identifies and categorizes previously unrecorded variables involved in the response phase of a fire. Following a data analysis of each variable using a quantitative or qualitative assessment, the variables are ranked pertaining to the magnitude of their impact to the event outcome. Among others, key indicators of quality performance in the analysis involve decision communication, resource utilization, response techniques, and response time. Through the application of this framework and subsequent utilization of quality standards indicators, there is potential to increase efficiency in the response phase of an emergency event; thereby saving additional lives, property, and resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title="emergency management">emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20standards" title=" quality standards"> quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/47475/quality-standards-for-emergency-response-a-methodological-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15564</span> From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabariah%20Mohd%20Yusoff">Sabariah Mohd Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Qamaruddin%20Adzeem%20Muhamad%20Murad"> Qamaruddin Adzeem Muhamad Murad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20seat%20design" title="car seat design">car seat design</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20response%20time" title=" driver response time"> driver response time</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20driving" title=" cognitive driving"> cognitive driving</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics%20optimization" title=" ergonomics optimization"> ergonomics optimization</a> </p> <a href="https://publications.waset.org/abstracts/190738/from-comfort-to-safety-assessing-the-influence-of-car-seat-design-on-driver-reaction-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15563</span> Development of Quality Assessment Tool to Gauge Fire Response Activities of Emergency Personnel in Denmark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20E.%20Lynette">Jennifer E. Lynette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to develop a nation-wide assessment tool to gauge the quality and efficiency of response activities by emergency personnel to fires in Denmark. Current fire incident reports lack detailed information that can lead to breakthroughs in research and improve emergency response efforts. Information generated from the report database is analyzed and assessed for efficiency and quality. By utilizing information collection gaps in the incident reports, an improved, indepth, and streamlined quality gauging system is developed for use by fire brigades. This study pinpoints previously unrecorded factors involved in the response phases of a fire. Variables are recorded and ranked based on their influence to event outcome. By assessing and measuring these data points, quality standards are developed. These quality standards include details of the response phase previously overlooked which individually and cumulatively impact the overall success of a fire response effort. Through the application of this tool and implementation of associated quality standards at Denmark’s fire brigades, there is potential to increase efficiency and quality in the preparedness and response phases, thereby saving additional lives, property, and resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title="emergency management">emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=preparedness" title=" preparedness"> preparedness</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20standards" title=" quality standards"> quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/38422/development-of-quality-assessment-tool-to-gauge-fire-response-activities-of-emergency-personnel-in-denmark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15562</span> Prevalence of Complement Factor H (Y402H) Gene Polymorphism and Its Impact on the Predisposition of Syrians to Age-Related Macular Degeneration (AMD) and Response to Bevacizumab Intravitreal Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loubna%20Safar">Loubna Safar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lama%20Youssef"> Lama Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Majd%20Aljamali"> Majd Aljamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide. Complement factor H polymorphism (Y402H) is thought to play a potential role in the predisposition to AMD and response of patients with exudative AMD to treatment with anti-Vascular Endothelial Growth Factor (anti-VEGF). This study aimed to investigate the frequency of Y402H among Syrians, its impact on their susceptibility to AMD, and the hypothesized role of Y402H in patients' response to intravitreal anti-VEGF (i.e.,, bevacizumab). Our case-control study encompassed unrelated 54 AMD cases and 44 controls. Genotyping was determined by standard sequencing of PCR products. Frequency was compared between patients and controls, and correlation between genotype and response to treatment was assessed in 20 patients with wet AMD who received a therapeutic course of three intravitreal bevacizumab injections (once monthly). Our results revealed a significantly higher prevalence of the risk allele C among AMD cases (51.9%) in comparison with controls (37.5%) (P= 0.04, OR= 1.386, CI= 0.999- 1.923). Patients with the TT genotype (no risk allele) exhibited a significantly better primary response rate, reached 87.5% compared to only 41.7% in patients carrying the risk allele C (TC + CC), (P= 0.04, OR= 9.8, CI=0.899- 106.84). The findings of this study prove the importance of investigating Y402H polymorphism as a prognostic marker for predicting response to bevacizumab in AMD patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age-related%20macular%20degeneration" title="age-related macular degeneration">age-related macular degeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=bevacizumab" title=" bevacizumab"> bevacizumab</a>, <a href="https://publications.waset.org/abstracts/search?q=complement%20factor%20H%20gene" title=" complement factor H gene"> complement factor H gene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=Y402H" title=" Y402H"> Y402H</a> </p> <a href="https://publications.waset.org/abstracts/142631/prevalence-of-complement-factor-h-y402h-gene-polymorphism-and-its-impact-on-the-predisposition-of-syrians-to-age-related-macular-degeneration-amd-and-response-to-bevacizumab-intravitreal-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15561</span> A New Instrumented Drop-Weight Test Machine for Studying the Impact Behaviour of Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al-Farttoosi">M. Al-Farttoosi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Rafiq"> M. Y. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Summerscales"> J. Summerscales</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Williams"> C. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures can be subjected to impact loading from various sources like earthquake, tsunami, missiles and explosions. The impact loading can cause different degrees of damage to concrete structures. The demand for strengthening and rehabilitation of damaged structures is increasing. In recent years, Car0bon Fibre Reinforced Polymer (CFRP) matrix composites has gain more attention for strengthening and repairing these structures. To study the impact behaviour of the reinforced concrete (RC) beams strengthened or repaired using CFRP, a heavy impact test machine was designed and manufactured .The machine included a newly designed support system for beams together with various instrumentation. This paper describes the support design configuration of the impact test machine, instrumentation and dynamic analysis of the concrete beams. To evaluate the efficiency of the new impact test machine, experimental impact tests were conducted on simple supported reinforced concrete beam. Different methods were used to determine the impact force and impact response of the RC beams in terms of inertia force, maximum deflection, reaction force and fracture energy. The manufactured impact test machine was successfully used in testing RC beams under impact loading and used successfully to test the reinforced concrete beams strengthened or repaired using CFRP under impact loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a> </p> <a href="https://publications.waset.org/abstracts/35977/a-new-instrumented-drop-weight-test-machine-for-studying-the-impact-behaviour-of-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15560</span> Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Chien%20Kao"> Hao-Chien Kao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haynes%20188%20alloy" title="Haynes 188 alloy">Haynes 188 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate%20and%20temperature%20effect" title=" strain rate and temperature effect"> strain rate and temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20shearing" title=" adiabatic shearing"> adiabatic shearing</a> </p> <a href="https://publications.waset.org/abstracts/6840/impact-deformation-and-fracture-behaviour-of-cobalt-based-haynes-188-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15559</span> Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuemeka%20Daniel%20Ezeliora">Chukwuemeka Daniel Ezeliora</a>, <a href="https://publications.waset.org/abstracts/search?q=Chukwuebuka%20Lawrence%20Ezeliora"> Chukwuebuka Lawrence Ezeliora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title="mild steel">mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface" title=" response surface"> response surface</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a> </p> <a href="https://publications.waset.org/abstracts/121742/appraisal-of-the-impact-strength-on-mild-steel-cladding-weld-metal-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15558</span> The Musician as the Athlete: Psychological Response to Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shulamit%20Sternin">Shulamit Sternin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Athletes experience injuries that can have both a physical and psychological impact on the individual. In such instances, athletes are able to rely on the established field of sports psychology to facilitate holistic rehabilitation. Musicians, like athletes rely on their bodies to perform in much the same way athletes do and are also susceptible to injury. Due to the similar performative nature of succeeding as an athletes or a musician, these careers share many of the same primary psychological concerns and therefore it is reasonable that athletes and musicians may require similar rehabilitation post-injury. However, musicians face their own unique psychological challenges and understanding the needs of an injured athlete can serve as a foundation for understanding the injured musician but is not enough to fully rehabilitate an injured musician. The current research surrounding musicians and their injuries is primarily focused on physiological aspects of injury and rehabilitation; the psychological aspects have not yet received adequate attention resulting in poor musician rehabilitation post- injury. This review paper uses current models of psychological response to injury in athletes to draw parallels with the psychological response to injury in musicians. Search engines such as Medline and PsycInfo were systematically searched using specific key words, such as psychological response, injury, athlete, and musician. Studies that focused on post-injury psychology of either the musician or the athlete were included. Within the literature there is evidence to support psychological responses, unique to the musician, that are not accounted for by current models of response in athletes. The models of psychological response to injury in athletes are inadequate tools for application to the musician. Future directions for performance arts research that can fill the gaps in our understanding and modeling of musicians’ response to injury are discussed. A better understanding of the psychological impact of injuries on musicians holds significant implications for health care practitioners working with injured musicians. Understanding the unique barriers musicians face post-injury, and how support for this population must be tailored to properly suit musicians’ needs will aid in more holistic rehabilitation and a higher likelihood of musician’s returning to pre-injury performance levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=athlete" title="athlete">athlete</a>, <a href="https://publications.waset.org/abstracts/search?q=injury" title=" injury"> injury</a>, <a href="https://publications.waset.org/abstracts/search?q=musician" title=" musician"> musician</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20response" title=" psychological response"> psychological response</a> </p> <a href="https://publications.waset.org/abstracts/107128/the-musician-as-the-athlete-psychological-response-to-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15557</span> Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi">T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Watanabe"> M. Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Yuan"> C. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maruyama"> S. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Ibrahim"> T. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Tomita"> H. Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20impact%20response" title=" nonlinear impact response"> nonlinear impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15947/nonlinear-impact-responses-for-a-damped-frame-supported-by-nonlinear-springs-with-hysteresis-using-fast-fea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15556</span> Identification of Impact Load and Partial System Parameters Using 1D-CNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuewen%20Yu">Xuewen Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Danhui%20Dan"> Danhui Dan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load%20identification" title=" impact load identification"> impact load identification</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20parameter%20identification" title=" system parameter identification"> system parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a> </p> <a href="https://publications.waset.org/abstracts/173755/identification-of-impact-load-and-partial-system-parameters-using-1d-cnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15555</span> Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Maziz">Ammar Maziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Rechak"> Said Rechak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20velocity%20impact" title=" low velocity impact"> low velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20damage%20modeling" title=" progressive damage modeling"> progressive damage modeling</a> </p> <a href="https://publications.waset.org/abstracts/107609/dynamic-response-and-damage-modeling-of-glass-fiber-reinforced-epoxy-composite-pipes-numerical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15554</span> The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regis%20Pochon">Regis Pochon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Stefaniak"> Nicolas Stefaniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Baltazart"> Veronique Baltazart</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Gobin"> Pamela Gobin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20valence" title=" emotional valence"> emotional valence</a>, <a href="https://publications.waset.org/abstracts/search?q=childhood" title=" childhood"> childhood</a>, <a href="https://publications.waset.org/abstracts/search?q=lexical%20access" title=" lexical access"> lexical access</a> </p> <a href="https://publications.waset.org/abstracts/55653/the-impact-of-anxiety-on-the-access-to-phonological-representations-in-beginning-readers-and-writers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15553</span> Study of the Responding Time for Low Permeability Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Lei">G. Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Dong"> P. C. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Q.%20Cen"> X. Q. Cen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Mo"> S. Y. Mo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20permeability" title="low permeability">low permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=flood-response%20time" title=" flood-response time"> flood-response time</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20pressure%20gradient" title=" threshold pressure gradient"> threshold pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20deformation" title=" medium deformation"> medium deformation</a> </p> <a href="https://publications.waset.org/abstracts/11166/study-of-the-responding-time-for-low-permeability-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15552</span> Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takele%20Nemomsa">Takele Nemomsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Girma%20Mamo"> Girma Mamo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Balemi"> Tesfaye Balemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APSIM" title="APSIM">APSIM</a>, <a href="https://publications.waset.org/abstracts/search?q=downscaling" title=" downscaling"> downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=SDSM" title=" SDSM "> SDSM </a> </p> <a href="https://publications.waset.org/abstracts/49392/analysis-of-the-impact-of-climate-change-on-maize-zea-mays-yield-in-central-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15551</span> An Analysis of the Impact of Immunosuppression upon the Prevalence and Risk of Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aruha%20Khan">Aruha Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Brynn%20E.%20Kankel"> Brynn E. Kankel</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraskevi%20Papadopoulou"> Paraskevi Papadopoulou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, extensive research upon ‘stress’ has provided insight into its two distinct guises, namely the short–term (fight–or–flight) response versus the long–term (chronic) response. Specifically, the long–term or chronic response is associated with the suppression or dysregulation of immune function. It is also widely noted that the occurrence of cancer is greatly correlated to the suppression of the immune system. It is thus necessary to explore the impact of long–term or chronic stress upon the prevalence and risk of cancer. To what extent can the dysregulation of immune function caused by long–term exposure to stress be controlled or minimized? This study focuses explicitly upon immunosuppression due to its ability to increase disease susceptibility, including cancer itself. Based upon an analysis of the literature relating to the fundamental structure of the immune system alongside the prospective linkage of chronic stress and the development of cancer, immunosuppression may not necessarily correlate directly to the acquisition of cancer—although it remains a contributing factor. A cross-sectional analysis of the survey data from the University of Tennessee Medical Center (UTMC) and Harvard Medical School (HMS) will provide additional supporting evidence (or otherwise) for the hypothesis of the study about whether immunosuppression (caused by the chronic stress response) notably impacts the prevalence of cancer. Finally, a multidimensional framework related to education on chronic stress and its effects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title="immune system">immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=immunosuppression" title=" immunosuppression"> immunosuppression</a>, <a href="https://publications.waset.org/abstracts/search?q=long%E2%80%93term%20%28chronic%29%20stress" title=" long–term (chronic) stress"> long–term (chronic) stress</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20of%20cancer" title=" risk of cancer"> risk of cancer</a> </p> <a href="https://publications.waset.org/abstracts/118862/an-analysis-of-the-impact-of-immunosuppression-upon-the-prevalence-and-risk-of-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15550</span> Physiological and Psychological Influence on Office Workers during Demand Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megumi%20Nishida">Megumi Nishida</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoya%20Motegi"> Naoya Motegi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takurou%20Kikuchi"> Takurou Kikuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoko%20Tokumura"> Tomoko Tokumura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title="demand response">demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination" title=" illumination"> illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a> </p> <a href="https://publications.waset.org/abstracts/32950/physiological-and-psychological-influence-on-office-workers-during-demand-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15549</span> Reduced Glycaemic Impact by Kiwifruit-Based Carbohydrate Exchanges Depends on Both Available Carbohydrate and Non-Digestible Fruit Residue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mishra">S. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Monro"> J. Monro</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Edwards"> H. Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Podd"> J. Podd </a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a fruit such as kiwifruit is consumed its tissues are released from the physical /anatomical constraints existing in the fruit. During digestion they may expand several-fold to achieve a hydrated solids volume far greater than the original fruit, and occupy the available space in the gut, where they surround and interact with other food components. Within the cell wall dispersion, in vitro digestion of co-consumed carbohydrate, diffusion of digestion products, and mixing responsible for mass transfer of nutrients to the gut wall for absorption, were all retarded. All of the foregoing processes may be involved in the glycaemic response to carbohydrate foods consumed with kiwifruit, such as breakfast cereal. To examine their combined role in reducing the glycaemic response to wheat cereal consumed with kiwifruit we formulated diets containing equal amounts of breakfast cereal, with the addition of either kiwifruit, or sugars of the same composition and quantity as in kiwifruit. Therefore, the only difference between the diets was the presence of non-digestible fruit residues. The diet containing the entire disperse kiwifruit significantly reduced the glycaemic response amplitude and the area under the 0-120 min incremental blood glucose response curve (IAUC), compared with the equicarbohydrate diet containing the added kiwifruit sugars. It also slightly but significantly increased the 120-180 min IAUC by preventing a postprandial overcompensation, indicating improved homeostatic blood glucose control. In a subsequent study in which we used kiwifruit in a carbohydrate exchange format, in which the kiwifruit carbohydrate partially replaced breakfast cereal in equal carbohydrate meals, the blood glucose was further reduced without a loss of satiety, and with a reduction in insulin demand. The results show that kiwifruit may be a valuable component in low glycaemic impact diets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbohydrate" title="carbohydrate">carbohydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=digestion" title=" digestion"> digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=glycaemic%20response" title=" glycaemic response"> glycaemic response</a>, <a href="https://publications.waset.org/abstracts/search?q=kiwifruit" title=" kiwifruit"> kiwifruit</a> </p> <a href="https://publications.waset.org/abstracts/30851/reduced-glycaemic-impact-by-kiwifruit-based-carbohydrate-exchanges-depends-on-both-available-carbohydrate-and-non-digestible-fruit-residue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15548</span> Impact Characteristics of Fragile Cover Based on Numerical Simulation and Experimental Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejin%20Chen">Dejin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Lin"> Bin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20LI"> Xiaohui LI</a>, <a href="https://publications.waset.org/abstracts/search?q=Haobin%20Tian"> Haobin Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to acquire stable impact performance of cover, the factors influencing the impact force of the cover were analyzed and researched. The influence of impact factors such as impact velocity, impact weight and fillet radius of warhead was studied by Orthogonal experiment. Through the range analysis and numerical simulation, the results show that the impact velocity has significant influences on impact force of cover. The impact force decreases with the increase of impact velocity and impact weight. The test results are similar to the numerical simulation. The cover broke up into four parts along the groove. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragile%20cover" title="fragile cover">fragile cover</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20force" title=" impact force"> impact force</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20foam" title=" epoxy foam"> epoxy foam</a> </p> <a href="https://publications.waset.org/abstracts/136873/impact-characteristics-of-fragile-cover-based-on-numerical-simulation-and-experimental-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15547</span> Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivian%20A.%20Panes">Vivian A. Panes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20John%20S.%20Rebong"> Raymond John S. Rebong</a>, <a href="https://publications.waset.org/abstracts/search?q=Miel%20Q.%20Diaz"> Miel Q. Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20response" title="stress response">stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/103181/unzipping-the-stress-response-genes-in-moringa-oleifera-lam-through-transcriptomics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=519">519</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=520">520</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20response&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10