CINXE.COM

Differential form - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Differential form - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"b4dbb392-5cc2-4e2e-a89a-bf0c308a89d8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Differential_form","wgTitle":"Differential form","wgCurRevisionId":1258251863,"wgRevisionId":1258251863,"wgArticleId":221519,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Wikipedia articles needing clarification from December 2021","Differential forms","Differential geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Differential_form","wgRelevantArticleId":221519,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom": "Exterior_calculus","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgInternalRedirectTargetUrl":"/wiki/Differential_form","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1047080","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Differential form - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Differential_form"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Differential_form&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Differential_form"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Differential_form rootpage-Differential_form skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Differential+form" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Differential+form" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Differential+form" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Differential+form" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Concept" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Concept"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Concept</span> </div> </a> <button aria-controls="toc-Concept-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Concept subsection</span> </button> <ul id="toc-Concept-sublist" class="vector-toc-list"> <li id="toc-Integration_and_orientation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integration_and_orientation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Integration and orientation</span> </div> </a> <ul id="toc-Integration_and_orientation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multi-index_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multi-index_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Multi-index notation</span> </div> </a> <ul id="toc-Multi-index_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_exterior_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_exterior_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>The exterior derivative</span> </div> </a> <ul id="toc-The_exterior_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differential_calculus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differential_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Differential calculus</span> </div> </a> <ul id="toc-Differential_calculus-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Intrinsic_definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Intrinsic_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Intrinsic definitions</span> </div> </a> <ul id="toc-Intrinsic_definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Operations</span> </div> </a> <button aria-controls="toc-Operations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Operations subsection</span> </button> <ul id="toc-Operations-sublist" class="vector-toc-list"> <li id="toc-Exterior_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exterior_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Exterior product</span> </div> </a> <ul id="toc-Exterior_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemannian_manifold" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemannian_manifold"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Riemannian manifold</span> </div> </a> <ul id="toc-Riemannian_manifold-sublist" class="vector-toc-list"> <li id="toc-Vector_field_structures" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Vector_field_structures"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>Vector field structures</span> </div> </a> <ul id="toc-Vector_field_structures-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Exterior_differential_complex" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exterior_differential_complex"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Exterior differential complex</span> </div> </a> <ul id="toc-Exterior_differential_complex-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Pullback" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Pullback"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Pullback</span> </div> </a> <ul id="toc-Pullback-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integration" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integration"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Integration</span> </div> </a> <button aria-controls="toc-Integration-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Integration subsection</span> </button> <ul id="toc-Integration-sublist" class="vector-toc-list"> <li id="toc-Integration_on_Euclidean_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integration_on_Euclidean_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Integration on Euclidean space</span> </div> </a> <ul id="toc-Integration_on_Euclidean_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integration_over_chains" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integration_over_chains"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Integration over chains</span> </div> </a> <ul id="toc-Integration_over_chains-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integration_using_partitions_of_unity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integration_using_partitions_of_unity"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Integration using partitions of unity</span> </div> </a> <ul id="toc-Integration_using_partitions_of_unity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integration_along_fibers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integration_along_fibers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Integration along fibers</span> </div> </a> <ul id="toc-Integration_along_fibers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stokes&#039;s_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stokes&#039;s_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Stokes's theorem</span> </div> </a> <ul id="toc-Stokes&#039;s_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_with_measures" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_with_measures"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Relation with measures</span> </div> </a> <ul id="toc-Relation_with_measures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Currents" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Currents"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.7</span> <span>Currents</span> </div> </a> <ul id="toc-Currents-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications_in_physics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications_in_physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications in physics</span> </div> </a> <ul id="toc-Applications_in_physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_in_geometric_measure_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications_in_geometric_measure_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Applications in geometric measure theory</span> </div> </a> <ul id="toc-Applications_in_geometric_measure_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Differential form</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B4%D9%83%D9%84_%D8%AA%D9%81%D8%A7%D8%B6%D9%84%D9%8A" title="شكل تفاضلي – Arabic" lang="ar" hreflang="ar" data-title="شكل تفاضلي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Диференциална форма – Bulgarian" lang="bg" hreflang="bg" data-title="Диференциална форма" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Forma_diferencial" title="Forma diferencial – Catalan" lang="ca" hreflang="ca" data-title="Forma diferencial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Diferenci%C3%A1ln%C3%AD_forma" title="Diferenciální forma – Czech" lang="cs" hreflang="cs" data-title="Diferenciální forma" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Differentialform" title="Differentialform – Danish" lang="da" hreflang="da" data-title="Differentialform" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Differentialform" title="Differentialform – German" lang="de" hreflang="de" data-title="Differentialform" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Forma_diferencial" title="Forma diferencial – Spanish" lang="es" hreflang="es" data-title="Forma diferencial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Diferenciala_formo" title="Diferenciala formo – Esperanto" lang="eo" hreflang="eo" data-title="Diferenciala formo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Forma_diferentzial" title="Forma diferentzial – Basque" lang="eu" hreflang="eu" data-title="Forma diferentzial" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Forme_diff%C3%A9rentielle" title="Forme différentielle – French" lang="fr" hreflang="fr" data-title="Forme différentielle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%AF%B8%EB%B6%84_%ED%98%95%EC%8B%9D" title="미분 형식 – Korean" lang="ko" hreflang="ko" data-title="미분 형식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Forma_differenziale" title="Forma differenziale – Italian" lang="it" hreflang="it" data-title="Forma differenziale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%91%D7%A0%D7%99%D7%AA_%D7%93%D7%99%D7%A4%D7%A8%D7%A0%D7%A6%D7%99%D7%90%D7%9C%D7%99%D7%AA" title="תבנית דיפרנציאלית – Hebrew" lang="he" hreflang="he" data-title="תבנית דיפרנציאלית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Differentiaalvorm" title="Differentiaalvorm – Dutch" lang="nl" hreflang="nl" data-title="Differentiaalvorm" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%BD%A2%E5%BC%8F" title="微分形式 – Japanese" lang="ja" hreflang="ja" data-title="微分形式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Differensialform" title="Differensialform – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Differensialform" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Forma_r%C3%B3%C5%BCniczkowa" title="Forma różniczkowa – Polish" lang="pl" hreflang="pl" data-title="Forma różniczkowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Forma_diferencial" title="Forma diferencial – Portuguese" lang="pt" hreflang="pt" data-title="Forma diferencial" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Дифференциальная форма – Russian" lang="ru" hreflang="ru" data-title="Дифференциальная форма" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Differentialform" title="Differentialform – Swedish" lang="sv" hreflang="sv" data-title="Differentialform" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Диференціальна форма – Ukrainian" lang="uk" hreflang="uk" data-title="Диференціальна форма" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%BD%A2%E5%BC%8F" title="微分形式 – Cantonese" lang="yue" hreflang="yue" data-title="微分形式" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%BD%A2%E5%BC%8F" title="微分形式 – Chinese" lang="zh" hreflang="zh" data-title="微分形式" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1047080#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Differential_form" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Differential_form" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Differential_form"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Differential_form&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Differential_form&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Differential_form"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Differential_form&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Differential_form&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Differential_form" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Differential_form" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Differential_form&amp;oldid=1258251863" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Differential_form&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Differential_form&amp;id=1258251863&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDifferential_form"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDifferential_form"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Differential_form&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Differential_form&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1047080" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Exterior_calculus&amp;redirect=no" class="mw-redirect" title="Exterior calculus">Exterior calculus</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Expression that may be integrated over a region</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <b>differential forms</b> provide a unified approach to define <a href="/wiki/Integrand" class="mw-redirect" title="Integrand">integrands</a> over curves, surfaces, solids, and higher-dimensional <a href="/wiki/Manifold" title="Manifold">manifolds</a>. The modern notion of differential forms was pioneered by <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a>. It has many applications, especially in geometry, topology and physics. </p><p>For instance, the expression <span class="texhtml"><i>f</i>(<i>x</i>) <i>dx</i></span> is an example of a <a href="/wiki/1-form" class="mw-redirect" title="1-form"><span class="texhtml">1</span>-form</a>, and can be <a href="/wiki/Integral" title="Integral">integrated</a> over an interval <span class="texhtml">[<i>a</i>, <i>b</i>]</span> contained in the domain of <span class="texhtml"><i>f</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/249ee3fdbced31dfc328ff357f67bb134ca66b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.786ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx.}"></span></dd></dl> <p>Similarly, the expression <span class="texhtml"><i>f</i>(<i>x</i>, <i>y</i>, <i>z</i>) <i>dx</i> ∧ <i>dy</i> + <i>g</i>(<i>x</i>, <i>y</i>, <i>z</i>) <i>dz</i> ∧ <i>dx</i> + <i>h</i>(<i>x</i>, <i>y</i>, <i>z</i>) <i>dy</i> ∧ <i>dz</i></span> is a <b><span class="texhtml">2</span>-form</b> that can be integrated over a <a href="/wiki/Surface_(mathematics)" title="Surface (mathematics)">surface</a> <span class="texhtml"><i>S</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{S}(f(x,y,z)\,dx\wedge dy+g(x,y,z)\,dz\wedge dx+h(x,y,z)\,dy\wedge dz).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>y</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{S}(f(x,y,z)\,dx\wedge dy+g(x,y,z)\,dz\wedge dx+h(x,y,z)\,dy\wedge dz).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a5fd1cbe66af28e60e92c64607746ca87c92e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:60.158ex; height:5.676ex;" alt="{\displaystyle \int _{S}(f(x,y,z)\,dx\wedge dy+g(x,y,z)\,dz\wedge dx+h(x,y,z)\,dy\wedge dz).}"></span></dd></dl> <p>The symbol <span class="texhtml">∧</span> denotes the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a>, sometimes called the <i>wedge product</i>, of two differential forms. Likewise, a <b><span class="texhtml">3</span>-form</b> <span class="texhtml"><i>f</i>(<i>x</i>, <i>y</i>, <i>z</i>) <i>dx</i> ∧ <i>dy</i> ∧ <i>dz</i></span> represents a <a href="/wiki/Volume_element" title="Volume element">volume element</a> that can be integrated over a region of space. In general, a <span class="texhtml mvar" style="font-style:italic;">k</span>-form is an object that may be integrated over a <span class="texhtml mvar" style="font-style:italic;">k</span>-dimensional manifold, and is <a href="/wiki/Homogeneous_polynomial" title="Homogeneous polynomial">homogeneous</a> of degree <span class="texhtml mvar" style="font-style:italic;">k</span> in the coordinate differentials <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx,dy,\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>y</mi> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx,dy,\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d68be24160926d9778b06bf8150ce584165353c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.742ex; height:2.509ex;" alt="{\displaystyle dx,dy,\ldots .}"></span> On an <span class="texhtml"><i>n</i></span>-dimensional manifold, the top-dimensional form (<span class="texhtml"><i>n</i></span>-form) is called a <i><a href="/wiki/Volume_form" title="Volume form">volume form</a></i>. </p><p>The differential forms form an <a href="/wiki/Alternating_algebra" title="Alternating algebra">alternating algebra</a>. This implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dy\wedge dx=-dx\wedge dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>y</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dy\wedge dx=-dx\wedge dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9eca305d04c05506e4b8445007f535639968cfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.906ex; height:2.509ex;" alt="{\displaystyle dy\wedge dx=-dx\wedge dy}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx\wedge dx=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx\wedge dx=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593aa821aee8e3b74928300debf298c2f95db58d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.581ex; height:2.176ex;" alt="{\displaystyle dx\wedge dx=0.}"></span> This alternating property reflects the <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a> of the domain of integration. </p><p>The <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> is an operation on differential forms that, given a <span class="texhtml"><i>k</i></span>-form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>, produces a <span class="texhtml">(<i>k</i>+1)</span>-form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874e9f3ab5a6881add7f4324139b4bd83be29d95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.383ex; height:2.676ex;" alt="{\displaystyle d\varphi .}"></span> This operation extends the <a href="/wiki/Differential_of_a_function" title="Differential of a function">differential of a function</a> (a function can be considered as a <span class="texhtml">0</span>-form, and its differential is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df(x)=f'(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df(x)=f'(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73394585726b10ca394a1c1aea3fef82c85feb05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.422ex; height:3.009ex;" alt="{\displaystyle df(x)=f&#039;(x)dx}"></span>). This allows expressing the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a>, the <a href="/wiki/Divergence_theorem" title="Divergence theorem">divergence theorem</a>, <a href="/wiki/Green%27s_theorem" title="Green&#39;s theorem">Green's theorem</a>, and <a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes' theorem</a> as special cases of a single general result, the <a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">generalized Stokes theorem</a>. </p><p>Differential <span class="texhtml">1</span>-forms are naturally dual to <a href="/wiki/Vector_field" title="Vector field">vector fields</a> on a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a>, and the pairing between vector fields and <span class="texhtml">1</span>-forms is extended to arbitrary differential forms by the <a href="/wiki/Interior_product" title="Interior product">interior product</a>. The algebra of differential forms along with the exterior derivative defined on it is preserved by the <a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">pullback</a> under smooth functions between two manifolds. This feature allows geometrically invariant information to be moved from one space to another via the pullback, provided that the information is expressed in terms of differential forms. As an example, the <a href="/wiki/Change_of_variables_formula" class="mw-redirect" title="Change of variables formula">change of variables formula</a> for integration becomes a simple statement that an integral is preserved under pullback. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Differential forms are part of the field of differential geometry, influenced by linear algebra. Although the notion of a differential is quite old, the initial attempt at an algebraic organization of differential forms is usually credited to <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a> with reference to his 1899 paper.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Some aspects of the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> of differential forms appears in <a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a>'s 1844 work, <i>Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (The Theory of Linear Extension, a New Branch of Mathematics)</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Concept">Concept</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=2" title="Edit section: Concept"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Differential forms provide an approach to <a href="/wiki/Multivariable_calculus" title="Multivariable calculus">multivariable calculus</a> that is independent of <a href="/wiki/Coordinate" class="mw-redirect" title="Coordinate">coordinates</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Integration_and_orientation">Integration and orientation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=3" title="Edit section: Integration and orientation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A differential <span class="texhtml mvar" style="font-style:italic;">k</span>-form can be integrated over an oriented <a href="/wiki/Manifold_(mathematics)" class="mw-redirect" title="Manifold (mathematics)">manifold</a> of dimension <span class="texhtml mvar" style="font-style:italic;">k</span>. A differential <span class="texhtml">1</span>-form can be thought of as measuring an infinitesimal oriented length, or 1-dimensional oriented density. A differential <span class="texhtml">2</span>-form can be thought of as measuring an infinitesimal oriented area, or 2-dimensional oriented density. And so on. </p><p>Integration of differential forms is well-defined only on <a href="/wiki/Orientability" title="Orientability">oriented</a> <a href="/wiki/Manifold_(mathematics)" class="mw-redirect" title="Manifold (mathematics)">manifolds</a>. An example of a 1-dimensional manifold is an interval <span class="texhtml">[<i>a</i>, <i>b</i>]</span>, and intervals can be given an orientation: they are positively oriented if <span class="texhtml"><i>a</i> &lt; <i>b</i></span>, and negatively oriented otherwise. If <span class="texhtml"><i>a</i> &lt; <i>b</i></span> then the integral of the differential <span class="texhtml">1</span>-form <span class="texhtml"><i>f</i>(<i>x</i>) <i>dx</i></span> over the interval <span class="texhtml">[<i>a</i>, <i>b</i>]</span> (with its natural positive orientation) is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac02adeed584466d53dee65f3228ad66939eb58b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.139ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx}"></span></dd></dl> <p>which is the negative of the integral of the same differential form over the same interval, when equipped with the opposite orientation. That is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{b}^{a}f(x)\,dx=-\int _{a}^{b}f(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{b}^{a}f(x)\,dx=-\int _{a}^{b}f(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fa0c45bba6b7237d507c281d2686600ac6e7e1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.383ex; height:6.343ex;" alt="{\displaystyle \int _{b}^{a}f(x)\,dx=-\int _{a}^{b}f(x)\,dx.}"></span></dd></dl> <p>This gives a geometrical context to the <a href="/wiki/Integral#Conventions" title="Integral">conventions</a> for one-dimensional integrals, that the sign changes when the orientation of the interval is reversed. A standard explanation of this in one-variable integration theory is that, when the limits of integration are in the opposite order (<span class="texhtml"><i>b</i> &lt; <i>a</i></span>), the increment <span class="texhtml"><i>dx</i></span> is negative in the direction of integration. </p><p>More generally, an <span class="texhtml mvar" style="font-style:italic;">m</span>-form is an oriented density that can be integrated over an <span class="texhtml mvar" style="font-style:italic;">m</span>-dimensional oriented manifold. (For example, a <span class="texhtml">1</span>-form can be integrated over an oriented curve, a <span class="texhtml">2</span>-form can be integrated over an oriented surface, etc.) If <span class="texhtml mvar" style="font-style:italic;">M</span> is an oriented <span class="texhtml mvar" style="font-style:italic;">m</span>-dimensional manifold, and <span class="texhtml"><i>M</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> is the same manifold with opposite orientation and <span class="texhtml mvar" style="font-style:italic;">ω</span> is an <span class="texhtml mvar" style="font-style:italic;">m</span>-form, then one has: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{M}\omega =-\int _{M'}\omega \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>M</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{M}\omega =-\int _{M'}\omega \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e34c2752dd1295f6cb6c32c04cb05a27fe0cdfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.068ex; height:5.676ex;" alt="{\displaystyle \int _{M}\omega =-\int _{M&#039;}\omega \,.}"></span></dd></dl> <p>These conventions correspond to interpreting the integrand as a differential form, integrated over a <a href="/wiki/Chain_(algebraic_topology)" title="Chain (algebraic topology)">chain</a>. In <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a>, by contrast, one interprets the integrand as a function <span class="texhtml mvar" style="font-style:italic;">f</span> with respect to a measure <span class="texhtml mvar" style="font-style:italic;">μ</span> and integrates over a subset <span class="texhtml mvar" style="font-style:italic;">A</span>, without any notion of orientation; one writes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{A}f\,d\mu =\int _{[a,b]}f\,d\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>f</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>f</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{A}f\,d\mu =\int _{[a,b]}f\,d\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511cfc5df1d72c9db9323c6d97c4cfc3548bea8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:19.278ex; height:3.676ex;" alt="{\textstyle \int _{A}f\,d\mu =\int _{[a,b]}f\,d\mu }"></span> to indicate integration over a subset <span class="texhtml mvar" style="font-style:italic;">A</span>. This is a minor distinction in one dimension, but becomes subtler on higher-dimensional manifolds; see <a href="#Relation_with_measures">below</a> for details. </p><p>Making the notion of an oriented density precise, and thus of a differential form, involves the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a>. The differentials of a set of coordinates, <span class="texhtml"><i>dx</i><sup>1</sup></span>, ..., <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> can be used as a basis for all <span class="texhtml">1</span>-forms. Each of these represents a <a href="/wiki/Covector" class="mw-redirect" title="Covector">covector</a> at each point on the manifold that may be thought of as measuring a small displacement in the corresponding coordinate direction. A general <span class="texhtml">1</span>-form is a linear combination of these differentials at every point on the manifold: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}\,dx^{1}+\cdots +f_{n}\,dx^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}\,dx^{1}+\cdots +f_{n}\,dx^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b845acf139ac10d16db75a95d81f6d19c283f932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.74ex; height:3.009ex;" alt="{\displaystyle f_{1}\,dx^{1}+\cdots +f_{n}\,dx^{n},}"></span></dd></dl> <p>where the <span class="texhtml"><i>f</i><sub><i>k</i></sub> = <i>f</i><sub><i>k</i></sub>(<i>x</i><sup>1</sup>, ... , <i>x</i><sup><i>n</i></sup>)</span> are functions of all the coordinates. A differential <span class="texhtml">1</span>-form is integrated along an oriented curve as a line integral. </p><p>The expressions <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span>, where <span class="texhtml"><i>i</i> &lt; <i>j</i></span> can be used as a basis at every point on the manifold for all <span class="texhtml">2</span>-forms. This may be thought of as an infinitesimal oriented square parallel to the <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span></span>–<span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span>-plane. A general <span class="texhtml">2</span>-form is a linear combination of these at every point on the manifold: <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{1\leq i&lt;j\leq n}f_{i,j}\,dx^{i}\wedge dx^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{1\leq i&lt;j\leq n}f_{i,j}\,dx^{i}\wedge dx^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1104e81454c88e5e0c0c16e63cab911da6af12b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:22.806ex; height:3.509ex;" alt="{\textstyle \sum _{1\leq i&lt;j\leq n}f_{i,j}\,dx^{i}\wedge dx^{j}}"></span>,</span> and it is integrated just like a surface integral. </p><p>A fundamental operation defined on differential forms is the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a> (the symbol is the <a href="/wiki/Wedge_(symbol)" title="Wedge (symbol)">wedge</a> <span class="texhtml">∧</span>). This is similar to the <a href="/wiki/Cross_product" title="Cross product">cross product</a> from vector calculus, in that it is an alternating product. For instance, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx^{1}\wedge dx^{2}=-dx^{2}\wedge dx^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx^{1}\wedge dx^{2}=-dx^{2}\wedge dx^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e07cd976f309e282a7fe8fc43efa5cd9e618e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.471ex; height:2.843ex;" alt="{\displaystyle dx^{1}\wedge dx^{2}=-dx^{2}\wedge dx^{1}}"></span></dd></dl> <p>because the square whose first side is <span class="texhtml"><i>dx</i><sup>1</sup></span> and second side is <span class="texhtml"><i>dx</i><sup>2</sup></span> is to be regarded as having the opposite orientation as the square whose first side is <span class="texhtml"><i>dx</i><sup>2</sup></span> and whose second side is <span class="texhtml"><i>dx</i><sup>1</sup></span>. This is why we only need to sum over expressions <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span>, with <span class="texhtml"><i>i</i> &lt; <i>j</i></span>; for example: <span class="texhtml"><i>a</i>(<i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span>) + <i>b</i>(<i>dx</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span> ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span>) = (<i>a</i> − <i>b</i>) <i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span>. The exterior product allows higher-degree differential forms to be built out of lower-degree ones, in much the same way that the <a href="/wiki/Cross_product" title="Cross product">cross product</a> in vector calculus allows one to compute the area vector of a parallelogram from vectors pointing up the two sides. Alternating also implies that <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> = 0</span>, in the same way that the cross product of parallel vectors, whose magnitude is the area of the parallelogram spanned by those vectors, is zero. In higher dimensions, <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i><sub>1</sub></sup></span> ∧ ⋅⋅⋅ ∧ <i>dx</i><span style="padding-left:0.12em;"><sup><i>i</i><sub><i>m</i></sub></sup></span> = 0</span> if any two of the indices <span class="texhtml"><i>i</i><sub>1</sub></span>, ..., <span class="texhtml"><i>i</i><sub><i>m</i></sub></span> are equal, in the same way that the "volume" enclosed by a <a href="/wiki/Parallelepiped#Parallelotope" title="Parallelepiped">parallelotope</a> whose edge vectors are <a href="/wiki/Linear_independence" title="Linear independence">linearly dependent</a> is zero. </p> <div class="mw-heading mw-heading3"><h3 id="Multi-index_notation">Multi-index notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=4" title="Edit section: Multi-index notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A common notation for the wedge product of elementary <span class="texhtml mvar" style="font-style:italic;">k</span>-forms is so called <a href="/wiki/Multi-index_notation" title="Multi-index notation">multi-index notation</a>: in an <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional context, for <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=(i_{1},i_{2},\ldots ,i_{k}),1\leq i_{1}&lt;i_{2}&lt;\cdots &lt;i_{k}\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=(i_{1},i_{2},\ldots ,i_{k}),1\leq i_{1}&lt;i_{2}&lt;\cdots &lt;i_{k}\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22321587b6fcbbb6df12ad4ee29b20e57821bf06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.307ex; height:2.843ex;" alt="{\displaystyle I=(i_{1},i_{2},\ldots ,i_{k}),1\leq i_{1}&lt;i_{2}&lt;\cdots &lt;i_{k}\leq n}"></span>,</span> we define <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle dx^{I}:=dx^{i_{1}}\wedge \cdots \wedge dx^{i_{k}}=\bigwedge _{i\in I}dx^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msup> <mo>:=</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x22C0;<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle dx^{I}:=dx^{i_{1}}\wedge \cdots \wedge dx^{i_{k}}=\bigwedge _{i\in I}dx^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc974ca67fffe1d9129d932c495c04aa319d83f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.113ex; height:3.176ex;" alt="{\textstyle dx^{I}:=dx^{i_{1}}\wedge \cdots \wedge dx^{i_{k}}=\bigwedge _{i\in I}dx^{i}}"></span>.</span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Another useful notation is obtained by defining the set of all strictly increasing multi-indices of length <span class="texhtml mvar" style="font-style:italic;">k</span>, in a space of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>, denoted <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {J}}_{k,n}:=\{I=(i_{1},\ldots ,i_{k}):1\leq i_{1}&lt;i_{2}&lt;\cdots &lt;i_{k}\leq n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>I</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {J}}_{k,n}:=\{I=(i_{1},\ldots ,i_{k}):1\leq i_{1}&lt;i_{2}&lt;\cdots &lt;i_{k}\leq n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec06bf7dd41053a257d829949b55b648e36871dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:53.498ex; height:3.009ex;" alt="{\displaystyle {\mathcal {J}}_{k,n}:=\{I=(i_{1},\ldots ,i_{k}):1\leq i_{1}&lt;i_{2}&lt;\cdots &lt;i_{k}\leq n\}}"></span>.</span> Then locally (wherever the coordinates apply), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{dx^{I}\}_{I\in {\mathcal {J}}_{k,n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msup> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{dx^{I}\}_{I\in {\mathcal {J}}_{k,n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5ffe1d0e9cdb3b922c902f16f816a62b6b1608a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.234ex; height:3.509ex;" alt="{\displaystyle \{dx^{I}\}_{I\in {\mathcal {J}}_{k,n}}}"></span> spans the space of differential <span class="texhtml mvar" style="font-style:italic;">k</span>-forms in a manifold <span class="texhtml mvar" style="font-style:italic;">M</span> of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>, when viewed as a module over the ring <span class="texhtml"><i>C</i><sup>∞</sup>(<i>M</i>)</span> of smooth functions on <span class="texhtml mvar" style="font-style:italic;">M</span>. By calculating the size of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {J}}_{k,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {J}}_{k,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62fd0fe22a036366a00d79844fd94819e2102dda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.108ex; height:2.843ex;" alt="{\displaystyle {\mathcal {J}}_{k,n}}"></span> combinatorially, the module of <span class="texhtml mvar" style="font-style:italic;">k</span>-forms on an <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional manifold, and in general space of <span class="texhtml mvar" style="font-style:italic;">k</span>-covectors on an <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional vector space, is <span class="texhtml mvar" style="font-style:italic;">n</span>&#160;choose&#160;<span class="texhtml mvar" style="font-style:italic;">k</span>: <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |{\mathcal {J}}_{k,n}|={\binom {n}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |{\mathcal {J}}_{k,n}|={\binom {n}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b141636d214173e51087b43c3ca7ae3be41e782a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.616ex; height:3.176ex;" alt="{\textstyle |{\mathcal {J}}_{k,n}|={\binom {n}{k}}}"></span>.</span> This also demonstrates that there are no nonzero differential forms of degree greater than the dimension of the underlying manifold. </p> <div class="mw-heading mw-heading3"><h3 id="The_exterior_derivative">The exterior derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=5" title="Edit section: The exterior derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to the exterior product, there is also the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> operator <span class="texhtml"><i>d</i></span>. The exterior derivative of a differential form is a generalization of the <a href="/wiki/Differential_of_a_function" title="Differential of a function">differential of a function</a>, in the sense that the exterior derivative of <span class="texhtml"><i>f</i> ∈ <i>C</i><sup>∞</sup>(<i>M</i>) = Ω<sup>0</sup>(<i>M</i>)</span> is exactly the differential of <span class="texhtml mvar" style="font-style:italic;">f</span>. When generalized to higher forms, if <span class="texhtml"><i>ω</i> = <i>f</i> <i>dx</i><span style="padding-left:0.12em;"><sup><i>I</i></sup></span></span> is a simple <span class="texhtml mvar" style="font-style:italic;">k</span>-form, then its exterior derivative <span class="texhtml"><i>dω</i></span> is a <span class="texhtml">(<i>k</i> + 1)</span>-form defined by taking the differential of the coefficient functions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\omega =\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}\wedge dx^{I}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\omega =\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}\wedge dx^{I}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d98b7900aa873823e3d88d0c34c5ab3022aa57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.354ex; height:6.843ex;" alt="{\displaystyle d\omega =\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}\wedge dx^{I}.}"></span></dd></dl> <p>with extension to general <span class="texhtml mvar" style="font-style:italic;">k</span>-forms through linearity: if <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \tau =\sum _{I\in {\mathcal {J}}_{k,n}}a_{I}\,dx^{I}\in \Omega ^{k}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \tau =\sum _{I\in {\mathcal {J}}_{k,n}}a_{I}\,dx^{I}\in \Omega ^{k}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/216b25d141ff4db0ebacb2cdb14837d140e99d72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:28.587ex; height:3.676ex;" alt="{\textstyle \tau =\sum _{I\in {\mathcal {J}}_{k,n}}a_{I}\,dx^{I}\in \Omega ^{k}(M)}"></span>,</span> then its exterior derivative is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\tau =\sum _{I\in {\mathcal {J}}_{k,n}}\left(\sum _{j=1}^{n}{\frac {\partial a_{I}}{\partial x^{j}}}\,dx^{j}\right)\wedge dx^{I}\in \Omega ^{k+1}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\tau =\sum _{I\in {\mathcal {J}}_{k,n}}\left(\sum _{j=1}^{n}{\frac {\partial a_{I}}{\partial x^{j}}}\,dx^{j}\right)\wedge dx^{I}\in \Omega ^{k+1}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af228d587f8071a18c142615d23b4ecb0b2d63c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:44.833ex; height:8.009ex;" alt="{\displaystyle d\tau =\sum _{I\in {\mathcal {J}}_{k,n}}\left(\sum _{j=1}^{n}{\frac {\partial a_{I}}{\partial x^{j}}}\,dx^{j}\right)\wedge dx^{I}\in \Omega ^{k+1}(M)}"></span></dd></dl> <p>In <span class="texhtml"><b>R</b><sup>3</sup></span>, with the <a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a>, the exterior derivative corresponds to <a href="/wiki/Gradient" title="Gradient">gradient</a>, <a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">curl</a>, and <a href="/wiki/Divergence" title="Divergence">divergence</a>, although this correspondence, like the cross product, does not generalize to higher dimensions, and should be treated with some caution. </p><p>The exterior derivative itself applies in an arbitrary finite number of dimensions, and is a flexible and powerful tool with wide application in <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, <a href="/wiki/Differential_topology" title="Differential topology">differential topology</a>, and many areas in physics. Of note, although the above definition of the exterior derivative was defined with respect to local coordinates, it can be defined in an entirely coordinate-free manner, as an <a href="/wiki/Derivation_(differential_algebra)" title="Derivation (differential algebra)">antiderivation</a> of degree 1 on the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> of differential forms. The benefit of this more general approach is that it allows for a natural coordinate-free approach to integrate on <a href="/wiki/Manifold" title="Manifold">manifolds</a>. It also allows for a natural generalization of the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a>, called the (generalized) <a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes' theorem</a>, which is a central result in the theory of integration on manifolds. </p> <div class="mw-heading mw-heading3"><h3 id="Differential_calculus">Differential calculus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=6" title="Edit section: Differential calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">U</span> be an <a href="/wiki/Open_set" title="Open set">open set</a> in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>. A differential <span class="texhtml">0</span>-form ("zero-form") is defined to be a <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth function</a> <span class="texhtml mvar" style="font-style:italic;">f</span> on <span class="texhtml mvar" style="font-style:italic;">U</span> – the set of which is denoted <span class="texhtml"><i>C</i><sup>∞</sup>(<i>U</i>)</span>. If <span class="texhtml"><i>v</i></span> is any vector in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, then <span class="texhtml"><i>f</i></span> has a <a href="/wiki/Directional_derivative" title="Directional derivative">directional derivative</a> <span class="texhtml">∂<sub><b>v</b></sub> <i>f</i></span>, which is another function on <span class="texhtml mvar" style="font-style:italic;">U</span> whose value at a point <span class="texhtml"><i>p</i> ∈ <i>U</i></span> is the rate of change (at <span class="texhtml mvar" style="font-style:italic;">p</span>) of <span class="texhtml mvar" style="font-style:italic;">f</span> in the <span class="texhtml"><b>v</b></span> direction: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\partial _{\mathbf {v} }f)(p)=\left.{\frac {d}{dt}}f(p+t\mathbf {v} )\right|_{t=0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\partial _{\mathbf {v} }f)(p)=\left.{\frac {d}{dt}}f(p+t\mathbf {v} )\right|_{t=0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d23a223c412bdd6b5b9f65410a80206dd0ab0192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.09ex; height:5.843ex;" alt="{\displaystyle (\partial _{\mathbf {v} }f)(p)=\left.{\frac {d}{dt}}f(p+t\mathbf {v} )\right|_{t=0}.}"></span></dd></dl> <p>(This notion can be extended pointwise to the case that <span class="texhtml"><b>v</b></span> is a <a href="/wiki/Vector_field" title="Vector field">vector field</a> on <span class="texhtml mvar" style="font-style:italic;">U</span> by evaluating <span class="texhtml"><b>v</b></span> at the point <span class="texhtml mvar" style="font-style:italic;">p</span> in the definition.) </p><p>In particular, if <span class="texhtml"><b>v</b> = <b>e</b><sub><i>j</i></sub></span> is the <span class="texhtml mvar" style="font-style:italic;">j</span>th <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vector</a> then <span class="texhtml">∂<sub><b>v</b></sub> <i>f</i></span> is the <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivative</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> with respect to the <span class="texhtml mvar" style="font-style:italic;">j</span>th coordinate vector, i.e., <span class="texhtml">∂<i>f</i> / ∂<i>x</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span>, where <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup>1</sup></span></span>, <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup>2</sup></span></span>, ..., <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> are the coordinate vectors in <span class="texhtml mvar" style="font-style:italic;">U</span>. By their very definition, partial derivatives depend upon the choice of coordinates: if new coordinates <span class="texhtml"><i>y</i><span style="padding-left:0.12em;"><sup>1</sup></span></span>, <span class="texhtml"><i>y</i><span style="padding-left:0.12em;"><sup>2</sup></span></span>, ..., <span class="texhtml"><i>y</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> are introduced, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial f}{\partial x^{j}}}=\sum _{i=1}^{n}{\frac {\partial y^{i}}{\partial x^{j}}}{\frac {\partial f}{\partial y^{i}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial f}{\partial x^{j}}}=\sum _{i=1}^{n}{\frac {\partial y^{i}}{\partial x^{j}}}{\frac {\partial f}{\partial y^{i}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e86cfd6843c91b0a094cc7ad1a741a1a06c0909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.389ex; height:6.843ex;" alt="{\displaystyle {\frac {\partial f}{\partial x^{j}}}=\sum _{i=1}^{n}{\frac {\partial y^{i}}{\partial x^{j}}}{\frac {\partial f}{\partial y^{i}}}.}"></span></dd></dl> <p>The first idea leading to differential forms is the observation that <span class="texhtml">∂<sub><b>v</b></sub> <i>f</i> (<i>p</i>)</span> is a <a href="/wiki/Linear_function" title="Linear function">linear function</a> of <span class="texhtml"><i>v</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(\partial _{\mathbf {v} +\mathbf {w} }f)(p)&amp;=(\partial _{\mathbf {v} }f)(p)+(\partial _{\mathbf {w} }f)(p)\\(\partial _{c\mathbf {v} }f)(p)&amp;=c(\partial _{\mathbf {v} }f)(p)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(\partial _{\mathbf {v} +\mathbf {w} }f)(p)&amp;=(\partial _{\mathbf {v} }f)(p)+(\partial _{\mathbf {w} }f)(p)\\(\partial _{c\mathbf {v} }f)(p)&amp;=c(\partial _{\mathbf {v} }f)(p)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41c4ca739864c70f15f2998d2ec1eb607e7d0ca8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.295ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}(\partial _{\mathbf {v} +\mathbf {w} }f)(p)&amp;=(\partial _{\mathbf {v} }f)(p)+(\partial _{\mathbf {w} }f)(p)\\(\partial _{c\mathbf {v} }f)(p)&amp;=c(\partial _{\mathbf {v} }f)(p)\end{aligned}}}"></span></dd></dl> <p>for any vectors <span class="texhtml"><b>v</b></span>, <span class="texhtml"><b>w</b></span> and any real number <span class="texhtml mvar" style="font-style:italic;">c</span>. At each point <i>p</i>, this <a href="/wiki/Linear_map" title="Linear map">linear map</a> from <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> to <span class="texhtml"><b>R</b></span> is denoted <span class="texhtml"><i>df</i><sub><i>p</i></sub></span> and called the <a href="/wiki/Derivative" title="Derivative">derivative</a> or <a href="/wiki/Differential_of_a_function" title="Differential of a function">differential</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> at <span class="texhtml mvar" style="font-style:italic;">p</span>. Thus <span class="texhtml"><i>df</i><sub><i>p</i></sub>(<b>v</b>) = ∂<sub><b>v</b></sub> <i>f</i> (<i>p</i>)</span>. Extended over the whole set, the object <span class="texhtml"><i>df</i></span> can be viewed as a function that takes a vector field on <span class="texhtml mvar" style="font-style:italic;">U</span>, and returns a real-valued function whose value at each point is the derivative along the vector field of the function <span class="texhtml mvar" style="font-style:italic;">f</span>. Note that at each <span class="texhtml mvar" style="font-style:italic;">p</span>, the differential <span class="texhtml"><i>df</i><sub><i>p</i></sub></span> is not a real number, but a linear functional on tangent vectors, and a prototypical example of a differential <a href="/wiki/1-form" class="mw-redirect" title="1-form"><span class="texhtml">1</span>-form</a>. </p><p>Since any vector <span class="texhtml"><b>v</b></span> is a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> <span class="texhtml">Σ <i>v</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span><b>e</b><sub><i>j</i></sub></span> of its <a href="/wiki/Euclidean_vector#Decomposition" title="Euclidean vector">components</a>, <span class="texhtml"><i>df</i></span> is uniquely determined by <span class="texhtml"><i>df</i><sub><i>p</i></sub>(<b>e</b><sub><i>j</i></sub>)</span> for each <span class="texhtml"><i>j</i></span> and each <span class="texhtml"><i>p</i> ∈ <i>U</i></span>, which are just the partial derivatives of <span class="texhtml mvar" style="font-style:italic;">f</span> on <span class="texhtml mvar" style="font-style:italic;">U</span>. Thus <span class="texhtml"><i>df</i></span> provides a way of encoding the partial derivatives of <span class="texhtml mvar" style="font-style:italic;">f</span>. It can be decoded by noticing that the coordinates <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup>1</sup></span></span>, <span class="texhtml"><i>x</i><sup>2</sup></span>, ..., <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span> are themselves functions on <span class="texhtml mvar" style="font-style:italic;">U</span>, and so define differential <span class="texhtml">1</span>-forms <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup>1</sup></span></span>, <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup>2</sup></span></span>, ..., <span class="texhtml"><i>dx</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span>. Let <span class="texhtml"><i>f</i> = <i>x</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span></span>. Since <span class="texhtml">∂<i>x</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span> / ∂<i>x</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span> = <i>δ</i><sub><i>ij</i></sub></span>, the <a href="/wiki/Kronecker_delta_function" class="mw-redirect" title="Kronecker delta function">Kronecker delta function</a>, it follows that </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d54e1d89b068cef9858a9cc2350fad62cd741e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.998ex; height:6.843ex;" alt="{\displaystyle df=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_*" class="reference nourlexpansion" style="font-weight:bold;">*</span>)</b></td></tr></tbody></table> <p>The meaning of this expression is given by evaluating both sides at an arbitrary point <span class="texhtml mvar" style="font-style:italic;">p</span>: on the right hand side, the sum is defined "<a href="/wiki/Pointwise" title="Pointwise">pointwise</a>", so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df_{p}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}(p)(dx^{i})_{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df_{p}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}(p)(dx^{i})_{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08036ae5562d74daa5fde37bd9169bdce438e8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.378ex; height:6.843ex;" alt="{\displaystyle df_{p}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}(p)(dx^{i})_{p}.}"></span></dd></dl> <p>Applying both sides to <span class="texhtml"><i>e</i><sub><i>j</i></sub></span>, the result on each side is the <span class="texhtml mvar" style="font-style:italic;">j</span>th partial derivative of <span class="texhtml mvar" style="font-style:italic;">f</span> at <span class="texhtml mvar" style="font-style:italic;">p</span>. Since <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">j</span> were arbitrary, this proves the formula <b><a href="#math_*">(*)</a></b>. </p><p>More generally, for any smooth functions <span class="texhtml"><i>g</i><sub><i>i</i></sub></span> and <span class="texhtml"><i>h</i><sub><i>i</i></sub></span> on <span class="texhtml mvar" style="font-style:italic;">U</span>, we define the differential <span class="texhtml">1</span>-form <span class="texhtml"><i>α</i> = Σ<sub><i>i</i></sub> <i>g</i><sub><i>i</i></sub> <i>dh</i><sub><i>i</i></sub></span> pointwise by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{p}=\sum _{i}g_{i}(p)(dh_{i})_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{p}=\sum _{i}g_{i}(p)(dh_{i})_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01434a640cebe6ca8ebd6e38956c498822310d40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.498ex; height:5.509ex;" alt="{\displaystyle \alpha _{p}=\sum _{i}g_{i}(p)(dh_{i})_{p}}"></span></dd></dl> <p>for each <span class="texhtml"><i>p</i> ∈ <i>U</i></span>. Any differential <span class="texhtml">1</span>-form arises this way, and by using <b><a href="#math_*">(*)</a></b> it follows that any differential <span class="texhtml">1</span>-form <span class="texhtml mvar" style="font-style:italic;">α</span> on <span class="texhtml mvar" style="font-style:italic;">U</span> may be expressed in coordinates as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\sum _{i=1}^{n}f_{i}\,dx^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\sum _{i=1}^{n}f_{i}\,dx^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b88eb5c2fedd9a3c3c24030d1c805f460f7a32f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.999ex; height:6.843ex;" alt="{\displaystyle \alpha =\sum _{i=1}^{n}f_{i}\,dx^{i}}"></span></dd></dl> <p>for some smooth functions <span class="texhtml"><i>f</i><sub><i>i</i></sub></span> on <span class="texhtml mvar" style="font-style:italic;">U</span>. </p><p>The second idea leading to differential forms arises from the following question: given a differential <span class="texhtml">1</span>-form <span class="texhtml mvar" style="font-style:italic;">α</span> on <span class="texhtml mvar" style="font-style:italic;">U</span>, when does there exist a function <span class="texhtml mvar" style="font-style:italic;">f</span> on <span class="texhtml mvar" style="font-style:italic;">U</span> such that <span class="texhtml"><i>α</i> = <i>df</i></span>? The above expansion reduces this question to the search for a function <span class="texhtml mvar" style="font-style:italic;">f</span> whose partial derivatives <span class="texhtml">∂<i>f</i> / ∂<i>x</i><span style="padding-left:0.12em;"><sup><i>i</i></sup></span></span> are equal to <span class="texhtml mvar" style="font-style:italic;">n</span> given functions <span class="texhtml"><i>f</i><sub><i>i</i></sub></span>. For <span class="texhtml"><i>n</i> &gt; 1</span>, such a function does not always exist: any smooth function <span class="texhtml mvar" style="font-style:italic;">f</span> satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}f}{\partial x^{i}\,\partial x^{j}}}={\frac {\partial ^{2}f}{\partial x^{j}\,\partial x^{i}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}f}{\partial x^{i}\,\partial x^{j}}}={\frac {\partial ^{2}f}{\partial x^{j}\,\partial x^{i}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b11659d7978d50713246fa58cf41e038831f0426" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.202ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial ^{2}f}{\partial x^{i}\,\partial x^{j}}}={\frac {\partial ^{2}f}{\partial x^{j}\,\partial x^{i}}},}"></span></dd></dl> <p>so it will be impossible to find such an <span class="texhtml mvar" style="font-style:italic;">f</span> unless </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial f_{j}}{\partial x^{i}}}-{\frac {\partial f_{i}}{\partial x^{j}}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial f_{j}}{\partial x^{i}}}-{\frac {\partial f_{i}}{\partial x^{j}}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7375dec5415d7c35bfdc84086771d839714ef075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.778ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial f_{j}}{\partial x^{i}}}-{\frac {\partial f_{i}}{\partial x^{j}}}=0}"></span></dd></dl> <p>for all <span class="texhtml mvar" style="font-style:italic;">i</span> and <span class="texhtml mvar" style="font-style:italic;">j</span>. </p><p>The <a href="/wiki/Skew_symmetry" class="mw-redirect" title="Skew symmetry">skew-symmetry</a> of the left hand side in <span class="texhtml mvar" style="font-style:italic;">i</span> and <span class="texhtml mvar" style="font-style:italic;">j</span> suggests introducing an antisymmetric product <span class="texhtml">∧</span> on differential <span class="texhtml">1</span>-forms, the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a>, so that these equations can be combined into a single condition </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89a8d9a7326d6ffed45c689d2bf06be81faa3673" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:23.151ex; height:7.176ex;" alt="{\displaystyle \sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}=0,}"></span></dd></dl> <p>where <span class="texhtml">∧</span> is defined so that: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx^{i}\wedge dx^{j}=-dx^{j}\wedge dx^{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx^{i}\wedge dx^{j}=-dx^{j}\wedge dx^{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e6564b779e9db06381a8da5b697cf53d775c174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.32ex; height:2.843ex;" alt="{\displaystyle dx^{i}\wedge dx^{j}=-dx^{j}\wedge dx^{i}.}"></span></dd></dl> <p>This is an example of a differential <span class="texhtml">2</span>-form. This <span class="texhtml">2</span>-form is called the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> <span class="texhtml"><i>dα</i></span> of <span class="texhtml"><i>α</i> = Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>j</i>=1</sub></span></span> <i>f</i><sub><i>j</i></sub> <i>dx</i><span style="padding-left:0.12em;"><sup><i>j</i></sup></span></span>. It is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\alpha =\sum _{j=1}^{n}df_{j}\wedge dx^{j}=\sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>d</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\alpha =\sum _{j=1}^{n}df_{j}\wedge dx^{j}=\sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3944d7e9218f0105e86018a19f6f90c8228fe757" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.836ex; height:7.176ex;" alt="{\displaystyle d\alpha =\sum _{j=1}^{n}df_{j}\wedge dx^{j}=\sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}.}"></span></dd></dl> <p>To summarize: <span class="texhtml"><i>dα</i> = 0</span> is a necessary condition for the existence of a function <span class="texhtml mvar" style="font-style:italic;">f</span> with <span class="texhtml"><i>α</i> = <i>df</i></span>. </p><p>Differential <span class="texhtml">0</span>-forms, <span class="texhtml">1</span>-forms, and <span class="texhtml">2</span>-forms are special cases of differential forms. For each <span class="texhtml mvar" style="font-style:italic;">k</span>, there is a space of differential <span class="texhtml mvar" style="font-style:italic;">k</span>-forms, which can be expressed in terms of the coordinates as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i_{1},i_{2}\ldots i_{k}=1}^{n}f_{i_{1}i_{2}\ldots i_{k}}\,dx^{i_{1}}\wedge dx^{i_{2}}\wedge \cdots \wedge dx^{i_{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i_{1},i_{2}\ldots i_{k}=1}^{n}f_{i_{1}i_{2}\ldots i_{k}}\,dx^{i_{1}}\wedge dx^{i_{2}}\wedge \cdots \wedge dx^{i_{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad6a1542e589f0d6b94e2cc2b7554db7618efb95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.034ex; height:7.176ex;" alt="{\displaystyle \sum _{i_{1},i_{2}\ldots i_{k}=1}^{n}f_{i_{1}i_{2}\ldots i_{k}}\,dx^{i_{1}}\wedge dx^{i_{2}}\wedge \cdots \wedge dx^{i_{k}}}"></span></dd></dl> <p>for a collection of functions <span class="texhtml"><i>f</i><sub><i>i</i><sub>1</sub><i>i</i><sub>2</sub>⋅⋅⋅<i>i</i><sub><i>k</i></sub></sub></span>. Antisymmetry, which was already present for <span class="texhtml">2</span>-forms, makes it possible to restrict the sum to those sets of indices for which <span class="texhtml"><i>i</i><sub>1</sub> &lt; <i>i</i><sub>2</sub> &lt; ... &lt; <i>i</i><sub><i>k</i>−1</sub> &lt; <i>i</i><sub><i>k</i></sub></span>. </p><p>Differential forms can be multiplied together using the exterior product, and for any differential <span class="texhtml mvar" style="font-style:italic;">k</span>-form <span class="texhtml mvar" style="font-style:italic;">α</span>, there is a differential <span class="texhtml">(<i>k</i> + 1)</span>-form <span class="texhtml"><i>dα</i></span> called the exterior derivative of <span class="texhtml mvar" style="font-style:italic;">α</span>. </p><p>Differential forms, the exterior product and the exterior derivative are independent of a choice of coordinates. Consequently, they may be defined on any <a href="/wiki/Smooth_manifold" class="mw-redirect" title="Smooth manifold">smooth manifold</a> <span class="texhtml mvar" style="font-style:italic;">M</span>. One way to do this is cover <span class="texhtml mvar" style="font-style:italic;">M</span> with <a href="/wiki/Coordinate_chart" class="mw-redirect" title="Coordinate chart">coordinate charts</a> and define a differential <span class="texhtml mvar" style="font-style:italic;">k</span>-form on <span class="texhtml mvar" style="font-style:italic;">M</span> to be a family of differential <span class="texhtml mvar" style="font-style:italic;">k</span>-forms on each chart which agree on the overlaps. However, there are more intrinsic definitions which make the independence of coordinates manifest. </p> <div class="mw-heading mw-heading2"><h2 id="Intrinsic_definitions">Intrinsic definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=7" title="Edit section: Intrinsic definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></div> <p>Let <span class="texhtml"><i>M</i></span> be a <a href="/wiki/Smooth_manifold" class="mw-redirect" title="Smooth manifold">smooth manifold</a>. A smooth differential form of degree <span class="texhtml"><i>k</i></span> is a <a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">smooth section</a> of the <span class="texhtml"><i>k</i></span>th <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior power</a> of the <a href="/wiki/Cotangent_bundle" title="Cotangent bundle">cotangent bundle</a> of <span class="texhtml"><i>M</i></span>. The set of all differential <span class="texhtml"><i>k</i></span>-forms on a manifold <span class="texhtml"><i>M</i></span> is a <a href="/wiki/Vector_space" title="Vector space">vector space</a>, often denoted <span class="texhtml">Ω<sup><i>k</i></sup>(<i>M</i>)</span>. </p><p>The definition of a differential form may be restated as follows. At any point <span class="texhtml"><i>p</i> ∈ <i>M</i></span>, a <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>β</i></span> defines an element </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{p}\in {\textstyle \bigwedge }^{k}T_{p}^{*}M,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{p}\in {\textstyle \bigwedge }^{k}T_{p}^{*}M,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/152a0e73c538eaa2072cb86b54cbf550b16953f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.103ex; height:3.509ex;" alt="{\displaystyle \beta _{p}\in {\textstyle \bigwedge }^{k}T_{p}^{*}M,}"></span></dd></dl> <p>where <span class="texhtml"><i>T</i><sub><i>p</i></sub><i>M</i></span> is the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> to <span class="texhtml"><i>M</i></span> at <span class="texhtml"><i>p</i></span> and <span class="texhtml"><i>T</i><sub><i>p</i></sub><sup>*</sup><i>M</i></span> is its <a href="/wiki/Dual_space" title="Dual space">dual space</a>. This space is <span class="cleanup-needed-content" style="padding-left:0.1em; padding-right:0.1em; color:var(--color-subtle, #54595d); border:1px solid var(--border-color-subtle, #c8ccd1);"><a href="/wiki/Natural_isomorphism" class="mw-redirect" title="Natural isomorphism">naturally isomorphic</a><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></span><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="Please specify the isomorphism. The linked MO answer does not give the isomorphism explicitly and is unclear for non-specialists. The definition of the isomorphism needs to be clear to be able to chose between two commonly used definitions of the wedge product. (December 2021)">clarification needed</span></a></i>&#93;</sup> to the fiber at <span class="texhtml"><i>p</i></span> of the dual bundle of the <span class="texhtml"><i>k</i></span>th exterior power of the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> of <span class="texhtml"><i>M</i></span>. That is, <span class="texhtml"><i>β</i></span> is also a linear functional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \beta _{p}\colon {\textstyle \bigwedge }^{k}T_{p}M\to \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \beta _{p}\colon {\textstyle \bigwedge }^{k}T_{p}M\to \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b807751d6ba0965b06cdf8844aec109bacd5e4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.91ex; height:3.509ex;" alt="{\textstyle \beta _{p}\colon {\textstyle \bigwedge }^{k}T_{p}M\to \mathbf {R} }"></span>, i.e. the dual of the <span class="texhtml"><i>k</i></span>th exterior power is isomorphic to the <span class="texhtml"><i>k</i></span>th exterior power of the dual: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle \bigwedge }^{k}T_{p}^{*}M\cong {\Big (}{\textstyle \bigwedge }^{k}T_{p}M{\Big )}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>M</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle \bigwedge }^{k}T_{p}^{*}M\cong {\Big (}{\textstyle \bigwedge }^{k}T_{p}M{\Big )}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23b4b8a1779c19751365f09d19a9d6ebd9a8522f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.053ex; height:4.843ex;" alt="{\displaystyle {\textstyle \bigwedge }^{k}T_{p}^{*}M\cong {\Big (}{\textstyle \bigwedge }^{k}T_{p}M{\Big )}^{*}}"></span></dd></dl> <p>By the universal property of exterior powers, this is equivalently an <a href="/wiki/Alternating_form" class="mw-redirect" title="Alternating form">alternating</a> <a href="/wiki/Multilinear_map" title="Multilinear map">multilinear map</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{p}\colon \bigoplus _{n=1}^{k}T_{p}M\to \mathbf {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <munderover> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{p}\colon \bigoplus _{n=1}^{k}T_{p}M\to \mathbf {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b2cac7957e7382e777204e16471b133445fd11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.43ex; height:7.343ex;" alt="{\displaystyle \beta _{p}\colon \bigoplus _{n=1}^{k}T_{p}M\to \mathbf {R} .}"></span></dd></dl> <p>Consequently, a differential <span class="texhtml"><i>k</i></span>-form may be evaluated against any <span class="texhtml"><i>k</i></span>-tuple of tangent vectors to the same point <span class="texhtml"><i>p</i></span> of <span class="texhtml"><i>M</i></span>. For example, a differential <span class="texhtml">1</span>-form <span class="texhtml"><i>α</i></span> assigns to each point <span class="texhtml"><i>p</i> ∈ <i>M</i></span> a <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear functional</a> <span class="texhtml"><i>α</i><sub><i>p</i></sub></span> on <span class="texhtml"><i>T</i><sub><i>p</i></sub><i>M</i></span>. In the presence of an <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> on <span class="texhtml"><i>T</i><sub><i>p</i></sub><i>M</i></span> (induced by a <a href="/wiki/Riemannian_metric" class="mw-redirect" title="Riemannian metric">Riemannian metric</a> on <span class="texhtml"><i>M</i></span>), <span class="texhtml"><i>α</i><sub><i>p</i></sub></span> may be <a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">represented</a> as the inner product with a <a href="/wiki/Tangent_vector" title="Tangent vector">tangent vector</a> <span class="texhtml"><i>X</i><sub><i>p</i></sub></span>. Differential <span class="texhtml">1</span>-forms are sometimes called <a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">covariant vector fields</a>, covector fields, or "dual vector fields", particularly within physics. </p><p>The exterior algebra may be embedded in the tensor algebra by means of the alternation map. The alternation map is defined as a mapping </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Alt} \colon {\bigotimes }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Alt</mi> <mo>&#x003A;<!-- : --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2A02;<!-- ⨂ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2A02;<!-- ⨂ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Alt} \colon {\bigotimes }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47d99f1eaddf9b9f5d5e111d286923673eb9935e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:28.221ex; height:4.343ex;" alt="{\displaystyle \operatorname {Alt} \colon {\bigotimes }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.}"></span></dd></dl> <p>For a tensor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> at a point <span class="texhtml"><i>p</i></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Alt} (\tau _{p})(x_{1},\dots ,x_{k})={\frac {1}{k!}}\sum _{\sigma \in S_{k}}\operatorname {sgn}(\sigma )\tau _{p}(x_{\sigma (1)},\dots ,x_{\sigma (k)}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Alt</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Alt} (\tau _{p})(x_{1},\dots ,x_{k})={\frac {1}{k!}}\sum _{\sigma \in S_{k}}\operatorname {sgn}(\sigma )\tau _{p}(x_{\sigma (1)},\dots ,x_{\sigma (k)}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae755d5a481cc9ff8a9703675f5d102c9bfd528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:54.901ex; height:6.843ex;" alt="{\displaystyle \operatorname {Alt} (\tau _{p})(x_{1},\dots ,x_{k})={\frac {1}{k!}}\sum _{\sigma \in S_{k}}\operatorname {sgn}(\sigma )\tau _{p}(x_{\sigma (1)},\dots ,x_{\sigma (k)}),}"></span></dd></dl> <p>where <span class="texhtml"><i>S</i><sub><i>k</i></sub></span> is the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> on <span class="texhtml"><i>k</i></span> elements. The alternation map is constant on the cosets of the ideal in the tensor algebra generated by the symmetric 2-forms, and therefore descends to an embedding </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Alt} \colon {\textstyle \bigwedge }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Alt</mi> <mo>&#x003A;<!-- : --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2A02;<!-- ⨂ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Alt} \colon {\textstyle \bigwedge }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85621bff4f78b8c4b46cef3d725d8d22ecc30b71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:26.646ex; height:4.343ex;" alt="{\displaystyle \operatorname {Alt} \colon {\textstyle \bigwedge }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.}"></span></dd></dl> <p>This map exhibits <span class="texhtml"><i>β</i></span> as a <a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">totally antisymmetric</a> <a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">covariant</a> <a href="/wiki/Tensor_field" title="Tensor field">tensor field</a> of rank <span class="texhtml"><i>k</i></span>. The differential forms on <span class="texhtml"><i>M</i></span> are in one-to-one correspondence with such tensor fields. </p> <div class="mw-heading mw-heading2"><h2 id="Operations">Operations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=8" title="Edit section: Operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As well as the addition and multiplication by scalar operations which arise from the vector space structure, there are several other standard operations defined on differential forms. The most important operations are the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a> of two differential forms, the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> of a single differential form, the <a href="/wiki/Interior_product" title="Interior product">interior product</a> of a differential form and a vector field, the <a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a> of a differential form with respect to a vector field and the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a> of a differential form with respect to a vector field on a manifold with a defined connection. </p> <div class="mw-heading mw-heading3"><h3 id="Exterior_product">Exterior product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=9" title="Edit section: Exterior product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The exterior product of a <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>α</i></span> and an <span class="texhtml"><i>ℓ</i></span>-form <span class="texhtml"><i>β</i></span>, denoted <span class="texhtml"><i>α</i> ∧ <i>β</i></span>, is a (<span class="texhtml"><i>k</i> + <i>ℓ</i></span>)-form. At each point <span class="texhtml"><i>p</i></span> of the manifold <span class="texhtml"><i>M</i></span>, the forms <span class="texhtml"><i>α</i></span> and <span class="texhtml"><i>β</i></span> are elements of an exterior power of the cotangent space at <span class="texhtml"><i>p</i></span>. When the exterior algebra is viewed as a quotient of the tensor algebra, the exterior product corresponds to the tensor product (modulo the equivalence relation defining the exterior algebra). </p><p>The antisymmetry inherent in the exterior algebra means that when <span class="texhtml"><i>α</i> ∧ <i>β</i></span> is viewed as a multilinear functional, it is alternating. However, when the exterior algebra is embedded as a subspace of the tensor algebra by means of the alternation map, the tensor product <span class="texhtml"><i>α</i> ⊗ <i>β</i></span> is not alternating. There is an explicit formula which describes the exterior product in this situation. The exterior product is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \wedge \beta =\operatorname {Alt} (\alpha \otimes \beta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>Alt</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \wedge \beta =\operatorname {Alt} (\alpha \otimes \beta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64e370f8f91d909d57a35aecb464cb1d58fdcc54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.911ex; height:2.843ex;" alt="{\displaystyle \alpha \wedge \beta =\operatorname {Alt} (\alpha \otimes \beta ).}"></span></dd></dl> <p>If the embedding of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle \bigwedge }^{n}T^{*}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle \bigwedge }^{n}T^{*}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07980b360534afeefdd711bbf6752f15c01e2f37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.371ex; height:3.009ex;" alt="{\displaystyle {\textstyle \bigwedge }^{n}T^{*}M}"></span> into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigotimes }^{n}T^{*}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2A02;<!-- ⨂ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigotimes }^{n}T^{*}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30a31e0cccfa65190633377f7f3b627254143783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.945ex; height:3.843ex;" alt="{\displaystyle {\bigotimes }^{n}T^{*}M}"></span> is done via the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!\operatorname {Alt} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mi>Alt</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!\operatorname {Alt} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79f13656f832eee913f507545fd419635992c4d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.723ex; height:2.176ex;" alt="{\displaystyle n!\operatorname {Alt} }"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Alt} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Alt</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Alt} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cada76b2ad3c1e5cbed0390716541e46b750f73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.295ex; height:2.176ex;" alt="{\displaystyle \operatorname {Alt} }"></span>, the exterior product is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \wedge \beta ={\frac {(k+\ell )!}{k!\ell !}}\operatorname {Alt} (\alpha \otimes \beta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mi>Alt</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \wedge \beta ={\frac {(k+\ell )!}{k!\ell !}}\operatorname {Alt} (\alpha \otimes \beta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba3e9590fd24a84e793df92bd1968248d85d98b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.612ex; height:5.843ex;" alt="{\displaystyle \alpha \wedge \beta ={\frac {(k+\ell )!}{k!\ell !}}\operatorname {Alt} (\alpha \otimes \beta ).}"></span></dd></dl> <p>This description is useful for explicit computations. For example, if <span class="texhtml"><i>k</i> = <i>ℓ</i> = 1</span>, then <span class="texhtml"><i>α</i> ∧ <i>β</i></span> is the <span class="texhtml">2</span>-form whose value at a point <span class="texhtml"><i>p</i></span> is the <a href="/wiki/Alternating_bilinear_form" class="mw-redirect" title="Alternating bilinear form">alternating bilinear form</a> defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha \wedge \beta )_{p}(v,w)=\alpha _{p}(v)\beta _{p}(w)-\alpha _{p}(w)\beta _{p}(v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha \wedge \beta )_{p}(v,w)=\alpha _{p}(v)\beta _{p}(w)-\alpha _{p}(w)\beta _{p}(v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9408eb2ea9ad495cc2b6760e0eca2902de04ef70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.509ex; height:3.009ex;" alt="{\displaystyle (\alpha \wedge \beta )_{p}(v,w)=\alpha _{p}(v)\beta _{p}(w)-\alpha _{p}(w)\beta _{p}(v)}"></span></dd></dl> <p>for <span class="texhtml"><i>v</i>, <i>w</i> ∈ T<sub><i>p</i></sub><i>M</i></span>. </p><p>The exterior product is bilinear: If <span class="texhtml"><i>α</i></span>, <span class="texhtml"><i>β</i></span>, and <span class="texhtml"><i>γ</i></span> are any differential forms, and if <span class="texhtml"><i>f</i></span> is any smooth function, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \wedge (\beta +\gamma )=\alpha \wedge \beta +\alpha \wedge \gamma ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \wedge (\beta +\gamma )=\alpha \wedge \beta +\alpha \wedge \gamma ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d05c888c855b7fffc883b5db15367747f25be21f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.635ex; height:2.843ex;" alt="{\displaystyle \alpha \wedge (\beta +\gamma )=\alpha \wedge \beta +\alpha \wedge \gamma ,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \wedge (f\cdot \beta )=f\cdot (\alpha \wedge \beta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \wedge (f\cdot \beta )=f\cdot (\alpha \wedge \beta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f7e75119f6068ebce781f0ca4ed79d443d3f982" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.084ex; height:2.843ex;" alt="{\displaystyle \alpha \wedge (f\cdot \beta )=f\cdot (\alpha \wedge \beta ).}"></span></dd></dl> <p>It is <i>skew commutative</i> (also known as <i>graded commutative</i>), meaning that it satisfies a variant of <a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">anticommutativity</a> that depends on the degrees of the forms: if <span class="texhtml"><i>α</i></span> is a <span class="texhtml"><i>k</i></span>-form and <span class="texhtml"><i>β</i></span> is an <span class="texhtml"><i>ℓ</i></span>-form, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \wedge \beta =(-1)^{k\ell }\beta \wedge \alpha .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \wedge \beta =(-1)^{k\ell }\beta \wedge \alpha .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65283427068fc9d8e56fccc4b22a1fd4c2550e47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.104ex; height:3.176ex;" alt="{\displaystyle \alpha \wedge \beta =(-1)^{k\ell }\beta \wedge \alpha .}"></span></dd></dl><p> One also has the <a href="/wiki/Differential_graded_algebra" title="Differential graded algebra">graded Leibniz rule</a>:</p><blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>&#x03B2;<!-- β --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6c514c33202abff26abff19e89eafdb248f68f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.118ex; height:3.176ex;" alt="{\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta .}"></span></p></blockquote> <div class="mw-heading mw-heading3"><h3 id="Riemannian_manifold">Riemannian manifold</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=10" title="Edit section: Riemannian manifold"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, or more generally a <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a>, the metric defines a fibre-wise isomorphism of the tangent and cotangent bundles. This makes it possible to convert vector fields to covector fields and vice versa. It also enables the definition of additional operations such as the <a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \star \colon \Omega ^{k}(M)\ {\stackrel {\sim }{\to }}\ \Omega ^{n-k}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C6;<!-- ⋆ --></mo> <mo>&#x003A;<!-- : --></mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x223C;<!-- ∼ --></mo> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \star \colon \Omega ^{k}(M)\ {\stackrel {\sim }{\to }}\ \Omega ^{n-k}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a893ef4120fd98141515bd6e8446247f692d4890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.983ex; height:3.343ex;" alt="{\displaystyle \star \colon \Omega ^{k}(M)\ {\stackrel {\sim }{\to }}\ \Omega ^{n-k}(M)}"></span> and the <a href="/wiki/Hodge_star#Codifferential" class="mw-redirect" title="Hodge star">codifferential</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \colon \Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x003A;<!-- : --></mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \colon \Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f579491dfe04e01e72245ada390c0e07c8c9a4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.834ex; height:3.176ex;" alt="{\displaystyle \delta \colon \Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)}"></span>, which has degree <span class="texhtml">−1</span> and is <a href="/wiki/Differential_operator#Adjoint_of_an_operator" title="Differential operator">adjoint</a> to the exterior differential <span class="texhtml"><i>d</i></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Vector_field_structures">Vector field structures</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=11" title="Edit section: Vector field structures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On a pseudo-Riemannian manifold, <span class="texhtml">1</span>-forms can be identified with vector fields; vector fields have additional distinct algebraic structures, which are listed here for context and to avoid confusion. </p><p>Firstly, each (co)tangent space generates a <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a>, where the product of a (co)vector with itself is given by the value of a quadratic form – in this case, the natural one induced by the <a href="/wiki/Metric_tensor" title="Metric tensor">metric</a>. This algebra is <i>distinct</i> from the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> of differential forms, which can be viewed as a Clifford algebra where the quadratic form vanishes (since the exterior product of any vector with itself is zero). Clifford algebras are thus non-anticommutative ("quantum") deformations of the exterior algebra. They are studied in <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebra</a>. </p><p>Another alternative is to consider vector fields as derivations. The (noncommutative) algebra of <a href="/wiki/Differential_operator" title="Differential operator">differential operators</a> they generate is the <a href="/wiki/Weyl_algebra" title="Weyl algebra">Weyl algebra</a> and is a noncommutative ("quantum") deformation of the <i>symmetric</i> algebra in the vector fields. </p> <div class="mw-heading mw-heading3"><h3 id="Exterior_differential_complex">Exterior differential complex</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=12" title="Edit section: Exterior differential complex"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One important property of the exterior derivative is that <span class="texhtml"><i>d</i><span style="padding-left:0.12em;"><sup>2</sup></span> = 0</span>. This means that the exterior derivative defines a <a href="/wiki/Cochain_complex" class="mw-redirect" title="Cochain complex">cochain complex</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\ \to \ \Omega ^{0}(M)\ {\stackrel {d}{\to }}\ \Omega ^{1}(M)\ {\stackrel {d}{\to }}\ \Omega ^{2}(M)\ {\stackrel {d}{\to }}\ \Omega ^{3}(M)\ \to \ \cdots \ \to \ \Omega ^{n}(M)\ \to \ 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mtext>&#xA0;</mtext> <mo stretchy="false">&#x2192;<!-- → --></mo> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">&#x2192;<!-- → --></mo> <mtext>&#xA0;</mtext> <mo>&#x22EF;<!-- ⋯ --></mo> <mtext>&#xA0;</mtext> <mo stretchy="false">&#x2192;<!-- → --></mo> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">&#x2192;<!-- → --></mo> <mtext>&#xA0;</mtext> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\ \to \ \Omega ^{0}(M)\ {\stackrel {d}{\to }}\ \Omega ^{1}(M)\ {\stackrel {d}{\to }}\ \Omega ^{2}(M)\ {\stackrel {d}{\to }}\ \Omega ^{3}(M)\ \to \ \cdots \ \to \ \Omega ^{n}(M)\ \to \ 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd2f3b559dcc67537affdd40a6d3754b4ec7e6e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.109ex; height:4.176ex;" alt="{\displaystyle 0\ \to \ \Omega ^{0}(M)\ {\stackrel {d}{\to }}\ \Omega ^{1}(M)\ {\stackrel {d}{\to }}\ \Omega ^{2}(M)\ {\stackrel {d}{\to }}\ \Omega ^{3}(M)\ \to \ \cdots \ \to \ \Omega ^{n}(M)\ \to \ 0.}"></span></dd></dl> <p>This complex is called the de Rham complex, and its <a href="/wiki/Cohomology" title="Cohomology">cohomology</a> is by definition the <a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">de Rham cohomology</a> of <span class="texhtml"><i>M</i></span>. By the <a href="/wiki/Poincar%C3%A9_lemma" title="Poincaré lemma">Poincaré lemma</a>, the de Rham complex is locally <a href="/wiki/Exact_sequence" title="Exact sequence">exact</a> except at <span class="texhtml">Ω<sup>0</sup>(<i>M</i>)</span>. The kernel at <span class="texhtml">Ω<sup>0</sup>(<i>M</i>)</span> is the space of <a href="/wiki/Locally_constant_function" title="Locally constant function">locally constant functions</a> on <span class="texhtml"><i>M</i></span>. Therefore, the complex is a resolution of the constant <a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">sheaf</a> <span class="texhtml"><span style="text-decoration: underline;"><b>R</b></span></span>, which in turn implies a form of de Rham's theorem: de Rham cohomology computes the <a href="/wiki/Sheaf_cohomology" title="Sheaf cohomology">sheaf cohomology</a> of <span class="texhtml"><span style="text-decoration: underline;"><b>R</b></span></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Pullback">Pullback</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=13" title="Edit section: Pullback"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">Pullback (differential geometry)</a></div> <p>Suppose that <span class="texhtml"><i>f</i>&#160;: <i>M</i> → <i>N</i></span> is smooth. The differential of <span class="texhtml"><i>f</i></span> is a smooth map <span class="texhtml"><i>df</i>&#160;: <i>TM</i> → <i>TN</i></span> between the tangent bundles of <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span>. This map is also denoted <span class="texhtml"><i>f</i><sub>∗</sub></span> and called the <b>pushforward</b>. For any point <span class="texhtml"><i>p</i> ∈ <i>M</i></span> and any tangent vector <span class="texhtml"><i>v</i> &#8712; <i>T</i><sub><i>p</i></sub><i>M</i></span>, there is a well-defined pushforward vector <span class="texhtml"><i>f</i><sub>∗</sub>(<i>v</i>)</span> in <span class="texhtml"><i>T</i><sub><i>f</i>(<i>p</i>)</sub><i>N</i></span>. However, the same is not true of a vector field. If <span class="texhtml"><i>f</i></span> is not injective, say because <span class="texhtml"><i>q</i> ∈ <i>N</i></span> has two or more preimages, then the vector field may determine two or more distinct vectors in <span class="texhtml"><i>T</i><sub><i>q</i></sub><i>N</i></span>. If <span class="texhtml"><i>f</i></span> is not surjective, then there will be a point <span class="texhtml"><i>q</i> &#8712; <i>N</i></span> at which <span class="texhtml"><i>f</i><sub>∗</sub></span> does not determine any tangent vector at all. Since a vector field on <span class="texhtml"><i>N</i></span> determines, by definition, a unique tangent vector at every point of <span class="texhtml"><i>N</i></span>, the pushforward of a vector field does not always exist. </p><p>By contrast, it is always possible to pull back a differential form. A differential form on <span class="texhtml"><i>N</i></span> may be viewed as a linear functional on each tangent space. Precomposing this functional with the differential <span class="texhtml"><i>df</i>&#160;: <i>TM</i> → <i>TN</i></span> defines a linear functional on each tangent space of <span class="texhtml"><i>M</i></span> and therefore a differential form on <span class="texhtml"><i>M</i></span>. The existence of pullbacks is one of the key features of the theory of differential forms. It leads to the existence of pullback maps in other situations, such as pullback homomorphisms in de Rham cohomology. </p><p>Formally, let <span class="texhtml"><i>f</i>&#160;: <i>M</i> → <i>N</i></span> be smooth, and let <span class="texhtml"><i>ω</i></span> be a smooth <span class="texhtml"><i>k</i></span>-form on <span class="texhtml"><i>N</i></span>. Then there is a differential form <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>∗</sup></span><i>ω</i></span> on <span class="texhtml"><i>M</i></span>, called the <b>pullback</b> of <span class="texhtml"><i>ω</i></span>, which captures the behavior of <span class="texhtml"><i>ω</i></span> as seen relative to <span class="texhtml"><i>f</i></span>. To define the pullback, fix a point <span class="texhtml"><i>p</i></span> of <span class="texhtml"><i>M</i></span> and tangent vectors <span class="texhtml"><i>v</i><sub>1</sub></span>, ..., <span class="texhtml"><i>v</i><sub><i>k</i></sub></span> to <span class="texhtml"><i>M</i></span> at <span class="texhtml"><i>p</i></span>. The pullback of <span class="texhtml"><i>ω</i></span> is defined by the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f^{*}\omega )_{p}(v_{1},\ldots ,v_{k})=\omega _{f(p)}(f_{*}v_{1},\ldots ,f_{*}v_{k}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f^{*}\omega )_{p}(v_{1},\ldots ,v_{k})=\omega _{f(p)}(f_{*}v_{1},\ldots ,f_{*}v_{k}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cf28d38d6cec6fcb9916b65efe7435ceb359754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:42.281ex; height:3.176ex;" alt="{\displaystyle (f^{*}\omega )_{p}(v_{1},\ldots ,v_{k})=\omega _{f(p)}(f_{*}v_{1},\ldots ,f_{*}v_{k}).}"></span></dd></dl> <p>There are several more abstract ways to view this definition. If <span class="texhtml"><i>ω</i></span> is a <span class="texhtml">1</span>-form on <span class="texhtml"><i>N</i></span>, then it may be viewed as a section of the cotangent bundle <span class="texhtml"><i>T</i><span style="padding-left:0.12em;"><sup>∗</sup></span><i>N</i></span> of <span class="texhtml"><i>N</i></span>. Using <span style="padding-left:0.12em;"><sup>∗</sup></span> to denote a dual map, the dual to the differential of <span class="texhtml"><i>f</i></span> is <span class="texhtml">(<i>df</i>)<span style="padding-left:0.12em;"><sup>∗</sup></span>&#160;: <i>T</i><span style="padding-left:0.12em;"><sup>∗</sup></span><i>N</i> → <i>T</i><span style="padding-left:0.12em;"><sup>∗</sup></span><i>M</i></span>. The pullback of <span class="texhtml"><i>ω</i></span> may be defined to be the composite </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ T^{*}N\ {\stackrel {(df)^{*}}{\longrightarrow }}\ T^{*}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>N</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>N</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>d</mi> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ T^{*}N\ {\stackrel {(df)^{*}}{\longrightarrow }}\ T^{*}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f908d3dc04751cee07ca6cd1fbb8c0a23db4c66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:27.213ex; height:4.009ex;" alt="{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ T^{*}N\ {\stackrel {(df)^{*}}{\longrightarrow }}\ T^{*}M.}"></span></dd></dl> <p>This is a section of the cotangent bundle of <span class="texhtml"><i>M</i></span> and hence a differential <span class="texhtml">1</span>-form on <span class="texhtml"><i>M</i></span>. In full generality, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \bigwedge ^{k}(df)^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mover> <mo>&#x22C0;<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </mover> <mo stretchy="false">(</mo> <mi>d</mi> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \bigwedge ^{k}(df)^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4433bb78dabfd29e79d715d6707ae68c4f11a0b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.383ex; height:3.343ex;" alt="{\textstyle \bigwedge ^{k}(df)^{*}}"></span> denote the <span class="texhtml"><i>k</i></span>th exterior power of the dual map to the differential. Then the pullback of a <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>ω</i></span> is the composite </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ {\textstyle \bigwedge }^{k}T^{*}N\ {\stackrel {{\bigwedge }^{k}(df)^{*}}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}T^{*}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>N</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>N</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C0;<!-- ⋀ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>d</mi> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ {\textstyle \bigwedge }^{k}T^{*}N\ {\stackrel {{\bigwedge }^{k}(df)^{*}}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}T^{*}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0478733a69d46c69ce13ac590eb15bd3e4ed35e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.491ex; height:4.843ex;" alt="{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ {\textstyle \bigwedge }^{k}T^{*}N\ {\stackrel {{\bigwedge }^{k}(df)^{*}}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}T^{*}M.}"></span></dd></dl> <p>Another abstract way to view the pullback comes from viewing a <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>ω</i></span> as a linear functional on tangent spaces. From this point of view, <span class="texhtml"><i>ω</i></span> is a morphism of <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundles</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>T</mi> <mi>N</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97303ff95a376eeaecd80022ab7a82195be1ff15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.764ex; height:3.676ex;" alt="{\displaystyle {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} ,}"></span></dd></dl> <p>where <span class="texhtml"><i>N</i> × <b>R</b></span> is the trivial rank one bundle on <span class="texhtml"><i>N</i></span>. The composite map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle \bigwedge }^{k}TM\ {\stackrel {{\bigwedge }^{k}df}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>T</mi> <mi>M</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C0;<!-- ⋀ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>d</mi> <mi>f</mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>T</mi> <mi>N</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle \bigwedge }^{k}TM\ {\stackrel {{\bigwedge }^{k}df}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b6dba872c8d2ca87d10c0be21f5a2452a9627eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.373ex; height:4.843ex;" alt="{\displaystyle {\textstyle \bigwedge }^{k}TM\ {\stackrel {{\bigwedge }^{k}df}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} }"></span></dd></dl> <p>defines a linear functional on each tangent space of <span class="texhtml"><i>M</i></span>, and therefore it factors through the trivial bundle <span class="texhtml"><i>M</i> × <b>R</b></span>. The vector bundle morphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\textstyle \bigwedge }^{k}TM\to M\times \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>T</mi> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\textstyle \bigwedge }^{k}TM\to M\times \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8cdf3faf24dbd8ae93a7865be9a22c06d95f534" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.003ex; height:3.343ex;" alt="{\textstyle {\textstyle \bigwedge }^{k}TM\to M\times \mathbf {R} }"></span> defined in this way is <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>∗</sup></span><i>ω</i></span>. </p><p>Pullback respects all of the basic operations on forms. If <span class="texhtml"><i>ω</i></span> and <span class="texhtml"><i>η</i></span> are forms and <span class="texhtml"><i>c</i></span> is a real number, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f^{*}(c\omega )&amp;=c(f^{*}\omega ),\\f^{*}(\omega +\eta )&amp;=f^{*}\omega +f^{*}\eta ,\\f^{*}(\omega \wedge \eta )&amp;=f^{*}\omega \wedge f^{*}\eta ,\\f^{*}(d\omega )&amp;=d(f^{*}\omega ).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03B7;<!-- η --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2227;<!-- ∧ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03B7;<!-- η --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f^{*}(c\omega )&amp;=c(f^{*}\omega ),\\f^{*}(\omega +\eta )&amp;=f^{*}\omega +f^{*}\eta ,\\f^{*}(\omega \wedge \eta )&amp;=f^{*}\omega \wedge f^{*}\eta ,\\f^{*}(d\omega )&amp;=d(f^{*}\omega ).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec885091abaf1eb731bb87e67f138adff71e6676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:24.342ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}f^{*}(c\omega )&amp;=c(f^{*}\omega ),\\f^{*}(\omega +\eta )&amp;=f^{*}\omega +f^{*}\eta ,\\f^{*}(\omega \wedge \eta )&amp;=f^{*}\omega \wedge f^{*}\eta ,\\f^{*}(d\omega )&amp;=d(f^{*}\omega ).\end{aligned}}}"></span></dd></dl> <p>The pullback of a form can also be written in coordinates. Assume that <span class="texhtml"><i>x</i><sup>1</sup></span>, ..., <span class="texhtml"><i>x</i><sup><i>m</i></sup></span> are coordinates on <span class="texhtml"><i>M</i></span>, that <span class="texhtml"><i>y</i><sup>1</sup></span>, ..., <span class="texhtml"><i>y</i><sup><i>n</i></sup></span> are coordinates on <span class="texhtml"><i>N</i></span>, and that these coordinate systems are related by the formulas <span class="texhtml"><i>y</i><sup><i>i</i></sup> = <i>f</i><sub><i>i</i></sub>(<i>x</i><sup>1</sup>, ..., <i>x</i><sup><i>m</i></sup>)</span> for all <span class="texhtml"><i>i</i></span>. Locally on <span class="texhtml"><i>N</i></span>, <span class="texhtml"><i>ω</i></span> can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}\omega _{i_{1}\cdots i_{k}}\,dy^{i_{1}}\wedge \cdots \wedge dy^{i_{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}\omega _{i_{1}\cdots i_{k}}\,dy^{i_{1}}\wedge \cdots \wedge dy^{i_{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99161659367c4ce201c7417c25f06f1d33d87e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:35.635ex; height:5.843ex;" alt="{\displaystyle \omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}\omega _{i_{1}\cdots i_{k}}\,dy^{i_{1}}\wedge \cdots \wedge dy^{i_{k}},}"></span></dd></dl> <p>where, for each choice of <span class="texhtml"><i>i</i><sub>1</sub></span>, ..., <span class="texhtml"><i>i</i><sub><i>k</i></sub></span>, <span class="texhtml"><i>ω</i><sub><i>i</i><sub>1</sub>⋅⋅⋅<i>i</i><sub><i>k</i></sub></sub></span> is a real-valued function of <span class="texhtml"><i>y</i><sup>1</sup></span>, ..., <span class="texhtml"><i>y</i><sup><i>n</i></sup></span>. Using the linearity of pullback and its compatibility with exterior product, the pullback of <span class="texhtml"><i>ω</i></span> has the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}\omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f)\,df_{i_{1}}\wedge \cdots \wedge df_{i_{k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}\omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f)\,df_{i_{1}}\wedge \cdots \wedge df_{i_{k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83acbb0138869851c2549cce3bbbdcc5dfd71e98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:42.863ex; height:5.843ex;" alt="{\displaystyle f^{*}\omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f)\,df_{i_{1}}\wedge \cdots \wedge df_{i_{k}}.}"></span></dd></dl> <p>Each exterior derivative <span class="texhtml"><i>df</i><sub><i>i</i></sub></span> can be expanded in terms of <span class="texhtml"><i>dx</i><sup>1</sup></span>, ..., <span class="texhtml"><i>dx</i><sup><i>m</i></sup></span>. The resulting <span class="texhtml"><i>k</i></span>-form can be written using <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a> matrices: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}\omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}\sum _{j_{1}&lt;\cdots &lt;j_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f){\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}\,dx^{j_{1}}\wedge \cdots \wedge dx^{j_{k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}\omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}\sum _{j_{1}&lt;\cdots &lt;j_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f){\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}\,dx^{j_{1}}\wedge \cdots \wedge dx^{j_{k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dcacea72b68e686df76df13540e74131b6d491a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:66.691ex; height:7.509ex;" alt="{\displaystyle f^{*}\omega =\sum _{i_{1}&lt;\cdots &lt;i_{k}}\sum _{j_{1}&lt;\cdots &lt;j_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f){\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}\,dx^{j_{1}}\wedge \cdots \wedge dx^{j_{k}}.}"></span></dd></dl> <p>Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74924dabd955bc36b5a11a8f11d7c4f894d9c9e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.826ex; height:5.343ex;" alt="{\textstyle {\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}}"></span> denotes the determinant of the matrix whose entries are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\partial f_{i_{m}}}{\partial x^{j_{n}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\partial f_{i_{m}}}{\partial x^{j_{n}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef2ccbf9e1b6fa3e8410cbd4baca8cfe896acaf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:4.503ex; height:4.509ex;" alt="{\textstyle {\frac {\partial f_{i_{m}}}{\partial x^{j_{n}}}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq m,n\leq k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq m,n\leq k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59174e4c31372263dfde35534c3ad664365666ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.04ex; height:2.509ex;" alt="{\displaystyle 1\leq m,n\leq k}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Integration">Integration</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=14" title="Edit section: Integration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A differential <span class="texhtml"><i>k</i></span>-form can be integrated over an oriented <span class="texhtml"><i>k</i></span>-dimensional manifold. When the <span class="texhtml"><i>k</i></span>-form is defined on an <span class="texhtml"><i>n</i></span>-dimensional manifold with <span class="texhtml"><i>n</i> &gt; <i>k</i></span>, then the <span class="texhtml"><i>k</i></span>-form can be integrated over oriented <span class="texhtml"><i>k</i></span>-dimensional submanifolds. If <span class="texhtml"><i>k</i> = 0</span>, integration over oriented 0-dimensional submanifolds is just the summation of the integrand evaluated at points, according to the orientation of those points. Other values of <span class="texhtml"><i>k</i> = 1, 2, 3, ...</span> correspond to line integrals, surface integrals, volume integrals, and so on. There are several equivalent ways to formally define the integral of a differential form, all of which depend on reducing to the case of Euclidean space. </p> <div class="mw-heading mw-heading3"><h3 id="Integration_on_Euclidean_space">Integration on Euclidean space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=15" title="Edit section: Integration on Euclidean space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>U</i></span> be an open subset of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>. Give <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> its standard orientation and <span class="texhtml"><i>U</i></span> the restriction of that orientation. Every smooth <span class="texhtml"><i>n</i></span>-form <span class="texhtml"><i>ω</i></span> on <span class="texhtml"><i>U</i></span> has the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =f(x)\,dx^{1}\wedge \cdots \wedge dx^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =f(x)\,dx^{1}\wedge \cdots \wedge dx^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b184cf564269eb1fb65b9ae639be4961328608a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.601ex; height:3.176ex;" alt="{\displaystyle \omega =f(x)\,dx^{1}\wedge \cdots \wedge dx^{n}}"></span></dd></dl> <p>for some smooth function <span class="texhtml"><i>f</i>&#160;: <b>R</b><sup><i>n</i></sup> → <b>R</b></span>. Such a function has an integral in the usual Riemann or Lebesgue sense. This allows us to define the integral of <span class="texhtml"><i>ω</i></span> to be the integral of <span class="texhtml"><i>f</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{U}\omega \ {\stackrel {\text{def}}{=}}\int _{U}f(x)\,dx^{1}\cdots dx^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>def</mtext> </mrow> </mover> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{U}\omega \ {\stackrel {\text{def}}{=}}\int _{U}f(x)\,dx^{1}\cdots dx^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a96708ff183338b6b7eabb7c09ff6ef0ca1a5c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.218ex; height:5.676ex;" alt="{\displaystyle \int _{U}\omega \ {\stackrel {\text{def}}{=}}\int _{U}f(x)\,dx^{1}\cdots dx^{n}.}"></span></dd></dl> <p>Fixing an orientation is necessary for this to be well-defined. The skew-symmetry of differential forms means that the integral of, say, <span class="texhtml"><i>dx</i><sup>1</sup> ∧ <i>dx</i><sup>2</sup></span> must be the negative of the integral of <span class="texhtml"><i>dx</i><sup>2</sup> ∧ <i>dx</i><sup>1</sup></span>. Riemann and Lebesgue integrals cannot see this dependence on the ordering of the coordinates, so they leave the sign of the integral undetermined. The orientation resolves this ambiguity. </p> <div class="mw-heading mw-heading3"><h3 id="Integration_over_chains">Integration over chains</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=16" title="Edit section: Integration over chains"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>M</i></span> be an <span class="texhtml"><i>n</i></span>-manifold and <span class="texhtml"><i>ω</i></span> an <span class="texhtml"><i>n</i></span>-form on <span class="texhtml"><i>M</i></span>. First, assume that there is a parametrization of <span class="texhtml"><i>M</i></span> by an open subset of Euclidean space. That is, assume that there exists a diffeomorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \colon D\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x003A;<!-- : --></mo> <mi>D</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \colon D\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef380f8a39f96f217d37d90546daca30b8be31e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.535ex; height:2.676ex;" alt="{\displaystyle \varphi \colon D\to M}"></span></dd></dl> <p>where <span class="texhtml"><i>D</i> ⊆ <b>R</b><sup><i>n</i></sup></span>. Give <span class="texhtml"><i>M</i></span> the orientation induced by <span class="texhtml"><i>φ</i></span>. Then (<a href="#CITEREFRudin1976">Rudin 1976</a>) defines the integral of <span class="texhtml"><i>ω</i></span> over <span class="texhtml"><i>M</i></span> to be the integral of <span class="texhtml"><i>φ</i><sup>∗</sup><i>ω</i></span> over <span class="texhtml"><i>D</i></span>. In coordinates, this has the following expression. Fix an embedding of <span class="texhtml"><i>M</i></span> in <span class="texhtml"><b>R</b><sup><i>I</i></sup></span> with coordinates <span class="texhtml"><i>x</i><sup>1</sup>, ..., <i>x</i><sup><i>I</i></sup></span>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\sum _{i_{1}&lt;\cdots &lt;i_{n}}a_{i_{1},\ldots ,i_{n}}({\mathbf {x} })\,dx^{i_{1}}\wedge \cdots \wedge dx^{i_{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\sum _{i_{1}&lt;\cdots &lt;i_{n}}a_{i_{1},\ldots ,i_{n}}({\mathbf {x} })\,dx^{i_{1}}\wedge \cdots \wedge dx^{i_{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb35a352bec19f14341b8100b6fdf11d07cf051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.209ex; height:5.843ex;" alt="{\displaystyle \omega =\sum _{i_{1}&lt;\cdots &lt;i_{n}}a_{i_{1},\ldots ,i_{n}}({\mathbf {x} })\,dx^{i_{1}}\wedge \cdots \wedge dx^{i_{n}}.}"></span></dd></dl> <p>Suppose that <span class="texhtml"><i>φ</i></span> is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ({\mathbf {u} })=(x^{1}({\mathbf {u} }),\ldots ,x^{I}({\mathbf {u} })).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ({\mathbf {u} })=(x^{1}({\mathbf {u} }),\ldots ,x^{I}({\mathbf {u} })).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbb64f82b6901794ee167d71d7be31dd7ecf5d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.911ex; height:3.176ex;" alt="{\displaystyle \varphi ({\mathbf {u} })=(x^{1}({\mathbf {u} }),\ldots ,x^{I}({\mathbf {u} })).}"></span></dd></dl> <p>Then the integral may be written in coordinates as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{M}\omega =\int _{D}\sum _{i_{1}&lt;\cdots &lt;i_{n}}a_{i_{1},\ldots ,i_{n}}(\varphi ({\mathbf {u} })){\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\dots ,u^{n})}}\,du^{1}\cdots du^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>d</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{M}\omega =\int _{D}\sum _{i_{1}&lt;\cdots &lt;i_{n}}a_{i_{1},\ldots ,i_{n}}(\varphi ({\mathbf {u} })){\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\dots ,u^{n})}}\,du^{1}\cdots du^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b89e7893f7df02c405aaf31e10cffa8658ecc06a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:60.207ex; height:7.343ex;" alt="{\displaystyle \int _{M}\omega =\int _{D}\sum _{i_{1}&lt;\cdots &lt;i_{n}}a_{i_{1},\ldots ,i_{n}}(\varphi ({\mathbf {u} })){\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\dots ,u^{n})}}\,du^{1}\cdots du^{n},}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\ldots ,u^{n})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\ldots ,u^{n})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e4ce3afe8ab62c2889014c38e7aebc661b7c880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.197ex; height:6.676ex;" alt="{\displaystyle {\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\ldots ,u^{n})}}}"></span></dd></dl> <p>is the determinant of the <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a>. The Jacobian exists because <span class="texhtml"><i>φ</i></span> is differentiable. </p><p>In general, an <span class="texhtml"><i>n</i></span>-manifold cannot be parametrized by an open subset of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>. But such a parametrization is always possible locally, so it is possible to define integrals over arbitrary manifolds by defining them as sums of integrals over collections of local parametrizations. Moreover, it is also possible to define parametrizations of <span class="texhtml"><i>k</i></span>-dimensional subsets for <span class="texhtml"><i>k</i> &lt; <i>n</i></span>, and this makes it possible to define integrals of <span class="texhtml"><i>k</i></span>-forms. To make this precise, it is convenient to fix a standard domain <span class="texhtml"><i>D</i></span> in <span class="texhtml"><b>R</b><sup><i>k</i></sup></span>, usually a cube or a simplex. A <span class="texhtml"><i>k</i></span>-<b>chain</b> is a formal sum of smooth embeddings <span class="texhtml"><i>D</i> → <i>M</i></span>. That is, it is a collection of smooth embeddings, each of which is assigned an integer multiplicity. Each smooth embedding determines a <span class="texhtml"><i>k</i></span>-dimensional submanifold of <span class="texhtml"><i>M</i></span>. If the chain is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=\sum _{i=1}^{r}m_{i}\varphi _{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=\sum _{i=1}^{r}m_{i}\varphi _{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dad7b70eb8df5f2ad4f5fa2c732c2a80fb7b4ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.654ex; height:6.843ex;" alt="{\displaystyle c=\sum _{i=1}^{r}m_{i}\varphi _{i},}"></span></dd></dl> <p>then the integral of a <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>ω</i></span> over <span class="texhtml"><i>c</i></span> is defined to be the sum of the integrals over the terms of <span class="texhtml"><i>c</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{c}\omega =\sum _{i=1}^{r}m_{i}\int _{D}\varphi _{i}^{*}\omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>&#x03C9;<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{c}\omega =\sum _{i=1}^{r}m_{i}\int _{D}\varphi _{i}^{*}\omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a891894a09dcc5a6b037f48f06678c6c5a473562" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.077ex; height:6.843ex;" alt="{\displaystyle \int _{c}\omega =\sum _{i=1}^{r}m_{i}\int _{D}\varphi _{i}^{*}\omega .}"></span></dd></dl> <p>This approach to defining integration does not assign a direct meaning to integration over the whole manifold <span class="texhtml"><i>M</i></span>. However, it is still possible to assign such a meaning indirectly because every smooth manifold may be smoothly <a href="/wiki/Triangulation_(topology)" title="Triangulation (topology)">triangulated</a> in an essentially unique way, and the integral over <span class="texhtml"><i>M</i></span> may be defined to be the integral over the chain determined by a triangulation. </p> <div class="mw-heading mw-heading3"><h3 id="Integration_using_partitions_of_unity">Integration using partitions of unity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=17" title="Edit section: Integration using partitions of unity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is another approach, expounded in (<a href="#CITEREFDieudonné1972">Dieudonné 1972</a>), which does directly assign a meaning to integration over <span class="texhtml"><i>M</i></span>, but this approach requires fixing an orientation of <span class="texhtml"><i>M</i></span>. The integral of an <span class="texhtml"><i>n</i></span>-form <span class="texhtml"><i>ω</i></span> on an <span class="texhtml"><i>n</i></span>-dimensional manifold is defined by working in charts. Suppose first that <span class="texhtml"><i>ω</i></span> is supported on a single positively oriented chart. On this chart, it may be pulled back to an <span class="texhtml"><i>n</i></span>-form on an open subset of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>. Here, the form has a well-defined Riemann or Lebesgue integral as before. The change of variables formula and the assumption that the chart is positively oriented together ensure that the integral of <span class="texhtml"><i>ω</i></span> is independent of the chosen chart. In the general case, use a partition of unity to write <span class="texhtml"><i>ω</i></span> as a sum of <span class="texhtml"><i>n</i></span>-forms, each of which is supported in a single positively oriented chart, and define the integral of <span class="texhtml"><i>ω</i></span> to be the sum of the integrals of each term in the partition of unity. </p><p>It is also possible to integrate <span class="texhtml"><i>k</i></span>-forms on oriented <span class="texhtml"><i>k</i></span>-dimensional submanifolds using this more intrinsic approach. The form is pulled back to the submanifold, where the integral is defined using charts as before. For example, given a path <span class="texhtml"><i>γ</i>(<i>t</i>)&#160;: [0, 1] → <b>R</b><sup>2</sup></span>, integrating a <span class="texhtml">1</span>-form on the path is simply pulling back the form to a form <span class="texhtml"><i>f</i>(<i>t</i>)<span style="white-space: nowrap;">&#8201;</span><i>dt</i></span> on <span class="texhtml">[0, 1]</span>, and this integral is the integral of the function <span class="texhtml"><i>f</i>(<i>t</i>)</span> on the interval. </p> <div class="mw-heading mw-heading3"><h3 id="Integration_along_fibers">Integration along fibers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=18" title="Edit section: Integration along fibers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Integration_along_fibers" title="Integration along fibers">Integration along fibers</a></div> <p><a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's theorem</a> states that the integral over a set that is a product may be computed as an iterated integral over the two factors in the product. This suggests that the integral of a differential form over a product ought to be computable as an iterated integral as well. The geometric flexibility of differential forms ensures that this is possible not just for products, but in more general situations as well. Under some hypotheses, it is possible to integrate along the fibers of a smooth map, and the analog of Fubini's theorem is the case where this map is the projection from a product to one of its factors. </p><p>Because integrating a differential form over a submanifold requires fixing an orientation, a prerequisite to integration along fibers is the existence of a well-defined orientation on those fibers. Let <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span> be two orientable manifolds of pure dimensions <span class="texhtml"><i>m</i></span> and <span class="texhtml"><i>n</i></span>, respectively. Suppose that <span class="texhtml"><i>f</i>&#160;: <i>M</i> → <i>N</i></span> is a surjective submersion. This implies that each fiber <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span> is <span class="texhtml">(<i>m</i> &#8722; <i>n</i>)</span>-dimensional and that, around each point of <span class="texhtml"><i>M</i></span>, there is a chart on which <span class="texhtml"><i>f</i></span> looks like the projection from a product onto one of its factors. Fix <span class="texhtml"><i>x</i> ∈ <i>M</i></span> and set <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span>. Suppose that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\omega _{x}&amp;\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,\\\eta _{y}&amp;\in {\textstyle \bigwedge }^{n}T_{y}^{*}N,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>N</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\omega _{x}&amp;\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,\\\eta _{y}&amp;\in {\textstyle \bigwedge }^{n}T_{y}^{*}N,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c1ed4145eef3190c02ff45a7a120c3572c3374e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.685ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\omega _{x}&amp;\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,\\\eta _{y}&amp;\in {\textstyle \bigwedge }^{n}T_{y}^{*}N,\end{aligned}}}"></span></dd></dl> <p>and that <span class="texhtml"><i>η</i><sub><i>y</i></sub></span> does not vanish. Following (<a href="#CITEREFDieudonné1972">Dieudonné 1972</a>), there is a unique </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}(f^{-1}(y))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}(f^{-1}(y))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d9a726da6d6fe18e549c89ee39ce636f8176154" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.418ex; height:3.176ex;" alt="{\displaystyle \sigma _{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}(f^{-1}(y))}"></span></dd></dl> <p>which may be thought of as the fibral part of <span class="texhtml"><i>ω</i><sub><i>x</i></sub></span> with respect to <span class="texhtml"><i>η</i><sub><i>y</i></sub></span>. More precisely, define <span class="texhtml"><i>j</i>&#160;: <i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>) → <i>M</i></span> to be the inclusion. Then <span class="texhtml"><i>σ</i><sub><i>x</i></sub></span> is defined by the property that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{x}=(f^{*}\eta _{y})_{x}\wedge \sigma '_{x}\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{x}=(f^{*}\eta _{y})_{x}\wedge \sigma '_{x}\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ffa9a1dc0c5d09bc8ec91c6e2b778279b8a44d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.675ex; height:3.176ex;" alt="{\displaystyle \omega _{x}=(f^{*}\eta _{y})_{x}\wedge \sigma &#039;_{x}\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma '_{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma '_{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab4c77882c126eac2da5212677d9153bc26639cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.433ex; height:3.176ex;" alt="{\displaystyle \sigma &#039;_{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M}"></span></dd></dl> <p>is any <span class="texhtml">(<i>m</i> &#8722; <i>n</i>)</span>-covector for which </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{x}=j^{*}\sigma '_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{x}=j^{*}\sigma '_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/883569585dd8ec22863ee0bd69df18bbab06e016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.757ex; height:2.676ex;" alt="{\displaystyle \sigma _{x}=j^{*}\sigma &#039;_{x}.}"></span></dd></dl> <p>The form <span class="texhtml"><i>σ</i><sub><i>x</i></sub></span> may also be notated <span class="texhtml"><i>ω</i><sub><i>x</i></sub> / <i>η</i><sub><i>y</i></sub></span>. </p><p>Moreover, for fixed <span class="texhtml"><i>y</i></span>, <span class="texhtml"><i>σ</i><sub><i>x</i></sub></span> varies smoothly with respect to <span class="texhtml"><i>x</i></span>. That is, suppose that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \colon f^{-1}(y)\to T^{*}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x003A;<!-- : --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \colon f^{-1}(y)\to T^{*}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af0b4055031723afd2d066e5b1f6795fe0d95e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.928ex; height:3.176ex;" alt="{\displaystyle \omega \colon f^{-1}(y)\to T^{*}M}"></span></dd></dl> <p>is a smooth section of the projection map; we say that <span class="texhtml"><i>ω</i></span> is a smooth differential <span class="texhtml"><i>m</i></span>-form on <span class="texhtml"><i>M</i></span> along <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span>. Then there is a smooth differential <span class="texhtml">(<i>m</i> &#8722; <i>n</i>)</span>-form <span class="texhtml"><i>σ</i></span> on <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span> such that, at each <span class="texhtml"><i>x</i> ∈ <i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{x}=\omega _{x}/\eta _{y}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{x}=\omega _{x}/\eta _{y}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c12f91a8d44fbb7ccb2415851f45432aa799f523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.231ex; height:3.009ex;" alt="{\displaystyle \sigma _{x}=\omega _{x}/\eta _{y}.}"></span></dd></dl> <p>This form is denoted <span class="texhtml"><i>ω</i> / <i>η</i><sub><i>y</i></sub></span>. The same construction works if <span class="texhtml"><i>ω</i></span> is an <span class="texhtml"><i>m</i></span>-form in a neighborhood of the fiber, and the same notation is used. A consequence is that each fiber <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span> is orientable. In particular, a choice of orientation forms on <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span> defines an orientation of every fiber of <span class="texhtml"><i>f</i></span>. </p><p>The analog of Fubini's theorem is as follows. As before, <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span> are two orientable manifolds of pure dimensions <span class="texhtml"><i>m</i></span> and <span class="texhtml"><i>n</i></span>, and <span class="texhtml"><i>f</i>&#160;: <i>M</i> → <i>N</i></span> is a surjective submersion. Fix orientations of <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span>, and give each fiber of <span class="texhtml"><i>f</i></span> the induced orientation. Let <span class="texhtml"><i>ω</i></span> be an <span class="texhtml"><i>m</i></span>-form on <span class="texhtml"><i>M</i></span>, and let <span class="texhtml"><i>η</i></span> be an <span class="texhtml"><i>n</i></span>-form on <span class="texhtml"><i>N</i></span> that is almost everywhere positive with respect to the orientation of <span class="texhtml"><i>N</i></span>. Then, for almost every <span class="texhtml"><i>y</i> ∈ <i>N</i></span>, the form <span class="texhtml"><i>ω</i> / <i>η</i><sub><i>y</i></sub></span> is a well-defined integrable <span class="texhtml"><i>m</i> &#8722; <i>n</i></span> form on <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span>. Moreover, there is an integrable <span class="texhtml"><i>n</i></span>-form on <span class="texhtml"><i>N</i></span> defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\mapsto {\bigg (}\int _{f^{-1}(y)}\omega /\eta _{y}{\bigg )}\,\eta _{y}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\mapsto {\bigg (}\int _{f^{-1}(y)}\omega /\eta _{y}{\bigg )}\,\eta _{y}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7247d0883e04e85ae30c5e797168913173c0251c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.441ex; height:6.343ex;" alt="{\displaystyle y\mapsto {\bigg (}\int _{f^{-1}(y)}\omega /\eta _{y}{\bigg )}\,\eta _{y}.}"></span></dd></dl> <p>Denote this form by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03B7;<!-- η --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f34f74b45503b77f471339833999d914220e428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.601ex; height:6.343ex;" alt="{\displaystyle {\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .}"></span></dd></dl> <p>Then (<a href="#CITEREFDieudonné1972">Dieudonné 1972</a>) proves the generalized Fubini formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{M}\omega =\int _{N}{\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03B7;<!-- η --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{M}\omega =\int _{N}{\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75d61c0bd0d63bc4a58a37c07cf5a37644e8f111" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.155ex; height:6.343ex;" alt="{\displaystyle \int _{M}\omega =\int _{N}{\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .}"></span></dd></dl> <p>It is also possible to integrate forms of other degrees along the fibers of a submersion. Assume the same hypotheses as before, and let <span class="texhtml"><i>α</i></span> be a compactly supported <span class="texhtml">(<i>m</i> &#8722; <i>n</i> + <i>k</i>)</span>-form on <span class="texhtml"><i>M</i></span>. Then there is a <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>γ</i></span> on <span class="texhtml"><i>N</i></span> which is the result of integrating <span class="texhtml"><i>α</i></span> along the fibers of <span class="texhtml"><i>f</i></span>. The form <span class="texhtml"><i>α</i></span> is defined by specifying, at each <span class="texhtml"><i>y</i> ∈ <i>N</i></span>, how <span class="texhtml"><i>γ</i></span> pairs with each <span class="texhtml"><i>k</i></span>-vector <span class="texhtml"><b>v</b></span> at <span class="texhtml"><i>y</i></span>, and the value of that pairing is an integral over <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span> that depends only on <span class="texhtml"><i>α</i></span>, <span class="texhtml"><b>v</b></span>, and the orientations of <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span>. More precisely, at each <span class="texhtml"><i>y</i> ∈ <i>N</i></span>, there is an isomorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle \bigwedge }^{k}T_{y}N\to {\textstyle \bigwedge }^{n-k}T_{y}^{*}N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>N</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle \bigwedge }^{k}T_{y}N\to {\textstyle \bigwedge }^{n-k}T_{y}^{*}N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a671aea6f2940650f9965dc2095ae97cfe536e16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.236ex; height:3.509ex;" alt="{\displaystyle {\textstyle \bigwedge }^{k}T_{y}N\to {\textstyle \bigwedge }^{n-k}T_{y}^{*}N}"></span></dd></dl> <p>defined by the interior product </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \mapsto \mathbf {v} \,\lrcorner \,\zeta _{y},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x231F;<!-- ⌟ --></mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \mapsto \mathbf {v} \,\lrcorner \,\zeta _{y},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae32d81c58eca6f7f828641609d5d9fbf5572ccf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.087ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} \mapsto \mathbf {v} \,\lrcorner \,\zeta _{y},}"></span></dd></dl> <p>for any choice of volume form <span class="texhtml"><i>ζ</i></span> in the orientation of <span class="texhtml"><i>N</i></span>. If <span class="texhtml"><i>x</i> ∈ <i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span>, then a <span class="texhtml"><i>k</i></span>-vector <span class="texhtml"><b>v</b></span> at <span class="texhtml"><i>y</i></span> determines an <span class="texhtml">(<i>n</i> &#8722; <i>k</i>)</span>-covector at <span class="texhtml"><i>x</i></span> by pullback: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\in {\textstyle \bigwedge }^{n-k}T_{x}^{*}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x231F;<!-- ⌟ --></mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\in {\textstyle \bigwedge }^{n-k}T_{x}^{*}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d486403fe38f6ae083035a299126e6cec86803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.593ex; height:3.509ex;" alt="{\displaystyle f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\in {\textstyle \bigwedge }^{n-k}T_{x}^{*}M.}"></span></dd></dl> <p>Each of these covectors has an exterior product against <span class="texhtml"><i>α</i></span>, so there is an <span class="texhtml">(<i>m</i> &#8722; <i>n</i>)</span>-form <span class="texhtml"><i>β</i><sub><b>v</b></sub></span> on <span class="texhtml"><i>M</i></span> along <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>&#8722;1</sup></span>(<i>y</i>)</span> defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\beta _{\mathbf {v} })_{x}=\left(\alpha _{x}\wedge f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\right){\big /}\zeta _{y}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x231F;<!-- ⌟ --></mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="1.2em" minsize="1.2em">/</mo> </mrow> </mrow> <msub> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x22C0;<!-- ⋀ --></mo> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\beta _{\mathbf {v} })_{x}=\left(\alpha _{x}\wedge f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\right){\big /}\zeta _{y}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca5341ffa14cab2dc8c1a91d96d8c8c96e71c40e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.655ex; height:3.343ex;" alt="{\displaystyle (\beta _{\mathbf {v} })_{x}=\left(\alpha _{x}\wedge f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\right){\big /}\zeta _{y}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M.}"></span></dd></dl> <p>This form depends on the orientation of <span class="texhtml"><i>N</i></span> but not the choice of <span class="texhtml"><i>ζ</i></span>. Then the <span class="texhtml"><i>k</i></span>-form <span class="texhtml"><i>γ</i></span> is uniquely defined by the property </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \gamma _{y},\mathbf {v} \rangle =\int _{f^{-1}(y)}\beta _{\mathbf {v} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msub> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \gamma _{y},\mathbf {v} \rangle =\int _{f^{-1}(y)}\beta _{\mathbf {v} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df2366a985b4c1547a632b346217b1397e85822e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.61ex; height:6.009ex;" alt="{\displaystyle \langle \gamma _{y},\mathbf {v} \rangle =\int _{f^{-1}(y)}\beta _{\mathbf {v} },}"></span></dd></dl> <p>and <span class="texhtml"><i>γ</i></span> is smooth (<a href="#CITEREFDieudonné1972">Dieudonné 1972</a>). This form also denoted <span class="texhtml"><i>α</i><sup>♭</sup></span> and called the <b>integral of <span class="texhtml"><i>α</i></span> along the fibers of <span class="texhtml"><i>f</i></span></b>. Integration along fibers is important for the construction of Gysin maps in de Rham cohomology. </p><p>Integration along fibers satisfies the <b>projection formula</b> (<a href="#CITEREFDieudonné1972">Dieudonné 1972</a>). If <span class="texhtml"><i>λ</i></span> is any <span class="texhtml"><i>ℓ</i></span>-form on <span class="texhtml"><i>N</i></span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ^{\flat }\wedge \lambda =(\alpha \wedge f^{*}\lambda )^{\flat }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266D;<!-- ♭ --></mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>&#x03BB;<!-- λ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266D;<!-- ♭ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ^{\flat }\wedge \lambda =(\alpha \wedge f^{*}\lambda )^{\flat }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4803e954aed2442ef1d95cbb742b1476abb69a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.524ex; height:3.343ex;" alt="{\displaystyle \alpha ^{\flat }\wedge \lambda =(\alpha \wedge f^{*}\lambda )^{\flat }.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Stokes's_theorem"><span id="Stokes.27s_theorem"></span>Stokes's theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=19" title="Edit section: Stokes&#039;s theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Stokes%27s_theorem" class="mw-redirect" title="Stokes&#39;s theorem">Stokes's theorem</a></div> <p>The fundamental relationship between the exterior derivative and integration is given by the <a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes' theorem</a>: If <span class="texhtml"><i>ω</i></span> is an (<span class="texhtml"><i>n</i> − 1</span>)-form with compact support on <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>∂M</i></span> denotes the <a href="/wiki/Manifold#Manifold_with_boundary" title="Manifold">boundary</a> of <span class="texhtml"><i>M</i></span> with its induced <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{M}d\omega =\int _{\partial M}\omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>M</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{M}d\omega =\int _{\partial M}\omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/307e671f2b4e1a6d46dffed122e05bb90316ba2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.062ex; height:5.676ex;" alt="{\displaystyle \int _{M}d\omega =\int _{\partial M}\omega .}"></span></dd></dl> <p>A key consequence of this is that "the integral of a closed form over homologous chains is equal": If <span class="texhtml"><i>ω</i></span> is a closed <span class="texhtml"><i>k</i></span>-form and <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>N</i></span> are <span class="texhtml"><i>k</i></span>-chains that are homologous (such that <span class="texhtml"><i>M</i> − <i>N</i></span> is the boundary of a <span class="texhtml">(<i>k</i> + 1)</span>-chain <span class="texhtml"><i>W</i></span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\int _{M}\omega =\int _{N}\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\int _{M}\omega =\int _{N}\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/928684b8d81d26cdb4c283cf58388c9b560c2d82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.61ex; height:3.176ex;" alt="{\displaystyle \textstyle {\int _{M}\omega =\int _{N}\omega }}"></span>, since the difference is the integral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int _{W}d\omega =\int _{W}0=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msub> <mn>0</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int _{W}d\omega =\int _{W}0=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/414259701903c92b05693b056255f236910be584" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.061ex; height:3.176ex;" alt="{\displaystyle \textstyle \int _{W}d\omega =\int _{W}0=0}"></span>. </p><p>For example, if <span class="texhtml"><i>ω</i> = <i>df</i></span> is the derivative of a potential function on the plane or <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, then the integral of <span class="texhtml"><i>ω</i></span> over a path from <span class="texhtml"><i>a</i></span> to <span class="texhtml"><i>b</i></span> does not depend on the choice of path (the integral is <span class="texhtml"><i>f</i>(<i>b</i>) − <i>f</i>(<i>a</i>)</span>), since different paths with given endpoints are <a href="/wiki/Homotopic" class="mw-redirect" title="Homotopic">homotopic</a>, hence homologous (a weaker condition). This case is called the <a href="/wiki/Gradient_theorem" title="Gradient theorem">gradient theorem</a>, and generalizes the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a>. This path independence is very useful in <a href="/wiki/Contour_integration" title="Contour integration">contour integration</a>. </p><p>This theorem also underlies the duality between <a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">de Rham cohomology</a> and the <a href="/wiki/Homology_(mathematics)" title="Homology (mathematics)">homology</a> of chains. </p> <div class="mw-heading mw-heading3"><h3 id="Relation_with_measures">Relation with measures</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=20" title="Edit section: Relation with measures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Density_on_a_manifold" title="Density on a manifold">Density on a manifold</a></div> <p>On a <i>general</i> differentiable manifold (without additional structure), differential forms <i>cannot</i> be integrated over subsets of the manifold; this distinction is key to the distinction between differential forms, which are integrated over chains or oriented submanifolds, and measures, which are integrated over subsets. The simplest example is attempting to integrate the <span class="texhtml">1</span>-form <span class="texhtml"><i>dx</i></span> over the interval <span class="texhtml">[0, 1]</span>. Assuming the usual distance (and thus measure) on the real line, this integral is either <span class="texhtml">1</span> or <span class="texhtml">&#8722;1</span>, depending on <i>orientation:</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\int _{0}^{1}dx=1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\int _{0}^{1}dx=1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ec5b018e73810a8fb81105b9572012c554fe17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.762ex; height:3.676ex;" alt="{\displaystyle \textstyle {\int _{0}^{1}dx=1}}"></span>, while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\int _{1}^{0}dx=-\int _{0}^{1}dx=-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\int _{1}^{0}dx=-\int _{0}^{1}dx=-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e0f4b74aad2f95866c70d69f7d16271c133c7a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.365ex; height:3.676ex;" alt="{\displaystyle \textstyle {\int _{1}^{0}dx=-\int _{0}^{1}dx=-1}}"></span>. By contrast, the integral of the <i>measure</i> <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>dx</i></span>&#124;</span> on the interval is unambiguously <span class="texhtml">1</span> (i.e. the integral of the constant function <span class="texhtml">1</span> with respect to this measure is <span class="texhtml">1</span>). Similarly, under a change of coordinates a differential <span class="texhtml"><i>n</i></span>-form changes by the <a href="/wiki/Jacobian_determinant" class="mw-redirect" title="Jacobian determinant">Jacobian determinant</a> <span class="texhtml"><i>J</i></span>, while a measure changes by the <i>absolute value</i> of the Jacobian determinant, <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>J</i></span>&#124;</span>, which further reflects the issue of orientation. For example, under the map <span class="texhtml"><i>x</i> ↦ −<i>x</i></span> on the line, the differential form <span class="texhtml"><i>dx</i></span> pulls back to <span class="texhtml">−<i>dx</i></span>; orientation has reversed; while the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>, which here we denote <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>dx</i></span>&#124;</span>, pulls back to <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>dx</i></span>&#124;</span>; it does not change. </p><p>In the presence of the additional data of an <i>orientation</i>, it is possible to integrate <span class="texhtml"><i>n</i></span>-forms (top-dimensional forms) over the entire manifold or over compact subsets; integration over the entire manifold corresponds to integrating the form over the <a href="/wiki/Fundamental_class" title="Fundamental class">fundamental class</a> of the manifold, <span class="texhtml">[<i>M</i>]</span>. Formally, in the presence of an orientation, one may identify <span class="texhtml"><i>n</i></span>-forms with <a href="/wiki/Densities_on_a_manifold" class="mw-redirect" title="Densities on a manifold">densities on a manifold</a>; densities in turn define a measure, and thus can be integrated (<a href="#CITEREFFolland1999">Folland 1999</a>, Section 11.4, pp.&#160;361&#8211;362). </p><p>On an orientable but not oriented manifold, there are two choices of orientation; either choice allows one to integrate <span class="texhtml"><i>n</i></span>-forms over compact subsets, with the two choices differing by a sign. On a non-orientable manifold, <span class="texhtml"><i>n</i></span>-forms and densities cannot be identified —notably, any top-dimensional form must vanish somewhere (there are no <a href="/wiki/Volume_form" title="Volume form">volume forms</a> on non-orientable manifolds), but there are nowhere-vanishing densities— thus while one can integrate densities over compact subsets, one cannot integrate <span class="texhtml"><i>n</i></span>-forms. One can instead identify densities with top-dimensional <a href="/wiki/Volume_form#Relation_to_measures" title="Volume form">pseudoforms</a>. </p><p>Even in the presence of an orientation, there is in general no meaningful way to integrate <span class="texhtml"><i>k</i></span>-forms over subsets for <span class="texhtml"><i>k</i> &lt; <i>n</i></span> because there is no consistent way to use the ambient orientation to orient <span class="texhtml"><i>k</i></span>-dimensional subsets. Geometrically, a <span class="texhtml"><i>k</i></span>-dimensional subset can be turned around in place, yielding the same subset with the opposite orientation; for example, the horizontal axis in a plane can be rotated by 180 degrees. Compare the <a href="/wiki/Gram_determinant" class="mw-redirect" title="Gram determinant">Gram determinant</a> of a set of <span class="texhtml"><i>k</i></span> vectors in an <span class="texhtml"><i>n</i></span>-dimensional space, which, unlike the determinant of <span class="texhtml"><i>n</i></span> vectors, is always positive, corresponding to a squared number. An orientation of a <span class="texhtml"><i>k</i></span>-submanifold is therefore extra data not derivable from the ambient manifold. </p><p>On a Riemannian manifold, one may define a <span class="texhtml"><i>k</i></span>-dimensional <a href="/wiki/Hausdorff_measure" title="Hausdorff measure">Hausdorff measure</a> for any <span class="texhtml"><i>k</i></span> (integer or real), which may be integrated over <span class="texhtml"><i>k</i></span>-dimensional subsets of the manifold. A function times this Hausdorff measure can then be integrated over <span class="texhtml"><i>k</i></span>-dimensional subsets, providing a measure-theoretic analog to integration of <span class="texhtml"><i>k</i></span>-forms. The <span class="texhtml"><i>n</i></span>-dimensional Hausdorff measure yields a density, as above. </p> <div class="mw-heading mw-heading3"><h3 id="Currents">Currents</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=21" title="Edit section: Currents"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The differential form analog of a <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distribution</a> or generalized function is called a <b><a href="/wiki/Current_(mathematics)" title="Current (mathematics)">current</a></b>. The space of <span class="texhtml"><i>k</i></span>-currents on <span class="texhtml"><i>M</i></span> is the dual space to an appropriate space of differential <span class="texhtml"><i>k</i></span>-forms. Currents play the role of generalized domains of integration, similar to but even more flexible than chains. </p> <div class="mw-heading mw-heading2"><h2 id="Applications_in_physics">Applications in physics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=22" title="Edit section: Applications in physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Differential forms arise in some important physical contexts. For example, in Maxwell's theory of <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>, the <b>Faraday 2-form</b>, or <a href="/wiki/Electromagnetic_field_strength" class="mw-redirect" title="Electromagnetic field strength">electromagnetic field strength</a>, is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {F}}={\frac {1}{2}}f_{ab}\,dx^{a}\wedge dx^{b}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">F</mtext> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {F}}={\frac {1}{2}}f_{ab}\,dx^{a}\wedge dx^{b}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aae9e7c27e275481a657d13cf845132f0eda97a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.86ex; height:5.176ex;" alt="{\displaystyle {\textbf {F}}={\frac {1}{2}}f_{ab}\,dx^{a}\wedge dx^{b}\,,}"></span></dd></dl> <p>where the <span class="texhtml"><i>f</i><sub><i>ab</i></sub></span> are formed from the electromagnetic fields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bc18ae485a72f148e85ccbeff2b3dcdd4f5f3f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.843ex;" alt="{\displaystyle {\vec {E}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ae7d80cab55b606de217162280b2279142bbb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.843ex;" alt="{\displaystyle {\vec {B}}}"></span>; e.g., <span class="texhtml"><i>f</i><sub>12</sub> = <i>E</i><sub><i>z</i></sub>/<i>c</i></span>, <span class="texhtml"><i>f</i><sub>23</sub> = −<i>B</i><sub><i>z</i></sub></span>, or equivalent definitions. </p><p>This form is a special case of the <a href="/wiki/Curvature_form" title="Curvature form">curvature form</a> on the <span class="texhtml"><a href="/wiki/U(1)" class="mw-redirect" title="U(1)">U(1)</a></span> <a href="/wiki/Principal_bundle" title="Principal bundle">principal bundle</a> on which both electromagnetism and general <a href="/wiki/Gauge_theories" class="mw-redirect" title="Gauge theories">gauge theories</a> may be described. The <a href="/wiki/Connection_form" title="Connection form">connection form</a> for the principal bundle is the vector potential, typically denoted by <span class="texhtml"><b>A</b></span>, when represented in some gauge. One then has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {F}}=d{\textbf {A}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">F</mtext> </mrow> </mrow> <mo>=</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">A</mtext> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {F}}=d{\textbf {A}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42ab747c2036116ccb15e5d0dd5fa8022faef248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.663ex; height:2.176ex;" alt="{\displaystyle {\textbf {F}}=d{\textbf {A}}.}"></span></dd></dl> <p>The <b>current <span class="texhtml">3</span>-form</b> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {J}}={\frac {1}{6}}j^{a}\,\varepsilon _{abcd}\,dx^{b}\wedge dx^{c}\wedge dx^{d}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">J</mtext> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {J}}={\frac {1}{6}}j^{a}\,\varepsilon _{abcd}\,dx^{b}\wedge dx^{c}\wedge dx^{d}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02422160dec6693437eed137f7980233e78fe4c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.584ex; height:5.176ex;" alt="{\displaystyle {\textbf {J}}={\frac {1}{6}}j^{a}\,\varepsilon _{abcd}\,dx^{b}\wedge dx^{c}\wedge dx^{d}\,,}"></span></dd></dl> <p>where <span class="texhtml"><i>j</i><sup><i>a</i></sup></span> are the four components of the current density. (Here it is a matter of convention to write <span class="texhtml"><i>F</i><sub><i>ab</i></sub></span> instead of <span class="texhtml"><i>f</i><sub><i>ab</i></sub></span>, i.e. to use capital letters, and to write <span class="texhtml"><i>J</i><sup><i>a</i></sup></span> instead of <span class="texhtml"><i>j</i><sup><i>a</i></sup></span>. However, the vector rsp. tensor components and the above-mentioned forms have different physical dimensions. Moreover, by decision of an international commission of the <a href="/wiki/International_Union_of_Pure_and_Applied_Physics" title="International Union of Pure and Applied Physics">International Union of Pure and Applied Physics</a>, the magnetic polarization vector has been called <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {J}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>J</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {J}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f64ab02528d2b80e1df79bc2a8762489a986afa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.788ex; height:2.843ex;" alt="{\displaystyle {\vec {J}}}"></span> for several decades, and by some publishers <span class="texhtml"><b>J</b></span>; i.e., the same name is used for different quantities.) </p><p>Using the above-mentioned definitions, <a href="/wiki/Maxwell%27s_equations" title="Maxwell&#39;s equations">Maxwell's equations</a> can be written very compactly in <a href="/wiki/Geometrized_units" class="mw-redirect" title="Geometrized units">geometrized units</a> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}d{\textbf {F}}&amp;={\textbf {0}}\\d{\star {\textbf {F}}}&amp;={\textbf {J}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">F</mtext> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">0</mtext> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C6;<!-- ⋆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">F</mtext> </mrow> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">J</mtext> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}d{\textbf {F}}&amp;={\textbf {0}}\\d{\star {\textbf {F}}}&amp;={\textbf {J}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9b00cabd1fc7c6de64ff5fd55b9ce19c6abe3a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.939ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}d{\textbf {F}}&amp;={\textbf {0}}\\d{\star {\textbf {F}}}&amp;={\textbf {J}},\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \star }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C6;<!-- ⋆ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \star }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd316a21eeb5079a850f223b1d096a06bfa788c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.035ex; margin-bottom: -0.206ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle \star }"></span> denotes the <a href="/wiki/Hodge_star" class="mw-redirect" title="Hodge star">Hodge star</a> operator. Similar considerations describe the geometry of gauge theories in general. </p><p>The <span class="texhtml">2</span>-form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\star }\mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C6;<!-- ⋆ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\star }\mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9e4891297b68a5ff7b039ce33e4ff5c7f14c76e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.845ex; height:2.176ex;" alt="{\displaystyle {\star }\mathbf {F} }"></span>, which is <a href="/wiki/Duality_(mathematics)" title="Duality (mathematics)">dual</a> to the Faraday form, is also called <b>Maxwell 2-form</b>. </p><p>Electromagnetism is an example of a <span class="texhtml"><a href="/wiki/U(1)" class="mw-redirect" title="U(1)">U(1)</a></span> <a href="/wiki/Gauge_theory" title="Gauge theory">gauge theory</a>. Here the <a href="/wiki/Lie_group" title="Lie group">Lie group</a> is <span class="texhtml">U(1)</span>, the one-dimensional <a href="/wiki/Unitary_group" title="Unitary group">unitary group</a>, which is in particular <a href="/wiki/Abelian_group" title="Abelian group">abelian</a>. There are gauge theories, such as <a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills theory</a>, in which the Lie group is not abelian. In that case, one gets relations which are similar to those described here. The analog of the field <span class="texhtml"><b>F</b></span> in such theories is the curvature form of the connection, which is represented in a gauge by a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>-valued one-form <span class="texhtml"><b>A</b></span>. The Yang–Mills field <span class="texhtml"><b>F</b></span> is then defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14a0a39307e25aca9a9f8d7e168b86e04a733363" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.125ex; height:2.343ex;" alt="{\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .}"></span></dd></dl> <p>In the abelian case, such as electromagnetism, <span class="texhtml"><b>A</b> ∧ <b>A</b> = 0</span>, but this does not hold in general. Likewise the field equations are modified by additional terms involving exterior products of <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>F</b></span>, owing to the <a href="/wiki/Maurer%E2%80%93Cartan_form" title="Maurer–Cartan form">structure equations</a> of the gauge group. </p> <div class="mw-heading mw-heading2"><h2 id="Applications_in_geometric_measure_theory">Applications in geometric measure theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=23" title="Edit section: Applications in geometric measure theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Numerous minimality results for complex analytic manifolds are based on the <a href="/wiki/Wirtinger_inequality_(2-forms)" title="Wirtinger inequality (2-forms)">Wirtinger inequality for 2-forms</a>. A succinct proof may be found in <a href="/wiki/Herbert_Federer" title="Herbert Federer">Herbert Federer</a>'s classic text <i>Geometric Measure Theory</i>. The Wirtinger inequality is also a key ingredient in <a href="/wiki/Gromov%27s_inequality_for_complex_projective_space" title="Gromov&#39;s inequality for complex projective space">Gromov's inequality for complex projective space</a> in <a href="/wiki/Systolic_geometry" title="Systolic geometry">systolic geometry</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=24" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Closed_and_exact_differential_forms" title="Closed and exact differential forms">Closed and exact differential forms</a></li> <li><a href="/wiki/Complex_differential_form" title="Complex differential form">Complex differential form</a></li> <li><a href="/wiki/Vector-valued_differential_form" title="Vector-valued differential form">Vector-valued differential form</a></li> <li><a href="/wiki/Equivariant_differential_form" title="Equivariant differential form">Equivariant differential form</a></li> <li><a href="/wiki/Calculus_on_Manifolds_(book)" title="Calculus on Manifolds (book)"><i>Calculus on Manifolds</i></a></li> <li><a href="/wiki/Multilinear_form" title="Multilinear form">Multilinear form</a></li> <li><a href="/wiki/Polynomial_differential_form" title="Polynomial differential form">Polynomial differential form</a></li> <li><a href="/wiki/Presymplectic_form" title="Presymplectic form">Presymplectic form</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=25" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCartan1899" class="citation cs2">Cartan, Élie (1899), <a rel="nofollow" class="external text" href="http://www.numdam.org/item?id=ASENS_1899_3_16__239_0">"Sur certaines expressions différentielles et le problème de Pfaff"</a>, <i>Annales Scientifiques de l'École Normale Supérieure</i>, <b>16</b>: 239–332, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fasens.467">10.24033/asens.467</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annales+Scientifiques+de+l%27%C3%89cole+Normale+Sup%C3%A9rieure&amp;rft.atitle=Sur+certaines+expressions+diff%C3%A9rentielles+et+le+probl%C3%A8me+de+Pfaff&amp;rft.volume=16&amp;rft.pages=239-332&amp;rft.date=1899&amp;rft_id=info%3Adoi%2F10.24033%2Fasens.467&amp;rft.aulast=Cartan&amp;rft.aufirst=%C3%89lie&amp;rft_id=http%3A%2F%2Fwww.numdam.org%2Fitem%3Fid%3DASENS_1899_3_16&#95;_239_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTu,_Loring_W.2011" class="citation book cs1">Tu, Loring W. (2011). <i>An introduction to manifolds</i> (2nd&#160;ed.). New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781441974006" title="Special:BookSources/9781441974006"><bdi>9781441974006</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/682907530">682907530</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+manifolds&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft_id=info%3Aoclcnum%2F682907530&amp;rft.isbn=9781441974006&amp;rft.au=Tu%2C+Loring+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathoverflow.net/q/68033">"Linear algebra – "Natural" pairings between exterior powers of a vector space and its dual"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Linear+algebra+%E2%80%93+%22Natural%22+pairings+between+exterior+powers+of+a+vector+space+and+its+dual&amp;rft_id=https%3A%2F%2Fmathoverflow.net%2Fq%2F68033&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=26" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachman2006" class="citation cs2">Bachman, David (2006), <i>A Geometric Approach to Differential Forms</i>, Birkhäuser, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-4499-4" title="Special:BookSources/978-0-8176-4499-4"><bdi>978-0-8176-4499-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Geometric+Approach+to+Differential+Forms&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=2006&amp;rft.isbn=978-0-8176-4499-4&amp;rft.aulast=Bachman&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachman2003" class="citation cs2">Bachman, David (2003), <i>A Geometric Approach to Differential Forms</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0306194v1">math/0306194v1</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003math......6194B">2003math......6194B</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Geometric+Approach+to+Differential+Forms&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath%2F0306194v1&amp;rft_id=info%3Abibcode%2F2003math......6194B&amp;rft.aulast=Bachman&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartan2006" class="citation cs2"><a href="/wiki/Henri_Cartan" title="Henri Cartan">Cartan, Henri</a> (2006), <i>Differential Forms</i>, Dover, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-45010-4" title="Special:BookSources/0-486-45010-4"><bdi>0-486-45010-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+Forms&amp;rft.pub=Dover&amp;rft.date=2006&amp;rft.isbn=0-486-45010-4&amp;rft.aulast=Cartan&amp;rft.aufirst=Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span>—Translation of <i>Formes différentielles</i> (1967)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1972" class="citation cs2"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1972), <i>Treatise on Analysis</i>, vol.&#160;3, New York-London: Academic Press, Inc., <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0350769">0350769</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Treatise+on+Analysis&amp;rft.place=New+York-London&amp;rft.pub=Academic+Press%2C+Inc.&amp;rft.date=1972&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0350769%23id-name%3DMR&amp;rft.aulast=Dieudonn%C3%A9&amp;rft.aufirst=Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwards1994" class="citation cs2"><a href="/wiki/Harold_M._Edwards" class="mw-redirect" title="Harold M. Edwards">Edwards, Harold M.</a> (1994), <i>Advanced Calculus; A Differential Forms Approach</i>, Modern Birkhäuser Classics, Boston, Basel, Berlin: Birkhäuser, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-8176-8412-9">10.1007/978-0-8176-8412-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-8411-2" title="Special:BookSources/978-0-8176-8411-2"><bdi>978-0-8176-8411-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Calculus%3B+A+Differential+Forms+Approach&amp;rft.place=Boston%2C+Basel%2C+Berlin&amp;rft.series=Modern+Birkh%C3%A4user+Classics&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1007%2F978-0-8176-8412-9&amp;rft.isbn=978-0-8176-8411-2&amp;rft.aulast=Edwards&amp;rft.aufirst=Harold+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1999" class="citation cs2"><a href="/wiki/Gerald_Folland" title="Gerald Folland">Folland, Gerald B.</a> (1999), <i>Real Analysis: Modern Techniques and Their Applications</i> (Second&#160;ed.), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-31716-6" title="Special:BookSources/978-0-471-31716-6"><bdi>978-0-471-31716-6</bdi></a>,</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+Analysis%3A+Modern+Techniques+and+Their+Applications&amp;rft.edition=Second&amp;rft.date=1999&amp;rft.isbn=978-0-471-31716-6&amp;rft.aulast=Folland&amp;rft.aufirst=Gerald+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span> provides a brief discussion of integration on manifolds from the point of view of measure theory in the last section.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlanders1989" class="citation cs2"><a href="/wiki/Harley_Flanders" title="Harley Flanders">Flanders, Harley</a> (1989) [1964], <i>Differential forms with applications to the physical sciences</i>, Mineola, New York: Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-66169-5" title="Special:BookSources/0-486-66169-5"><bdi>0-486-66169-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+forms+with+applications+to+the+physical+sciences&amp;rft.place=Mineola%2C+New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1989&amp;rft.isbn=0-486-66169-5&amp;rft.aulast=Flanders&amp;rft.aufirst=Harley&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFleming1965" class="citation cs2"><a href="/wiki/Wendell_Fleming" title="Wendell Fleming">Fleming, Wendell H.</a> (1965), "Chapter 6: Exterior algebra and differential calculus", <i>Functions of Several Variables</i>, Addison-Wesley, pp.&#160;205–238.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+6%3A+Exterior+algebra+and+differential+calculus&amp;rft.btitle=Functions+of+Several+Variables&amp;rft.pages=205-238&amp;rft.pub=Addison-Wesley&amp;rft.date=1965&amp;rft.aulast=Fleming&amp;rft.aufirst=Wendell+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span> This textbook in <a href="/wiki/Multivariate_calculus" class="mw-redirect" title="Multivariate calculus">multivariate calculus</a> introduces the exterior algebra of differential forms at the college calculus level.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorita2001" class="citation cs2">Morita, Shigeyuki (2001), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/geometryofdiffer00mori"><i>Geometry of Differential Forms</i></a></span>, AMS, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-1045-6" title="Special:BookSources/0-8218-1045-6"><bdi>0-8218-1045-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+of+Differential+Forms&amp;rft.pub=AMS&amp;rft.date=2001&amp;rft.isbn=0-8218-1045-6&amp;rft.aulast=Morita&amp;rft.aufirst=Shigeyuki&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeometryofdiffer00mori&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1976" class="citation cs2"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1976), <i>Principles of Mathematical Analysis</i>, New York: McGraw-Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-054235-X" title="Special:BookSources/0-07-054235-X"><bdi>0-07-054235-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Mathematical+Analysis&amp;rft.place=New+York&amp;rft.pub=McGraw-Hill&amp;rft.date=1976&amp;rft.isbn=0-07-054235-X&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpivak1965" class="citation cs2"><a href="/wiki/Michael_Spivak" title="Michael Spivak">Spivak, Michael</a> (1965), <a rel="nofollow" class="external text" href="https://archive.org/details/SpivakM.CalculusOnManifolds_201703"><i>Calculus on Manifolds</i></a>, Menlo Park, California: W. A. Benjamin, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8053-9021-9" title="Special:BookSources/0-8053-9021-9"><bdi>0-8053-9021-9</bdi></a>,</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+on+Manifolds&amp;rft.place=Menlo+Park%2C+California&amp;rft.pub=W.+A.+Benjamin&amp;rft.date=1965&amp;rft.isbn=0-8053-9021-9&amp;rft.aulast=Spivak&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FSpivakM.CalculusOnManifolds_201703&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span> standard introductory text.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTu2008" class="citation cs2"><a href="/wiki/Loring_W._Tu" title="Loring W. Tu">Tu, Loring W.</a> (2008), <i>An Introduction to Manifolds</i>, Universitext, Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4419-7400-6">10.1007/978-1-4419-7400-6</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-48098-5" title="Special:BookSources/978-0-387-48098-5"><bdi>978-0-387-48098-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Manifolds&amp;rft.series=Universitext&amp;rft.pub=Springer&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4419-7400-6&amp;rft.isbn=978-0-387-48098-5&amp;rft.aulast=Tu&amp;rft.aufirst=Loring+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZorich2004" class="citation cs2"><a href="/wiki/Vladimir_A._Zorich" title="Vladimir A. Zorich">Zorich, Vladimir A.</a> (2004), <i>Mathematical Analysis II</i>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-40633-6" title="Special:BookSources/3-540-40633-6"><bdi>3-540-40633-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Analysis+II&amp;rft.pub=Springer&amp;rft.date=2004&amp;rft.isbn=3-540-40633-6&amp;rft.aulast=Zorich&amp;rft.aufirst=Vladimir+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differential_form&amp;action=edit&amp;section=27" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Differential_form"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Differentialk-Form.html">"Differential form"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Differential+form&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDifferentialk-Form.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSjamaar2006" class="citation cs2">Sjamaar, Reyer (2006), <a rel="nofollow" class="external text" href="http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf"><i>Manifolds and differential forms lecture notes</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Manifolds+and+differential+forms+lecture+notes&amp;rft.date=2006&amp;rft.aulast=Sjamaar&amp;rft.aufirst=Reyer&amp;rft_id=http%3A%2F%2Fpi.math.cornell.edu%2F~sjamaar%2Fmanifolds%2Fmanifold.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span>, a course taught at <a href="/wiki/Cornell_University" title="Cornell University">Cornell University</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachman2003" class="citation cs2">Bachman, David (2003), <i>A Geometric Approach to Differential Forms</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0306194">math/0306194</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003math......6194B">2003math......6194B</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Geometric+Approach+to+Differential+Forms&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath%2F0306194&amp;rft_id=info%3Abibcode%2F2003math......6194B&amp;rft.aulast=Bachman&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADifferential+form" class="Z3988"></span>, an undergraduate text.</li> <li><a href="/wiki/Tristan_Needham" title="Tristan Needham">Needham, Tristan</a>. <i><a rel="nofollow" class="external text" href="https://www.vdgf.space/table-of-contents">Visual differential geometry and forms: a mathematical drama in five acts</a></i>. Princeton University Press, 2021.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Manifolds_(Glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Manifolds" title="Template:Manifolds"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Manifolds" title="Template talk:Manifolds"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Manifolds" title="Special:EditPage/Template:Manifolds"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Manifolds_(Glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Manifold" title="Manifold">Manifolds</a> (<a href="/wiki/Glossary_of_differential_geometry_and_topology" title="Glossary of differential geometry and topology">Glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Topological_manifold" title="Topological manifold">Topological manifold</a> <ul><li><a href="/wiki/Atlas_(topology)" title="Atlas (topology)">Atlas</a></li></ul></li> <li><a href="/wiki/Differentiable_manifold" title="Differentiable manifold">Differentiable/Smooth manifold</a> <ul><li><a href="/wiki/Differential_structure" title="Differential structure">Differential structure</a></li> <li><a href="/wiki/Smooth_structure" title="Smooth structure">Smooth atlas</a></li></ul></li> <li><a href="/wiki/Submanifold" title="Submanifold">Submanifold</a></li> <li><a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></li> <li><a href="/wiki/Smoothness" title="Smoothness">Smooth map</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a></li> <li><a class="mw-selflink selflink">Differential form</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results <span style="font-size:85%;"><a href="/wiki/Category:Theorems_in_differential_geometry" title="Category:Theorems in differential geometry">(list)</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atiyah%E2%80%93Singer_index_theorem" title="Atiyah–Singer index theorem">Atiyah–Singer index</a></li> <li><a href="/wiki/Darboux%27s_theorem" title="Darboux&#39;s theorem">Darboux's</a></li> <li><a href="/wiki/De_Rham_cohomology#De_Rham&#39;s_theorem" title="De Rham cohomology">De Rham's</a></li> <li><a href="/wiki/Frobenius_theorem_(differential_topology)" title="Frobenius theorem (differential topology)">Frobenius</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">Generalized Stokes</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf–Rinow</a></li> <li><a href="/wiki/Noether%27s_theorem" title="Noether&#39;s theorem">Noether's</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's</a></li> <li><a href="/wiki/Whitney_embedding_theorem" title="Whitney embedding theorem">Whitney embedding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Smoothness" title="Smoothness">Maps</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differentiable_curve" title="Differentiable curve">Curve</a></li> <li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a> <ul><li><a href="/wiki/Local_diffeomorphism" title="Local diffeomorphism">Local</a></li></ul></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Exponential map</a> <ul><li><a href="/wiki/Exponential_map_(Lie_theory)" title="Exponential map (Lie theory)">in Lie theory</a></li></ul></li> <li><a href="/wiki/Foliation" title="Foliation">Foliation</a></li> <li><a href="/wiki/Immersion_(mathematics)" title="Immersion (mathematics)">Immersion</a></li> <li><a href="/wiki/Integral_curve" title="Integral curve">Integral curve</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">Section</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of<br />manifolds</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_manifold" title="Closed manifold">Closed</a></li> <li>(<a href="/wiki/Almost_complex_manifold" title="Almost complex manifold">Almost</a>)&#160;<a href="/wiki/Complex_manifold" title="Complex manifold">Complex</a></li> <li>(<a href="/wiki/Almost-contact_manifold" title="Almost-contact manifold">Almost</a>)&#160;<a href="/wiki/Contact_manifold" class="mw-redirect" title="Contact manifold">Contact</a></li> <li><a href="/wiki/Fibered_manifold" title="Fibered manifold">Fibered</a></li> <li><a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler</a></li> <li><a href="/wiki/Flat_manifold" title="Flat manifold">Flat</a></li> <li><a href="/wiki/G-structure_on_a_manifold" title="G-structure on a manifold">G-structure</a></li> <li><a href="/wiki/Hadamard_manifold" title="Hadamard manifold">Hadamard</a></li> <li><a href="/wiki/Hermitian_manifold" title="Hermitian manifold">Hermitian</a></li> <li><a href="/wiki/Hyperbolic_manifold" title="Hyperbolic manifold">Hyperbolic</a></li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler</a></li> <li><a href="/wiki/Kenmotsu_manifold" title="Kenmotsu manifold">Kenmotsu</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a> <ul><li><a href="/wiki/Lie_group%E2%80%93Lie_algebra_correspondence" title="Lie group–Lie algebra correspondence">Lie algebra</a></li></ul></li> <li><a href="/wiki/Manifold_with_boundary" class="mw-redirect" title="Manifold with boundary">Manifold with boundary</a></li> <li><a href="/wiki/Orientability" title="Orientability">Oriented</a></li> <li><a href="/wiki/Parallelizable_manifold" title="Parallelizable manifold">Parallelizable</a></li> <li><a href="/wiki/Poisson_manifold" title="Poisson manifold">Poisson</a></li> <li><a href="/wiki/Prime_manifold" title="Prime manifold">Prime</a></li> <li><a href="/wiki/Quaternionic_manifold" title="Quaternionic manifold">Quaternionic</a></li> <li><a href="/wiki/Hypercomplex_manifold" title="Hypercomplex manifold">Hypercomplex</a></li> <li>(<a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo−</a>,&#160;<a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">Sub−</a>)&#160;<a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian</a></li> <li><a href="/wiki/Rizza_manifold" title="Rizza manifold">Rizza</a></li> <li>(<a href="/wiki/Almost_symplectic_manifold" title="Almost symplectic manifold">Almost</a>)&#160;<a href="/wiki/Symplectic_manifold" title="Symplectic manifold">Symplectic</a></li> <li><a href="/wiki/Tame_manifold" title="Tame manifold">Tame</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Tensor" title="Tensor">Tensors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Vectors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Distribution_(differential_geometry)" title="Distribution (differential geometry)">Distribution</a></li> <li><a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a> <ul><li><a href="/wiki/Tangent_bundle" title="Tangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li> <li><a href="/wiki/Vector_flow" title="Vector flow">Vector flow</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Covectors</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_and_exact_differential_forms" title="Closed and exact differential forms">Closed/Exact</a></li> <li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Cotangent_space" title="Cotangent space">Cotangent space</a> <ul><li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a class="mw-selflink selflink">Differential form</a> <ul><li><a href="/wiki/Vector-valued_differential_form" title="Vector-valued differential form">Vector-valued</a></li></ul></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Interior_product" title="Interior product">Interior product</a></li> <li><a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">Pullback</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> <ul><li><a href="/wiki/Ricci_flow" title="Ricci flow">flow</a></li></ul></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a> <ul><li><a href="/wiki/Tensor_density" title="Tensor density">density</a></li></ul></li> <li><a href="/wiki/Volume_form" title="Volume form">Volume form</a></li> <li><a href="/wiki/Wedge_product" class="mw-redirect" title="Wedge product">Wedge product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fiber_bundle" title="Fiber bundle">Bundles</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_bundle" title="Adjoint bundle">Adjoint</a></li> <li><a href="/wiki/Affine_bundle" title="Affine bundle">Affine</a></li> <li><a href="/wiki/Associated_bundle" title="Associated bundle">Associated</a></li> <li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">Cotangent</a></li> <li><a href="/wiki/Dual_bundle" title="Dual bundle">Dual</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber</a></li> <li>(<a href="/wiki/Cofibration" title="Cofibration">Co</a>)&#160;<a href="/wiki/Fibration" title="Fibration">Fibration</a></li> <li><a href="/wiki/Jet_bundle" title="Jet bundle">Jet</a></li> <li><a href="/wiki/Lie_algebra_bundle" title="Lie algebra bundle">Lie algebra</a></li> <li>(<a href="/wiki/Stable_normal_bundle" title="Stable normal bundle">Stable</a>)&#160;<a href="/wiki/Normal_bundle" title="Normal bundle">Normal</a></li> <li><a href="/wiki/Principal_bundle" title="Principal bundle">Principal</a></li> <li><a href="/wiki/Spinor_bundle" title="Spinor bundle">Spinor</a></li> <li><a href="/wiki/Subbundle" title="Subbundle">Subbundle</a></li> <li><a href="/wiki/Tangent_bundle" title="Tangent bundle">Tangent</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor</a></li> <li><a href="/wiki/Vector_bundle" title="Vector bundle">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Connections</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine</a></li> <li><a href="/wiki/Cartan_connection" title="Cartan connection">Cartan</a></li> <li><a href="/wiki/Ehresmann_connection" title="Ehresmann connection">Ehresmann</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Form</a></li> <li><a href="/wiki/Connection_(fibred_manifold)" title="Connection (fibred manifold)">Generalized</a></li> <li><a href="/wiki/Koszul_connection" class="mw-redirect" title="Koszul connection">Koszul</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita</a></li> <li><a href="/wiki/Connection_(principal_bundle)" title="Connection (principal bundle)">Principal</a></li> <li><a href="/wiki/Connection_(vector_bundle)" title="Connection (vector bundle)">Vector</a></li> <li><a href="/wiki/Parallel_transport" title="Parallel transport">Parallel transport</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classification_of_manifolds" title="Classification of manifolds">Classification of manifolds</a></li> <li><a href="/wiki/Gauge_theory_(mathematics)" title="Gauge theory (mathematics)">Gauge theory</a></li> <li><a href="/wiki/History_of_manifolds_and_varieties" title="History of manifolds and varieties">History</a></li> <li><a href="/wiki/Morse_theory" title="Morse theory">Morse theory</a></li> <li><a href="/wiki/Moving_frame" title="Moving frame">Moving frame</a></li> <li><a href="/wiki/Singularity_theory" title="Singularity theory">Singularity theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a></li> <li><a href="/wiki/Diffeology" title="Diffeology">Diffeology</a></li> <li><a href="/wiki/Diffiety" title="Diffiety">Diffiety</a></li> <li><a href="/wiki/Fr%C3%A9chet_manifold" title="Fréchet manifold">Fréchet manifold</a></li> <li><a href="/wiki/K-theory" title="K-theory">K-theory</a></li> <li><a href="/wiki/Orbifold" title="Orbifold">Orbifold</a></li> <li><a href="/wiki/Secondary_calculus_and_cohomological_physics" title="Secondary calculus and cohomological physics">Secondary calculus</a> <ul><li><a href="/wiki/Differential_calculus_over_commutative_algebras" title="Differential calculus over commutative algebras">over commutative algebras</a></li></ul></li> <li><a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">Sheaf</a></li> <li><a href="/wiki/Stratifold" title="Stratifold">Stratifold</a></li> <li><a href="/wiki/Supermanifold" title="Supermanifold">Supermanifold</a></li> <li><a href="/wiki/Stratified_space" title="Stratified space">Stratified space</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Tensors" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a class="mw-selflink selflink">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1047080#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Differential forms"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85037916">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Formes différentielles"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb122737106">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Formes différentielles"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb122737106">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00560655">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="diferenciální formy"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph493955&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007552908705171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐l2lmx Cached time: 20241124163129 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.684 seconds Real time usage: 2.064 seconds Preprocessor visited node count: 29790/1000000 Post‐expand include size: 206500/2097152 bytes Template argument size: 48173/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 74308/5000000 bytes Lua time usage: 0.737/10.000 seconds Lua memory usage: 7595305/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1500.550 1 -total 45.48% 682.423 555 Template:Math 13.52% 202.875 16 Template:Citation 10.82% 162.392 1 Template:Reflist 9.28% 139.255 4 Template:Navbox 8.05% 120.834 1 Template:Manifolds 8.00% 120.055 562 Template:Main_other 7.07% 106.085 1 Template:Short_description 5.13% 76.998 2 Template:Pagetype 4.22% 63.293 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:idhash:221519-0!canonical and timestamp 20241124163129 and revision id 1258251863. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Differential_form&amp;oldid=1258251863">https://en.wikipedia.org/w/index.php?title=Differential_form&amp;oldid=1258251863</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Differential_forms" title="Category:Differential forms">Differential forms</a></li><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_December_2021" title="Category:Wikipedia articles needing clarification from December 2021">Wikipedia articles needing clarification from December 2021</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 November 2024, at 23:35<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Differential_form&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-txx8l","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"1.684","walltime":"2.064","ppvisitednodes":{"value":29790,"limit":1000000},"postexpandincludesize":{"value":206500,"limit":2097152},"templateargumentsize":{"value":48173,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":74308,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1500.550 1 -total"," 45.48% 682.423 555 Template:Math"," 13.52% 202.875 16 Template:Citation"," 10.82% 162.392 1 Template:Reflist"," 9.28% 139.255 4 Template:Navbox"," 8.05% 120.834 1 Template:Manifolds"," 8.00% 120.055 562 Template:Main_other"," 7.07% 106.085 1 Template:Short_description"," 5.13% 76.998 2 Template:Pagetype"," 4.22% 63.293 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.737","limit":"10.000"},"limitreport-memusage":{"value":7595305,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBachman2003\"] = 2,\n [\"CITEREFBachman2006\"] = 1,\n [\"CITEREFCartan1899\"] = 1,\n [\"CITEREFCartan2006\"] = 1,\n [\"CITEREFDieudonné1972\"] = 1,\n [\"CITEREFEdwards1994\"] = 1,\n [\"CITEREFFlanders1989\"] = 1,\n [\"CITEREFFleming1965\"] = 1,\n [\"CITEREFFolland1999\"] = 1,\n [\"CITEREFMorita2001\"] = 1,\n [\"CITEREFRudin1976\"] = 1,\n [\"CITEREFSjamaar2006\"] = 1,\n [\"CITEREFSpivak1965\"] = 1,\n [\"CITEREFTu,_Loring_W.2011\"] = 1,\n [\"CITEREFTu2008\"] = 1,\n [\"CITEREFZorich2004\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Abs\"] = 4,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 16,\n [\"Cite book\"] = 1,\n [\"Cite web\"] = 1,\n [\"Clarify\"] = 1,\n [\"Details\"] = 1,\n [\"EquationNote\"] = 2,\n [\"EquationRef\"] = 1,\n [\"Harv\"] = 7,\n [\"I sup\"] = 54,\n [\"Main\"] = 2,\n [\"Manifolds\"] = 1,\n [\"Math\"] = 555,\n [\"Mathworld\"] = 1,\n [\"Mvar\"] = 87,\n [\"Nowrap\"] = 6,\n [\"NumBlk\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 2,\n [\"Short description\"] = 1,\n [\"Su\"] = 1,\n [\"Sub\"] = 10,\n [\"Sup\"] = 11,\n [\"Tensors\"] = 1,\n [\"Thin space\"] = 1,\n [\"Underline\"] = 2,\n [\"\\\\bigwedge\"] = 2,\n [\"′\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-l2lmx","timestamp":"20241124163129","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Differential form","url":"https:\/\/en.wikipedia.org\/wiki\/Differential_form","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1047080","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1047080","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-05-04T20:37:36Z","dateModified":"2024-11-18T23:35:43Z","headline":"totally antisymmetric tensor field; section of exterior powers of the cotangent bundle"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10