CINXE.COM
Search results for: available soil phosphorus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: available soil phosphorus</title> <meta name="description" content="Search results for: available soil phosphorus"> <meta name="keywords" content="available soil phosphorus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="available soil phosphorus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="available soil phosphorus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3214</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: available soil phosphorus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3214</span> How Does Vicia faba-rhizobia Symbiosis Improve Its Performance under Low Phosphorus Availability?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Makoudi">B. Makoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghanimi"> R. Ghanimi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mouradi"> M. Mouradi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kabbadj"> A. Kabbadj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farissi"> M. Farissi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Drevon"> J. J. Drevon</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%20Ghoulam"> C. Ghoulam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on the responses of Vicia fabarhizobia symbiosis to phosphorus deficiency and their contribution to tolerate this constraint. The study was carried out on four faba bean varieties, Aguadulce, Alfia, Luz Otono, and Reina Mora submitted to two phosphorus treatments, deficient and sufficient and cultivated under field and greenhouse hydroaeroponic culture. Plants were harvested at flowering stage for growth, nodulation and phosphorus content assessment. Phosphatases in nodules and rhizospheric soil were analyzed. The impact of phosphorus deficiency on yield component was assessed at maturity stage. Under field conditions, phosphorus deficiency affected negatively nodule biomass and nodule phosphorus content with Alfia and Reina Mora showing the highest biomass reduction. The phosphatase activities in nodules and rhizospheric soil were increased under phosphorus deficiency. At maturity stage, under soil low available phosphorus, the pods number and 100 seeds weight were reduced. The genotypic variation was evident for almost all tested parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faba%20bean" title="faba bean">faba bean</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/16301/how-does-vicia-faba-rhizobia-symbiosis-improve-its-performance-under-low-phosphorus-availability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3213</span> The Interactions between Phosphorus Leaching and Lime Application in Undisturbed Soil Columns with Different Soil Textures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Eslamian">Faezeh Eslamian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiming%20Qi"> Zhiming Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Tate"> Michael J. Tate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphorus losses from agricultural fields through leaching is one of the main contributors to eutrophication of lakes in Quebec as well as North America. The main objective of this study is to evaluate the application of high calcium hydrated lime as a soil amendment in reducing the subsurface transport of phosphorus to water bodies by studying the interactions between phosphorus leaching and lime application in three common agricultural soil textures (sandy loam, loam and clay loam) in Quebec. For this purpose, 6 intact soil columns of 10 cm diameter and 20 cm deep were taken from each of the three different soil textured agricultural fields. Lime (high calcium hydrated lime) was applied to the top 5 cm of half of the intact soil columns while the rest were left as controls. The columns were leached with artificial rainwater in-consecutively at a rate of 3 mm h-1 over a 90-day period. The total amount of water added was equal to the average total rainfall of the region in fall. The leachate samples were collected daily and analyzed for dissolved reactive phosphorus, total dissolved phosphorus, total phosphorus, pH, electrical conductivity, calcium, magnesium, potassium and iron. The results showed that lime was able to significantly reduce dissolved reactive phosphorus concentrations in the leachates by 70 and 40 percent in sandy loam and loam soil columns, respectively, while phosphorus concentration in the clay loam soil leachates were increased by 40 percent. The calcium in lime has P-binding capabilities. Soil chemical properties in sandy and loamy soils can affect phosphorus leaching, whereas, transport mechanisms in clay soils with macropores dominate phosphorus leaching behaviors. The presence of preferential pathways and cracks in the clay soil columns has led to a quick transport of phosphorus through the soil and the less contact time with the soil matrix, therefore, causing less opportunity for P sorption and larger P release. Application of lime to agricultural fields can be considered as a promising measure in mitigating phosphorus loss from sandy loam and loam soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20texture" title=" soil texture"> soil texture</a> </p> <a href="https://publications.waset.org/abstracts/88745/the-interactions-between-phosphorus-leaching-and-lime-application-in-undisturbed-soil-columns-with-different-soil-textures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3212</span> Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charirat%20Kusonwiriyawong">Charirat Kusonwiriyawong</a>, <a href="https://publications.waset.org/abstracts/search?q=Supha%20Photichan"> Supha Photichan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wannarut%20Chutibutr"> Wannarut Chutibutr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=available%20phosphorus" title="available phosphorus">available phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=exchangeable%20potassium" title=" exchangeable potassium"> exchangeable potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20single%20extractant" title=" modified single extractant"> modified single extractant</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20test%20kits" title=" soil test kits"> soil test kits</a> </p> <a href="https://publications.waset.org/abstracts/98706/development-of-soil-test-kits-to-determine-organic-matter-available-phosphorus-and-exchangeable-potassium-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3211</span> Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Krustev"> Stefan Krustev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus" title="available soil phosphorus">available soil phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=certified%20samples" title=" certified samples"> certified samples</a>, <a href="https://publications.waset.org/abstracts/search?q=determination" title=" determination"> determination</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20test%20extractants" title=" soil test extractants"> soil test extractants</a> </p> <a href="https://publications.waset.org/abstracts/107336/comparison-of-soil-test-extractants-for-determination-of-available-soil-phosphorus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3210</span> Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Navid">Hossein Navid</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Adeli%20Khadem"> Maryam Adeli Khadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Oustan"> Shahin Oustan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Zareie"> Mahmoud Zareie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate" title="nitrate">nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title=" soil nutrients"> soil nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/32110/soil-macronutrients-sensing-for-precision-agriculture-purpose-using-fourier-transform-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3209</span> Phosphorus Uptake of Triticale (Triticosecale Wittmack) Genotypes at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imren%20Kutlu">Imren Kutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurdilek%20Gulmezoglu"> Nurdilek Gulmezoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Triticale (Triticosecale Wittmack) is a man-made crop developed by crossing wheat (Triticum L.) and rye (Secale cereale L.). Triticale has until now been used mostly for animal feed; however, it can be consumed by humans in the form of biscuits, cookies, and unleavened bread. Moreover, one of the reasons for the development of triticale is that it is more efficient in nutrient deficient soil than wheat cultivars. After nitrogen fertilizer, phosphorus (P) is the most used fertilizer for crop production because P fixation occurs highly when it is applied the soil. The aim of the present study was to evaluate P uptake of winter triticale genotypes under different P fertilizer rates in different growth stages. The experiment was conducted in Eskisehir, Central Anatolia, Turkey. Treatments consisted of five triticale lines and one triticale cultivars (Samursortu) with four rates of P fertilization (0, 30, 60 and 120 kg P2O5 ha⁻¹). Phosphorus uptake of triticale genotypes in tillering, heading, as well as grain and straw at harvest stage and yield of grain and straw were determined. The results showed that a P rate of 60 kg/ha and the TCL-25 genotype produced the highest yields of straw and grain at harvest. Phosphorus uptake was the highest in tillering stage, and it decreased towards to harvest time. Phosphorus uptake of all growth stage increased as P rates raised and the application of 120 kg/ha P₂O₅ had the highest P uptake. Phosphorus uptake of genotypes was found differently. The regression analyses indicated that P uptake at tillering stage was the most effective on grain yield. These results will provide useful information to triticale growers about suitable phosphorus fertilization for both forage and food usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title="grain yield">grain yield</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20fertilization" title=" phosphorus fertilization"> phosphorus fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20uptake" title=" phosphorus uptake"> phosphorus uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=triticale" title=" triticale"> triticale</a> </p> <a href="https://publications.waset.org/abstracts/74405/phosphorus-uptake-of-triticale-triticosecale-wittmack-genotypes-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3208</span> An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaila%20Isaak">Suhaila Isaak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusmeeraz%20Yusof"> Yusmeeraz Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairunnisa%20Mohd%20Yusof"> Khairunnisa Mohd Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Safuan%20Abdul%20Rashid"> Ahmad Safuan Abdul Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macronutrients%20absorption" title="macronutrients absorption">macronutrients absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20spectroscopy" title=" optical spectroscopy"> optical spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a> </p> <a href="https://publications.waset.org/abstracts/78092/an-improved-visible-range-absorption-spectroscopy-on-soil-macronutrient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3207</span> Mineral Status of Feeds and Fodder and Its Subsequent Effect on Plasma of Livestock and Its Products in Red Lateritic Zone of West Bengal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Pyne">S. K. Pyne</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mondal"> M. Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Samanta"> G. Samanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A survey was carried out in red lateritic zone of West Bengal to compare the mineral status in plasma of livestock grazing over red lateritic region. Sufficient number of samples of soil, feeds, fodder and blood were collected from four districts of red lateritic zone namely, West Midnapore, Birbhum, Bankura and Purulia respectively. The samples were analysed for Calcium (Ca), Phosphorus (P), Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe). Concentration of Cu, Mn and Fe in soil were above the minimum critical level, whereas, Zn deficiency is wide spread in red lateritic soil. Paddy straw is deficient in Ca, P, Zn and Mn in the region. Green fodders are also deficient in P, Cu, Zn. The richness of iron (Fe) in soil, feeds, fodder and tree leaves is the characteristics of this region. Phosphorus is deficient in plasma of all categories of livestock with the exception of bullock. Cu is deficient in plasma of calf. Plasma Mn and Fe were higher (p<0.01) in the animals of red lateritic zone. The study reveals that the overall deficiency of phosphorus in different categories of livestock and there is need of dietary supplementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral" title="mineral">mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20lateritic%20zone" title=" red lateritic zone"> red lateritic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=grazing%20livestock" title=" grazing livestock"> grazing livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/46146/mineral-status-of-feeds-and-fodder-and-its-subsequent-effect-on-plasma-of-livestock-and-its-products-in-red-lateritic-zone-of-west-bengal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3206</span> Effects of Molybdenum on Phosphorus Concentration in Rice (Oryza sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Zakikhani">Hamed Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Khanif%20Yusop"> Mohd Khanif Yusop</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Soltangheisi"> Amin Soltangheisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hydroponic trial was carried out to investigate the effect of molybdenum (Mo) on uptake of phosphorus (P) in different rice cultivars. The experiment was conducted using a randomized complete-block design, with a split-plot arrangement of treatments and three replications. Four rates of Mo (0, 0.01, 0.1 and 1 mg L−1) and five cultivars (MR219, HASHEMI, MR232, FAJRE and MR253) provided the main and sub-plots, respectively. Interaction of molybdenum×variety was significant on shoot phosphorus uptake (p≤0.01). Highest and lowest shoot phosphorus uptake were seen in Mo3V3 (0.6% plant-1) and Mo0V3 (0.14% plant-1) treatments, respectively. Molybdenum did not have a significant effect on root phosphorus content. According to results, application of molybdenum has a synergistic effect on uptake of phosphorus by rice plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title="molybdenum">molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=uptake" title=" uptake"> uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/5240/effects-of-molybdenum-on-phosphorus-concentration-in-rice-oryza-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3205</span> Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Makoudi">B. Makoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghanimi"> R. Ghanimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bargaz"> A. Bargaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mouradi"> M. Mouradi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farissi"> M. Farissi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kabbaj"> A. Kabbaj</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Drevon"> J. J. Drevon</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ghoulam"> C. Ghoulam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legume" title="legume">legume</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20deficiency" title=" phosphorus deficiency"> phosphorus deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizospheric%20soil" title=" rhizospheric soil"> rhizospheric soil</a> </p> <a href="https://publications.waset.org/abstracts/29833/which-mechanisms-are-involved-by-legume-rhizobia-symbiosis-to-increase-its-phosphorus-use-efficiency-under-low-phosphorus-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3204</span> Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Constantin%20Topa">Denis Constantin Topa</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Gabriela%20Cara"> Irina Gabriela Cara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Jitareanu"> Gerard Jitareanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20tillage" title="minimum tillage">minimum tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20tillage" title=" conventional tillage"> conventional tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20aggregation" title=" soil aggregation"> soil aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/194602/impact-of-different-tillage-practices-on-soil-health-status-carbon-storage-and-pools-soil-aggregation-and-nutrient-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3203</span> Diversified Farming and Agronomic Interventions Improve Soil Productivity, Soybean Yield and Biomass under Soil Acidity Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran">Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Murad%20Ali%20Rahat"> Murad Ali Rahat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors affecting crop production and nutrient availability is acidic stress. The most important element decreasing under acidic stress conditions is phosphorus deficiency, which results in stunted growth and yield because of inefficient nutrient cycling. At the Agriculture Research Institute Mingora Swat, Pakistan, tests were carried out for the first time throughout the course of two consecutive summer seasons in 2016 (year 1) and 2017 (year 2) with the goal of increasing crop productivity and nutrient availability under acidic stress. Three organic supplies (peach nano-black carbon, compost, and dry-based peach wastes), three phosphorus rates, and two advantageous microorganisms (Trichoderma and PSB) were incorporated in the experimental treatments. The findings showed that, in conditions of acid stress, peach organic sources had a significant impact on yield and yield components. The application of nano-black carbon produced the greatest thousand seed weight of 164.6 g among organic sources, however the use of phosphorus solubilizing bacteria (PSB) for seed inoculation increased the thousand seed weight of beneficial microbes when compared to Trichoderma soil application. The thousand seed weight was significantly impacted by the quantities of phosphorus. The treatment of 100 kg P ha-1 produced the highest thousand seed weight (167.3 g), which was followed by 75 kg P ha-1 (162.5 g). Compost amendments provided the highest seed yield (2,140 kg ha-1) and were comparable to the application of nano-black carbon (2,120 kg ha-1). With peach residues, the lowest seed output (1,808 kg ha-1) was observed.Compared to seed inoculation with PSB (1,913 kg ha-1), soil treatment with Trichoderma resulted in the maximum seed production (2,132 kg ha-1). Applying phosphorus to the soybean crop greatly increased its output. The highest seed yield (2,364 kg ha-1) was obtained with 100 kg P ha-1, which was comparable to 75 kg P ha-1 (2,335 kg ha-1), while the lowest seed yield (1,569 kg ha-1) was obtained with 50 kg P ha-1. The average values showed that compared to control plots (3.3 g kg-1), peach organic sources produced greatest SOC (10.0 g kg-1). Plots with treated soil had a maximum soil P of 19.7 mg kg-1, while plots under stress had a maximum soil P of 4.8 mg kg-1. While peach compost resulted in the lowest soil P levels, peach nano-black carbon yielded the highest soil P levels (21.6 mg kg-1). Comparing beneficial bacteria with PSB to Trichoderma (18.3 mg/kg-1), the former also shown an improvement in soil P (21.1 mg kg-1). Regarding P treatments, the application of 100 kg P per ha produced significantly higher soil P values (26.8 mg /kg-1), followed by 75 kg P per ha (18.3 mg /kg-1), and 50 kg P ha-1 produced the lowest soil P values (14.1 mg /kg-1). Comparing peach wastes and compost to peach nano-black carbon (13.7 g kg-1), SOC rose. In contrast to PSB (8.8 g kg-1), soil-treated Trichoderma was shown to have a greater SOC (11.1 g kg-1). Higher among the P levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidic%20stress" title="acidic stress">acidic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=trichoderma" title=" trichoderma"> trichoderma</a>, <a href="https://publications.waset.org/abstracts/search?q=beneficial%20microbes" title=" beneficial microbes"> beneficial microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-black%20carbon" title=" nano-black carbon"> nano-black carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=peach%20residues" title=" peach residues"> peach residues</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/178829/diversified-farming-and-agronomic-interventions-improve-soil-productivity-soybean-yield-and-biomass-under-soil-acidity-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3202</span> Impacts of CuO, TiO2, SiO2 Nanoparticles on Biological Phosphorus Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shiu">H. Shiu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.S.%20Lu"> M.S. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.P.%20Tsai"> Y.P. Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explored the impacts of CuO, TiO2, SiO2 nanoparticles on biological phosphorus removal. Experimental results showed that the phosphorus removal ability of phosphorus accumulating organism (PAO) was initially inhibited when CuO nanoparticle concentration was 5 mgl-1. The inhibition of phosphorus removal for 1000 mgl-1 of TiO2 with sunlight was higher than without sunlight case. The inhibition of phosphorus removal began at 500 mgl-1 SiO2 nanoparticle concentration. Inhibition became apparent when SiO2 nanoparticle concentration was up to 1000 mgl-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20copper%20oxide" title="nano copper oxide">nano copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20titanium%20dioxide" title=" nano titanium dioxide"> nano titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title=" nano silica"> nano silica</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20biological%20phosphate%20removal" title=" enhanced biological phosphate removal"> enhanced biological phosphate removal</a> </p> <a href="https://publications.waset.org/abstracts/6388/impacts-of-cuo-tio2-sio2-nanoparticles-on-biological-phosphorus-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3201</span> Development of an IoT System for Smart Crop Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyenike%20M.%20Olanrewaju">Oyenike M. Olanrewaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Faith%20O.%20Echobu"> Faith O. Echobu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aderemi%20G.%20Adesoji"> Aderemi G. Adesoji</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmy%20Danny%20Ajik"> Emmy Danny Ajik</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Nda%20Ndabula"> Joseph Nda Ndabula</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Lucas"> Stephen Lucas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrients uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. But these replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good but it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil test by the common farmer. Internet of things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for N, P, K, soil temperature and soil moisture in a given soil at the time of test. In this implementation, sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits perform adequately well as the range of values obtained across the segments were within a very close range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title="Internet of Things">Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title=" soil nutrients"> soil nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20kit" title=" test kit"> test kit</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title=" soil temperature"> soil temperature</a> </p> <a href="https://publications.waset.org/abstracts/174522/development-of-an-iot-system-for-smart-crop-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3200</span> Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinomuvonga%20Manenji%20Zhou">Tinomuvonga Manenji Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Eubert%20Mahofa"> Eubert Mahofa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatenda%20Crispen%20Madzokere"> Tatenda Crispen Madzokere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPK%20hydroxyapatite%20nano%20hybrid%20fertilizer" title="NPK hydroxyapatite nano hybrid fertilizer">NPK hydroxyapatite nano hybrid fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20release" title=" low release"> low release</a> </p> <a href="https://publications.waset.org/abstracts/163701/nitrogen-phosphorus-potassium-npk-hydroxyapatite-nano-hybrid-slow-release-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3199</span> Phytoremediation of Arsenic-Contaminated Soil and Recovery of Valuable Arsenic Products </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentine%20C.%20Eze">Valentine C. Eze</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20P.%20Harvey"> Adam P. Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination of groundwater and soil by heavy metals and metalloids through anthropogenic activities and natural occurrence poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation of the contaminants using hyper-accumulating plants. Conventional phytoremediation treats the contaminated hyper-accumulator biomass as a waste stream which adds no value to the heavy metal(loid)s decontamination process. This study investigates strategies for remediation of soil contaminated with arsenic and the extractive chemical routes for recovery of arsenic and phosphorus from the hyper-accumulator biomass. Pteris cretica ferns species were investigated for their uptake of arsenic from soil containing 200 ± 3ppm of arsenic. The Pteris cretica ferns were shown to be capable of hyper-accumulation of arsenic, with maximum accumulations of about 4427 ± 79mg to 4875 ± 96mg of As per kg of the dry ferns. The arsenic in the Pteris cretica fronds was extracted into various solvents, with extraction efficiencies of 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1(v/v) methanol-water, and 70.8 ± 2.9% for water alone. The recovery efficiency of arsenic from the molybdic acid complex process 90.8 ± 5.3%. Phosphorus was also recovered from the molybdic acid complex process at 95.1 ± 4.6% efficiency. Quantitative precipitation of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ occurred in the treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8 – 10. The amounts of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ obtained were 96 ± 7.2% for arsenic and 94 ± 3.4% for phosphorus. The arsenic nanoparticles produced from the Mg₃(AsO₄)₂ recovered from the biomass have the average particles diameter of 45.5 ± 11.3nm. A two-stage reduction process – a first step pre-reduction of As(V) to As(III) with L-cysteine, followed by NaBH₄ reduction of the As(III) to As(0), was required to produced arsenic nanoparticles from the Mg₃(AsO₄)₂. The arsenic nanoparticles obtained are potentially valuable for medical applications, while the Mg₃(AsO₄)₂ could be used as an insecticide. The phosphorus contents of the Pteris cretica biomass was recovered as phosphomolybdic acid complex and converted to Mg₃(PO₄)₂, which could be useful in productions of fertilizer. Recovery of these valuable products from phytoremediation biomass would incentivize and drive commercial industries’ participation in remediation of contaminated lands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pteris%20cretica" title=" Pteris cretica"> Pteris cretica</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-accumulator" title=" hyper-accumulator"> hyper-accumulator</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdic%20acid%20process" title=" molybdic acid process"> molybdic acid process</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20nanoparticles" title=" arsenic nanoparticles"> arsenic nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/90396/phytoremediation-of-arsenic-contaminated-soil-and-recovery-of-valuable-arsenic-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3198</span> Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sefa%20Aksu">Sefa Aksu</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Cnal%20K%C4%B1z%C4%B1l"> Ünal Kızıl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For this study, a town based soil database created in Gümüşçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title="geostatistics">geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20management" title=" nutrient management"> nutrient management</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mapping" title=" soil mapping"> soil mapping</a> </p> <a href="https://publications.waset.org/abstracts/26938/developing-a-town-based-soil-database-to-assess-the-sensitive-zones-in-nutrient-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3197</span> Growth Studies and Leaf Mineral Composition of Amaranthus hybridus L. in Soil Medium Supplemended with Palm Bunch Ash Extract from Elaeis Guineensis jacq. in Abak Agricultural Zone of Akwa Ibom State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etukudo">Etukudo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mbosowo"> M. Mbosowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyananyo"> Nyananyo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bio"> L. Bio</a>, <a href="https://publications.waset.org/abstracts/search?q=Negbenebor"> Negbenebor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Charles"> A. Charles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aqueous extract of palm bunch ash from Elaeis guineensis Jacq., equilibrated with water was used to assess the growth and minerals composition of Amaranthus hybridus L. in agricultural soil of Abak, Akwa Ibom State, nigeria. Various concentrations, 0 (control), 10, 20, 30, 40, and 50% of palm bunch extract per 4kg of sandy-loam soil were used for the study. Chemical characteristics of the extract, Growth parameters (Plant height, root length, fresh weight, dry weight and moisture content), leaf minerals composition (Nitrogen, phosphorus, potassium, calcium and magnesium) of the crop and soil chemical composition before and after harvest (pH, organic matter, nitrogen, phosphorus, potassium, calcium and magnesium) were examined. The results showed that palm bunch ash extract significantly (P < 0.05) increased the soil pH at all levels of treatments compared to the control. Similarly, the soil and leaf minerals component (N, P, K. Ca, and Mg) of the crop increased with increase in the concentration of palm bunch extract, except at 40 and 50% for leaf minerals composition, Soil organic matter, nitrogen and phosphorus J(before and after harvest). In addition, The plant height, Root length, fresh weight, dry weight and moisture content of the crop increased significantly (P < 0.05) with increase in the concentration of the extract, Except at 30, 40 and 50% where these growth parameters decreased in relation to the control treatment. Therefore, this study suggests that palm bunch ash extract could be utilized at lower concentration as a nutrient supplement for both Amaranthus hubridus L. and soil medium, most especially in the tropical soils of the Niger Delta region of Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amaranthus%20hybridus%20L." title="Amaranthus hybridus L.">Amaranthus hybridus L.</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20minerals%20composition" title=" leaf minerals composition"> leaf minerals composition</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20bunch%20ash%20extract" title=" palm bunch ash extract"> palm bunch ash extract</a> </p> <a href="https://publications.waset.org/abstracts/25516/growth-studies-and-leaf-mineral-composition-of-amaranthus-hybridus-l-in-soil-medium-supplemended-with-palm-bunch-ash-extract-from-elaeis-guineensis-jacq-in-abak-agricultural-zone-of-akwa-ibom-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3196</span> Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryoko%20Yoshida">Ryoko Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyunpei%20Yoshida"> Jyunpei Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Fang%20Yu"> Hua Fang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasushi%20Sasaki"> Yasushi Sasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Nagasaka"> Tetsuya Nagasaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H<sub>3</sub>PO<sub>4</sub>). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P<sub>4</sub>O<sub>10</sub> evaporated from H<sub>3</sub>PO<sub>4</sub> is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H<sub>3</sub>PO<sub>4 </sub>that are extracted from dephosphorization slags will be one of the effective and economical solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbothermic%20reduction" title="carbothermic reduction">carbothermic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid" title=" phosphoric acid"> phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=dephosphorization%20slags" title=" dephosphorization slags"> dephosphorization slags</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20phosphorus" title=" yellow phosphorus"> yellow phosphorus</a> </p> <a href="https://publications.waset.org/abstracts/111611/carbothermic-reduction-of-phosphoric-acid-extracted-from-dephosphorization-slags-to-produce-yellow-phosphorus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3195</span> Physico-Chemical Analysis of the Reclaimed Land Area of Kasur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiza%20Zafar">Shiza Zafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20toxicity" title="soil toxicity">soil toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20land" title=" reclaimed land"> reclaimed land</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20analysis" title=" physico-chemical analysis"> physico-chemical analysis</a> </p> <a href="https://publications.waset.org/abstracts/26238/physico-chemical-analysis-of-the-reclaimed-land-area-of-kasur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3194</span> Technologies for Phosphorus Removal from Wastewater: Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thandie%20Veronicah%20Sima">Thandie Veronicah Sima</a>, <a href="https://publications.waset.org/abstracts/search?q=Moatlhodi%20Wiseman%20Letshwenyo"> Moatlhodi Wiseman Letshwenyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discharge of wastewater is one of the major sources of phosphorus entering streams, lakes and other water bodies causing undesired environmental problem such as eutrophication. This condition not only puts the ecosystem at risk but also causes severe economic damages. Stringent laws have been developed globally by different bodies to control the level of phosphorus concentrations into receiving environments. In order to satisfy the constraints, a high degree of tertiary treatment or at least a significant reduction of phosphorus concentration is obligatory. This comprehensive review summarizes phosphorus removal technologies, from the most commonly used conventional technologies such as chemical precipitation through metal addition, membrane filtration, reverse osmosis and enhanced biological phosphorus removal using activated sludge system to passive systems such as constructed wetlands and filtration systems. Trends, perspectives and scientific procedures conducted by different researchers have been presented. This review critically evaluates the advantages and limitations behind each of the technologies. Enhancement of passive systems using reactive media such as industrial wastes to provide additional uptake through adsorption or precipitation is also discussed in this article. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation" title=" chemical precipitation"> chemical precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20biological%20phosphorus%20removal" title=" enhanced biological phosphorus removal"> enhanced biological phosphorus removal</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20removal" title=" phosphorus removal"> phosphorus removal</a> </p> <a href="https://publications.waset.org/abstracts/36034/technologies-for-phosphorus-removal-from-wastewater-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3193</span> A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Grace%20Theva%20Neethi%20Dhas">Preethi Grace Theva Neethi Dhas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecal%20sludge%20management" title="fecal sludge management">fecal sludge management</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20cycle" title=" nutrient cycle"> nutrient cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/175735/a-study-of-fecal-sludge-management-in-auroville-and-its-surrounding-villages-in-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3192</span> Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboul-Nasr%20Amal">Aboul-Nasr Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabry%20Soraya"> Sabry Soraya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Mayada"> Sabra Mayada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arbuscular%20mycorrhizal%20fungus" title="arbuscular mycorrhizal fungus">arbuscular mycorrhizal fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20basil" title=" sweet basil"> sweet basil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20composition" title=" oil composition"> oil composition</a> </p> <a href="https://publications.waset.org/abstracts/71861/role-of-arbuscular-mycorrhiza-in-heavy-metal-tolerance-in-sweet-basil-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3191</span> The Effects of Organic or Inorganic Zinc and Microbial Phytase, Alone or in Combination, on the Performance, Biochemical Parameters and Nutrient Utilization of Broilers Fed a Diet Low in Available Phosphorus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Midilli">Mustafa Midilli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Salman"> Mustafa Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Hakan%20Muglali"> Omer Hakan Muglali</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BClay%20%C3%96gretmen"> Tülay Ögretmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sena%20Cenesiz"> Sena Cenesiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Neslihan%20Ormanci"> Neslihan Ormanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the effects of zinc (Zn) from different sources and microbial phytase on the broiler performance, biochemical parameters and digestibility of nutrients when they were added to broiler diets containing low available phosphorus. A total of 875, 1-day-old male broilers of the Ross 308 strain were randomly separated into two control groups (positive and negative) and five treatment groups each containing 125 birds; each group was divided into 5 replicates of 25 birds. The positive control (PC) group was fed a diet containing adequate concentration (0.45%) of available phosphorus due to mineral premix (except zinc) and feeds. The negative control (NC) group was fed a basal diet including low concentration (0.30%) of available phosphorus due to mineral premix (except zinc) and feeds. The basal diet was supplemented with 0.30% phosphorus and 500 FTU phytase (PH); 0.30% phosphorus and organic zinc (OZ; 75mg/kg of Zn from Zn-proteinate); 0.30% phosphorus and inorganic zinc (IZ; 75 mg/kg of Zn from ZnSO4); 0.30% phosphorus, organic zinc and 500 FTU phytase (OZ + PH); and 0.30% phosphorus, inorganic zinc and 500 FTU phytase (IZ + PH) in the treatment groups 1, 2, 3, 4 and 5, respectively. The lowest value for mean body weight was in the negative control group on a diet containing low available phosphorus. The use of supplementation with organic and inorganic zinc alone or in combination with microbial phytase significantly (P<0.05) increased the digestibility of Zn in the male broilers. Supplementation of those diets with OZ + PH or IZ + PH was very effective for increasing the body weight, body weight gain and the feed conversion ratio. In conclusion, the effects on broilers of diets with low phosphorus levels may be overcome by the addition of inorganic or organic zinc compounds in combination with microbial phytase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=phytase" title=" phytase"> phytase</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/6134/the-effects-of-organic-or-inorganic-zinc-and-microbial-phytase-alone-or-in-combination-on-the-performance-biochemical-parameters-and-nutrient-utilization-of-broilers-fed-a-diet-low-in-available-phosphorus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3190</span> Farmers' Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhwinder%20Singh">Sukhwinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Park"> Julian Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Benbi"> Dinesh Kumar Benbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title="soil health">soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=punjab%20agriculture" title=" punjab agriculture"> punjab agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility%20index" title=" soil fertility index"> soil fertility index</a> </p> <a href="https://publications.waset.org/abstracts/29934/farmers-perspective-on-soil-health-in-the-indian-punjab-a-quantitative-analysis-of-major-soil-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3189</span> Effects of Reclamation on Seasonal Dynamic of Carbon, Nitrogen and Phosphorus Stoichiometry in Suaeda salsa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yajun%20Qiao">Yajun Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaner%20Yan"> Yaner Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Li"> Ning Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuqing%20An"> Shuqing An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to relieve the pressure on a land resource from a huge population, reclamation has occurred in many coastal wetlands. Plants can maintain their elemental composition within normal limits despite the variations of external conditions. Reclamation may affect carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in the plant to some extent by altering physical and chemical properties of soil in a coastal wetland. We reported the seasonal dynamic of C, N and P stoichiometry in root, stem and leaf of Suaeda salsa (L.) Pall. and in soil between reclamation plots and natural plots. Our results of three-way ANOVA indicated that sampling season always had significant effect on C, N, P concentrations and their ratios; organ had no significant effect on N, P concentration and N:P; plot type had no significant effect on N concentration and C:N. Sampling season explained the most variability of tissue N and P contents, C:N, C:P and N:P, while it’s organ for C using the restricted maximum likelihood (REML) method. By independent sample T-test, we found that reclamation affect more on C, N and P stoichiometry of stem than that of root or leaf on the whole. While there was no difference between reclamation plots and natural plots for soil in four seasons. For three organs, C concentration had peak values in autumn and minimum values in spring while N concentration had peak values in spring and minimum values in autumn. For P concentration, three organs all had peak values in spring; however, the root had minimum value in winter, the stem had that in autumn, and leaf had that in summer. The seasonal dynamic of C, N and P stoichiometry in a leaf of Suaeda salsa were much steadier than that in root or stem under the drive of reclamation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=reclamation" title=" reclamation"> reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20dynamic" title=" seasonal dynamic"> seasonal dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=Suaeda%20salsa" title=" Suaeda salsa"> Suaeda salsa</a> </p> <a href="https://publications.waset.org/abstracts/29581/effects-of-reclamation-on-seasonal-dynamic-of-carbon-nitrogen-and-phosphorus-stoichiometry-in-suaeda-salsa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3188</span> Phosphorus Recovery Optimization in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Almatouq">Abdullah Almatouq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=struvite" title=" struvite"> struvite</a> </p> <a href="https://publications.waset.org/abstracts/82315/phosphorus-recovery-optimization-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3187</span> How Much the Role of Fertilizers Management and Wheat Planting Methods on Its Yield Improvement?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Izadi-Darbandi">Ebrahim Izadi-Darbandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Azad"> Masoud Azad</a>, <a href="https://publications.waset.org/abstracts/search?q=Masumeh%20Dehghan"> Masumeh Dehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effects of nitrogen and phosphoruse management and wheat sowing method on wheat yield, two experiments was performed as factorial, based on completely randomized design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in 2009. In the first experiment nitrogen application rates (100kg ha-1, 200 kg ha-1, 300 kg ha-1), phosphorus application rates (100 kg ha-1, 200 kg ha-1) and two levels of their application methods (Broadcast and Band) were studied. The second experiment treatments included of wheat sowing methods (single-row with 30 cm distance and twine row on 60 cm width ridges), as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots (150 kg ha-1). Phosphorus and nitrogen sources for fertilization at both experiment were respectively super phosphate, applied before wheat sowing and incorporated with soil and urea, applied in two phases (50% pre plant) and (50%) near wheat shooting. Results from first experiment showed that the effect of fertilizers application methods were significant (p≤0.01) on wheat yield increasing. Band application of phosphorus and nitrogen were increased biomass and seed yield of wheat with nine and 15% respectively compared to their broadcast application. The interaction between the effects of nitrogen and phosphorus application rate with phosphorus and nitrogen application methods, showed that band application of fertilizers and the rate of application of 200kg/ha phosphorus and 300kg/ha nitrogen were the best methods in wheat yield improvement. The second experiment also showed that the effect of wheat sowing method and fertilizers application methods were significant (p≤0.01) on wheat seed and biomass yield improvement. Wheat twine row on 60 cm width ridges sowing method, increased its biomass and seed yield for 22% and 30% respectively compared to single-row with 30 cm. Wheat sowing method and fertilizers application methods interaction indicated that band application of fertilizers and wheat twine row on 60 cm width ridges sowing method was the best treatment on winter wheat yield improvement. In conclusion these results indicated that nitrogen and phosphorus management in wheat and modifying wheat sowing method have important role in increasing fertilizers use efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20application" title="band application">band application</a>, <a href="https://publications.waset.org/abstracts/search?q=broadcast%20application" title=" broadcast application"> broadcast application</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20fertilizer%20application" title=" rate of fertilizer application"> rate of fertilizer application</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20seed%20yield" title=" wheat seed yield"> wheat seed yield</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20biomass%20yield" title=" wheat biomass yield"> wheat biomass yield</a> </p> <a href="https://publications.waset.org/abstracts/13988/how-much-the-role-of-fertilizers-management-and-wheat-planting-methods-on-its-yield-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3186</span> Effect of Biochar, Farmyard Manure, and Lime on Soil Properties, and on Growth and Nutrient Uptake of Wheat on Acidic Soils in Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekdes%20Lulu">Mekdes Lulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assessed the effect of the interactions of biochar (BC), farmyard manure (FYM) and lime on soil chemical properties and on different wheat attributes in Southern Ethiopia. The experimental design was a randomized complete block in three replications. The site significantly (p ≤ 0.05) influenced soil and wheat attributes. Biochar showed a large significant effect (p ≤ 0.05) on soil organic carbon, cation exchange capacity, and exchangeable potassium (K), while lime showed a substantially significant (p ≤ 0.05) effect on exchangeable Calcium (Ca) and acidity. Farmyard manure (10 tonnes ha−1 ) had a significant effect on soil total nitrogen (TN). Biochar and lime showed a large significant effect on soil pH and available phosphorus (P) depending on the site. All amendments showed a significant (p ≤ 0.001) effect on most wheat attributes, but the highest effect was from BC. Biochar produced highly significant (p ≤ 0.001) effects on plant height, total number of tillers and productive tillers, number of seeds per spike, aboveground biomass, grain yield, and P and K content in wheat grain and straw. We accredited the greater effect of BC on wheat attributes to its influence on soil chemical properties. We recommend long-term studies on the impact of BC alone or in combination with FYM on acid soil types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title="grain yield">grain yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20amendments" title=" soil amendments"> soil amendments</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title=" soil nutrients"> soil nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20aestivum" title=" Triticum aestivum"> Triticum aestivum</a> </p> <a href="https://publications.waset.org/abstracts/190060/effect-of-biochar-farmyard-manure-and-lime-on-soil-properties-and-on-growth-and-nutrient-uptake-of-wheat-on-acidic-soils-in-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3185</span> Ecological Study of Habitat Conditions and Distribution of Cistanche tubulosa (Rare Plant Species) in Pakpattan District, Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20Shakoor">Shumaila Shakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> C. tubulosa is a rare parasitic plant. It is found to be endangered and it acquires nutrition by penetrating roots deep in host roots. It has momentous potential to fulfill local and national health needs. This specie became endangered due to its parasitic mode of life and lack of awareness. Investigation of distribution and habitat conditions of C. tubulosa from District Pakpattan is the objective of this study. To explore its habitat conditions and community ecology phytosociological survey of C. tubulosa in different habitats i.e roadsides and graveyards was carried out. It was found that C. tubulosa occurs successfully in different habitats like graveyards and roadsides with specific neighboring species. Soil analysis was carried out by taking soil samples from seven sites. Soil was analyzed for pH, EC, soil texture, OM, N %age, Ca, Mg, P and K, which shows that soil of C. tubulosa is rich in all these nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title="organic matter">organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a> </p> <a href="https://publications.waset.org/abstracts/55645/ecological-study-of-habitat-conditions-and-distribution-of-cistanche-tubulosa-rare-plant-species-in-pakpattan-district-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=107">107</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=108">108</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=available%20soil%20phosphorus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>