CINXE.COM

Search results for: inhibition of steel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inhibition of steel</title> <meta name="description" content="Search results for: inhibition of steel"> <meta name="keywords" content="inhibition of steel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inhibition of steel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inhibition of steel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2703</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inhibition of steel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2703</span> Corrosion Inhibition of Mild Steel in 20% Sulfuric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dekmouche">M. Dekmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadjada"> M. Hadjada</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Rahmani"> Z. Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saidi"> M. Saidi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of iodide ions on the corrosion inhibition of mild steel in 20% sulfuric acid in the presence of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) A1 synthesized in our laboratory,was studied by different electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization. The obtained results showed that A1 effectively reduces the corrosion rate of steel. The adsorption of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) followed Langmuir and temkin adsorption isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20XC52" title="steel XC52">steel XC52</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=3-m%C3%A9thylthio-5-p-m%C3%A9thoxyph%C3%A9nyl-1" title=" 3-méthylthio-5-p-méthoxyphényl-1"> 3-méthylthio-5-p-méthoxyphényl-1</a>, <a href="https://publications.waset.org/abstracts/search?q=2-dithiolylium%20against%20anion%20%28I-%29" title="2-dithiolylium against anion (I-) ">2-dithiolylium against anion (I-) </a>, <a href="https://publications.waset.org/abstracts/search?q=sulfuric%20acid" title=" sulfuric acid"> sulfuric acid</a> </p> <a href="https://publications.waset.org/abstracts/39557/corrosion-inhibition-of-mild-steel-in-20-sulfuric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2702</span> Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Singh">Ashish Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Tiwari"> Preeti Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Srivastava"> Shubham Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Prakash"> Rajiv Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Terryn"> Herman Terryn</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopal%20Ji"> Gopal Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title="mild steel">mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Azo%20dye" title=" Azo dye"> Azo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20isotherm" title=" Langmuir isotherm"> Langmuir isotherm</a> </p> <a href="https://publications.waset.org/abstracts/55946/allura-red-sunset-yellow-and-amaranth-azo-dyes-for-corrosion-inhibition-of-mild-steel-in-05-h2so4-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2701</span> Synthesis, Electrochemical and Theoretical Study of Corrosion Inhibition on Carbon Steel in 1M HCl Medium by 2,2&#039;-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanghourte%20Mohamed">Tanghourte Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouassou%20Nazih"> Ouassou Nazih</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Mesky%20Mohammed"> El Mesky Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Znini%20Mohamed"> Znini Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mabrouk%20El%20Houssine"> Mabrouk El Houssine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a distinct organic inhibitor, namely 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide) (PBRA), was synthesized and characterized using ¹H, ¹³C NMR, and IR spectroscopy. Subsequently, the inhibition effect of PBRA on the corrosion of carbon steel in 1 M HCl was studied using electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiency increased with concentration, reaching 87% at 10-³M. Furthermore, PBRA remained effective at temperatures ranging from 298 to 328 K. The adsorption of the inhibitor onto carbon steel was well described by the Langmuir adsorption isotherm. Additionally, a correlation between the molecular structure and quantum chemistry indices was established using density functional theory (DFT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=piperazine" title=" piperazine"> piperazine</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=acetamide" title=" acetamide"> acetamide</a> </p> <a href="https://publications.waset.org/abstracts/194779/synthesis-electrochemical-and-theoretical-study-of-corrosion-inhibition-on-carbon-steel-in-1m-hcl-medium-by-22-piperazine-14-diylbisn-4-bromophenylacetamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2700</span> Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Deyab">M. A. Deyab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sands%20slurry" title=" oil sands slurry"> oil sands slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion-corrosion" title=" erosion-corrosion"> erosion-corrosion</a> </p> <a href="https://publications.waset.org/abstracts/83418/inhibiting-effects-of-zwitterionic-surfactant-on-the-erosion-corrosion-of-api-x52-steel-in-oil-sands-slurry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2699</span> Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopal%20Ji">Gopal Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Dwivedi"> Priyanka Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanthi%20Sundaram"> Shanthi Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Prakash"> Rajiv Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title="mild steel">mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20corrosion" title=" acid corrosion"> acid corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibition" title=" green inhibition"> green inhibition</a> </p> <a href="https://publications.waset.org/abstracts/15600/aqueous-extract-of-argemone-mexicana-roots-for-effective-corrosion-inhibition-of-mild-steel-in-hcl-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2698</span> Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roland%20Tolulope%20Loto">Roland Tolulope Loto</a>, <a href="https://publications.waset.org/abstracts/search?q=Cleophas%20Akintoye%20Loto"> Cleophas Akintoye Loto</a>, <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20Patricia%20Popoola"> Abimbola Patricia Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=2-dimethylamine" title=" 2-dimethylamine"> 2-dimethylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochloric%20acid" title=" hydrochloric acid"> hydrochloric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/12389/electrochemical-studies-of-the-inhibition-effect-of-2-dimethylamine-on-the-corrosion-of-austenitic-stainless-steel-type-304-in-dilute-hydrochloric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2697</span> Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Zaki">E. G. Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Migahed"> M. A. Migahed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Al-Sabagh"> A. M. Al-Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Khamis"> E. A. Khamis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20surface" title=" steel surface"> steel surface</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a> </p> <a href="https://publications.waset.org/abstracts/38587/quantum-chemical-calculations-synthesis-and-corrosion-inhibition-efficiency-of-nonionic-surfactants-on-api-x65-steel-surface-under-h2s-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2696</span> Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kok-Chong%20Yong">Kok-Chong Yong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20rubber" title="conductive rubber">conductive rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrile%20rubber" title=" nitrile rubber"> nitrile rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title=" carbon steel"> carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title=" corrosion inhibition"> corrosion inhibition</a> </p> <a href="https://publications.waset.org/abstracts/11326/polybutadiene-co-acrylonitrile-polyaniline-dodecylbenzenesulfonate-nbr-panidbsa-blends-for-corrosion-inhibition-of-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2695</span> Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Eyije%20Abechi">Stephen Eyije Abechi</a>, <a href="https://publications.waset.org/abstracts/search?q=Casimir%20Emmanuel%20Gimba"> Casimir Emmanuel Gimba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaharaddeen%20Nasiru%20Garba"> Zaharaddeen Nasiru Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sani%20Shamsudeen"> Sani Shamsudeen</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ebuka%20Authur"> David Ebuka Authur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20energy" title="binding energy">binding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir%20isotherm" title=" langmuir isotherm"> langmuir isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a> </p> <a href="https://publications.waset.org/abstracts/43699/investigation-of-corrosion-inhibition-potential-of-acalypha-chamaedrifolia-leaves-extract-towards-mild-steel-in-acid-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2694</span> Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Khalaf">Mai M. Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Abd%20El-Lateef"> Hany M. Abd El-Lateef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dip-coatings" title="dip-coatings">dip-coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20protection" title=" corrosion protection"> corrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20films" title=" TiO2 films"> TiO2 films</a>, <a href="https://publications.waset.org/abstracts/search?q=PEG" title=" PEG"> PEG</a> </p> <a href="https://publications.waset.org/abstracts/24640/enhanced-of-corrosion-resistance-of-carbon-steel-c1018-with-nano-tio2-films-using-dip-coating-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2693</span> Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Eyije%20Abechi">Stephen Eyije Abechi</a>, <a href="https://publications.waset.org/abstracts/search?q=Casimir%20Emmanuel%20Gimba"> Casimir Emmanuel Gimba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaharaddeen%20Nasiru%20Garba"> Zaharaddeen Nasiru Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sani%20Shamsudeen"> Sani Shamsudeen</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ebuka%20Authur"> David Ebuka Authur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20energy" title="binding energy">binding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20isotherm" title=" Langmuir isotherm"> Langmuir isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel." title=" mild steel."> mild steel.</a> </p> <a href="https://publications.waset.org/abstracts/46098/studies-on-mechanisms-of-corrosion-inhibition-of-acalypha-chamaedrifolia-leaves-extract-towards-mild-steel-in-acid-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2692</span> Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Elmsellem">H. Elmsellem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aouniti"> A. Aouniti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Radi"> S. Radi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chetouani"> A. Chetouani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hammouti"> B. Hammouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title="mild steel">mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base" title=" Schiff base"> Schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=HCl" title=" HCl"> HCl</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chemical" title=" quantum chemical"> quantum chemical</a> </p> <a href="https://publications.waset.org/abstracts/18046/adsorption-and-corrosion-inhibition-of-new-synthesized-thiophene-schiff-base-on-mild-steel-in-hcl-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2691</span> Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bammou">L. Bammou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belkhaouda%20R.%20Salghi"> M. Belkhaouda R. Salghi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hammouti"> B. Hammouti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title="corrosion inhibition">corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=friendly%20inhibitors" title=" friendly inhibitors"> friendly inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=Tafel%20polarisation" title=" Tafel polarisation "> Tafel polarisation </a> </p> <a href="https://publications.waset.org/abstracts/17504/inhibition-effect-of-natural-junipers-extract-towards-steel-corrosion-in-hcl-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvam%20Noyel%20Victoria">Selvam Noyel Victoria</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavita%20Yadav"> Kavita Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Manivannan%20Ramachandran"> Manivannan Ramachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20erecta" title="Tagetes erecta">Tagetes erecta</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/92762/investigation-of-the-corrosion-inhibition-mechanism-of-tagetes-erecta-extract-for-mild-steel-in-nitric-acid-gravimetric-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Investigation of the Inhibition Effect of 2,3-Diaminopyridine on Mild Steel Corrosion in Solution Simulating Water of Pores Concrete in Absence and Presence of Chloride Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Benghanem">Fatiha Benghanem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Berarma"> Mokhtar Berarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Saida%20Keraghel"> Saida Keraghel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ourari"> Ali Ourari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion is the result of the reaction between a material and its environment. Steel in concrete is protected from corrosion by a passive film promoted by concrete alkalinity. For the initiation of corrosion, this protective film must be destroyed and this can be mainly done in two ways: by the attack of chlorides on the steel or by carbonation of the cover concrete due the reaction with carbon dioxide, which causes reduction in the alkalinity of concrete. The literature reports several ways to decrease or to prevent reinforcement corrosion. Among them, the use of corrosion inhibitors has been an envisaged solution. Two approaches are generally used to evaluate the efficiency of inhibitors for concrete application; one uses simulated pore solution testing , and the other uses actual concrete or mortar specimens. Both methods are some times used in conjunction. The aim of this study is to investigate the use of 2,3-diaminopyridine as a corrosion inhibitors of steel in alkaline media which simulate the electrolyte in the concrete pores. The effectiveness of this compound as corrosion inhibitor was investigated by measuring the corrosion potentials, the polarization curves and the corrosion current densities of steel with and without chlorides. The study of corrosion inhibition by this compound led to the conclusion that he has low rates of inhibition in the absence of aggressive ions and high rates in their presence. This type of organic compounds are promoting for the protection of armatures in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitors" title=" inhibitors"> inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=conjunction" title=" conjunction "> conjunction </a> </p> <a href="https://publications.waset.org/abstracts/25378/investigation-of-the-inhibition-effect-of-23-diaminopyridine-on-mild-steel-corrosion-in-solution-simulating-water-of-pores-concrete-in-absence-and-presence-of-chloride-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Asselah">A. Asselah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalfi"> A. Khalfi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.Toumi"> M. A.Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Tazerouti"> A.Tazerouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=oilfield" title=" oilfield"> oilfield</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=anionic%20surfactants" title=" anionic surfactants"> anionic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/158305/prediction-of-corrosion-inhibition-using-methyl-ester-sulfonate-anionic-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Abd%20El-Lateef">Hany M. Abd El-Lateef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20bases" title=" Schiff bases"> Schiff bases</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title=" corrosion inhibition"> corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20techniques" title=" electrochemical techniques"> electrochemical techniques</a> </p> <a href="https://publications.waset.org/abstracts/24093/electrochemical-and-theoretical-quantum-approaches-on-the-inhibition-of-c1018-carbon-steel-corrosion-in-acidic-medium-containing-chloride-using-newly-synthesized-phenolic-schiff-bases-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EFM" title=" EFM"> EFM</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MD" title=" MD"> MD</a> </p> <a href="https://publications.waset.org/abstracts/115086/analysis-of-some-produced-inhibitors-for-corrosion-of-j55-steel-in-nacl-solution-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Kumari%20P.">Preethi Kumari P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shetty%20Prakasha"> Shetty Prakasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20Suma%20A."> Rao Suma A. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20parameters" title="electrochemical parameters">electrochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tafel%20polarization" title=" tafel polarization "> tafel polarization </a> </p> <a href="https://publications.waset.org/abstracts/27108/inhibition-of-mild-steel-corrosion-in-hydrochloric-acid-medium-using-an-aromatic-hydrazide-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> The Influence of Temperature on the Corrosion and Corrosion Inhibition of Steel in Hydrochloric Acid Solution: Thermodynamic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Al-Hayazi">Fatimah Al-Hayazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehteram.%20A.%20Noor"> Ehteram. A. Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20H.%20Moubaraki"> Aisha H. Moubaraki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inhibitive effect of Securigera securidaca seed extract (SSE) on mild steel corrosion in 1 M HCl solution has been studied by weight loss and electrochemical techniques at four different temperatures. All techniques studied provided data that the studied extract does well at all temperatures, and its inhibitory action increases with increasing its concentration. SEM images indicate thin-film formation on mild steel when corroded in solutions containing 1 g L-1 of inhibitor either at low or high temperatures. The polarization studies showed that SSE acts as an anodic inhibitor. Both polarization and impedance techniques show an acceleration behaviour for SSE at concentrations ≤ 0.1 g L-1 at all temperatures. At concentrations ≥ 0.1 g L-1, the efficiency of SSE is dramatically increased with increasing concentration, and its value does not change appreciably with increasing temperature. It was found that all adsorption data obeyed Temkin adsorption isotherm. Kinetic activation and thermodynamic adsorption parameters are evaluated and discussed. The results revealed an endothermic corrosion process with an associative activation mechanism, while a comprehensive adsorption mechanism for SSE on mild steel surfaces is suggested, in which both physical and chemical adsorption are involved in the adsorption process. A good correlation between inhibitor constituents and their inhibitory action was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel" title=" inhibition of steel"> inhibition of steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochloric%20acid" title=" hydrochloric acid"> hydrochloric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20study" title=" thermodynamic study"> thermodynamic study</a> </p> <a href="https://publications.waset.org/abstracts/148994/the-influence-of-temperature-on-the-corrosion-and-corrosion-inhibition-of-steel-in-hydrochloric-acid-solution-thermodynamic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Orange Peel Extracts (OPE) as Eco-Friendly Corrosion Inhibitor for Carbon Steel in Produced Oilfield Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olfat%20E.%20El-Azabawy">Olfat E. El-Azabawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Enas%20M.%20Attia"> Enas M. Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Shawky"> Nadia Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20M.%20Hypa"> Amira M. Hypa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, an attempt is made to study the effects of orange peel extract (OPE) as an environment-friendly corrosion inhibitor for carbon steel (CS) within a formation water solution (FW). The study was performed in different concentrations (0.5-2.5% (v/v)) of peel extracts at ambient temperatures (25oC) and (2.5% (v/v)) at temperature range (25- 55 oC) by weight loss measurements, open circuit potential, potentiodynamic polarization and electrochemical impedance. The inhibition efficiency was calculated from all measurements and confirmed by energy-dispersive X-ray spectroscopy (EDS). Inhibition was found to increase with increasing inhibitors concentration and decrease with increasing temperature. It was seen that IE% is about 92.84% in the presence of 2.5% (v/v) of orange peel inhibitor by using weight loss method. The adsorption process was of physical type and obey Langmuir adsorption isotherm. Also, adsorption, as well as the inhibition process, followed first-order kinetics at all concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20corrosion%20inhibitor" title="eco-friendly corrosion inhibitor">eco-friendly corrosion inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=OPE" title=" OPE"> OPE</a>, <a href="https://publications.waset.org/abstracts/search?q=oilfield%20water" title=" oilfield water"> oilfield water</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance" title=" electrochemical impedance"> electrochemical impedance</a> </p> <a href="https://publications.waset.org/abstracts/113368/orange-peel-extracts-ope-as-eco-friendly-corrosion-inhibitor-for-carbon-steel-in-produced-oilfield-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harche%20Rima">Harche Rima</a>, <a href="https://publications.waset.org/abstracts/search?q=Laoufi%20Nadia%20Aicha"> Laoufi Nadia Aicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20and%20prevention" title="corrosion and prevention">corrosion and prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitor" title=" corrosion inhibitor"> corrosion inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cooling" title=" anti-cooling"> anti-cooling</a> </p> <a href="https://publications.waset.org/abstracts/185967/the-behavior-of-steel-copper-and-aluminum-vis-a-vis-the-corrosion-in-an-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2681</span> Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Elshami">Ahmed A. Elshami</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Bonnet"> Stephanie Bonnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Khelidj"> Abdelhafid Khelidj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zamzam%20water" title="Zamzam water">Zamzam water</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitor" title=" corrosion inhibitor"> corrosion inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20water" title=" rain water"> rain water</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20acid%20rain" title=" simulated acid rain"> simulated acid rain</a> </p> <a href="https://publications.waset.org/abstracts/14797/zamzam-water-as-corrosion-inhibitor-for-steel-rebar-in-rainwater-and-simulated-acid-rain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2680</span> Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Adnan%20Annon">Iman Adnan Annon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadhim%20F.%20Alsultan"> Kadhim F. Alsultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20in%20pipeline" title="corrosion in pipeline">corrosion in pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitors" title=" inhibitors"> inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title=" carbon steel"> carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=types%20of%20solvent" title=" types of solvent"> types of solvent</a> </p> <a href="https://publications.waset.org/abstracts/143633/characterization-the-internal-corrosion-behavior-by-using-natural-inhibitor-in-crude-oil-of-low-carbon-steel-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2679</span> Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidizing%20inhibitor" title="acidizing inhibitor">acidizing inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=pyran%20derivatives" title=" pyran derivatives"> pyran derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20simulation" title=" molecular simulation"> molecular simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a> </p> <a href="https://publications.waset.org/abstracts/115084/investigation-of-acidizing-corrosion-inhibitors-for-mild-steel-in-hydrochloric-acid-theoretical-and-experimental-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2678</span> Evaluation of Pelargonium Extract and Oil as Eco-Friendly Corrosion Inhibitor for Steel in Acidic Chloride Solutions and Pharmacological Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Chetouani">Ahmed Chetouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion is a natural occurring process where it can be defined as the deterioration of materials properties due to its interaction with its environment. Corrosion can lead to failures in plant infrastructure and machines which are usually costly to repair. In terms of loss of contaminated products which will cause environmental damage and possibly costly in terms of human health. The driving force that causes metals to corrode is due to the natural consequence of their temporary existence in metallic form. There is a growing trend in utilizing plant extracts and pharmaceutical compounds as corrosion inhibitors. Exquisite identification of the essential oil of aerial parts of Pelargonium was obtained using hydrodistillation and identification using GC (gas chromatography) and GC/MS (gas chromatography-mass spectrometry). The oil was predominated by Citronellol (22.8%). The inhibitory effect of essential oil and extract of Pelargonium was estimated on the corrosion of mild steel in 1M hydrochloric acid (HCl) using weight loss, Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Inhibition was found to increase with increasing concentration of the essential oil and extract of Pelargonium. The effect of temperature on the corrosion behaviour of mild steel in 1M HCl with addition of essential oil and extract was also studied and the thermodynamic parameters were determined and discussed. Values of inhibition efficiency were calculated from weight loss, Tafel polarization curves, and EIS. All results are in good agreement. Polarization curves showed that essential oil and extract of Pelargonium behave as mixed type inhibitors in hydrochloric acid. The results obtained showed that the essential oil and extract of Pelargonium could serve as an effective inhibitor of the corrosion of mild steel in Hydrochloric acid solution. To avoid any surprise of toxicity, the majority compounds have been studied by using POM analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title="corrosion inhibition">corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=pelargonium%20oil" title=" pelargonium oil"> pelargonium oil</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20system" title=" electrochemical system"> electrochemical system</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodistillation" title=" hydrodistillation"> hydrodistillation</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20effects" title=" side effects"> side effects</a>, <a href="https://publications.waset.org/abstracts/search?q=POM%20Analyses" title=" POM Analyses"> POM Analyses</a> </p> <a href="https://publications.waset.org/abstracts/17619/evaluation-of-pelargonium-extract-and-oil-as-eco-friendly-corrosion-inhibitor-for-steel-in-acidic-chloride-solutions-and-pharmacological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2677</span> Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiyaul%20Haque">Jiyaul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Srivastava"> Vandana Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Quraishi"> M. A. Quraishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title="electrochemical impedance spectroscopy">electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20corrosion%20inhibitors" title=" green corrosion inhibitors"> green corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chemical%20calculation" title=" quantum chemical calculation"> quantum chemical calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=zwitterions" title=" zwitterions"> zwitterions</a> </p> <a href="https://publications.waset.org/abstracts/94750/amino-acid-derivatives-as-green-corrosion-inhibitors-for-mild-steel-in-1m-hcl-electrochemical-surface-and-density-functional-theory-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2676</span> Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy">Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfat%20E.%20El-Azabawy"> Olfat E. El-Azabawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Al-Sabagh"> Ahmed M. Al-Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Notaila%20M.%20Nasser"> Notaila M. Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Khamis"> Eman A. Khamis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schiff%20base%20polymers" title="schiff base polymers">schiff base polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitors" title=" corrosion inhibitors"> corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=sour%20corrosive%20media" title=" sour corrosive media"> sour corrosive media</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiodynamic%20polarization" title=" potentiodynamic polarization"> potentiodynamic polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82S%20concentrations" title=" H₂S concentrations"> H₂S concentrations</a> </p> <a href="https://publications.waset.org/abstracts/159064/novel-poly-schiff-bases-as-corrosion-inhibitors-for-carbon-steel-in-sour-petroleum-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2675</span> Inhibition of Pipelines Corrosion Using Natural Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Alzahrani">Eman Alzahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Abo-Dief"> Hala M. Abo-Dief</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20T.%20Mohamed"> Ashraf T. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhibition" title="inhibition">inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20extract" title=" natural extract"> natural extract</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pipelines%20corrosion" title=" oil pipelines corrosion"> oil pipelines corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20compounds" title=" sulphur compounds "> sulphur compounds </a> </p> <a href="https://publications.waset.org/abstracts/33851/inhibition-of-pipelines-corrosion-using-natural-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2674</span> Pathological Gambling and Impulsivity: Comparison of the Eight Laboratory Measures of Inhibition Capacities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semion%20Kertzman">Semion Kertzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinhas%20Dannon"> Pinhas Dannon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impulsive behaviour and the underlying brain processes are hypothesized to be central in the development and maintenance of pathological gambling. Inhibition ability can be differentially impaired in pathological gamblers (PGs). Aims: This study aimed to compare the ability of eight widely used inhibition measures to discriminate between PGs and healthy controls (HCs). Methods: PGs (N=51) and demographically matched HCs (N=51) performed cognitive inhibition (the Stroop), motor inhibition (the Go/NoGo) and reflective inhibition (the Matching Familiar Figures (MFFT)) tasks. Results: An augmented total interference response time in the Stroop task (η² =0.054), a large number of commission errors (η² =0.053) in the Go/NoGo task, and the total number of errors in the MFFT (η² =0.05) can discriminate PGs from HCs. Other measures are unable to differentiate between PGs and HCs. No significant correlations were observed between inhibition measures. Conclusion: Inhibition measures varied in the ability to discriminate PGs from HCs. Most inhibition measures were not relevant to gambling behaviour. PGs do not express rash, impulsive behaviour, such as quickly choosing an answer without thinking. In contrast, in PGs, inhibition impairment was related to slow-inaccurate performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pathological%20gambling" title="pathological gambling">pathological gambling</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsivity" title=" impulsivity"> impulsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurocognition" title=" neurocognition"> neurocognition</a>, <a href="https://publications.waset.org/abstracts/search?q=addiction" title=" addiction"> addiction</a> </p> <a href="https://publications.waset.org/abstracts/54541/pathological-gambling-and-impulsivity-comparison-of-the-eight-laboratory-measures-of-inhibition-capacities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20steel&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10