CINXE.COM

Search results for: metric tensor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metric tensor</title> <meta name="description" content="Search results for: metric tensor"> <meta name="keywords" content="metric tensor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metric tensor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metric tensor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 383</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metric tensor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20P.%20Smirnov">Alexander P. Smirnov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Matveev"> Sergey A. Matveev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20A.%20Zheltkov"> Dmitry A. Zheltkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20E.%20Tyrtyshnikov"> Eugene E. Tyrtyshnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensor%20train%20decomposition" title="tensor train decomposition">tensor train decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=multicomponent%20Smoluchowski%20equation" title=" multicomponent Smoluchowski equation"> multicomponent Smoluchowski equation</a>, <a href="https://publications.waset.org/abstracts/search?q=runge-kutta%20scheme" title=" runge-kutta scheme"> runge-kutta scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution" title=" convolution"> convolution</a> </p> <a href="https://publications.waset.org/abstracts/40417/fast-and-accurate-finite-difference-method-solving-multicomponent-smoluchowski-coagulation-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> An Inventory Management Model to Manage the Stock Level for Irregular Demand Items</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Patriarca">Riccardo Patriarca</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulio%20Di%20Gravio"> Giulio Di Gravio</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Costantino"> Francesco Costantino</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Tronci"> Massimo Tronci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=METRIC" title="METRIC">METRIC</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20demand" title=" irregular demand"> irregular demand</a>, <a href="https://publications.waset.org/abstracts/search?q=spare%20parts" title=" spare parts"> spare parts</a> </p> <a href="https://publications.waset.org/abstracts/73000/an-inventory-management-model-to-manage-the-stock-level-for-irregular-demand-items" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> A New Verification Based Congestion Control Scheme in Mobile Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Guha%20Thakurta">P. K. Guha Thakurta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouvik%20Roy"> Shouvik Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhawana%20Raj"> Bhawana Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20networks" title=" mobile networks"> mobile networks</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer" title=" buffer"> buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=call%20drop" title=" call drop"> call drop</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain" title=" markov chain"> markov chain</a> </p> <a href="https://publications.waset.org/abstracts/19020/a-new-verification-based-congestion-control-scheme-in-mobile-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Jagadeesh%20Kumar">P. S. Jagadeesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yung"> Yang Yung</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenli%20Hu"> Wenli Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20emotion%20classification" title="speech emotion classification">speech emotion classification</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20deep%20stacking%20neural%20networks" title=" tensor deep stacking neural networks"> tensor deep stacking neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20electromyography" title=" facial electromyography"> facial electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20mapping" title=" bilinear mapping"> bilinear mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=audio-visual%20stimuli" title=" audio-visual stimuli"> audio-visual stimuli</a> </p> <a href="https://publications.waset.org/abstracts/78499/tensor-deep-stacking-neural-networks-and-bilinear-mapping-based-speech-emotion-classification-using-facial-electromyography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Probing Syntax Information in Word Representations with Deep Metric Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bowen%20Ding">Bowen Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Yihao%20Kuang"> Yihao Kuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20metric%20learning" title="deep metric learning">deep metric learning</a>, <a href="https://publications.waset.org/abstracts/search?q=syntax%20tree%20probing" title=" syntax tree probing"> syntax tree probing</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20representations" title=" word representations"> word representations</a> </p> <a href="https://publications.waset.org/abstracts/173855/probing-syntax-information-in-word-representations-with-deep-metric-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20M.%20Jawwad%20Riaz">Syed M. Jawwad Riaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20hole%20space-times" title="black hole space-times">black hole space-times</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%27s%20field%20equation" title=" Einstein&#039;s field equation"> Einstein&#039;s field equation</a>, <a href="https://publications.waset.org/abstracts/search?q=foliation" title=" foliation"> foliation</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-surfaces" title=" hyper-surfaces"> hyper-surfaces</a> </p> <a href="https://publications.waset.org/abstracts/50127/foliation-and-the-first-law-of-thermodynamics-for-the-kerr-newman-black-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Gaze Behaviour of Individuals with and without Intellectual Disability for Nonaccidental and Metric Shape Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Haider">S. Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bhushan"> B. Bhushan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eye Gaze behaviour of individuals with and without intellectual disability are investigated in an eye tracking study in terms of sensitivity to Nonaccidental (NAPs) and Metric (MPs) shape properties. Total fixation time is used as an indirect measure of attention allocation. Studies have found Mean reaction times for non accidental properties (NAPs) to be shorter than for metric (MPs) when the MP and NAP differences were equalized. METHODS: Twenty-five individuals with intellectual disability (mild and moderate level of Mental Retardation) and twenty-seven normal individuals were compared on mean total fixation duration, accuracy level and mean reaction time for mild NAPs, extreme NAPs and metric properties of images. 2D images of cylinders were adapted and made into forced choice match-to-sample tasks. Tobii TX300 Eye Tracker was used to record total fixation duration and data obtained from the Areas of Interest (AOI). Variable trial duration (total reaction time of each participant) and fixed trail duration (data taken at each second from one to fifteen seconds) data were used for analyses. Both groups did not differ in terms of fixation times (fixed as well as variable) across any of the three image manipulations but differed in terms of reaction time and accuracy. Normal individuals had longer reaction time compared to individuals with intellectual disability across all types of images. Both the groups differed significantly on accuracy measure across all image types. Normal individuals performed better across all three types of images. Mild NAPs vs. Metric differences: There was significant difference between mild NAPs and metric properties of images in terms of reaction times. Mild NAPs images had significantly longer reaction time compared to metric for normal individuals but this difference was not found for individuals with intellectual disability. Mild NAPs images had significantly better accuracy level compared to metric for both the groups. In conclusion, type of image manipulations did not result in differences in attention allocation for individuals with and without intellectual disability. Mild Nonaccidental properties facilitate better accuracy level compared to metric in both the groups but this advantage is seen only for normal group in terms of mean reaction time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eye%20gaze%20fixations" title="eye gaze fixations">eye gaze fixations</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20movements" title=" eye movements"> eye movements</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20disability" title=" intellectual disability"> intellectual disability</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulus%20properties" title=" stimulus properties"> stimulus properties</a> </p> <a href="https://publications.waset.org/abstracts/21671/gaze-behaviour-of-individuals-with-and-without-intellectual-disability-for-nonaccidental-and-metric-shape-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Decision Trees Constructing Based on K-Means Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loai%20Abdallah">Loai Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Yousef"> Malik Yousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ensemble%20clustering" title="ensemble clustering">ensemble clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20trees" title=" decision trees"> decision trees</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=K%20nearest%20neighbors" title=" K nearest neighbors"> K nearest neighbors</a> </p> <a href="https://publications.waset.org/abstracts/89656/decision-trees-constructing-based-on-k-means-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Prakash%20Singh">Jay Prakash Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient &alpha;. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n &gt; 3) with a constant coefficient &alpha; is an &eta;&minus;Einstein and in a quasi conformally flat LP-Sasakian manifold M (n &gt; 3) with a constant coefficient &alpha; if the scalar curvature tensor is constant then M is of constant curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LP-Sasakian%20manifolds" title="LP-Sasakian manifolds">LP-Sasakian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-conformal%20curvature%20tensor" title=" quasi-conformal curvature tensor"> quasi-conformal curvature tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=concircular%20vector%20%0Cfield" title=" concircular vector field"> concircular vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=torse%20forming%20vector%20%0Cfield" title=" torse forming vector field"> torse forming vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifold" title=" Einstein manifold"> Einstein manifold</a> </p> <a href="https://publications.waset.org/abstracts/50415/on-quasi-conformally-flat-lp-sasakian-manifolds-with-a-coefficient-a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">792</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Adaptive Few-Shot Deep Metric Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wentian%20Shi">Wentian Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daming%20Shi"> Daming Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maysam%20Orouskhani"> Maysam Orouskhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Tian"> Feng Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=few-shot%20learning" title="few-shot learning">few-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=triplet%20network" title=" triplet network"> triplet network</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20margin" title=" adaptive margin"> adaptive margin</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/132975/adaptive-few-shot-deep-metric-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kejal%20Khatri">Kejal Khatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Narayan%20Mishra"> Vishnu Narayan Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20Fourier%20series" title="conjugate Fourier series">conjugate Fourier series</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20approximation" title=" degree of approximation"> degree of approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%B6lder%20metric" title=" Hölder metric"> Hölder metric</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20summability" title=" matrix summability"> matrix summability</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20summability" title=" product summability"> product summability</a> </p> <a href="https://publications.waset.org/abstracts/2123/degree-of-approximation-by-the-te1-means-of-conjugate-fourier-series-in-the-holder-metric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Right Solution of Geodesic Equation in Schwarzschild Metric and Overall Examination of Physical Laws</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim">Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 108 years have passed since a great number of physicists explained astronomical and physical phenomena by solving geodesic equations in the Schwarzschild metric. However, when solving the geodesic equations in Schwarzschild metric, they did not correctly solve one branch of the component of space among spatial and temporal components of four-dimensional force and did not come up with physical laws correctly by means of physical analysis from the results obtained by solving the geodesic equations. In addition, they did not treat the astronomical and physical phenomena in a physical way based on the correct physical laws obtained from the solution of the geodesic equations in the Schwarzschild metric. Therefore, some former scholars mentioned that Einstein’s theoretical basis of a general theory of relativity was obscure and incorrect, but they did not give a correct physical solution to the problems. Furthermore, since the general theory of relativity has not given a quantitative solution to obscure and incorrect problems, the generalization of gravitational theory has not yet been successfully completed, although former scholars have thought of it and tried to do it. In order to solve the problems, it is necessary to explore the obscure and incorrect problems in a general theory of relativity based on the physical laws and to find out the methodology for solving the problems. Therefore, as the first step toward achieving this purpose, the right solution of the geodesic equation in the Schwarzschild metric has been presented. Next, the correct physical laws found by making a physical analysis of the results have been presented, the obscure and incorrect problems have been shown, and an analysis of them has been made based on the physical laws. In addition, the experimental verification of the physical laws found by us has been made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalence%20principle" title="equivalence principle">equivalence principle</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title=" general relativity"> general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrodynamics" title=" geometrodynamics"> geometrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Schwarzschild" title=" Schwarzschild"> Schwarzschild</a>, <a href="https://publications.waset.org/abstracts/search?q=Poincar%C3%A9" title=" Poincaré"> Poincaré</a> </p> <a href="https://publications.waset.org/abstracts/192596/right-solution-of-geodesic-equation-in-schwarzschild-metric-and-overall-examination-of-physical-laws" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> A New Concept for Deriving the Expected Value of Fuzzy Random Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang-Hsuan%20Chen">Liang-Hsuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jung%20Chang"> Chia-Jung Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20random%20variables" title="fuzzy random variables">fuzzy random variables</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20measure" title=" distance measure"> distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=expected%20value" title=" expected value"> expected value</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20parameters" title=" descriptive parameters"> descriptive parameters</a> </p> <a href="https://publications.waset.org/abstracts/7545/a-new-concept-for-deriving-the-expected-value-of-fuzzy-random-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Resilience Assessment for Power Distribution Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berna%20Eren%20Tokgoz">Berna Eren Tokgoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Safa"> Mahdi Safa</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokyon%20Hwang"> Seokyon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title="photogrammetry">photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20distribution%20systems" title=" power distribution systems"> power distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20metric" title=" resilience metric"> resilience metric</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20resilience" title=" system resilience"> system resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-related%20disasters" title=" wind-related disasters"> wind-related disasters</a> </p> <a href="https://publications.waset.org/abstracts/72984/resilience-assessment-for-power-distribution-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Biohydrogen Production Derived from Banana Pseudo Stem of Agricultural Residues by Dark Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kholik">Kholik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the demand of renewable energy in general is increasing due to the crisis of fossil fuels. Biohydrogen is an alternative fuel with zero emission derived from renewable resources such as banana pseudo stem of agricultural residues. Banana plant can be easily found in tropical and subtropical areas, so the resource is abundant and readily available as a biohydrogen substrate. Banana pseudo stem has not been utilised as a resource or substrate of biohydrogen production and it mainly contains 45-65% cellulose (α-cellulose), 5-15% hemicellulose and 20-30% Lignin, which indicates that banana pseudo stem will be renewable, sustainable and promising resource as lignocellulosic biomass. In this research, biohydrogen is derived from banana pseudo stem by dark fermentation. Dark fermentation is the most suitable approach for practical biohydrogen production from organic solid wastes. The process has several advantages including a fast reaction rate, no need of light, and a smaller footprint. 321 million metric tonnes banana pseudo stem of 428 million metric tonnes banana plantation residues in worldwide for 2013 and 22.5 million metric tonnes banana pseudo stem of 30 million metric tonnes banana plantation residues in Indonesia for 2015 will be able to generate 810.60 million tonne mol H2 and 56.819 million tonne mol H2, respectively. In this paper, we will show that the banana pseudo stem is the renewable, sustainable and promising resource to be utilised and to produce biohydrogen as energy generation with high yield and high contain of cellulose in comparison with the other substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banana%20pseudo%20stem" title="banana pseudo stem">banana pseudo stem</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title=" biohydrogen"> biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation"> dark fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic" title=" lignocellulosic"> lignocellulosic</a> </p> <a href="https://publications.waset.org/abstracts/60445/biohydrogen-production-derived-from-banana-pseudo-stem-of-agricultural-residues-by-dark-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetika%20Barman">Geetika Barman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Daya%20Sagar"> B. S. Daya Sagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilation%20distance" title="dilation distance">dilation distance</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20distance" title=" erosion distance"> erosion distance</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image%20classification" title=" hyperspectral image classification"> hyperspectral image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20morphology" title=" mathematical morphology"> mathematical morphology</a> </p> <a href="https://publications.waset.org/abstracts/166292/classification-of-hyperspectral-image-using-mathematical-morphological-operator-based-distance-metric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> On Projective Invariants of Spherically Symmetric Finsler Spaces in Rn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Sadeghzadeh">Nasrin Sadeghzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we study projective invariants of spherically symmetric Finsler metrics in Rn. We find the necessary and sufficient conditions for the metrics to be Douglas and Generalized Douglas-Weyl (GDW) types. Also we show that two classes of GDW and Douglas spherically symmetric Finsler metrics coincide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spherically%20symmetric%20finsler%20metrics%20in%20Rn" title="spherically symmetric finsler metrics in Rn">spherically symmetric finsler metrics in Rn</a>, <a href="https://publications.waset.org/abstracts/search?q=finsler%20metrics" title=" finsler metrics"> finsler metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=douglas%20metric" title=" douglas metric"> douglas metric</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%0D%0ADouglas-Weyl%20%28GDW%29%20metric" title=" generalized Douglas-Weyl (GDW) metric"> generalized Douglas-Weyl (GDW) metric</a> </p> <a href="https://publications.waset.org/abstracts/33315/on-projective-invariants-of-spherically-symmetric-finsler-spaces-in-rn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> A Geometrical Perspective on the Insulin Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuhei%20Kunihiro">Yuhei Kunihiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorin%20V.%20Sabau"> Sorin V. Sabau</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Shibuya"> Kazuhiro Shibuya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the molecular evolution of insulin from the metric geometry point of view. In mathematics, and particularly in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from the geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metric%20geometry" title="metric geometry">metric geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20elegans" title=" C. elegans "> C. elegans </a> </p> <a href="https://publications.waset.org/abstracts/1430/a-geometrical-perspective-on-the-insulin-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boubekri">Mohamed Boubekri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewook%20Lee"> Jaewook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight%20factor" title="daylight factor">daylight factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hourly%20daylight%20illuminance" title=" hourly daylight illuminance"> hourly daylight illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight%20autonomy" title=" daylight autonomy"> daylight autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20daylight%20illuminance" title=" useful daylight illuminance"> useful daylight illuminance</a> </p> <a href="https://publications.waset.org/abstracts/70527/a-comparative-assessment-of-daylighting-metrics-assessing-the-daylighting-performance-of-three-shading-devices-under-four-different-orientations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Analysis of Chatterjea Type F-Contraction in F-Metric Space and Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awais%20Asif">Awais Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article investigates fixed point theorems of Chatterjea type F-contraction in the setting of F-metric space. We relax the conditions of F-contraction and define modified F-contraction for two mappings. The study provides fixed point results for both single-valued and multivalued mappings. The results are further extended to common fixed point theorems for two mappings. Moreover, to discuss the applicability of our results, an application is provided, which shows the role of our results in finding the solution to functional equations in dynamic programming. Our results generalize and extend the existing results in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chatterjea%20type%20F-contraction" title="Chatterjea type F-contraction">Chatterjea type F-contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=F-cauchy%20sequence" title=" F-cauchy sequence"> F-cauchy sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=F-convergent" title=" F-convergent"> F-convergent</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20valued%20mappings" title=" multi valued mappings"> multi valued mappings</a> </p> <a href="https://publications.waset.org/abstracts/108223/analysis-of-chatterjea-type-f-contraction-in-f-metric-space-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Operator Optimization Based on Hardware Architecture Alignment Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Gai">Qingqing Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxing%20Shen"> Junxing Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Luo"> Yu Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution" title="convolution">convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deconvolution" title=" deconvolution"> deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=W2C" title=" W2C"> W2C</a>, <a href="https://publications.waset.org/abstracts/search?q=C2W" title=" C2W"> C2W</a>, <a href="https://publications.waset.org/abstracts/search?q=alignment" title=" alignment"> alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20accelerator" title=" hardware accelerator"> hardware accelerator</a> </p> <a href="https://publications.waset.org/abstracts/157366/operator-optimization-based-on-hardware-architecture-alignment-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sally%20Salah%20El%20Menshawy">Sally Salah El Menshawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20M.%20Ahmed%20GabAllah"> Ghada M. Ahmed GabAllah</a>, <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Khedr%20M.%20Khedr"> Doaa Khedr M. Khedr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20tensor%20imaging" title="diffusion tensor imaging">diffusion tensor imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=salivary%20gland" title=" salivary gland"> salivary gland</a>, <a href="https://publications.waset.org/abstracts/search?q=tumors" title=" tumors"> tumors</a> </p> <a href="https://publications.waset.org/abstracts/154784/reliability-of-diffusion-tensor-imaging-in-differentiation-of-salivary-gland-tumors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Factorial Design Analysis for Quality of Video on MANET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyoup-Sang%20Yoon">Hyoup-Sang Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evalvid" title="evalvid">evalvid</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20ad%20hoc%20networks" title=" mobile ad hoc networks"> mobile ad hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ns-2" title=" ns-2"> ns-2</a> </p> <a href="https://publications.waset.org/abstracts/6956/factorial-design-analysis-for-quality-of-video-on-manet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Unsupervised Learning of Spatiotemporally Coherent Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ross%20Goroshin">Ross Goroshin</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Bruna"> Joan Bruna</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Tompson"> Jonathan Tompson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Eigen"> David Eigen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20LeCun"> Yann LeCun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20clustering" title=" pattern clustering"> pattern clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=pooling" title=" pooling"> pooling</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification "> classification </a> </p> <a href="https://publications.waset.org/abstracts/29488/unsupervised-learning-of-spatiotemporally-coherent-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Frequency- and Content-Based Tag Cloud Font Distribution Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81gnes%20Bog%C3%A1rdi-M%C3%A9sz%C3%B6ly">Ágnes Bogárdi-Mészöly</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Hashimoto"> Takeshi Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Yokoyama"> Shohei Yokoyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Ishikawa"> Hiroshi Ishikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tag%20cloud" title="tag cloud">tag cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=font%20distribution%20algorithm" title=" font distribution algorithm"> font distribution algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-based" title=" frequency-based"> frequency-based</a>, <a href="https://publications.waset.org/abstracts/search?q=content-based" title=" content-based"> content-based</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20law" title=" power law"> power law</a> </p> <a href="https://publications.waset.org/abstracts/8529/frequency-and-content-based-tag-cloud-font-distribution-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukelkoul%20Lahcen">Boukelkoul Lahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cumulative costs for O&amp;M may represent as much as 65%-90% of the turbine&#39;s investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&amp;M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost" title="cost">cost</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20state" title=" finite state"> finite state</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20model" title=" Markov model"> Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20and%20maintenance" title=" operation and maintenance"> operation and maintenance</a> </p> <a href="https://publications.waset.org/abstracts/35860/maintenance-alternatives-related-to-costs-of-wind-turbines-using-finite-state-markov-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Modeling Anisotropic Damage Algorithms of Metallic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Ayhan">Bahar Ayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20damage" title="anisotropic damage">anisotropic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/75980/modeling-anisotropic-damage-algorithms-of-metallic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oshin%20Anand">Oshin Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Atanu%20Rakshit"> Atanu Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20mining" title="association mining">association mining</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20preference" title=" customer preference"> customer preference</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20pattern" title=" frequent pattern"> frequent pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20reviews" title=" online reviews"> online reviews</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/68059/recognizing-customer-preferences-using-review-documents-a-hybrid-text-and-data-mining-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Parashar">Nishant Parashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawan%20S.%20Sinha"> Sawan S. Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Srinivasan"> Balaji Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20turbulence" title="compressible turbulence">compressible turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20gradient%20tensor" title=" velocity gradient tensor"> velocity gradient tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/101552/data-driven-analysis-of-velocity-gradient-dynamics-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anyeres%20N.%20Atehortua%20Jimenez">Anyeres N. Atehortua Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20David%20Lambra%C3%B1o"> J. David Lambraño</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Mu%C3%B1oz"> Juan Carlos Muñoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title="Navier-Stokes equations">Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-acoustic" title=" visco-acoustic"> visco-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion%20FWI" title=" inversion FWI "> inversion FWI </a> </p> <a href="https://publications.waset.org/abstracts/33620/integral-form-solutions-of-the-linearized-navier-stokes-equations-without-deviatoric-stress-tensor-term-in-the-forward-modeling-for-fwi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metric%20tensor&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10