CINXE.COM
Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process | Applied Water Science
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process | Applied Water Science</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process"/> <meta name="twitter:description" content="Applied Water Science - The colored effluents causing environmental pollution pose a threat to the world. This study aims to assess the effectiveness of nickel oxide/zinc oxide/kaolin nanocomposite..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig1_HTML.png"/> <meta name="journal_id" content="13201"/> <meta name="dc.title" content="Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process"/> <meta name="dc.source" content="Applied Water Science 2024 14:12"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2024-11-16"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s)"/> <meta name="dc.rights" content="2024 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="The colored effluents causing environmental pollution pose a threat to the world. This study aims to assess the effectiveness of nickel oxide/zinc oxide/kaolin nanocomposite (NiO/ZnO/Ka) in removing methylene blue (MB) from water. Furthermore, it aims to examine the impact of synergetic adsorption/photocatalytic degradation (APCD) on the MB adsorption capacity as well as the suitability of the nonlinear adsorption isotherm and kinetic modeling in analyzing the process. The composites ZnO/Ka and NiO/ZnO/Ka were synthesized by the sol–gel method and were characterized by X-ray diffraction, Fourier transform infra-red, field emission scanning electron microscopy, and Brunauer–Emmett–Teller. The impacts of various parameters, such as pH, initial concentration of MB, dose, ionic strength, and temperature, on MB removal were studied using adsorption and APCD. The results showed that ZnO/Ka had the maximum adsorption capacity of MB (39.31&nbsp;mg/g) and the maximum removal (78.61%) under optimal conditions of pH 10, clay dosage of 0.1&nbsp;g/25&nbsp;mL, initial concentration of MB 200&nbsp;mg/L, contact time of 15&nbsp;min, and 298&nbsp;K, while NiO/ZnO/Ka showed the maximum adsorption capacity of MB (40.88&nbsp;mg/g) and maximum removal (83.74%) at pH 7. It was also noticed that Temkin and Fritz–Schlunder models are the best isotherm models, with the highest R2 (1 and 0.842) for ZnO/Ka and NiO/ZnO/Ka, respectively. Moreover, the data of adsorption and photodegradation of MB onto ZnO/Ka and NiO/ZnO/Ka were revealed to follow pseudo-first-order and Avrami kinetic models with R2 (0.897) for ZnO/Ka and (0.986) for NiO/ZnO/Ka. Overall, NiO/ZnO/Ka showed better removal of MB than ZnO/Ka, and the hybrid process (photodegradation process after adsorption) enhanced the overall efficiency of MB removal than adsorption alone."/> <meta name="prism.issn" content="2190-5495"/> <meta name="prism.publicationName" content="Applied Water Science"/> <meta name="prism.publicationDate" content="2024-11-16"/> <meta name="prism.volume" content="14"/> <meta name="prism.number" content="12"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="25"/> <meta name="prism.copyright" content="2024 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s13201-024-02282-4"/> <meta name="prism.doi" content="doi:10.1007/s13201-024-02282-4"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s13201-024-02282-4.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s13201-024-02282-4"/> <meta name="citation_journal_title" content="Applied Water Science"/> <meta name="citation_journal_abbrev" content="Appl Water Sci"/> <meta name="citation_publisher" content="Springer International Publishing"/> <meta name="citation_issn" content="2190-5495"/> <meta name="citation_title" content="Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process"/> <meta name="citation_volume" content="14"/> <meta name="citation_issue" content="12"/> <meta name="citation_publication_date" content="2024/12"/> <meta name="citation_online_date" content="2024/11/16"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="25"/> <meta name="citation_article_type" content="Original Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s13201-024-02282-4"/> <meta name="DOI" content="10.1007/s13201-024-02282-4"/> <meta name="size" content="333451"/> <meta name="citation_doi" content="10.1007/s13201-024-02282-4"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s13201-024-02282-4&api_key="/> <meta name="description" content="The colored effluents causing environmental pollution pose a threat to the world. This study aims to assess the effectiveness of nickel oxide/zinc oxide/ka"/> <meta name="dc.creator" content="Farag, Sarah A."/> <meta name="dc.creator" content="Farouk, M."/> <meta name="dc.creator" content="Shehata, Nabila"/> <meta name="dc.subject" content="Hydrogeology"/> <meta name="dc.subject" content="Water Industry/Water Technologies"/> <meta name="dc.subject" content="Industrial and Production Engineering"/> <meta name="dc.subject" content="Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution"/> <meta name="dc.subject" content="Nanotechnology"/> <meta name="dc.subject" content="Private International Law, International & Foreign Law, Comparative Law"/> <meta name="citation_reference" content="Ahmadi S, Adaobi Igwegbe C, Ahmadi S, and Adaobi C (2020) Removal of methylene blue on zinc oxide nanoparticles: nonlinear and linear adsorption isotherms and kinetics study. [Online]. Available: https://www.researchgate.net/publication/338502483 "/> <meta name="citation_reference" content="citation_journal_title=Orient J Chem; citation_title=A novel bio-adsorbent of mint waste for dyes remediation in aqueous environments: study and modeling of isotherms for removal of methylene blue; citation_author=T Ainane, F Khammour, M Talbi, M Elkouali; citation_volume=30; citation_issue=3; citation_publication_date=2014; citation_pages=1183-1189; citation_doi=10.13005/ojc/300332; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Curr Catal; citation_title=Alumina supported nickel-iron-ruthenium based catalyst for dry reforming of methane; citation_author=N Alhajri, M Albuali; citation_volume=11; citation_issue=1; citation_publication_date=2022; citation_pages=57-64; citation_doi=10.2174/2211544711666220328130026; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Water (Switzerland); citation_title=A review on emerging pollutants in the water environment: existences, health effects and treatment processes; citation_author=NZ Arman; citation_volume=13; citation_issue=22; citation_publication_date=2021; citation_pages=1-31; citation_doi=10.3390/w13223258; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=J Sol-Gel Sci Technol; citation_title=High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods; citation_author=N Bai, X Liu, Z Li, X Ke, K Zhang, Q Wu; citation_volume=99; citation_issue=1; citation_publication_date=2021; citation_pages=92-100; citation_doi=10.1007/s10971-021-05552-8; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Chem Eng J.; citation_title=Visible light photocatalytic degradation of acetaldehyde; citation_author=T Boningari, S Nagi, R Inturi, M Suidan, PG Smirniotis; citation_volume=339; citation_publication_date=2018; citation_pages=249-258; citation_doi=10.1016/j.cej.2018.01.063; citation_id=CR6"/> <meta name="citation_reference" content="Dan AZ, Yusri D (2020) 済無No Title No Title No Title, vol. 7, no. 2"/> <meta name="citation_reference" content="citation_journal_title=Chem Eng Res Des; citation_title=Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: adsorption isotherm, kinetics and thermodynamics; citation_author=TC Egbosiuba; citation_volume=153; citation_publication_date=2020; citation_pages=315-336; citation_doi=10.1016/j.cherd.2019.10.016; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Cogent Eng; citation_title=Adsorption isotherm and kinetics for the removal of nitrate from wastewater using chicken feather fiber; citation_author=OO Elemile, BO Akpor, EM Ibitogbe, YT Afolabi, DO Ajani; citation_publication_date=2022; citation_doi=10.1080/23311916.2022.2043227; citation_id=CR9"/> <meta name="citation_reference" content="Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175 "/> <meta name="citation_reference" content="citation_journal_title=Nanomaterials; citation_title=Green synthesis of nano zinc oxide/nanohydroxyapatite composites using date palm pits extract and eggshells: adsorption and photocatalytic degradation of methylene blue; citation_author=MS Elsayed, IA Ahmed, DMD Bader, AF Hassan; citation_publication_date=2022; citation_doi=10.3390/nano12010049; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Egypt J Chem; citation_title=Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite; citation_author=M Farouk, AS Amin, MA Diab, AZ El-Sonbati, MS Ibrahime; citation_volume=63; citation_issue=4; citation_publication_date=2020; citation_pages=1397-1409; citation_doi=10.21608/ejchem.2019.15204.1924; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Nanotechnology; citation_title=Visible light-driven photocatalytic activity of Cu2O/ZnO/Kaolinite-based composite catalyst for the degradation of organic pollutant; citation_author=PA Fufa; citation_publication_date=2022; citation_doi=10.1088/1361-6528/ac69f9; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Adv Mater; citation_title=MIL-96-Al for Li–S batteries: shape or size; citation_author=P Geng; citation_publication_date=2022; citation_doi=10.1002/adma.202107836; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=J Compos Sci; citation_title=Fabrication of novel nanohybrid material for the removal of azo dyes from wastewater; citation_author=MR Hossain, TU Rashid, NP Lata, SC Dey, M Sarker, SM Shamsuddin; citation_publication_date=2022; citation_doi=10.3390/jcs6100304; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Appl Clay Sci; citation_title=Photoactive and non-hazardous kaolin/ZnO composites prepared by calcination of sodium zinc carbonate; citation_author=B Janíková, J Tokarský, KM Kutláková, M Kormunda; citation_volume=143; citation_publication_date=2017; citation_pages=345-353; citation_doi=10.1016/j.clay.2017.04.003; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Sep Sci Technol; citation_title=Application of Ni-doped ZnO nanorods for degradation of diazinon: kinetics and by-products; citation_author=A Jonidi-Jafari, M Gholami, M Farzadkia, A Esrafili, M Shirzad-Siboni; citation_volume=52; citation_issue=15; citation_publication_date=2017; citation_pages=2395-2406; citation_doi=10.1080/01496395.2017.1303508; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Water (Switzerland); citation_title=Adsorption of methylene blue in water onto activated carbon by surfactant modification; citation_author=Y Kuang, X Zhang, S Zhou; citation_publication_date=2020; citation_doi=10.3390/w12020587; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Appl Catal B Environ; citation_title=Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity; citation_author=KM Kutláková, J Tokarský, P Peikertová; citation_volume=162; citation_publication_date=2015; citation_pages=392-400; citation_doi=10.1016/j.apcatb.2014.07.018; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=J Eng; citation_title=Comparison study of adsorption of lead and methylene blue on zeolite, activated carbon and their composite materials; citation_author=RR Mohammed; citation_volume=25; citation_issue=8; citation_publication_date=2019; citation_pages=129-148; citation_doi=10.31026/j.eng.2019.08.09; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Appl Clay Sci; citation_title=Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies; citation_author=L Mouni; citation_volume=153; citation_publication_date=2018; citation_pages=38-45; citation_doi=10.1016/j.clay.2017.11.034; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Alexandria Eng J; citation_title=Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies; citation_author=MF Mubarak, AMG Mohamed, M Keshawy, TA elMoghny, N Shehata; citation_volume=61; citation_issue=6; citation_publication_date=2022; citation_pages=4189-4207; citation_doi=10.1016/j.aej.2021.09.041; citation_id=CR22"/> <meta name="citation_reference" content="Mubarak MF, Shehata N, Hanan A (2021) Adsorption mechanism for mitigation of toxic Zn 2+ from synthetic polluted water onto blended composite of chitosan/kaolinite. J Chem Technol Metall "/> <meta name="citation_reference" content="citation_journal_title=Top Catal; citation_title=Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as photocatalyst for wastewater treatment; citation_author=JJ Murcia; citation_volume=63; citation_issue=11–14; citation_publication_date=2020; citation_pages=1286-1301; citation_doi=10.1007/s11244-020-01232-z; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Sci Rep; citation_title=The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment; citation_author=S Mustapha; citation_publication_date=2020; citation_doi=10.1038/s41598-020-69808-z; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Iran J Chem Chem Eng; citation_title=Methylene blue adsorption by magnesium oxide nanoparticles immobilized with chitosan (CS-MgONP): response surface methodology, isotherm, kinetics and thermodynamic studies; citation_author=VR Myneni, NR Kanidarapu, M Vangalapati; citation_volume=39; citation_issue=6; citation_publication_date=2020; citation_pages=29-42; citation_doi=10.30492/ijcce.2019.36342; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Makara J Sci; citation_title=Synthesis and characterization of nio nanocrystals by using sol-gel method with various precursors; citation_author=SKW Ningsih, M Khair; citation_publication_date=2017; citation_doi=10.7454/mss.v21i1.7533; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=J Dispers Sci Technol; citation_title=Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO 2 nanoparticles; citation_author=A Nodehi, H Atashi, M Mansouri; citation_volume=40; citation_issue=5; citation_publication_date=2019; citation_pages=766-776; citation_doi=10.1080/01932691.2018.1499522; citation_id=CR28"/> <meta name="citation_reference" content="Orozco M, Mendoza A, Cota M, Basurto RL, and Galaviz L (2023) Solvothermal synthesis and photocatalytic evaluation of TiO 2/ZnO based nanoparticles. 16(1): 43–49 https://doi.org/10.9790/5736-1601024349 "/> <meta name="citation_reference" content="citation_journal_title=Int J Environ Sci Technol; citation_title=Modified zeolite as an adsorbent for dyes, drugs, and heavy metal removal; citation_author=M Popaliya; citation_volume=20; citation_publication_date=2023; citation_pages=12919-12936; citation_doi=10.1007/s13762-022-04603-z; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Molecules; citation_title=Highly efficient methylene blue dye removal by nickel molybdate nanosorbent; citation_author=S Rakass; citation_volume=26; citation_issue=5; citation_publication_date=2021; citation_pages=1-19; citation_doi=10.3390/molecules26051378; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=J Mater Res; citation_title=Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process; citation_author=M Ramesh, MPC Rao, S Anandan, H Nagaraja; citation_volume=33; citation_issue=5; citation_publication_date=2018; citation_pages=601-610; citation_doi=10.1557/jmr.2018.30; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=J Taibah Univ Sci; citation_title=Synthesis and characterization of SiO2–NiO xerogel nanocomposite prepared by sol–gel method for catalytic reduction of p-nitrophenol; citation_author=SR Saeed, M Ajmal, I Bibi, SS Shah, M Siddiq; citation_volume=16; citation_issue=1; citation_publication_date=2022; citation_pages=472-479; citation_doi=10.1080/16583655.2022.2073541; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=RSC Adv; citation_title=Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review; citation_author=M Shahadat, S Isamil; citation_volume=8; citation_issue=43; citation_publication_date=2018; citation_pages=24571-24587; citation_doi=10.1039/c8ra04290j; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=Appl Water Sci; citation_title=Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms; citation_author=VO Shikuku, T Mishra; citation_publication_date=2021; citation_doi=10.1007/s13201-021-01440-2; citation_id=CR35"/> <meta name="citation_reference" content="citation_title=Advances in biological treatment of industrial waste water and their recycling for a sustainable future; citation_publication_date=2019; citation_id=CR36; citation_author=RP Singh; citation_author=RL Singh; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_journal_title=RSC Adv; citation_title=Removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay-a comparative study; citation_author=MM Tarekegn, RM Balakrishnan, AM Hiruy, AH Dekebo; citation_volume=11; citation_issue=48; citation_publication_date=2021; citation_pages=30109-30131; citation_doi=10.1039/d1ra03918k; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=J Photochem Photobiol A Chem; citation_title=Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals; citation_author=ŞŞ Türkyılmaz, N Güy, M Özacar; citation_volume=341; citation_issue=15; citation_publication_date=2017; citation_pages=39-50; citation_doi=10.1016/j.jphotochem.2017.03.027; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Water (Switzerland); citation_title=Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications; citation_author=F Younas; citation_volume=13; citation_issue=2; citation_publication_date=2021; citation_pages=1-25; citation_doi=10.3390/w13020215; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=Environ Sci Pollut Res; citation_title=Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism; citation_author=A Zaher, M Taha, AA Farghali, RK Mahmoud; citation_volume=27; citation_issue=11; citation_publication_date=2020; citation_pages=12256-12269; citation_doi=10.1007/s11356-020-07750-3; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Nanomaterials; citation_title=The oxygen vacancy defect of ZnO/NiO nanomaterials improves photocatalytic performance and ammonia sensing performance; citation_author=J Zhang, J Li; citation_publication_date=2022; citation_doi=10.3390/nano12030433; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Appl Clay Sci; citation_title=Rational design of kaolinite-based photocatalytic materials for environment decontamination; citation_author=B Zhao, L Liu, H Cheng; citation_publication_date=2014; citation_doi=10.1016/j.clay.2021.106098; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=J Leather Sci Eng; citation_title=Tannery wastewater treatment: conventional and promising processes, an updated 20-year review; citation_author=J Zhao, Q Wu, Y Tang, J Zhou, H Guo; citation_publication_date=2022; citation_doi=10.1186/s42825-022-00082-7; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=Appl Clay Sci; citation_title=Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: zero-point charge and pH effects; citation_author=AH Zyoud; citation_volume=182; citation_publication_date=2019; citation_pages=105294; citation_doi=10.1016/j.clay.2019.105294; citation_id=CR44"/> <meta name="citation_author" content="Farag, Sarah A."/> <meta name="citation_author_email" content="sarahali.hcww@gmail.com"/> <meta name="citation_author_institution" content="Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt"/> <meta name="citation_author" content="Farouk, M."/> <meta name="citation_author_email" content="mohamedfaroukmoustafa@gmail.com"/> <meta name="citation_author_institution" content="Reference Laboratory, Holding Company for Water and Wastewater, Cairo, Egypt"/> <meta name="citation_author" content="Shehata, Nabila"/> <meta name="citation_author_email" content="Nabila.shehata@psas.bsu.edu.eg"/> <meta name="citation_author_institution" content="Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2024/12/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s13201-024-02282-4"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process - Applied Water Science"/> <meta property="og:description" content="The colored effluents causing environmental pollution pose a threat to the world. This study aims to assess the effectiveness of nickel oxide/zinc oxide/kaolin nanocomposite (NiO/ZnO/Ka) in removing methylene blue (MB) from water. Furthermore, it aims to examine the impact of synergetic adsorption/photocatalytic degradation (APCD) on the MB adsorption capacity as well as the suitability of the nonlinear adsorption isotherm and kinetic modeling in analyzing the process. The composites ZnO/Ka and NiO/ZnO/Ka were synthesized by the sol–gel method and were characterized by X-ray diffraction, Fourier transform infra-red, field emission scanning electron microscopy, and Brunauer–Emmett–Teller. The impacts of various parameters, such as pH, initial concentration of MB, dose, ionic strength, and temperature, on MB removal were studied using adsorption and APCD. The results showed that ZnO/Ka had the maximum adsorption capacity of MB (39.31 mg/g) and the maximum removal (78.61%) under optimal conditions of pH 10, clay dosage of 0.1 g/25 mL, initial concentration of MB 200 mg/L, contact time of 15 min, and 298 K, while NiO/ZnO/Ka showed the maximum adsorption capacity of MB (40.88 mg/g) and maximum removal (83.74%) at pH 7. It was also noticed that Temkin and Fritz–Schlunder models are the best isotherm models, with the highest R2 (1 and 0.842) for ZnO/Ka and NiO/ZnO/Ka, respectively. Moreover, the data of adsorption and photodegradation of MB onto ZnO/Ka and NiO/ZnO/Ka were revealed to follow pseudo-first-order and Avrami kinetic models with R2 (0.897) for ZnO/Ka and (0.986) for NiO/ZnO/Ka. Overall, NiO/ZnO/Ka showed better removal of MB than ZnO/Ka, and the hybrid process (photodegradation process after adsorption) enhanced the overall efficiency of MB removal than adsorption alone."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-3c86549cfc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '13201.springer.com', siteWithPath: '13201.springer.com' + window.location.pathname, twitterHashtag: '13201', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s13201-024-02282-4","Page":"article","springerJournal":true,"Publishing Model":"Open Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-s13201-024-02282-4","Journal Id":13201,"Journal Title":"Applied Water Science","imprint":"Springer","Keywords":"Adsorption, Kaolin, Methylene blue, Nanocomposite, Nickel oxide, Photocatalysis, Water remediation, Zinc oxide","kwrd":["Adsorption","Kaolin","Methylene_blue","Nanocomposite","Nickel_oxide","Photocatalysis","Water_remediation","Zinc_oxide"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s13201-024-02282-4","Full HTML":"Y","Subject Codes":["SCG","SCG19005","SC214000","SCT22008","SCU35040","SCZ14000","SCR14002"],"pmc":["G","G19005","214000","T22008","U35040","Z14000","R14002"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"2190-5495","pissn":"2190-5487"},"type":"Article","category":{"pmc":{"primarySubject":"Earth Sciences","primarySubjectCode":"G","secondarySubjects":{"1":"Hydrogeology","2":"Water Industry/Water Technologies","3":"Industrial and Production Engineering","4":"Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution","5":"Nanotechnology","6":"Private International Law, International \u0026 Foreign Law, Comparative Law"},"secondarySubjectCodes":{"1":"G19005","2":"214000","3":"T22008","4":"U35040","5":"Z14000","6":"R14002"}},"sucode":"SC7","articleType":"Original Article"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s13201-024-02282-4"/> <script type="application/ld+json">{"mainEntity":{"headline":"Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process","description":"The colored effluents causing environmental pollution pose a threat to the world. This study aims to assess the effectiveness of nickel oxide/zinc oxide/kaolin nanocomposite (NiO/ZnO/Ka) in removing methylene blue (MB) from water. Furthermore, it aims to examine the impact of synergetic adsorption/photocatalytic degradation (APCD) on the MB adsorption capacity as well as the suitability of the nonlinear adsorption isotherm and kinetic modeling in analyzing the process. The composites ZnO/Ka and NiO/ZnO/Ka were synthesized by the sol–gel method and were characterized by X-ray diffraction, Fourier transform infra-red, field emission scanning electron microscopy, and Brunauer–Emmett–Teller. The impacts of various parameters, such as pH, initial concentration of MB, dose, ionic strength, and temperature, on MB removal were studied using adsorption and APCD. The results showed that ZnO/Ka had the maximum adsorption capacity of MB (39.31 mg/g) and the maximum removal (78.61%) under optimal conditions of pH 10, clay dosage of 0.1 g/25 mL, initial concentration of MB 200 mg/L, contact time of 15 min, and 298 K, while NiO/ZnO/Ka showed the maximum adsorption capacity of MB (40.88 mg/g) and maximum removal (83.74%) at pH 7. It was also noticed that Temkin and Fritz–Schlunder models are the best isotherm models, with the highest R2 (1 and 0.842) for ZnO/Ka and NiO/ZnO/Ka, respectively. Moreover, the data of adsorption and photodegradation of MB onto ZnO/Ka and NiO/ZnO/Ka were revealed to follow pseudo-first-order and Avrami kinetic models with R2 (0.897) for ZnO/Ka and (0.986) for NiO/ZnO/Ka. Overall, NiO/ZnO/Ka showed better removal of MB than ZnO/Ka, and the hybrid process (photodegradation process after adsorption) enhanced the overall efficiency of MB removal than adsorption alone.","datePublished":"2024-11-16T00:00:00Z","dateModified":"2024-11-16T00:00:00Z","pageStart":"1","pageEnd":"25","license":"http://creativecommons.org/licenses/by-nc-nd/4.0/","sameAs":"https://doi.org/10.1007/s13201-024-02282-4","keywords":["Adsorption","Kaolin","Methylene blue","Nanocomposite","Nickel oxide","Photocatalysis","Water remediation","Zinc oxide","Hydrogeology","Water Industry/Water Technologies","Industrial and Production Engineering","Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution","Nanotechnology","Private International Law","International & Foreign Law","Comparative Law"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig4a_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig4b_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig11_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig12_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig13_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig14_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig15_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig16_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig17_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig18_HTML.png"],"isPartOf":{"name":"Applied Water Science","issn":["2190-5495","2190-5487"],"volumeNumber":"14","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Sarah A. Farag","affiliation":[{"name":"Beni-Suef University","address":{"name":"Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"M. Farouk","affiliation":[{"name":"Holding Company for Water and Wastewater","address":{"name":"Reference Laboratory, Holding Company for Water and Wastewater, Cairo, Egypt","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Nabila Shehata","url":"http://orcid.org/0000-0002-2117-1840","affiliation":[{"name":"Beni-Suef University","address":{"name":"Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt","@type":"PostalAddress"},"@type":"Organization"}],"email":"Nabila.shehata@psas.bsu.edu.eg","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s13201-024-02282-4?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-20"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/13201" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Applied Water Science</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Original Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2024-11-16">16 November 2024</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 14</span>, article number <span data-test="article-number">259</span>, (<span data-test="article-publication-year">2024</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s13201-024-02282-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/13201" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/13201?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/13201?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/13201?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/13201?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Applied Water Science</span> </a> <a href="https://link.springer.com/journal/13201/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://www.editorialmanager.com/awsc" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s13201-024-02282-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sarah_A_-Farag-Aff1" data-author-popup="auth-Sarah_A_-Farag-Aff1" data-author-search="Farag, Sarah A.">Sarah A. Farag</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-M_-Farouk-Aff2" data-author-popup="auth-M_-Farouk-Aff2" data-author-search="Farouk, M.">M. Farouk</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup> & </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Nabila-Shehata-Aff1" data-author-popup="auth-Nabila-Shehata-Aff1" data-author-search="Shehata, Nabila" data-corresp-id="c1">Nabila Shehata<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-2117-1840"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-2117-1840</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup> </li></ul> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>229 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s13201-024-02282-4/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>The colored effluents causing environmental pollution pose a threat to the world. This study aims to assess the effectiveness of nickel oxide/zinc oxide/kaolin nanocomposite (NiO/ZnO/Ka) in removing methylene blue (MB) from water. Furthermore, it aims to examine the impact of synergetic adsorption/photocatalytic degradation (APCD) on the MB adsorption capacity as well as the suitability of the nonlinear adsorption isotherm and kinetic modeling in analyzing the process. The composites ZnO/Ka and NiO/ZnO/Ka were synthesized by the sol–gel method and were characterized by X-ray diffraction, Fourier transform infra-red, field emission scanning electron microscopy, and Brunauer–Emmett–Teller. The impacts of various parameters, such as pH, initial concentration of MB, dose, ionic strength, and temperature, on MB removal were studied using adsorption and APCD. The results showed that ZnO/Ka had the maximum adsorption capacity of MB (39.31 mg/g) and the maximum removal (78.61%) under optimal conditions of pH 10, clay dosage of 0.1 g/25 mL, initial concentration of MB 200 mg/L, contact time of 15 min, and 298 K, while NiO/ZnO/Ka showed the maximum adsorption capacity of MB (40.88 mg/g) and maximum removal (83.74%) at pH 7. It was also noticed that Temkin and Fritz–Schlunder models are the best isotherm models, with the highest R<sup>2</sup> (1 and 0.842) for ZnO/Ka and NiO/ZnO/Ka, respectively. Moreover, the data of adsorption and photodegradation of MB onto ZnO/Ka and NiO/ZnO/Ka were revealed to follow pseudo-first-order and Avrami kinetic models with R<sup>2</sup> (0.897) for ZnO/Ka and (0.986) for NiO/ZnO/Ka. Overall, NiO/ZnO/Ka showed better removal of MB than ZnO/Ka, and the hybrid process (photodegradation process after adsorption) enhanced the overall efficiency of MB removal than adsorption alone.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-020-69808-z/MediaObjects/41598_2020_69808_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1038/s41598-020-69808-z?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s41598-020-69808-z">The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">03 August 2020</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs13738-023-02855-1/MediaObjects/13738_2023_2855_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s13738-023-02855-1?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s13738-023-02855-1">Investigation of photocatalytic degradation of toxic dye in aqueous solution in the presence of Na-13X-supported TiO<sub>2</sub> composite </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">14 July 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs41204-020-00071-3/MediaObjects/41204_2020_71_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s41204-020-00071-3?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/s41204-020-00071-3">Batch sorption–photodegradation of Alizarin Red S using synthesized TiO<sub>2</sub>/activated carbon nanocomposite: an experimental study and computer modelling </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">25 March 2020</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732347424, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=13201" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In many developing countries, ensuring safe drinking water remains a challenge due to economic priorities that sometimes compromise environmental safeguards (Elemile et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Elemile OO, Akpor BO, Ibitogbe EM, Afolabi YT, Ajani DO (2022) Adsorption isotherm and kinetics for the removal of nitrate from wastewater using chicken feather fiber. Cogent Eng. 
 https://doi.org/10.1080/23311916.2022.2043227
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR9" id="ref-link-section-d96611821e393">2022</a>). Industrial processes contribute significantly to the release of emerging pollutants into water sources. These pollutants can have adverse effects on both human health and the ecosystem (Arman et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Arman NZ et al (2021) A review on emerging pollutants in the water environment: existences, health effects and treatment processes. Water (Switzerland) 13(22):1–31. 
 https://doi.org/10.3390/w13223258
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR4" id="ref-link-section-d96611821e396">2021</a>). Industrial tanning processes, which transform animal hides and skins into leather, generate highly contaminated wastewater. This wastewater is often turbid, discolored, and unpleasant smelling due to organic and inorganic contaminants (Singh and Singh <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Singh RP, Singh RL (2019) Advances in biological treatment of industrial waste water and their recycling for a sustainable future. Springer, Berlin. 
 https://doi.org/10.1007/978-981-13-1468-1
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR36" id="ref-link-section-d96611821e399">2019</a>; Dan and Yusri. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Dan AZ, Yusri D (2020) 済無No Title No Title No Title, vol. 7, no. 2" href="/article/10.1007/s13201-024-02282-4#ref-CR7" id="ref-link-section-d96611821e402">2020</a>; Zhao et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Zhao J, Wu Q, Tang Y, Zhou J, Guo H (2022) Tannery wastewater treatment: conventional and promising processes, an updated 20-year review. J Leather Sci Eng. 
 https://doi.org/10.1186/s42825-022-00082-7
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR43" id="ref-link-section-d96611821e405">2022</a>). Also, water pollution poses a substantial threat by degrading water quality. Hence, treating tannery wastewater before discharge into the environment is critical to mitigate the harmful effects of chemicals on human and aquatic life (Mustapha et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Mustapha S et al (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci Rep. 
 https://doi.org/10.1038/s41598-020-69808-z
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR25" id="ref-link-section-d96611821e409">2020</a>).</p><p>Dyes, commonly used as colorants in the textile industry, are persistent and toxic. Traditional methods struggle to efficiently remove synthetic dyes. However, adsorption emerges as an effective and widely adopted approach for color removal from wastewater, resulting in high-quality treated effluent (Shahadat and Isamil <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587. 
 https://doi.org/10.1039/c8ra04290j
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR34" id="ref-link-section-d96611821e415">2018</a>). Various adsorbents, such as zeolites, graphene oxide, kaolin, activated carbon, and agricultural residues, have been successfully used to eliminate contaminants from wastewater (Younas et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Younas F et al (2021) Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water (Switzerland) 13(2):1–25. 
 https://doi.org/10.3390/w13020215
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR39" id="ref-link-section-d96611821e418">2021</a>; Popaliya <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Popaliya M (2023) Modified zeolite as an adsorbent for dyes, drugs, and heavy metal removal. Int J Environ Sci Technol 20:12919–12936" href="/article/10.1007/s13201-024-02282-4#ref-CR30" id="ref-link-section-d96611821e421">2023</a>).</p><p>ZnO nanoparticles (ZnO NPs) and NiO nanoparticles (NiO NPs) are effective adsorbents with high adsorption and photocatalytic activities (Ramesh et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Ramesh M, Rao MPC, Anandan S, Nagaraja H (2018) Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J Mater Res 33(5):601–610. 
 https://doi.org/10.1557/jmr.2018.30
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR32" id="ref-link-section-d96611821e427">2018</a>; Boningari et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Boningari T, Nagi S, Inturi R, Suidan M, Smirniotis PG (2018) Visible light photocatalytic degradation of acetaldehyde. Chem Eng J. 339:249–258. 
 https://doi.org/10.1016/j.cej.2018.01.063
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR6" id="ref-link-section-d96611821e430">2018</a>; Zhang and Li <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Zhang J, Li J (2022) The oxygen vacancy defect of ZnO/NiO nanomaterials improves photocatalytic performance and ammonia sensing performance. Nanomaterials. 
 https://doi.org/10.3390/nano12030433
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR41" id="ref-link-section-d96611821e433">2022</a>). They exhibit non-toxicity, resistance to chemical and optical corrosion, strong catalytic properties, and stability. Incorporating clay enhances the adsorption capacity and surface area of ZnO NPs and NiO NPs (Mustapha et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Mustapha S et al (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci Rep. 
 https://doi.org/10.1038/s41598-020-69808-z
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR25" id="ref-link-section-d96611821e436">2020</a>). ZnO is considered a promising alternative to TiO<sub>2</sub> for photocatalysis (Murcia et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Murcia JJ et al (2020) Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as photocatalyst for wastewater treatment. Top Catal 63(11–14):1286–1301. 
 https://doi.org/10.1007/s11244-020-01232-z
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR24" id="ref-link-section-d96611821e442">2020</a>; Bai et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Bai N, Liu X, Li Z, Ke X, Zhang K, Wu Q (2021) High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods. J Sol-Gel Sci Technol 99(1):92–100. 
 https://doi.org/10.1007/s10971-021-05552-8
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR5" id="ref-link-section-d96611821e445">2021</a>; Orozco et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Orozco M, Mendoza A, Cota M, Basurto RL, and Galaviz L (2023) Solvothermal synthesis and photocatalytic evaluation of TiO 2/ZnO based nanoparticles. 16(1): 43–49 
 https://doi.org/10.9790/5736-1601024349
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR29" id="ref-link-section-d96611821e448">2023</a>). It shares the same band gap energy as TiO<sub>2</sub> but exhibits higher absorption efficiency across a broader range of the solar spectrum (Zhao et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2014" title="Zhao B, Liu L, Cheng H (2014) Rational design of kaolinite-based photocatalytic materials for environment decontamination. Appl Clay Sci. 
 https://doi.org/10.1016/j.clay.2021.106098
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR42" id="ref-link-section-d96611821e453">2014</a>). To enhance its photocatalytic capabilities, ZnO requires modification (Türkyılmaz et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Türkyılmaz ŞŞ, Güy N, Özacar M (2017) Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals. J Photochem Photobiol A Chem 341(15):39–50" href="/article/10.1007/s13201-024-02282-4#ref-CR38" id="ref-link-section-d96611821e456">2017</a>). Modern methods include metal/non-metal doping, coupling with other semiconductors, integrating nanocarbon components, and surface modification (Zhao et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2014" title="Zhao B, Liu L, Cheng H (2014) Rational design of kaolinite-based photocatalytic materials for environment decontamination. Appl Clay Sci. 
 https://doi.org/10.1016/j.clay.2021.106098
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR42" id="ref-link-section-d96611821e460">2014</a>). A ZnO/kaolinite (ZnO/ka) composite, formed by chemically precipitating ZnO nanoparticles onto kaolinite surfaces, effectively diminishing organic pollutants (Zyoud et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Zyoud AH et al (2019) Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: zero-point charge and pH effects. Appl Clay Sci 182:105294. 
 https://doi.org/10.1016/j.clay.2019.105294
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR44" id="ref-link-section-d96611821e463">2019</a>). Under UV light (370 nm), it achieves a peak degradation rate of 91% for 2-chlorophenol using 24% ZnO. Another composite with 39% ZnO, calcined with NaZnCO<sub>3</sub> at 600 °C, displays elevated photocatalytic effectiveness for Acid Orange 7 and reusability through recycling cycles (Janíková et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Janíková B, Tokarský J, Kutláková KM, Kormunda M (2017) Photoactive and non-hazardous kaolin/ZnO composites prepared by calcination of sodium zinc carbonate. Appl Clay Sci 143:345–353" href="/article/10.1007/s13201-024-02282-4#ref-CR16" id="ref-link-section-d96611821e468">2017</a>). A 50 wt.% ZnO nanocomposite achieved a remarkable degradation rate (95%) of Acid Orange 7 in an aqueous solution after 1 h of UV irradiation. Leaching studies revealed a strong connection between the kaolinite structure and ZnO nanoparticles, resulting in a highly stable nanocomposite (Kutláková et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015" title="Kutláková KM, Tokarský J, Peikertová P (2015) Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Appl Catal B Environ 162:392–400" href="/article/10.1007/s13201-024-02282-4#ref-CR19" id="ref-link-section-d96611821e471">2015</a>). Incorporating kaolinite significantly improved the adsorption properties of ZnO, boosting its photocatalytic activity from 28 to 50%. Cu<sub>2</sub>O/ZnO/ka nanocomposites exhibited varying MB dye degradation rates, with 10CZK composite catalyst performing best under visible light exposure (Fufa et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Fufa PA et al (2022) Visible light-driven photocatalytic activity of Cu2O/ZnO/Kaolinite-based composite catalyst for the degradation of organic pollutant. Nanotechnology. 
 https://doi.org/10.1088/1361-6528/ac69f9
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR13" id="ref-link-section-d96611821e477">2022</a>). Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab1">1</a> shows a comparison of the maximum adsorption capacities of different sorbents for the removal of MB.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 A comparison of the maximum adsorption capacity of different adsorbents for removing of MB</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s13201-024-02282-4/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Hence, this study aims to contribute valuable insights into the development of effective water treatment technology via evaluating the efficacy of the NiO/ZnO /Kaolin nanocomposite in the removal of MB dye from aqueous solutions, exploring its potential as a sustainable solution for water purification. By investigating the optimal conditions for adsorption and photocatalytic degradation, adsorption isotherm modeling, and kinetic studies. Moreover, the sorbent/photocatalysts were characterized using various techniques.</p></div></div></section><section data-title="Materials and methods"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">Materials and methods</h2><div class="c-article-section__content" id="Sec2-content"><h3 class="c-article__sub-heading" id="Sec3">Materials</h3><p>Raw kaolin was purchased from El Nasr Mining Company. ZnO (Nano size) was obtained from El Nasr Pharmaceutical Chemical Company, nickel acetate Ni(CH₃COO)₂ of research grade from Sigma-Aldrich, Germany, methylene blue (C<sub>16</sub>H<sub>18</sub>ClN<sub>3</sub>S) of analytical grade, with a purity of ≥ 98%, obtained from Sigma-Aldrich (Germany), NaOH (Assay (acidimetric, NaOH) ≥ 99.0%); HCl (37%) from Sigma-Aldrich (Germany), CaCl<sub>2</sub> were purchased from Sigma-Aldrich; and ethanol (99.9%) from Sigma-Aldrich (Germany).</p><h3 class="c-article__sub-heading" id="Sec4">Instrumentation</h3><p>To adjust the pH solutions, a pH meter (Adwa AD3000, Romania) provided with a reference electrode was used, and a heating magnetic stirrer (VELP SCIENTIFICA-F20500011, Italy) and a timer were used to adjust the solution temperature and batch experiments. A centrifuge (CENTURION, Mod. PRO-RESEARCH K242, UK) was used at 3000 rpm. A multi branched system with a manifold with three filter holder support bases (Sartorius Stadium Biotech), and cellulose nitrate filter paper (Sartorius Stadium Biotech) of (0.45 μm) pore size and (47 mm) diameter were used for filtration. Drying oven digit (Witeg, (WON-105), Germany), muffle furnace (Barnstead, Mod. Thermolyne, USA) used for the thermal treatment in this work, and electronic balance (RADWAG, Mod. AS220.R2, Poland). A UV–vis spectrophotometer model (HACH LANGE, DR3900, Germany) was used for determining MB residue in the aqueous phase at a wavelength range of 664 nm.</p><h3 class="c-article__sub-heading" id="Sec5">Method</h3><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec6">Activation of kaolin</h4><p>Metakaolin was prepared by calcining raw kaolin for 2 h at 600 °C, then suspending 80 g of the kaolin sample in 1600 mL of HCl (6M) (1:20) in a 2000-mL beaker and stirring for 1 h. After that, the suspension was lifted. Filtration was used to remove the supernatant. The filtrate was then rinsed several times with deionized water until the pH reached 5. Then, it was oven-dried for 24 h at 100 °C until completely dry. The dried sample was ground for further analysis (Elsayed <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: 
 http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR10" id="ref-link-section-d96611821e1083">2020</a>).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec7">Synthesis of ZnO/kaolinite nanoparticles</h4><p>ZnO/Ka composite was prepared using the sol–gel method, which involved dissolving 20 g of kaolinite with 4 g of ZnO in 100 mL of deionized water and stirring for 24 h. It was then filtered, and the remaining filtrate was dried in the oven for 1 h at 100 °C (Elsayed <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: 
 http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR10" id="ref-link-section-d96611821e1094">2020</a>).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec8">Synthesis of NiO/ZnO/Ka composite</h4><p>The sol–gel process was used again to prepare NiO/ZnO/Ka with 8.7 g of Ni acetate dissolved in 60 mL of deionized water on a magnetic stirrer. The pH of the precursor solution was then adjusted to 12 by adding drops of sodium hydroxide solution (0.5 M). At pH 10:12, a white precipitate appeared. After filtering, the filtrate was oven-dried at 100 °C for 1 h, followed by calcination in the furnace at 500 °C for 1 h (Ningsih and Khair <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Ningsih SKW, Khair M (2017) Synthesis and characterization of nio nanocrystals by using sol-gel method with various precursors. Makara J Sci. 
 https://doi.org/10.7454/mss.v21i1.7533
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR27" id="ref-link-section-d96611821e1105">2017</a>).</p><p>The reactions are as follows:</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ 2{\text{NaOH}}_{{\text{(aq)}}} + {\text{ Ni}}\left( {{\text{NO}}_{3} } \right)_{2} \cdot 6{\text{H}}_{2} {\text{O}}_{{\text{(aq)}}} \to \, 2{\text{NaNO}}_{{\text{3(aq)}}} + {\text{Ni}}\left( {{\text{OH}}} \right)_{2} \cdot 6{\text{H}}_{2} {\text{O}}_{{\text{(aq)}}} $$</span></div><div class="c-article-equation__number"> (1) </div></div><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ {\text{2NaOH}}_{{({\text{aq}})}} + {\text{ Ni}}\left( {{\text{CH}}_{{3}} {\text{COO}}} \right)_{{2}} .{\text{4H}}_{{2}} {\text{O}}_{{({\text{aq}})}} \to {\text{2NaCH}}_{{3}} {\text{COO}}_{{({\text{aq}})}} + {\text{ Ni}}\left( {{\text{OH}}} \right)_{{2}} .{\text{4H}}_{{2}} {\text{O}}_{{({\text{aq}})}} $$</span></div><div class="c-article-equation__number"> (2) </div></div><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ 2{\text{NaOH}}_{{\text{(aq)}}} + {\text{ NiSO}}_{4} \cdot 6{\text{H}}_{2} {\text{O}}_{{\text{(aq)}}} \to {\text{ Na}}_{2} {\text{SO}}_{{\text{4(aq)}}} + {\text{Ni}}\left( {{\text{OH}}} \right)_{2} \cdot 6{\text{H}}_{2} {\text{O}}_{{\text{(aq)}}} $$</span></div><div class="c-article-equation__number"> (3) </div></div><p>In an oven at 100–110 °C, the crystals were heated for 1 h to develop gel according to Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ4">4</a>). After being calcined in a furnace at 450 °C, NiO was formed according to Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ5">5</a>):</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ {\text{Ni}}\left( {{\text{OH}}} \right)_{{2}} .{\text{6H}}_{{2}} {\text{O }} \to {\text{ Ni}}\left( {{\text{OH}}} \right)_{{2}} + {\text{ 6H}}_{{2}} {\text{O}} $$</span></div><div class="c-article-equation__number"> (4) </div></div><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ {\text{Ni}}\left( {{\text{OH}}} \right)_{{2}} \to {\text{ NiO }} + {\text{ H}}_{{2}} {\text{O}} $$</span></div><div class="c-article-equation__number"> (5) </div></div><p>The powders appeared homogeneous, had very fine particles, and were a light black color (Ningsih and Khair <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Ningsih SKW, Khair M (2017) Synthesis and characterization of nio nanocrystals by using sol-gel method with various precursors. Makara J Sci. 
 https://doi.org/10.7454/mss.v21i1.7533
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR27" id="ref-link-section-d96611821e1664">2017</a>). 0.05 g of the developed NiO was dissolved with 5 g of ZnO/Ka (20%) in 100 mL of deionized water and stirred for 24 h. Then, after filtering, the filtered solution was subjected to oven-drying at 100 °C for 1 h.</p><h3 class="c-article__sub-heading" id="Sec9">Adsorbent/photocatalyst characterization</h3><p>To analyze the structural composition and crystallinity of the synthesized material, X-ray diffractometer (Panalytical Empyrean, 202,964, Sweden) equipped with Cu-Kα radiation at 35 mA, and 40 kV at wavelength 1.54060 Å is utilized. IR spectra were obtained on a spectrometer (Bruker-Vertex 70, Germany) in the wave number range 4000–400 cm<sup>−1</sup>. Furthermore, the microstructure and morphology of the produced materials were studied with a field emission scanning electron microscope (ZEISS, Germany). BET analysis (TriStar II 3020, Micrometrics, USA) was performed on the prepared samples to determine specific surface area, pore size distribution, and specific pore volume.</p><h3 class="c-article__sub-heading" id="Sec10">Adsorption arrays</h3><p>To achieve the maximum removal of MB using ZnO/Ka and NiO/ZnO/Ka, the main parameters affecting the hybrid process, including contact time, pH, the amount of adsorbent used, the initial concentration of MB, ionic strength, and temperature, were optimized. The amount of MB scavenged at equilibrium, q<sub>e</sub> (mg/g), and the efficiency of MB removal is calculated as shown in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ6">6</a> and <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ7">7</a>), respectively.</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\text{qe}=\frac{C\text{o}-Ce}{M} \times V$$</span></div><div class="c-article-equation__number"> (6) </div></div><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\text{\% Removal}=\frac{C\text{o}-Ce}{C\text{o}} \times 100$$</span></div><div class="c-article-equation__number"> (7) </div></div><p>where C<sub>o</sub>, C<sub>e</sub> (mg/L), V (L), and M (g) are the liquid-phase concentrations for initial sorbate and, at equilibrium, the solution volume and the used adsorbent mass, respectively.</p><p>In a series of 50-mL Erlenmeyer beakers, 25 mL of MB solution with known initial concentrations (20, 30, 50, 70, 100, 200, and 500 mg/L) were added. Subsequently, 0.1 g of both ZnO/ka and NiO/ZnO/ka were introduced into each flask. Afterward, the flasks were stirred using a magnetic stirrer, rotating at a steady speed of 120 rpm. The entirety of the process was carried out at a consistent temperature of 25 °C. The initial pH of the solution was changed (3, 5, 7, 8, 10, and 11) to investigate its impact after adding a few drops of either 0.1 M HCl or 0.1 M NaOH. The initial concentration, rotation speed, adsorbent dosage, and temperature of the solution were all standardized at 0.1 g, 120 rpm, 200 mg/L, and 25°C, respectively. The effect of the amount of adsorbent/photocatalyst on the removal of MB was investigated by testing different quantities of composites (0.05, 0.1, 0.2, 0.5, and 1 g). The effect of time on the removal efficiency under the optimal conditions of pH, dosage of kaolinite, and initial concentration of MB was also investigated at different time intervals. In the absence of sunlight, the samples were agitated for different durations ranging from 1.0 to 60 min. Subsequently, they were agitated again in solar light through the placement of the reaction beakers outdoors in an unobstructed area to ensure maximum exposure to direct sunlight for different durations ranging from 15 to 150 min. To explore the impact of temperature, solutions were maintained at the optimal pH, initial concentration, adsorbent dosage, and contact time. Samples were heated in a water bath at varying temperatures (298, 303, and 308 K). Additionally, to determine how the ionic strength can affect both adsorption alone and the hybrid processes for MB removal, the experiments were conducted at different concentrations of CaCl<sub>2</sub> (0.01, 0.05, 0.1, 0.3, and 0.5 M) under the previously determined optimum conditions. Following each batch, the residual absorbance of MB was measured. The adsorption and photocatalytic degradation experiments were triplicated, and the mean values were reported. The error bars were inserted for all experimental values.</p><p>The point of zero charge (pH<sub>ZPC</sub>) of Ka, ZnO/Ka, and NiO/ZnO/Ka employed in the adsorption experiment is calculated using an adsorbent-to-liquid ratio of 1.0:1000. For this, 0.1 mg of each adsorbent is introduced into 100 mL of water with pH values ranging from 2.0 to 11, and agitated for 24 h. The obtained results are expressed in a plot of the solution’s ΔpH against its initial pH values. The point of zero charge (pH<sub>ZPC</sub>) for the materials was determined as pH 5.08, 7.23 and 6.97 for Ka, ZnO/Ka, and NiO/ZnO/Ka, respectively (Elsayed <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: 
 http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR10" id="ref-link-section-d96611821e1808">2020</a>).</p><p>Several cycles of regeneration of the adsorbents were conducted. The experiments involved utilizing 0.5 g of the adsorbents and a 25-mL solution with a dye concentration of 200 mg/L for 15 min of adsorption without exposure to sunlight, followed by 30 min of sunlight exposure for photodegradation. Following this, the regeneration process was carried out through ethanol and green tea treatment for each under the optimal conditions identified in the initial tests. This process of regenerating the adsorbents was repeated 4 more times after each cycle of adsorption and photodegradation.</p><h3 class="c-article__sub-heading" id="Sec11">Adsorption isotherm modeling</h3><p>To analyze the experimental adsorption data, eleven different isotherm models were employed. These included two-parameter isotherm models such as Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R). Additionally, three-parameter isotherm models like Langmuir–Freundlich, Sips, Toth, and Redlich–Peterson were used. Furthermore, four-parameter isotherm models, namely Baudu and Fritz–Schlunder, were also applied in the analysis as follows.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec12">Langmuir</h4><p>According to Langmuir isotherm theory, it is proposed that molecules being adsorbed develop a single layer on a uniform and homogeneous surface of the adsorbent. In this layer, all the sites available for adsorption are the same and have the same amount of energy (Langmuir, 1918) (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e1829">2020</a>).</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\text{qe }=\text{qmax}\frac{{K}_{L}\text{Ce}}{ 1+{K}_{L}\text{Ce}}$$</span></div><div class="c-article-equation__number"> (8) </div></div><p>where q<sub>max</sub> and K<sub>L</sub> are the maximum adsorption capacity (mg/g) and Langmuir adsorption constant (L/mg), respectively, and C<sub>e</sub> is the equilibrium concentration (mg/L).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec13">Freundlich</h4><p>This model is a practical formula employed for explaining multilayer adsorption. According to this model, an increase in the concentration of adsorbate in the solution will result in a corresponding increase in the concentration of pollutant on the adsorbent (Freundlich and Hatfield, 1926) (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e1905">2020</a>).</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${Q}_{\text{e}}={K}_{\text{f}}{{\text{C}}_{\text{e}}}^{1/\text{n}}$$</span></div><div class="c-article-equation__number"> (9) </div></div><p>where <span class="mathjax-tex">\({\text{K}}_{\text{f}}\)</span> and 1/n are Freundlich adsorption capacity (mg/g)(L/mg)<sup>1/n</sup> and Freundlich adsorption intensity, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec14">Temkin</h4><p>According to this model, the decrease in the adsorption heat can be explained by a linear relationship, and it assumes that the adsorption process is characterized by a homogeneous distribution of binding energies (Temkin, 1940) (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e1999">2020</a>). It is expressed by the following equations:</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${q}_{e}=\frac{RT}{{b}_{T}}\text{ln}\left({A}_{T}{C}_{e}\right)$$</span></div><div class="c-article-equation__number"> (10) </div></div><p>In the equation, “R” and “T” are the gas constant (8.314 J/mol/K), and the absolute temperature in Kelvin at 298 K, respectively, while “b<sub>T</sub>” and “A<sub>T</sub>” are Temkin isotherm constant and Temkin equilibrium constant (L/g), which corresponds to the maximum binding energy, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec15">Dubinin–Radushkevich (D-R)</h4><p>This model is a widely employed experimental model to portray the mechanisms of adsorption on heterogeneous surfaces, featuring a distribution of energy that follows a Gaussian pattern (Dubinin 1960) (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2081">2020</a>).</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\varepsilon =RT\mathit{ln}\left[1+\frac{1}{{C}_{e}}\right]$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>where ϵ, β, and <i>E</i> are the Polanyi potential, D-R constant, and mean adsorption energy.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec16">Langmuir–Freundlich</h4><p>Langmuir–Freundlich isotherm (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ12">12</a>) describes adsorption on heterogeneous surfaces by displaying the distribution of adsorption energy over the adsorbent’s surface. At low concentrations of the adsorbate, this model converts to the Freundlich isotherm; otherwise, it transitions to the Langmuir isotherm at high concentrations of the adsorbate, (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2149">2020</a>).</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{q}}_{\text{e}} = {\text{q}}_{\text{MLF}}({\text{K}}_{\text{LF}}\, {{\text{C}}_{\text{e}}})^{\text{MLF}}/(1+({\text{K}}_{\text{LF}}\,{\text{C}}_{\text{e}})^{\text{MLF}})$$</span></div><div class="c-article-equation__number"> (12) </div></div><p><span class="mathjax-tex">\({\text{q}}_{\text{MLF}}\)</span>, <span class="mathjax-tex">\({\text{K}}_{\text{LF}}\)</span>, and M<sub>LF</sub> are the maximum adsorption capacity (mg/g), Langmuir–Freundlich equilibrium constant for heterogeneous solids and Langmuir–Freundlich heterogeneous parameter, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec17">Sips</h4><p>Sips isotherm (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ13">13</a>) is a combination of Langmuir and Freundlich models. At low concentrations of the adsorbate, Freundlich isotherm is applicable in this model, and it does not comply with Henry’s law. It predicts the maximum amount of sorption that a monolayer can hold when there are high concentrations of adsorbate, similar to how the Langmuir isotherm functions (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2321">2020</a>).</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{q}}_{\text{e}}=({Q}_{\text{max}}{K}_{\text{s}}{{C}_{\text{e}}}^{1/\text{n}})/(1+{K}_{\text{s}}{{C}_{\text{e}}}^{1/\text{n}})$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>where K<sub>s</sub> and 1/n are Sips isotherm model constant (L/mg), and exponent, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec18">Redlich–Peterson</h4><p>The model (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ14">14</a>) comprises three parameters, to accurately represent adsorption equilibrium over a broad concentration range. This model combines elements from both Langmuir and Freundlich equations, creating a mixed adsorption mechanism that deviates from ideal monolayer adsorption (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2459">2020</a>).</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ q_{{\text{e}}} = \frac{{K_{{\text{R}}} C_{{\text{e}}} }}{{1 + a_{{\text{R}}} C_{{\text{e}}}^{{\upbeta }} }} $$</span></div><div class="c-article-equation__number"> (14) </div></div><p>where a<sub>R</sub> and β are Redlich–Peterson isotherm constant (L/g) and exponent that lies between 0 and 1, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec19">Toth</h4><p>Toth isothermal equation (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ15">15</a>) is valuable for modeling heterogeneous adsorption systems that comply with both the low and high concentration limits (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2551">2020</a>).</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ q_{{\text{e}}} = \frac{{k_{{\text{e}}} C_{{\text{e}}} }}{{\left[ {1 + \left( {K_{{\text{L}}} C_{{\text{e}}} } \right)^{n} } \right]^{1/n} }} $$</span></div><div class="c-article-equation__number"> (15) </div></div><p>where K<sub>e</sub> and 1/n are Toth model isotherm constant and exponent, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec20">Kahn</h4><p>Kahn model (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ16">16</a>) is a widely used mathematical model for describing the process of bi-adsorption from solutions consisting of pure, diluted equations (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2664">2020</a>).</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ q_{{\text{e}}} = {{\left( {Q_{\max } b_{{\text{k}}} C_{{\text{e}}} } \right)} \mathord{\left/ {\vphantom {{\left( {Q_{\max } b_{{\text{k}}} C_{{\text{e}}} } \right)} {\left( {1 + b_{{\text{k}}} C_{{\text{e}}} } \right)^{{{\text{a}}_{{\text{k}}} }} }}} \right. \kern-0pt} {\left( {1 + b_{{\text{k}}} C_{{\text{e}}} } \right)^{{{\text{a}}_{{\text{k}}} }} }} $$</span></div><div class="c-article-equation__number"> (16) </div></div><p>where <i>a</i><sub><i>k</i></sub> and <i>b</i><sub><i>k</i></sub> are Kahn isotherm model exponent and Kahn isotherm model constant, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec21">Bauder</h4><p>Bauder model (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ17">17</a>) made the observation that determining Langmuir coefficients, b and q<sub>m</sub>, through the measurement of tangents at various equilibrium concentrations indicates that these coefficients are not consistent across a broad range. This finding led to the modification of Langmuir isotherm, now referred to as Bauder isotherm (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2862">2020</a>).</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{Q}}_{\text{e}}=\frac{{\text{q}}_{\text{m}}{{\text{b}}}_{\text{o}}{{\text{C}}_{\text{e}}}^{1+x+y}}{1+{\text{b}}_{\text{o}}{{\text{C}}_{\text{e}}}^{1+x}}$$</span></div><div class="c-article-equation__number"> (17) </div></div><p>where b<sub>0</sub> and (x and y) are Bauder equilibrium constant, and Bauder parameters, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec22">Fritz–Schlunder</h4><p>Due to the substantial number of coefficients involved in isotherms, Fritz and Schlunder developed an empirical equation (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ18">18</a>) that has the capability to fit a broad spectrum of experimental data (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e2989">2020</a>).</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\text{q}}_{\text{e}}=\frac{{\text{q}}_{\text{mFSS}}{{\text{K}}}_{1}{{\text{C}}_{\text{e}}}^{{\text{m}}_{1}}}{1+{\text{K}}_{2}{{\text{C}}_{\text{e}}}^{{\text{m}}_{2}}}$$</span></div><div class="c-article-equation__number"> (18) </div></div><p>where <span class="mathjax-tex">\({\text{q}}_{\text{mFSS}}\)</span> is Fritz–Schlunder maximum adsorption capacity (mg/g), <span class="mathjax-tex">\({\text{K}}_{1,}{\text{K}}_{2},{\text{m}}_{1},and {\text{m}}_{2}\)</span> are Fritz–Schlunder model parameters.</p><h3 class="c-article__sub-heading" id="Sec23">Adsorption kinetic studies</h3><p>Five adsorption models were investigated to explore the kinetics of the two processes, as follows.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec24">Pseudo-first-order model (PFO)</h4><p>The PFO kinetic model (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ19">19</a>) investigates a physisorption process that involves diffusion as the main mechanism, and the concentrations of both reactants are not interdependent, representing a physical exchange mechanism (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e3198">2020</a>).</p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${q}_{t}= {q}_{e}\left(1-{e}^{{-k}_{1}t}\right)$$</span></div><div class="c-article-equation__number"> (19) </div></div><p>where <span class="mathjax-tex">\({k}_{1}\)</span> is the rate constant of the PFO model (min<sup>−1</sup>).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec25">Pseudo-second-order model (PSO)</h4><p>The PSO model (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ20">20</a>) suggests that a chemical reaction provides a significant role in the rate-limiting step, and as a result, this process can be referred to as a chemisorption process (Zaher et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. 
 https://doi.org/10.1007/s11356-020-07750-3
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR40" id="ref-link-section-d96611821e3304">2020</a>).</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${q}_{t}=\frac{{{q}_{e}}^{2}{\text{K}}_{2}t}{1+{{q}_{e}{\text{K}}}_{2}t}$$</span></div><div class="c-article-equation__number"> (20) </div></div><p>where <span class="mathjax-tex">\({\text{K}}_{2}\)</span> represents the rate constant of the PSO model (g/mg min).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec26">Intraparticle diffusion model</h4><p>Adsorption happens through the diffusion of adsorbates into the pores of the adsorbent material, according to intraparticle diffusion (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ21">21</a>).</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${q}_{t}= {K}_{ip}\sqrt{t}+{C}_{ip}$$</span></div><div class="c-article-equation__number"> (21) </div></div><p>where <span class="mathjax-tex">\({K}_{ip}\)</span> and <span class="mathjax-tex">\({C}_{ip}\)</span> represent the measure of diffusion coefficient (mg/g/min<sup>(1/2)</sup>) and the intraparticle diffusion constant (mg/g), respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec27">Avrami model</h4><p>Avrami model (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ22">22</a>) evaluates the transformation of solids from one phase to another, while ensuring that the temperature remains constant (Popaliya <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Popaliya M (2023) Modified zeolite as an adsorbent for dyes, drugs, and heavy metal removal. Int J Environ Sci Technol 20:12919–12936" href="/article/10.1007/s13201-024-02282-4#ref-CR30" id="ref-link-section-d96611821e3550">2023</a>).</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${q}_{t}= {q}_{e}[1-{e}^{(-{k}_{av}t{)}^{{n}_{av}}}]$$</span></div><div class="c-article-equation__number"> (22) </div></div><p>where <span class="mathjax-tex">\({k}_{av}\)</span>, and <span class="mathjax-tex">\({n}_{av}\)</span> are Avrami rate constant (min<sup>−1</sup>) and Avrami component, respectively.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec28">Mixed first- and second-order model</h4><p>It is a mix between the first- and second-pseudo-order models. This model can be represented as given in the subsequent equation:</p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ q_{{\text{t}}} = q_{{\text{e}}} \frac{{1 - e^{{\left( { - K_{t} } \right)}} }}{{1 - f_{2} e^{{\left( { - K_{t} } \right)}} }} $$</span></div><div class="c-article-equation__number"> (23) </div></div><p>where <i>K</i><sub>t</sub> represents the adsorption rate constant of the mixed first- and second-order model (g/mg min) and ƒ<sub>2</sub> is the dimensionless coefficient of mixed first and second order.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec29">Thermodynamic study</h4><p>Temperature can greatly influence any adsorption process. Hence, various temperature conditions, specifically between 298 and 308 K, are employed to conduct batch adsorption experiments for Ka, ZnO/Ka, and NiO/ZnO/Ka. Enthalpy (ΔH°) and entropy (ΔS°) values are determined through the slope and intercept of the plot of free energy (ΔG°) versus T. The thermodynamic Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ24">24</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13201-024-02282-4#Equ25">25</a>) were used to fit the adsorption data, and the corresponding parameters were calculated.</p><div id="Equ24" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \Delta {\text{G}}^\circ = \Delta {\text{H}}^\circ - {\text{T}}\Delta {\text{S}}^\circ $$</span></div><div class="c-article-equation__number"> (24) </div></div><div id="Equ25" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ {\text{In}}\left( {{\text{Ka}}} \right) = \Delta {\text{S}}^\circ {\text{R}} - \Delta {\text{H}}^\circ {\text{R}} \left( {\frac{{1}}{{\text{T}}}} \right) $$</span></div><div class="c-article-equation__number"> (25) </div></div><p>where <i>K</i>, <i>T</i>, <i>R</i>, ΔG°, ΔS°, and ΔH° are the equilibrium constant, solution temperature, gas constant, 8.314 J K⁻<sup>1</sup> mol⁻<sup>1</sup>, Gibbs free energy change in kJ·mol⁻<sup>1</sup>, entropy change in kJ·mol⁻<sup>1</sup>·K⁻<sup>1</sup>, and enthalpy change in kJ·mol⁻<sup>1</sup>, respectively (Kuang et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Kuang Y, Zhang X, Zhou S (2020) Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water (Switzerland). 
 https://doi.org/10.3390/w12020587
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR18" id="ref-link-section-d96611821e3994">2020</a>). They are commonly used in thermodynamics to analyze and predict the feasibility and spontaneity of chemical reactions or processes (Kuang et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Kuang Y, Zhang X, Zhou S (2020) Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water (Switzerland). 
 https://doi.org/10.3390/w12020587
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR18" id="ref-link-section-d96611821e3997">2020</a>).</p></div></div></section><section data-title="Results and discussion"><div class="c-article-section" id="Sec30-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec30">Results and discussion</h2><div class="c-article-section__content" id="Sec30-content"><p>The following sections discuss in detail the results of the characterization analyses, adsorption arrays, APCD results, adsorption isotherm, and kinetics modeling.</p><h3 class="c-article__sub-heading" id="Sec31">Characterization</h3><p>The characterization of the developed sorbents/photocatalysts was recorded before and after the analyses as follows:</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec32">XRD</h4><p>The XRD patterns of kaolinite (Ka), ZnO/kaolinite, and NiO/ZnO/kaolinite are shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig1">1</a>. This demonstrates the presence of major and minor peaks in the XRD spectrum and verifies the nanoclay’s crystallinity. This crystalline structure improves adsorption by physisorption, where the adsorbate is adsorbed on the upper layer of the crystalline structure of the adsorbent surface (Ahmadi et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Ahmadi S, Adaobi Igwegbe C, Ahmadi S, and Adaobi C (2020) Removal of methylene blue on zinc oxide nanoparticles: nonlinear and linear adsorption isotherms and kinetics study. [Online]. Available: 
 https://www.researchgate.net/publication/338502483
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR1" id="ref-link-section-d96611821e4027">2020</a>). The XRD pattern for kaolinite, as depicted in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig1">1</a>, reveals the presence of kaolinite-type clay minerals. The main characteristic reflections of kaolinite are reported to be noticed at about 2θ of 13.11°, 21.44°, 25.57°, 27.25°, 35.52°, 36.41°, 37.16°, 38.92°, 50.41°, 55.38°, 62.65°, and 68.39°, which are associated with (001), (-1–11), (1–11), (111), (1–12), (200), (003), (-202), (-1–14), (-312) (-3–31) and (-333) planes of triclinic kaolinite phase, respectively, which are also matched with (PDF 01–075-1593). The presence of the main peaks of ZnO confirms the established structure of ZnO/Ka. These main peaks are at 2θ at 31.75°, 34.44°, 36.25°, 47.54°, 56.66°, 62.87°, 66.39°, 67.92°, 69.06°, and 72.61°, which are associated with (100), (002), (101), (102), (110), (103), (200), (112), (201), and (004) planes of hexagonal wurtzite ZnO (PDF 000-005-0664), respectively. As can be seen, the NiO peaks in the recorded patterns are very similar to the ZnO peaks. Nevertheless, the introduction of Ni ions into ZnO matrix did not lead to a reduction in peak intensities. This observation indicates the successful substitution of Ni ions within the ZnO lattice (Jonidi-Jafari et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Jonidi-Jafari A, Gholami M, Farzadkia M, Esrafili A, Shirzad-Siboni M (2017) Application of Ni-doped ZnO nanorods for degradation of diazinon: kinetics and by-products. Sep Sci Technol 52(15):2395–2406. 
 https://doi.org/10.1080/01496395.2017.1303508
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR17" id="ref-link-section-d96611821e4033">2017</a>). The XRD patterns of NiO/ZnO/Ka composite showed the main peaks of NiO at 22.70°, 30.72°, 47.96°, 63.19°, and 68.13°, which are associated with (101), (110), (211), (024), and (033) planes, respectively. They are well matched with the standard (PDF 01-089-3080) and in good agreement with the trigonal phase, as reported by Alhajri et al<i>.</i> (Alhajri and Albuali <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Alhajri N, Albuali M (2022) Alumina supported nickel-iron-ruthenium based catalyst for dry reforming of methane. Curr Catal 11(1):57–64" href="/article/10.1007/s13201-024-02282-4#ref-CR3" id="ref-link-section-d96611821e4040">2022</a>). Furthermore, the XRD patterns for the MB@Ka showed an increase in intensity and a shift for the most peaks, and some have declined. Two diffraction peaks at 2θ at 23.06° and 32.38° can be owing to the presence of sulfur and chlorine (Geng et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Geng P et al (2022) MIL-96-Al for Li–S batteries: shape or size. Adv Mater. 
 https://doi.org/10.1002/adma.202107836
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR14" id="ref-link-section-d96611821e4043">2022</a>), respectively, that originated from the MB dye being destroyed during the sorption processes. For MB@ZnO/Ka, the pattern showed that all the peaks of ZnO/Ka have a sharp increase in their intensities after the adsorption of MB, as peaks of 2θ at 12.65°, 25.19°, and 26.88° can be attributed to sulfur, while the peaks of 2θ at 60.14° and 62.52° can be attributed to chlorine. These sharp increases in peak intensity are due to the better surface area of ZnO/Ka, which adsorbed a greater amount of MB than kaolinite alone. By comparison of the XRD pattern of NiO/ZnO/Ka before and after MB adsorption, 2 new peaks were observed at 2θ = 6.25° and 10.25°. Some diffraction peak intensities have sharply increased, e.g., peaks at 2θ = 22.79°, 27.03°, 32.12°, and 36.57°, while others have a slight increase, e.g., peaks at 2θ = 17.78°, 28.42°, 30.73°, 34.79°, 47.38°, 56.92°, 59.07°, 61.75°, 63.09°, and 68.25°. The sharp diffraction patterns suggest that the sample is characterized by small particle size, high purity, and good crystallinity (Tarekegn et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Tarekegn MM, Balakrishnan RM, Hiruy AM, Dekebo AH (2021) Removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay-a comparative study. RSC Adv 11(48):30109–30131. 
 https://doi.org/10.1039/d1ra03918k
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR37" id="ref-link-section-d96611821e4046">2021</a>). This has been linked to the adsorption of MB dye on the upper layer of kaolinite’s crystalline structure. In general, spectral alterations in terms of intensity and peak size after adsorption indicate the formation of new chemical compounds (Geng et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Geng P et al (2022) MIL-96-Al for Li–S batteries: shape or size. Adv Mater. 
 https://doi.org/10.1002/adma.202107836
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR14" id="ref-link-section-d96611821e4049">2022</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="986"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>XRD patterns for Ka, MB@Ka, ZnO/Ka, MB@ZnO/Ka, NiO/ZnO/Ka, MB@NiO/ZnO/Ka</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec33">FT-IR</h4><p>The FT-IR spectra of Ka, ZnO/Ka, NiO/ZnO/Ka, MB@Ka, MB@ZnO/Ka, and MB@NiO/ZnO/Ka are presented in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig2">2</a>. All the unique bands of the kaolinite spectrum are observed where the bands located at higher wavenumbers (3695 and 3622 cm⁻<sup>1</sup>) correspond to the Al–OH bonds in the inner octahedral structure. On the other hand, the bands at lower wavenumbers represent various subsequent bonds: Si–O (1104, 790, 691, and 469 cm⁻<sup>1</sup>), Si–O-Al (916, 790, 691, and 541 cm⁻<sup>1</sup>), Al–OH (936 and 911 cm⁻<sup>1</sup>), and Si–O-Si (1031 cm⁻<sup>1</sup>). The asymmetric stretching vibration of C = O is represented by the peak at 1626 cm<sup>−1</sup> (Hossain et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Hossain MR, Rashid TU, Lata NP, Dey SC, Sarker M, Shamsuddin SM (2022) Fabrication of novel nanohybrid material for the removal of azo dyes from wastewater. J Compos Sci. 
 https://doi.org/10.3390/jcs6100304
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR15" id="ref-link-section-d96611821e4093">2022</a>). Furthermore, it can be shown that the addition of ZnO and NiO raises the peaks of bands associated with kaolinite at higher wavenumbers (3695 and 3622 cm<sup>−1</sup>) and in lower wavenumbers (1104, 916, 691, and 541 cm<sup>−1</sup>) have disappeared due to the overlap of the stretching Zn–O bonds with the absorption bands of the kaolinite. There are broad bands at wavenumbers (1046, 793, 602, and 468 cm<sup>−1</sup>) in the spectra of ZnO/Ka and NiO/ZnO/Ka. This confirms the cross-linkage in the new composite.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="476"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>FT-IR spectra of Ka, ZnO/Ka, NiO/ZnO/Ka, MB@Ka, MB@ZnO/Ka, and MB@NiO/ZnO/Ka. The colored zones are corresponding to the change in the bonds after adding ZnO and NiO to kaolinite in addition to the new or shifted bonds owning to MB molecule</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The characteristic peak related to the stretching vibration of Zn–O is observed around 467 cm⁻<sup>1</sup>. This is consistent with the absorption peaks related to Ni–O within the wavelength range of 420–790 cm⁻<sup>1</sup>. This alignment is consistent with previous reports and confirms the presence of NiO nanoparticles (Saeed et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Saeed SR, Ajmal M, Bibi I, Shah SS, Siddiq M (2022) Synthesis and characterization of SiO2–NiO xerogel nanocomposite prepared by sol–gel method for catalytic reduction of p-nitrophenol. J Taibah Univ Sci 16(1):472–479. 
 https://doi.org/10.1080/16583655.2022.2073541
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR33" id="ref-link-section-d96611821e4127">2022</a>). This confirms the presence of ZnO and NiO in the kaolinite matrix as new bonds in the developed composite. Moreover, there are two bands of wavenumbers (1396 and 1341 cm<sup>−1</sup>), (1399 and 1343 cm<sup>−1</sup>), and (1398 and 1341 cm<sup>−1</sup>) that have appeared in Ka, ZnO/Ka, and NiO/ZnO/Ka, respectively, after adsorption of MB. These peaks could be linked to the vibrations of the NH<sub>2</sub> band and C = O bonds, which are characteristic of MB (Ainane et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2014" title="Ainane T, Khammour F, Talbi M, Elkouali M (2014) A novel bio-adsorbent of mint waste for dyes remediation in aqueous environments: study and modeling of isotherms for removal of methylene blue. Orient J Chem 30(3):1183–1189. 
 https://doi.org/10.13005/ojc/300332
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR2" id="ref-link-section-d96611821e4139">2014</a>).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec34">SEM</h4><p>The SEM morphology of Ka, MB@Ka, ZnO/Ka, MB@ZnO/Ka, NiO/ZnO/Ka, and MB@NiO/ZnO/Ka is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig3">3</a>. It can be seen that the micrograph of kaolinite reveals the existence of a combination of large plates, which seem to have been developed by clustering multiple flaky particles together (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig3">3</a>a). Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig3">3</a>c indicates that the ZnO NPs are very porous in nature when combined with kaolinite, which implies the presence of a large surface area, resulting in more interaction with the adsorbate, MB. The SEM image of NiO/ZnO/Ka (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig3">3</a>e) shows that ZnO and NiO NPs are heterogeneously distributed on the kaolinite surface. The morphology of adsorbents Ka, ZnO/Ka, and NiO/ZnO/Ka after adsorption of MB is presented in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig3">3</a>b, d and f, respectively. The color tone is higher compared to their image before adsorption as a result of MB dye coverage on their surfaces.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="767"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Scanning electron microscopy (SEM) images at 5000 × magnification, revealing the surface morphology of Ka (<b>a</b>), MB@Ka (<b>b</b>), ZnO/Ka (<b>c</b>), MB@ZnO/Ka (<b>d</b>), NiO/ZnO/Ka (<b>e</b>), MB@NiO/ZnO/Ka (<b>f</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The EDX analysis (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig4">4</a>a, c and e) show agreement with the SEM images and the elements of all materials are confirmed. After MB uptake (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig4">4</a>b, d and f), nitrogen, sulfur, and chlorine (the characteristics elements of MB) are detected in all the developed composites after adsorption.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig4a_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig4a_HTML.png" alt="figure 4" loading="lazy" width="685" height="772"></picture><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig4b_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig4b_HTML.png" alt="figure 4" loading="lazy" width="685" height="840"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>EDX spectra of Ka (<b>a</b>), MB@Ka (<b>b</b>), ZnO/Ka (<b>c</b>), MB@ZnO/Ka (<b>d</b>), NiO/ZnO/Ka (<b>e</b>), MB@NiO/ZnO/Ka (<b>f</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec35">BET</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig5">5</a> illustrates both the N<sub>2</sub> adsorption–desorption isotherm and the pore volume of the Ka, ZnO/Ka, and NiO/ZnO/Ka samples<b>.</b> The N<sub>2</sub> adsorption–desorption isotherm of the kaolinite, as indicated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig5">5</a>a, corresponds to type V, which describes a low energy of adsorption and has mesoporous properties. Additionally, it is suggested that the hysteresis is of the H3-type. Furthermore, the hysteresis is revealed to be of the H3-type, consisting of slender pore particles resembling slits that contain irregularly shaped internal voids. The specific surface area of kaolinite is 12.29 m2/g, and the pore volume is 0.06 cm3/g, while after adsorption, the surface area is increased to 14.86 m2/g. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig5">5</a>b shows a similar trend as kaolinite with a narrow adsorption–desorption hysteresis loop, which indicates the total surface area of ZnO/Ka is 19.92 m2/g and the pore volume is 0.09 cm3/g while after adsorption the surface area is increased to 21.75 m2/g. It is illustrated from Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig5">5</a>a–c that the shape of the hysteresis loop does not change after functionalization, which means that both NiO and ZnO do not affect the pore structure of the pristine kaolinite, and the functionalization occurred on the outer surface area, which is confirmed by the increment in the specific surface area from 12.29 m2/g in kaolinite to 19.92 m2/g in ZnO/Ka and further to 20.8 m2/g in NiO/ZnO/Ka. Additionally, the pore volume of NiO/ZnO/Ka remains almost constant at 0.08 cm<sup>3</sup>/g, while after adsorption, the surface area is further increased to 21.23 m2/g.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="568"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>N<sub>2</sub> adsorption/desorption isotherms at 77 K for Ka, and MB@Ka (<b>a</b>), ZnO/Ka, and MB@ZnO/Ka (<b>b</b>), NiO/ZnO/Ka, and MB@NiO/ZnO/Ka (<b>c</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec36">Adsorption batch studies</h3><p>The impact of different operating factors, including pH, initial concentration of MB, dose, ionic strength, and temperature, on MB removal using pristine kaolinite and the corresponding composites is discussed in detail in the following sections.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec37">Impact of pH</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig6">6</a>a shows the adsorption capacity of MB onto Ka, ZnO/Ka, and NiO/ZnO/Ka at various pH values. It could be noticed that the adsorption of MB onto Ka, ZnO/Ka, and NiO/ZnO/Ka is improved at higher pH values. The variation in dye adsorption is attributed to the molecular structure of the dye and the zero charge point (pH<sub>ZPC</sub>) of distinct types of kaolinite. The (pH<sub>ZPC</sub>) values of Ka, ZnO/Ka, and NiO/ZnO/Ka are calculated to be 5.08, 7.23, and 6.97, respectively (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig6">6</a>b), with MB having a pKa value of 3.8. Adsorbent materials have positive surfaces at pH levels lower than pH<sub>ZPC</sub>, while negative surfaces at pH levels greater than pH<sub>ZPC</sub> facilitate the adsorption of cationic dyes due to the enhanced electrostatic force of attraction (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4342">2020</a>). That explains the slight decrease in MB removal before pH 5.08, 7.23, and 6.27 for Ka, ZnO/Ka, and NiO/ZnO/Ka, respectively, which began to increase again as pH values increased. Moreover, the higher removal of MB by ZnO/Ka and NiO/ZnO/Ka adsorbents compared to Ka can be attributed to the increased adsorption at higher pH values. The surfaces of ZnO/Ka and NiO/ZnO/Ka become more favorable for adsorbing cationic dyes like MB at pH levels above their respective zero charge points, enhancing the electrostatic attraction. This explains the improved removal efficiency of ZnO/Ka and NiO/ZnO/Ka compared to Ka (Rakass et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Rakass S et al (2021) Highly efficient methylene blue dye removal by nickel molybdate nanosorbent. Molecules 26(5):1–19. 
 https://doi.org/10.3390/molecules26051378
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR31" id="ref-link-section-d96611821e4345">2021</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="288"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Effect of pH on MB removal by adsorption onto Ka, ZnO/Ka, and NiO/ZnO/Ka based on initial concentration 200 mg/L MB, clay dosage 0.1 g/25 mL, temperature 298 K, and contact time 15 min (<b>a</b>), and the point zero charge of Ka, ZnO/Ka, and NiO/ZnO/Ka (<b>b</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec38">Impact of MB initial concentration</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig7">7</a>a and b shows the adsorption of MB onto Ka, ZnO/Ka, and NiO/ZnO/Ka at various MB concentrations based on clay dosage of 0.1 g/25 mL, pH 11 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, 298 K, and contact time of 15 min. An increase in the initial concentration of MB leads to an increase in the adsorption capacity. This is because the concentration gradient also increases, which serves as a greater driving force in overcoming the mass transfer resistances of the MB between the aqueous and solid phases (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4383">2020</a>). Additionally, these results suggest that the adsorption capacity of MB onto Ka undergoes three distinct stages as the initial concentration increases. It demonstrates a rapid increase initially (at concentrations between 20 and 50 mg/L), followed by a decrease in the second phase (at 70 mg/L). Finally, in the third phase, the rate becomes constant (C<sub>o</sub>, 100–500 mg/L). For ZnO/Ka and NiO/ZnO/Ka, the adsorption capacity has a similar trend; it increases sharply in the beginning (C<sub>o</sub>, 20–200 mg/L), then there is no significant change in the adsorption rate within the concentration range of 100–500 mg/L. The adsorption capacity of Ka continues to rise until it reaches a concentration of 50 mg/L, after which equilibrium is attained, and further increases in MB concentration have no significant impact. The introduction of new functional groups, namely ZnO and NiO, enhances adsorption, and the ability to adsorb MB up to an initial concentration of 200 mg/L before reaching equilibrium. The adsorption capacities for ZnO/Ka and NiO/ZnO/Ka compared to Ka increase from 4.98 to 39.31 mg/g and 41.86 mg/g, respectively. This leads to an increase in the sorption equilibrium, continuing until it reaches a state of saturation, with q<sub>max</sub> values of 7.54, 39.306, and 41.86 mg/g for Ka, ZnO/Ka, and NiO/ZnO/Ka, respectively. The adsorption efficiency of NiO/ZnO/Ka composites slightly surpasses that of ZnO/Ka, which, in turn, significantly surpasses that of pristine kaolinite. This can be credited to the increase in active adsorption sites caused by the existence of two metal ions (NiO and ZnO) present in NiO/ZnO/Ka composite compared to only one metal ion (ZnO) present in ZnO/Ka compared to pristine Ka.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="286"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>Effect of initial concentration of MB on the adsorption capacity (<b>a</b>) and removal % (<b>b</b>) of MB using Ka, ZnO/Ka, and NiO/ZnO/Ka based on clay dosage 0.1 g/25 mL, pH 11 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, 298 K and contact time of 15 min</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec39">Impact of adsorbent dose</h4><p>As seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig8">8</a>a<b>,</b> the maximum adsorption capacity of Ka was 49.72 mg/g at dose 0.5 g, while both ZnO/Ka and NiO/ZnO/Ka showed the maximum adsorption capacities of 48.84 mg/g, and 49.65 mg/g, respectively, at dose 0.2 g. Furthermore, the efficiency of removing MB improved as the adsorbent dosage increased from 0.05 to 1 g. At larger doses, an increase in the adsorption rate occurs when there is a higher quantity of adsorbent due to the presence of an unoccupied surface area and additional free sites for adsorption. As seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig8">8</a>b<b>,</b> the removal percentage increases from 0.92 to 99.89% when the Ka dosage increases from 0.05 to 1 g. Then, equilibrium was achieved at the adsorbent dose 0.5 g for Ka, at which about 99.44% of the dye has adsorbed, while for both ZnO/Ka and NiO/ZnO/Ka, the removal percentage increased from 8.07 to 99.90% and from 12.14 to 100%, respectively. The equilibrium was achieved at the adsorbent dose 0.2 g, at which about 97.69 and 99.88% have been adsorbed, respectively. The removal percentage of the MB increased significantly by adding ZnO and NiO to the Ka.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Fig. 8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig8_HTML.png?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="283"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>Effect of Ka, ZnO/Ka, and NiO/ZnO/Ka dosages on adsorption capacity (<b>a</b>) and removal % (<b>b</b>) of MB based on MB initial concentration of 200 mg/L, pH 11 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, 298 K, and contact time 15 of min</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec40">Impact of contact time</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig9">9</a>a and b shows the impact of contact time on MB adsorption onto Ka, ZnO/Ka, and NiO/ZnO/Ka with increasing the contact time from 1 to 60 min. Ka, ZnO/Ka, and NiO/ZnO/Ka showed a similar trend whereby the adsorption of MB dye increased as contact time increased. The adsorption process has attained equilibrium after 15 min. The quick adsorption during the initial contact time is a result of the existence of an electro-negatively charged surface on the adsorbent. This facilitates the rapid electrostatic adsorption of the cationic MB from the solution in addition to the free specific surface area that has not filled yet (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4473">2020</a>). However, when time passed over 30 min, the percentage of MB adsorbed reduced. This is most likely owing to the lack of an active site for MB to be adsorbed onto the adsorbents, in addition to the decrease in the driving force of mass transfer (Mubarak et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Mubarak MF, Shehata N, Hanan A (2021) Adsorption mechanism for mitigation of toxic Zn 2+ from synthetic polluted water onto blended composite of chitosan/kaolinite. J Chem Technol Metall " href="/article/10.1007/s13201-024-02282-4#ref-CR23" id="ref-link-section-d96611821e4476">2021</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Fig. 9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/9" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig9_HTML.png?as=webp"><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig9_HTML.png" alt="figure 9" loading="lazy" width="685" height="288"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>Impact of contact time on MB adsorption capacity (<b>a</b>) and removal % (<b>b</b>) using Ka, ZnO/Ka, and NiO/ZnO/Ka based on pH 11 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, MB initial concentration of 200 mg/L, 298 K, and clay dosage of 0.1 g/25 mL</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec41">Impact of ionic strength</h4><p>It was revealed that the extent of dye removal is greatly influenced by the composition and concentration of electrolyte salts present in dye systems. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig10">10</a> shows the MB adsorption onto Ka, ZnO/Ka, and NiO/ZnO/Ka by increasing the concentration of CaCl<sub>2</sub> from 0.01 to 0.5 mol/L. The increase in ionic strength apparently has a significant effect on the amount of MB adsorbed by Ka, ZnO/Ka, and NiO/ZnO/Ka. The removal percentage has increased from 6.47% to 32.47%, 50.77% to 80.32%, and 70.52% to 97.17% for Ka, ZnO/Ka, and NiO/ZnO/Ka, respectively, by increasing the concentration of CaCl<sub>2</sub> from 0.1 to 0.5 mol/L. This phenomenon can be owing to the ability of chloride ions to enhance MB ion adsorption on the kaolinite surface by aligning their charges, thus reducing the repulsion between the MB molecules adsorbed on the surface (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4518">2020</a>). Moreover, the presence of Ca<sup>2+</sup> ions may lead to:</p><ul class="u-list-style-bullet"> <li> <p>A change in the solution’s ionic strength, affecting the double layer around the adsorbent particles and potentially enhancing adsorption through reduced electrostatic repulsion between dye molecules and the adsorbent surface (Elsayed <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: 
 http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR10" id="ref-link-section-d96611821e4530">2020</a>).</p> </li> <li> <p>The formation of Ca<sup>2+</sup>-MB complexes that have different adsorption characteristics compared to MB molecules alone, potentially facilitating the adsorption of these complexes on the nanocomposite surface (Elsayed <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: 
 http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR10" id="ref-link-section-d96611821e4541">2020</a>).</p> </li> </ul><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Fig. 10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/10" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig10_HTML.png?as=webp"><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig10_HTML.png" alt="figure 10" loading="lazy" width="685" height="569"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>Impact of ion strength on removal % of MB by adsorption onto Ka, ZnO/Ka, and NiO/ZnO/Ka based on MB initial concentration 200 mg/L, pH 11 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, 298 K, contact time of 15 min and clay dosage 0.1 g/25 mL</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec42">Thermodynamic study</h4><p>It was noticed that the MB removal increased as the temperature increased due to the increased driving force in the sorption process (Mubarak et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Mubarak MF, Mohamed AMG, Keshawy M, elMoghny TA, Shehata N (2022) Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies. Alexandria Eng J 61(6):4189–4207. 
 https://doi.org/10.1016/j.aej.2021.09.041
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR22" id="ref-link-section-d96611821e4571">2022</a>). This is attributed to the increased mobility and diffusion of ionic species and other contaminants into the pores of the adsorbents, which represents a strong chemical interaction between the dye particles and the adsorbents’ surface functional groups. It has also been noted that the negative charge on kaolinite rises with temperature, which increases attraction (Mubarak et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Mubarak MF, Shehata N, Hanan A (2021) Adsorption mechanism for mitigation of toxic Zn 2+ from synthetic polluted water onto blended composite of chitosan/kaolinite. J Chem Technol Metall " href="/article/10.1007/s13201-024-02282-4#ref-CR23" id="ref-link-section-d96611821e4574">2021</a>). The observed trend suggests a direct relationship between the overall removal efficiency and temperature. This indicates that MB sorption onto ZnO/Ka is an endothermic process, whereas NiO/ZnO/Ka sorption is exothermic. In the case of kaolinite, the system is endothermic at lower temperatures but becomes exothermic at higher temperatures.</p><p>The results obtained for Ka in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab2">2</a> showed that the positive values of ΔG°, ΔH°, and ∆S° are the reason that the MB adsorption process is non-spontaneous and has an endothermic nature, and as temperature increases, the adsorption process undergoes changes. Otherwise, the negative ΔG°, positive ΔH°, and ∆S° values obtained showed that the adsorption of MB onto ZnO/Ka and NiO/ZnO/Ka is spontaneous and has an endothermic nature, and the adsorption process undergoes changes with rising temperature. Also, as the ΔG° values for Ka, ZnO/Ka, and NiO/ZnO/Ka decrease with increasing temperature, it means that the reaction is dependent on the temperature and the adsorption process becomes more favorable at higher temperatures. Physisorption shows a shift in free energy ranging from − 20 to 0 kJ/mol, whereas chemisorption exhibits a significantly wider range of − 80 to − 400 kJ/mol (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4583">2020</a><b>).</b> The values of ΔG° obtained in this study are (8.90–5.72 kJ/mol), (0.09 to − 0.31 kJ/mol), and (− 0.03 to − 1.87 kJ/mol) for Kaolinite, ZnO/Ka, and NiO/ZnO/Ka, respectively. These results indicate that physisorption is the dominant mechanism.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Thermodynamic parameters for MB adsorption onto Ka, ZnO/Ka, and NiO/ZnO/Ka at different temperatures</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s13201-024-02282-4/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec43">Photodegradation activity of ZnO/Ka and NiO/ZnO/Ka toward MB</h3><p>The following sections discuss the impact of pH, initial MB concentration, dose, and time on the photodegradation activity of the developed composites.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec44">Impact of pH</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig11">11</a>a and b shows the APCD of MB using Ka, ZnO/Ka, and NiO/ZnO/Ka at various pH values. In the case of adsorption, the highest percentage of removal is obtained for ZnO/Ka at pH 3 and 10. The maximum removal is found to be 55.12 and 54.37% at pH 3 and 10, respectively, while for NiO/ZnO/Ka, the highest percentage of removal is obtained at pH 3 and 11. The maximum removal is found to be equal to 58.73 and 63.47% at pH 3 and 11, respectively. Moreover, the photocatalytic degradation is increased by increasing pH; the maximum removal has increased to 92.10 and 92.86% at pH 3 and 10, respectively, for ZnO/Ka, while for NiO/ZnO/Ka, 96.68% has been obtained at both pH 7 and 8. This is due to an increase in the production of •OH radicals, that are formed when OH and hole (h +) interact in semiconductors (ZnO, NiO). The oxidative degradation of MB is caused by these •OH radicals (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4886">2020</a>). Therefore, the hybrid process showed more efficiency at MB removal than adsorption alone. Accordingly, from the above-mentioned results, pH 10 and 7 were selected as the optimal pH values for ZnO/Ka and NiO/ZnO/Ka, respectively, for the upcoming experiments. At pH 8, the ZnO/Ka surface charge may not be optimal for MB adsorption. ZnO is known to have an isoelectric point (pHzpc) around pH 7–9, where its surface charge becomes neutral (Mustapha et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Mustapha S et al (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci Rep. 
 https://doi.org/10.1038/s41598-020-69808-z
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR25" id="ref-link-section-d96611821e4889">2020</a>). If the pH exceeds this range (e.g., pH 8), the surface charge becomes negative due to deprotonation of functional groups (Mustapha et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Mustapha S et al (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci Rep. 
 https://doi.org/10.1038/s41598-020-69808-z
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR25" id="ref-link-section-d96611821e4892">2020</a>). This negative surface charge repels the anionic MB dye, resulting in reduced adsorption efficiency (Mustapha et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Mustapha S et al (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci Rep. 
 https://doi.org/10.1038/s41598-020-69808-z
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR25" id="ref-link-section-d96611821e4895">2020</a>). That may explain the poor adsorption for ZnO/ka at pH 8.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Fig. 11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig11_HTML.png?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig11_HTML.png" alt="figure 11" loading="lazy" width="685" height="287"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>Impact of pH on MB adsorption (<b>a</b>) and removal% (<b>b</b>) using the APCD activity of Ka, ZnO/Ka, and NiO/ZnO/Ka based on MB initial concentration of 200 mg/L, clay dosage of 0.1 g/25 mL, 298 K, and contact time of 15 min in the dark then followed by 60 min in solar light (direct sunlight)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec45">Impact of MB initial concentration</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig12">12</a>a and b shows the APCD of MB using Ka, ZnO/Ka, and NiO/ZnO/Ka at various MB concentrations based on clay dosage 0.1 g/25 mL, 298 K, and contact time 15 min in the dark, followed by 60 min in the solar light, and at pH 7 for Ka and NiO/ZnO/Ka and pH 10 for ZnO/Ka. The rate of photocatalytic degradation at a certain concentration of 200 mg/L is found to be decreasing with the increase in dye concentration for both ZnO/Ka and NiO/ZnO/Ka. This could be because the dye tends to act as a barrier for the incident light, preventing the desired light intensity from reaching the semiconducting particles and blocking photocatalyst active sites (Farouk et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. 
 https://doi.org/10.21608/ejchem.2019.15204.1924
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR12" id="ref-link-section-d96611821e4934">2020</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12" data-title="Fig. 12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/12" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig12_HTML.png?as=webp"><img aria-describedby="Fig12" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig12_HTML.png" alt="figure 12" loading="lazy" width="685" height="285"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-12-desc"><p>Impact of initial concentration of MB on the adsorption capacity (<b>a</b>) and removal % (<b>b</b>) of MB using Ka, ZnO/Ka, and NiO/ZnO/Ka using the hybrid process based on clay dosage of 0.1 g/25 mL, 298 K, and contact time of 15 min in the dark followed by 60 min in the solar light and at pH 7 for Ka and NiO/ZnO/Ka and pH 10 for ZnO/Ka</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/12" data-track-dest="link:Figure12 Full size image" aria-label="Full size image figure 12" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec46">Effect of adsorbent dose</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig13">13</a>a shows the APCD of MB using Ka, ZnO/Ka, and NiO/ZnO/Ka at various dosages, while Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig13">13</a>b represents the corresponding removal rate of MB. The efficiency of MB removal owning to the hybrid process increased by increasing the amounts of ZnO/Ka and NiO/ZnO/Ka up to 0.1 g/25 mL, and then the efficiency was found to be nearly stable. This could be because as the amount of adsorbent increased, the overall surface area accessible for MB adsorption decreased due to adsorption site overlaps or aggregation (Ahmadi et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Ahmadi S, Adaobi Igwegbe C, Ahmadi S, and Adaobi C (2020) Removal of methylene blue on zinc oxide nanoparticles: nonlinear and linear adsorption isotherms and kinetics study. [Online]. Available: 
 https://www.researchgate.net/publication/338502483
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR1" id="ref-link-section-d96611821e4975">2020</a>). The removal efficiency of MB improved as the adsorbent dosages increased from 0.05 to 1 g, implying that MB adsorption increased for ZnO/Ka and NiO/ZnO/Ka nanocomposites. The highest clearance efficiency was seen at a dose of 1 g/25 mL (100%) for ZnO/Ka and 0.2 g/25 mL (100%) for NiO/ZnO/Ka. Moreover, at 0.1 g/25 mL, (91.38%) of the dye in bulk solution is removed in the presence of solar light, while (62.26%) of the dye was adsorbed only by ZnO/Ka. Furthermore, 0.1 g/25 mL of NiO/ZnO/Ka has removed (98.68%) of MB after photodegradation, while about (69.10%) after adsorption only. That clarifies that the rate of MB removal in the hybrid process is more efficient than adsorption alone, especially at low amounts of the adsorbent. Moreover, NiO/ZnO/Ka showed a higher removal efficiency of MB than ZnO/Ka due to the expanded surface area and the increased adsorption sites developed by ZnO and NiO.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-13" data-title="Fig. 13"><figure><figcaption><b id="Fig13" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 13</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/13" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig13_HTML.png?as=webp"><img aria-describedby="Fig13" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig13_HTML.png" alt="figure 13" loading="lazy" width="685" height="278"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-13-desc"><p>Effect of Ka, ZnO/ Ka, and NiO/ZnO/ Ka dosages on APCD (<b>a</b>) and removal % (<b>b</b>) of MB based on MB initial concentration of 200 mg/L, pH 7 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, 298 K, and contact time 15 of min in the dark then followed by 60 min in the solar light</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/13" data-track-dest="link:Figure13 Full size image" aria-label="Full size image figure 13" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec47">Impact of contact time</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig14">14</a>a and b shows the performance of MB elimination using the hybrid process with increasing contact time. The hybrid process showed an increase in MB removal much better than the adsorption process alone. It can be seen that the MB removal percentage at 15 min adsorption in the dark (79.20%) has increased to (95.18%) when adsorption is followed by 60 min in solar light for ZnO/Ka. While for NiO/ZnO/Ka, the MB removal percentage at 15 min of adsorption in the dark (78.08%) has increased to (95.84%) when adsorption is followed by 60 min in UV solar light. This fast degradation rate is probably due to the abundant active sites present on the adsorbent’s surface to generate valence-band holes and conduction-band electrons (Shikuku and Mishra <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Shikuku VO, Mishra T (2021) Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Appl Water Sci. 
 https://doi.org/10.1007/s13201-021-01440-2
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR35" id="ref-link-section-d96611821e5014">2021</a>). Then, the removal percentage increased in the case of ZnO/Ka from 95.18% to 97.29%, contact time was extended from 15 to 30 min in the dark, followed by 90 min in solar light, and started to decrease slightly to 94.39% after 60 min of adsorption, followed by 150 min of photodegradation in the solar light. Nevertheless, for NiO/ZnO/Ka, the MB removal percentage increased from 95.84% to 98.83% with increasing contact time from 15 to 30 min in the dark, followed by 90 min in the solar light, and started to decrease to 97.62% after 60 min of adsorption followed by 150 min of photodegradation in the solar light.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-14" data-title="Fig. 14"><figure><figcaption><b id="Fig14" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 14</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/14" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig14_HTML.png?as=webp"><img aria-describedby="Fig14" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig14_HTML.png" alt="figure 14" loading="lazy" width="685" height="280"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-14-desc"><p>Impact of contact time on adsorption capacity (<b>a</b>) and removal % (<b>b</b>) of MB by APCD using Ka, ZnO/Ka, and NiO/ZnO/Ka based on pH 7 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, MB initial concentration of 200 mg/L, 298 K, and clay dosage of 0.1 g/25 mL</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/14" data-track-dest="link:Figure14 Full size image" aria-label="Full size image figure 14" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec48">Impact of ionic strength</h4><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig15">15</a> shows the impact of the ionic strength on the efficiency of the hybrid process for the removal of MB by increasing the CaCl<sub>2</sub> concentration from 0.01 to 0.50 mol/L. Exposure to solar light has enhanced the efficiency of ZnO/Ka and NiO/ZnO/Ka in MB removal by increasing the calcium chloride concentration. The removal percentage has increased from 54.20% to 94.57% for ZnO/Ka and from 78.57% to 99.77% for NiO/ZnO/Ka, by increasing the CaCl<sub>2</sub> concentration from 0.1 to 0.5 mol/L. This observation could be attributed to a variety of factors. First, during band gap irradiation, electrons would move to Ni, resulting in simultaneous and increasing oxidation efficiency. Second, catalyst metallization promotes electron activation and thus, photocatalytic activity. Furthermore, nickel salts have been shown to increase light absorption intensity by encompassing a region of the visible spectrum that comprises the majority of the energy in solar radiation (Nodehi et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Nodehi A, Atashi H, Mansouri M (2019) Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO 2 nanoparticles. J Dispers Sci Technol 40(5):766–776. 
 https://doi.org/10.1080/01932691.2018.1499522
 
 " href="/article/10.1007/s13201-024-02282-4#ref-CR28" id="ref-link-section-d96611821e5056">2019</a>). This indicates that ZnO/Ka and NiO/ZnO/Ka could be efficiently used to remove MB from high-ionic-strength aqueous solutions.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-15" data-title="Fig. 15"><figure><figcaption><b id="Fig15" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 15</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/15" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig15_HTML.png?as=webp"><img aria-describedby="Fig15" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig15_HTML.png" alt="figure 15" loading="lazy" width="685" height="569"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-15-desc"><p>Impact of ion strength on removal % of MB by APCD onto Ka, ZnO/Ka, and NiO/ZnO/Ka based on MB initial concentration of 200 mg/L, pH 7 for Ka and NiO/ZnO/Ka, pH 10 for ZnO/Ka, clay dosage of 0.1 g/25 mL, 298 K, and contact time of 15 min in the dark then followed by 60 min in the solar light</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/15" data-track-dest="link:Figure15 Full size image" aria-label="Full size image figure 15" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec49">Impact of thermodynamic</h4><p>The results indicated that the photodegradation process exhibited a comparable pattern to the adsorption process, whereby the removal of MB increased with higher temperatures, but in a much more efficient way after exposure to solar light. This may be explained as solar light increases the energy, which increases the photocatalytic properties of the material and so enhances MB removal. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab3">3</a> presents thermodynamic parameters, including ΔG˚, ΔH˚, and ΔS˚, used to determine how ZnO and NiO nanoparticles affect MB degradation. Positive ΔH˚ and ΔS˚ values indicate that the photodegradation process is endothermic and leads to increased system randomness. The negative ΔG˚ suggests that adsorption is a spontaneous process. Additionally, as temperatures rose, the free energy value decreased significantly, indicating that photodegradation became more favorable at higher temperatures.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Thermodynamic parameters for MB adsorption and photodegradation on ZnO/kaolinite and NiO/ZnO/kaolinite at different temperatures</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s13201-024-02282-4/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec50">Adsorption isotherm</h3><p>As illustrated in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab4">4</a>, the adsorption of MB onto Ka, ZnO/Ka, and NiO/ZnO/Ka can be described by different isotherm models according to the high regression coefficient (R<sup>2</sup>). The adsorption process of MB onto Ka could be explained by Fritz and Schlunder R<sup>2</sup> (0.914) with q<sub>cal</sub> (1.574), which is near q<sub>exp</sub> (2.041), followed by Redlich–Peterson R<sup>2</sup> (0.766) and Toth R<sup>2</sup> (0.766) with the same q<sub>cal</sub> (1.350), which is close to q<sub>exp</sub> (2.041). Lastly, Kahn R<sup>2</sup> (0.733) with q<sub>cal</sub> (1.385) is near q<sub>exp</sub> (2.041). Otherwise, the two-parameter isotherm models: Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich, in addition to the three-parameter models: Langmuir, Freundlich, and Sips, and the four-parameter model: Baudu could not fit at all with very low R<sup>2</sup> values. However, the adsorption of MB onto ZnO/Ka could fit those two-, three-, and four-parameter isotherm models. This process could be well explained by Temkin, which is the best fitting model with the highest R<sup>2</sup> (1) and q<sub>cal</sub> (35.818) is close to q<sub>exp</sub> (31.042), followed by Fritz and Schlunder R<sup>2</sup> (0.925) with q<sub>cal</sub> (33.01) is also near to q<sub>exp</sub> (31.042), Langmuir–Freundlich and Sips R<sup>2</sup> (0.864) with q<sub>cal</sub> (35.368) which is higher than q<sub>exp</sub> (31.042) as well, Redlich–Peterson and Toth R<sup>2</sup> for both is (0.844) with q<sub>cal</sub> (35.911—35.959) respectively, which are higher than q<sub>exp</sub> (31.042), both Kahn and Baudu have the same R<sup>2</sup> (0.842) with q<sub>cal</sub> (35.959—35.977) respectively, which are higher than q<sub>exp</sub> (31.042), Dubinin–Radushkevich R<sup>2</sup> (0.795) with q<sub>cal</sub> (30.697) which is close to q<sub>exp</sub> (31.042). The lowest models were Freundlich R<sup>2</sup> (0.779) with q<sub>cal</sub> (38.37), which is higher than q<sub>exp</sub> (31.042). Moreover, in Langmuir R<sup>2</sup> (0.768), although q<sub>cal</sub> (30.364) is very close to q<sub>exp</sub> (31.042). Concerning NiO/ZnO/Ka, the adsorption process could be explained by Fritz and Schlunder R<sup>2</sup> (0.842), with q<sub>cal</sub> (30.563) being near q<sub>exp</sub> (31.165).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 Nonlinear adsorption isotherm models of MB adsorption onto Ka, ZnO/Ka, NiO/ZnO/Ka</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s13201-024-02282-4/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec51">Kinetic studies</h3><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec52">Kinetic studies on MB adsorption onto Ka, ZnO/Ka, NiO/ZnO/Ka</h4><p>Five different kinetic models, including pseudo-first-order, pseudo-second-order, mixed first and second order, intraparticle diffusion, and Avrami nonlinear kinetic models, were used to assess the most suitable model for MB adsorption on Ka, ZnO/Ka, and NiO/ZnO/Ka (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig16">16</a>). The efficiency of adsorption relies on sorption kinetics. The smooth curves obtained suggest a consistent and dependable sorption mechanism. In Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab5">5</a>, for kaolinite, both the pseudo-first-order and mixed order exhibit the best fit with an identical R<sup>2</sup> value of (0.913). The q<sub>cal</sub> values in both models (1.709) closely match the q<sub>exp</sub> value (1.60). The Avrami model also provides a good fit with R<sup>2</sup> values of (0.911) and q<sub>cal</sub> (1.663) which are very similar to q<sub>exp</sub> (1.60). For pseudo-second-order, R<sup>2</sup> value is (0.903), and the q<sub>cal</sub> value (1.747 mg/g) is in close agreement with the q<sub>exp</sub> value (1.60 mg/g). However, the predicted values from the intraparticle diffusion differ significantly from the experimental data, and the R<sup>2</sup> value is relatively low at 0.864.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-16" data-title="Fig. 16"><figure><figcaption><b id="Fig16" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 16</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/16" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig16_HTML.png?as=webp"><img aria-describedby="Fig16" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig16_HTML.png" alt="figure 16" loading="lazy" width="685" height="522"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-16-desc"><p>Fitting of different kinetic models (pseudo-first-order, pseudo-second-order, mixed orders, Avrami and intraparticle diffusion models) to the adsorption of MB onto <b>a</b> Ka, <b>b</b> ZnO/Ka and <b>c</b> NiO/ZnO/Ka</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/16" data-track-dest="link:Figure16 Full size image" aria-label="Full size image figure 16" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Kinetics nonlinear parameters of MB adsorption onto Ka, ZnO/Ka, NiO/ZnO/Ka and APCD by ZnO/ Ka, NiO/ZnO/ Ka</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s13201-024-02282-4/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>For the ZnO/Ka system, the pseudo-first-order, mixed first and second, and Avrami all exhibit the same R<sup>2</sup> value of (0.675). The q<sub>cal</sub> values are (34.341) for pseudo-first-order, (34.341) for mixed order, and (34.387) for Avrami, which are all close to the experimental value q<sub>exp</sub> (34.60). Pseudo-second-order model also provides a reasonable fit with an R<sup>2</sup> value of (0.605) and q<sub>cal</sub> (35.624) close to q<sub>exp</sub> (34.60). In contrast, the intraparticle diffusion model does not fit well within this system due to significant discrepancies between predicted and experimental values, along with a low R<sup>2</sup> value of (0.423). For the NiO/ZnO/Ka system, the pseudo-first-order, mixed first and second, and Avrami again share the same R<sup>2</sup> value of (0.720). The q<sub>cal</sub> values are 34.096 for pseudo-first-order, 34.096 for mixed order, and 36.160 for Avrami, which are all close to q<sub>exp</sub> (35.85). The pseudo-second-order model also provides a reasonable fit with an R<sup>2</sup> value of 0.662, and q<sub>cal</sub> (37.584) is somewhat close to q<sub>exp</sub> (34.60) for both pseudo-first-order and mixed order, respectively, and q<sub>cal</sub> (36.160) for Avrami, which is nearly close to q<sub>exp</sub> (35.85), then pseudo-second-order with R<sup>2</sup> (0.662) and q<sub>cal</sub> (37.584), which are slightly close to q<sub>exp</sub> (34.60). Lastly, it is clear that intraparticle diffusion seems not to be appropriate within that system, as the predicted values vary from the experimental ones, and have a low R<sup>2</sup> (0.509) as well.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec53">Kinetic studies on MB using APCD</h4><p>Concerning the adsorption and photodegradation of MB by ZnO/Ka, as seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig17">17</a>, pseudo-first-order and Avrami are the most fitting models for explaining these processes, where R<sup>2</sup> values (0.897 and 0.897 mg/g), respectively, and the q<sub>cal</sub> values (47.039–47.039 mg/g), respectively, are quite similar to the q<sub>exp</sub> value (46.23). Then, pseudo-second-order and mixed-order models come, where the q<sub>cal</sub> values (48.829–48.829 mg/g), respectively, are greater than the q<sub>exp</sub> value (46.23 mg/g) with R<sup>2</sup> value (0.806) for both of them. Otherwise, in the intraparticle diffusion model, the predicted values differ from the experimental ones with a low R<sup>2</sup> (0.402). Moreover, for MB adsorption onto NiO/ZnO/Ka, as seen in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab4">4</a>, the most fitting models that might explain the process are pseudo-first-order and Avrami, with R<sup>2</sup> values (0.986 and 0.986 mg/g), respectively, and q<sub>cal</sub> values (48.626–48.626 mg/g), respectively, that are very close to q<sub>exp</sub> value (48.09 mg/g), followed by pseudo-second-order and mixed-order models, with q<sub>cal</sub> values (50.162–50.161 mg/g), respectively, that are quite higher than the q<sub>exp</sub> value (48.09 mg/g). On the other hand, in the intraparticle diffusion model, the predicted and the experimental values are not similar, in addition to low R<sup>2</sup> (0.452). Eventually, for both ZnO/Ka and NiO/ZnO/Ka, the adsorption system fits well the pseudo-first-order and Avrami with R<sup>2</sup> values (0.897–0.986), respectively, followed by mixed first and second order and the pseudo-second-order models with R<sup>2</sup> values (0.806–0.906), respectively. Finally, it is seemed that the intraparticle diffusion model could not be fit at all.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-17" data-title="Fig. 17"><figure><figcaption><b id="Fig17" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 17</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/17" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig17_HTML.png?as=webp"><img aria-describedby="Fig17" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig17_HTML.png" alt="figure 17" loading="lazy" width="685" height="284"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-17-desc"><p>Fitting of different kinetic models (pseudo-first-order, pseudo-second-order, mixed order, Avrami, and intraparticle diffusion) to the APCD of MB onto <b>a</b> ZnO/Ka <b>b</b> NiO/ZnO/Ka</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/17" data-track-dest="link:Figure17 Full size image" aria-label="Full size image figure 17" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec54">Reusability of Ka, ZnO/Ka, and NiO/Zno/Ka nanocomposites</h3><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s13201-024-02282-4#Fig18">18</a> illustrates the reusability of Ka, ZnO/Ka, and NiO/ZnO/Ka after undergoing five cycles of adsorption and photodegradation of MB, following treatment with ethanol and green tea. The results indicate that treatment with green tea outperformed treatment with ethanol. Specifically, the removal efficiency of Ka decreased from 98.72% in cycle 1 to 24.57% in cycle 4 after ethanol washing. In contrast, ZnO/Ka and NiO/ZnO/Ka exhibited more favorable outcomes, with removal efficiencies decreasing from 99.95% in cycle 1 to 34.77% in cycle 4 and from 100% to 38.80%, respectively.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-18" data-title="Fig. 18"><figure><figcaption><b id="Fig18" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 18</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/18" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig18_HTML.png?as=webp"><img aria-describedby="Fig18" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs13201-024-02282-4/MediaObjects/13201_2024_2282_Fig18_HTML.png" alt="figure 18" loading="lazy" width="685" height="299"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-18-desc"><p>Reusability of Ka, ZnO/Ka, and NiO/Zno/Ka nanocomposites using treatment with ethanol (<b>a</b>) and green tea (<b>b</b>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s13201-024-02282-4/figures/18" data-track-dest="link:Figure18 Full size image" aria-label="Full size image figure 18" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Upon washing with green tea, the removal efficiency of Ka decreased from 98.40% in cycle 1 to 33.67% in cycle 4. In this case, ZnO/Ka and NiO/ZnO/Ka once again demonstrated superior performance, with removal efficiencies decreasing from 99.95% in cycle 1 to 49.79% in cycle 4 and from 100% to 67.59%, respectively. Consequently, ZnO/Ka and NiO/ZnO/Ka exhibit significant potential as effective reusable adsorbents for the efficient removal of MB from aqueous solutions.</p><h3 class="c-article__sub-heading" id="Sec55">Cost analysis</h3><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s13201-024-02282-4#Tab6">6</a> shows the cost break down of one gram of the composite. The overall cost is 4.78 USD/g which is considered expensive. However, future studies should focus in reducing the cost of the materials. As it can be seen that most of the cost is attributed to the unit price of ZnO which form 87.53% of the overall cost, hence reducing the cost of ZnO or replacing it with cost-effective Nano materials will significantly reduce the overall cost.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-6"><figure><figcaption class="c-article-table__figcaption"><b id="Tab6" data-test="table-caption">Table 6 Material and energy cost analysis of the developed NiO/ZnO/Ka nanocomposite</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s13201-024-02282-4/tables/6" aria-label="Full size table 6"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Conclusion"><div class="c-article-section" id="Sec56-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec56">Conclusion</h2><div class="c-article-section__content" id="Sec56-content"><p>ZnO/Ka and NiO/ZnO/Ka nanocomposites were successfully synthesized and characterized. They showed better MB removal than the pristine kaolin. The results demonstrated that after adsorption in the dark for 15 min, ZnO/Ka and NiO/ZnO/Ka achieved MB removal of 79.20% and 78.08, respectively, and maximum adsorption capacity of 44.96 mg/L and 44.99 mg/L, while when the adsorption process was followed by photodegradation for 60 min in the solar light, the removal of MB increased to 95.18 and 95.84, respectively, and maximum adsorption capacity of 48.64 mg/L and 49.41 mg/L, respectively, under optimal conditions of pH 10 for ZnO/Ka and pH 7 for NiO/ZnO/Ka, clay dosage of 0.1 g/25 mL, initial concentration of MB 200 mg/L, and 298 K. Moreover, using both ZnO/Ka and NiO/ZnO/Ka nanocomposites can be applicable in saline water, as they achieved removal of MB at 94.57% and 99.66%, respectively, at CaCl<sub>2</sub> solution of concentration 0.5 mol. The thermodynamic data revealed that the photodegradation process is endothermic, spontaneous, and more favorable at higher temperatures. It was also noticed that Temkin is the best fitting isotherm model with the highest R<sup>2</sup> (1) for ZnO/Ka, while NiO/ZnO/Ka follows Fritz and Schlunder with R<sup>2</sup> (0.842). Moreover, the data of adsorption and photodegradation of MB onto ZnO/Ka and NiO/ZnO/Ka were revealed to follow pseudo-first-order and Avrami kinetic models with R<sup>2</sup> (0.897) for ZnO/Ka and (0.986) for NiO/ZnO/Ka more than pseudo-second-order, mixed first and second order and intraparticle diffusion. The results confirm the efficiency of the developed composites for the removal of MB. Further studies are required for exploring the efficiency of the developed nanocomposites in the removal of other dyes, heavy metals and emerging contaminants.</p></div></div></section> </div> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>Data will be made available on request.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ul class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR1">Ahmadi S, Adaobi Igwegbe C, Ahmadi S, and Adaobi C (2020) Removal of methylene blue on zinc oxide nanoparticles: nonlinear and linear adsorption isotherms and kinetics study. [Online]. Available: <a href="https://www.researchgate.net/publication/338502483" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://www.researchgate.net/publication/338502483">https://www.researchgate.net/publication/338502483</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR2">Ainane T, Khammour F, Talbi M, Elkouali M (2014) A novel bio-adsorbent of mint waste for dyes remediation in aqueous environments: study and modeling of isotherms for removal of methylene blue. Orient J Chem 30(3):1183–1189. <a href="https://doi.org/10.13005/ojc/300332" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.13005/ojc/300332">https://doi.org/10.13005/ojc/300332</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.13005/ojc/300332" data-track-item_id="10.13005/ojc/300332" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.13005%2Fojc%2F300332" aria-label="Article reference 2" data-doi="10.13005/ojc/300332">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvV2ntrjK" aria-label="CAS reference 2">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=A%20novel%20bio-adsorbent%20of%20mint%20waste%20for%20dyes%20remediation%20in%20aqueous%20environments%3A%20study%20and%20modeling%20of%20isotherms%20for%20removal%20of%20methylene%20blue&journal=Orient%20J%20Chem&doi=10.13005%2Fojc%2F300332&volume=30&issue=3&pages=1183-1189&publication_year=2014&author=Ainane%2CT&author=Khammour%2CF&author=Talbi%2CM&author=Elkouali%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR3">Alhajri N, Albuali M (2022) Alumina supported nickel-iron-ruthenium based catalyst for dry reforming of methane. Curr Catal 11(1):57–64</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2174/2211544711666220328130026" data-track-item_id="10.2174/2211544711666220328130026" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2174%2F2211544711666220328130026" aria-label="Article reference 3" data-doi="10.2174/2211544711666220328130026">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXjsVGntbc%3D" aria-label="CAS reference 3">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Alumina%20supported%20nickel-iron-ruthenium%20based%20catalyst%20for%20dry%20reforming%20of%20methane&journal=Curr%20Catal&doi=10.2174%2F2211544711666220328130026&volume=11&issue=1&pages=57-64&publication_year=2022&author=Alhajri%2CN&author=Albuali%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR4">Arman NZ et al (2021) A review on emerging pollutants in the water environment: existences, health effects and treatment processes. Water (Switzerland) 13(22):1–31. <a href="https://doi.org/10.3390/w13223258" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/w13223258">https://doi.org/10.3390/w13223258</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/w13223258" data-track-item_id="10.3390/w13223258" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fw13223258" aria-label="Article reference 4" data-doi="10.3390/w13223258">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB38XjtFGkt78%3D" aria-label="CAS reference 4">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=A%20review%20on%20emerging%20pollutants%20in%20the%20water%20environment%3A%20existences%2C%20health%20effects%20and%20treatment%20processes&journal=Water%20%28Switzerland%29&doi=10.3390%2Fw13223258&volume=13&issue=22&pages=1-31&publication_year=2021&author=Arman%2CNZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR5">Bai N, Liu X, Li Z, Ke X, Zhang K, Wu Q (2021) High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods. J Sol-Gel Sci Technol 99(1):92–100. <a href="https://doi.org/10.1007/s10971-021-05552-8" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s10971-021-05552-8">https://doi.org/10.1007/s10971-021-05552-8</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10971-021-05552-8" data-track-item_id="10.1007/s10971-021-05552-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10971-021-05552-8" aria-label="Article reference 5" data-doi="10.1007/s10971-021-05552-8">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXht1WitLfK" aria-label="CAS reference 5">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=High-efficiency%20TiO2%2FZnO%20nanocomposites%20photocatalysts%20by%20sol%E2%80%93gel%20and%20hydrothermal%20methods&journal=J%20Sol-Gel%20Sci%20Technol&doi=10.1007%2Fs10971-021-05552-8&volume=99&issue=1&pages=92-100&publication_year=2021&author=Bai%2CN&author=Liu%2CX&author=Li%2CZ&author=Ke%2CX&author=Zhang%2CK&author=Wu%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR6">Boningari T, Nagi S, Inturi R, Suidan M, Smirniotis PG (2018) Visible light photocatalytic degradation of acetaldehyde. Chem Eng J. 339:249–258. <a href="https://doi.org/10.1016/j.cej.2018.01.063" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cej.2018.01.063">https://doi.org/10.1016/j.cej.2018.01.063</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cej.2018.01.063" data-track-item_id="10.1016/j.cej.2018.01.063" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cej.2018.01.063" aria-label="Article reference 6" data-doi="10.1016/j.cej.2018.01.063">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitFyis7Y%3D" aria-label="CAS reference 6">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Visible%20light%20photocatalytic%20degradation%20of%20acetaldehyde&journal=Chem%20Eng%20J.&doi=10.1016%2Fj.cej.2018.01.063&volume=339&pages=249-258&publication_year=2018&author=Boningari%2CT&author=Nagi%2CS&author=Inturi%2CR&author=Suidan%2CM&author=Smirniotis%2CPG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR7">Dan AZ, Yusri D (2020) <i>済無No Title No Title No Title</i>, vol. 7, no. 2</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR8">Egbosiuba TC et al (2020) Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: adsorption isotherm, kinetics and thermodynamics. Chem Eng Res Des 153:315–336. <a href="https://doi.org/10.1016/j.cherd.2019.10.016" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cherd.2019.10.016">https://doi.org/10.1016/j.cherd.2019.10.016</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cherd.2019.10.016" data-track-item_id="10.1016/j.cherd.2019.10.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cherd.2019.10.016" aria-label="Article reference 8" data-doi="10.1016/j.cherd.2019.10.016">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXitVagsbnM" aria-label="CAS reference 8">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Ultrasonic%20enhanced%20adsorption%20of%20methylene%20blue%20onto%20the%20optimized%20surface%20area%20of%20activated%20carbon%3A%20adsorption%20isotherm%2C%20kinetics%20and%20thermodynamics&journal=Chem%20Eng%20Res%20Des&doi=10.1016%2Fj.cherd.2019.10.016&volume=153&pages=315-336&publication_year=2020&author=Egbosiuba%2CTC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR9">Elemile OO, Akpor BO, Ibitogbe EM, Afolabi YT, Ajani DO (2022) Adsorption isotherm and kinetics for the removal of nitrate from wastewater using chicken feather fiber. Cogent Eng. <a href="https://doi.org/10.1080/23311916.2022.2043227" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/23311916.2022.2043227">https://doi.org/10.1080/23311916.2022.2043227</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/23311916.2022.2043227" data-track-item_id="10.1080/23311916.2022.2043227" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F23311916.2022.2043227" aria-label="Article reference 9" data-doi="10.1080/23311916.2022.2043227">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=Adsorption%20isotherm%20and%20kinetics%20for%20the%20removal%20of%20nitrate%20from%20wastewater%20using%20chicken%20feather%20fiber&journal=Cogent%20Eng&doi=10.1080%2F23311916.2022.2043227&publication_year=2022&author=Elemile%2COO&author=Akpor%2CBO&author=Ibitogbe%2CEM&author=Afolabi%2CYT&author=Ajani%2CDO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR10">Elsayed MFMK (2020) Removal of some organic compounds from polluted water using modified kaolin. Damietta university [Online]. Available: <a href="http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175">http://lib.mans.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12658175</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR11">Elsayed MS, Ahmed IA, Bader DMD, Hassan AF (2022) Green synthesis of nano zinc oxide/nanohydroxyapatite composites using date palm pits extract and eggshells: adsorption and photocatalytic degradation of methylene blue. Nanomaterials. <a href="https://doi.org/10.3390/nano12010049" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/nano12010049">https://doi.org/10.3390/nano12010049</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/nano12010049" data-track-item_id="10.3390/nano12010049" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fnano12010049" aria-label="Article reference 11" data-doi="10.3390/nano12010049">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Green%20synthesis%20of%20nano%20zinc%20oxide%2Fnanohydroxyapatite%20composites%20using%20date%20palm%20pits%20extract%20and%20eggshells%3A%20adsorption%20and%20photocatalytic%20degradation%20of%20methylene%20blue&journal=Nanomaterials&doi=10.3390%2Fnano12010049&publication_year=2022&author=Elsayed%2CMS&author=Ahmed%2CIA&author=Bader%2CDMD&author=Hassan%2CAF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR12">Farouk M, Amin AS, Diab MA, El-Sonbati AZ, Ibrahime MS (2020) Removing tramadol hydrochloride from wastewater using kaolinite nanocomposite. Egypt J Chem 63(4):1397–1409. <a href="https://doi.org/10.21608/ejchem.2019.15204.1924" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.21608/ejchem.2019.15204.1924">https://doi.org/10.21608/ejchem.2019.15204.1924</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.21608/ejchem.2019.15204.1924" data-track-item_id="10.21608/ejchem.2019.15204.1924" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.21608%2Fejchem.2019.15204.1924" aria-label="Article reference 12" data-doi="10.21608/ejchem.2019.15204.1924">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Removing%20tramadol%20hydrochloride%20from%20wastewater%20using%20kaolinite%20nanocomposite&journal=Egypt%20J%20Chem&doi=10.21608%2Fejchem.2019.15204.1924&volume=63&issue=4&pages=1397-1409&publication_year=2020&author=Farouk%2CM&author=Amin%2CAS&author=Diab%2CMA&author=El-Sonbati%2CAZ&author=Ibrahime%2CMS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR13">Fufa PA et al (2022) Visible light-driven photocatalytic activity of Cu2O/ZnO/Kaolinite-based composite catalyst for the degradation of organic pollutant. Nanotechnology. <a href="https://doi.org/10.1088/1361-6528/ac69f9" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1088/1361-6528/ac69f9">https://doi.org/10.1088/1361-6528/ac69f9</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1088/1361-6528/ac69f9" data-track-item_id="10.1088/1361-6528/ac69f9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1088%2F1361-6528%2Fac69f9" aria-label="Article reference 13" data-doi="10.1088/1361-6528/ac69f9">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Visible%20light-driven%20photocatalytic%20activity%20of%20Cu2O%2FZnO%2FKaolinite-based%20composite%20catalyst%20for%20the%20degradation%20of%20organic%20pollutant&journal=Nanotechnology&doi=10.1088%2F1361-6528%2Fac69f9&publication_year=2022&author=Fufa%2CPA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR14">Geng P et al (2022) MIL-96-Al for Li–S batteries: shape or size. Adv Mater. <a href="https://doi.org/10.1002/adma.202107836" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1002/adma.202107836">https://doi.org/10.1002/adma.202107836</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/adma.202107836" data-track-item_id="10.1002/adma.202107836" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fadma.202107836" aria-label="Article reference 14" data-doi="10.1002/adma.202107836">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=MIL-96-Al%20for%20Li%E2%80%93S%20batteries%3A%20shape%20or%20size&journal=Adv%20Mater&doi=10.1002%2Fadma.202107836&publication_year=2022&author=Geng%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR15">Hossain MR, Rashid TU, Lata NP, Dey SC, Sarker M, Shamsuddin SM (2022) Fabrication of novel nanohybrid material for the removal of azo dyes from wastewater. J Compos Sci. <a href="https://doi.org/10.3390/jcs6100304" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/jcs6100304">https://doi.org/10.3390/jcs6100304</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/jcs6100304" data-track-item_id="10.3390/jcs6100304" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fjcs6100304" aria-label="Article reference 15" data-doi="10.3390/jcs6100304">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=Fabrication%20of%20novel%20nanohybrid%20material%20for%20the%20removal%20of%20azo%20dyes%20from%20wastewater&journal=J%20Compos%20Sci&doi=10.3390%2Fjcs6100304&publication_year=2022&author=Hossain%2CMR&author=Rashid%2CTU&author=Lata%2CNP&author=Dey%2CSC&author=Sarker%2CM&author=Shamsuddin%2CSM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR16">Janíková B, Tokarský J, Kutláková KM, Kormunda M (2017) Photoactive and non-hazardous kaolin/ZnO composites prepared by calcination of sodium zinc carbonate. Appl Clay Sci 143:345–353</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.clay.2017.04.003" data-track-item_id="10.1016/j.clay.2017.04.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.clay.2017.04.003" aria-label="Article reference 16" data-doi="10.1016/j.clay.2017.04.003">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&title=Photoactive%20and%20non-hazardous%20kaolin%2FZnO%20composites%20prepared%20by%20calcination%20of%20sodium%20zinc%20carbonate&journal=Appl%20Clay%20Sci&doi=10.1016%2Fj.clay.2017.04.003&volume=143&pages=345-353&publication_year=2017&author=Jan%C3%ADkov%C3%A1%2CB&author=Tokarsk%C3%BD%2CJ&author=Kutl%C3%A1kov%C3%A1%2CKM&author=Kormunda%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR17">Jonidi-Jafari A, Gholami M, Farzadkia M, Esrafili A, Shirzad-Siboni M (2017) Application of Ni-doped ZnO nanorods for degradation of diazinon: kinetics and by-products. Sep Sci Technol 52(15):2395–2406. <a href="https://doi.org/10.1080/01496395.2017.1303508" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/01496395.2017.1303508">https://doi.org/10.1080/01496395.2017.1303508</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01496395.2017.1303508" data-track-item_id="10.1080/01496395.2017.1303508" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01496395.2017.1303508" aria-label="Article reference 17" data-doi="10.1080/01496395.2017.1303508">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXnsVajsro%3D" aria-label="CAS reference 17">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=Application%20of%20Ni-doped%20ZnO%20nanorods%20for%20degradation%20of%20diazinon%3A%20kinetics%20and%20by-products&journal=Sep%20Sci%20Technol&doi=10.1080%2F01496395.2017.1303508&volume=52&issue=15&pages=2395-2406&publication_year=2017&author=Jonidi-Jafari%2CA&author=Gholami%2CM&author=Farzadkia%2CM&author=Esrafili%2CA&author=Shirzad-Siboni%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR18">Kuang Y, Zhang X, Zhou S (2020) Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water (Switzerland). <a href="https://doi.org/10.3390/w12020587" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/w12020587">https://doi.org/10.3390/w12020587</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/w12020587" data-track-item_id="10.3390/w12020587" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fw12020587" aria-label="Article reference 18" data-doi="10.3390/w12020587">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Adsorption%20of%20methylene%20blue%20in%20water%20onto%20activated%20carbon%20by%20surfactant%20modification&journal=Water%20%28Switzerland%29&doi=10.3390%2Fw12020587&publication_year=2020&author=Kuang%2CY&author=Zhang%2CX&author=Zhou%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR19">Kutláková KM, Tokarský J, Peikertová P (2015) Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Appl Catal B Environ 162:392–400</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.apcatb.2014.07.018" data-track-item_id="10.1016/j.apcatb.2014.07.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.apcatb.2014.07.018" aria-label="Article reference 19" data-doi="10.1016/j.apcatb.2014.07.018">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Functional%20and%20eco-friendly%20nanocomposite%20kaolinite%2FZnO%20with%20high%20photocatalytic%20activity&journal=Appl%20Catal%20B%20Environ&doi=10.1016%2Fj.apcatb.2014.07.018&volume=162&pages=392-400&publication_year=2015&author=Kutl%C3%A1kov%C3%A1%2CKM&author=Tokarsk%C3%BD%2CJ&author=Peikertov%C3%A1%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR20">Mohammed RR (2019) Comparison study of adsorption of lead and methylene blue on zeolite, activated carbon and their composite materials. J Eng 25(8):129–148. <a href="https://doi.org/10.31026/j.eng.2019.08.09" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.31026/j.eng.2019.08.09">https://doi.org/10.31026/j.eng.2019.08.09</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.31026/j.eng.2019.08.09" data-track-item_id="10.31026/j.eng.2019.08.09" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.31026%2Fj.eng.2019.08.09" aria-label="Article reference 20" data-doi="10.31026/j.eng.2019.08.09">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Comparison%20study%20of%20adsorption%20of%20lead%20and%20methylene%20blue%20on%20zeolite%2C%20activated%20carbon%20and%20their%20composite%20materials&journal=J%20Eng&doi=10.31026%2Fj.eng.2019.08.09&volume=25&issue=8&pages=129-148&publication_year=2019&author=Mohammed%2CRR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR21">Mouni L et al (2018) Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45. <a href="https://doi.org/10.1016/j.clay.2017.11.034" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.clay.2017.11.034">https://doi.org/10.1016/j.clay.2017.11.034</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.clay.2017.11.034" data-track-item_id="10.1016/j.clay.2017.11.034" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.clay.2017.11.034" aria-label="Article reference 21" data-doi="10.1016/j.clay.2017.11.034">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvFOnsrjN" aria-label="CAS reference 21">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Removal%20of%20methylene%20blue%20from%20aqueous%20solutions%20by%20adsorption%20on%20kaolin%3A%20kinetic%20and%20equilibrium%20studies&journal=Appl%20Clay%20Sci&doi=10.1016%2Fj.clay.2017.11.034&volume=153&pages=38-45&publication_year=2018&author=Mouni%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR22">Mubarak MF, Mohamed AMG, Keshawy M, elMoghny TA, Shehata N (2022) Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies. Alexandria Eng J 61(6):4189–4207. <a href="https://doi.org/10.1016/j.aej.2021.09.041" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.aej.2021.09.041">https://doi.org/10.1016/j.aej.2021.09.041</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.aej.2021.09.041" data-track-item_id="10.1016/j.aej.2021.09.041" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.aej.2021.09.041" aria-label="Article reference 22" data-doi="10.1016/j.aej.2021.09.041">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Adsorption%20of%20heavy%20metals%20and%20hardness%20ions%20from%20groundwater%20onto%20modified%20zeolite%3A%20batch%20and%20column%20studies&journal=Alexandria%20Eng%20J&doi=10.1016%2Fj.aej.2021.09.041&volume=61&issue=6&pages=4189-4207&publication_year=2022&author=Mubarak%2CMF&author=Mohamed%2CAMG&author=Keshawy%2CM&author=elMoghny%2CTA&author=Shehata%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR23">Mubarak MF, Shehata N, Hanan A (2021) Adsorption mechanism for mitigation of toxic Zn 2+ from synthetic polluted water onto blended composite of chitosan/kaolinite. J Chem Technol Metall </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR24">Murcia JJ et al (2020) Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as photocatalyst for wastewater treatment. Top Catal 63(11–14):1286–1301. <a href="https://doi.org/10.1007/s11244-020-01232-z" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11244-020-01232-z">https://doi.org/10.1007/s11244-020-01232-z</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11244-020-01232-z" data-track-item_id="10.1007/s11244-020-01232-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11244-020-01232-z" aria-label="Article reference 24" data-doi="10.1007/s11244-020-01232-z">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXivFKlsL8%3D" aria-label="CAS reference 24">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Evaluation%20of%20Au%E2%80%93ZnO%2C%20ZnO%2FAg2CO3%20and%20Ag%E2%80%93TiO2%20as%20photocatalyst%20for%20wastewater%20treatment&journal=Top%20Catal&doi=10.1007%2Fs11244-020-01232-z&volume=63&issue=11%E2%80%9314&pages=1286-1301&publication_year=2020&author=Murcia%2CJJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR25">Mustapha S et al (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci Rep. <a href="https://doi.org/10.1038/s41598-020-69808-z" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41598-020-69808-z">https://doi.org/10.1038/s41598-020-69808-z</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-020-69808-z" data-track-item_id="10.1038/s41598-020-69808-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-020-69808-z" aria-label="Article reference 25" data-doi="10.1038/s41598-020-69808-z">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20kaolin%20and%20kaolin%2FZnO%20nanoadsorbents%20in%20adsorption%20studies%20for%20tannery%20wastewater%20treatment&journal=Sci%20Rep&doi=10.1038%2Fs41598-020-69808-z&publication_year=2020&author=Mustapha%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR26">Myneni VR, Kanidarapu NR, Vangalapati M (2020) Methylene blue adsorption by magnesium oxide nanoparticles immobilized with chitosan (CS-MgONP): response surface methodology, isotherm, kinetics and thermodynamic studies. Iran J Chem Chem Eng 39(6):29–42. <a href="https://doi.org/10.30492/ijcce.2019.36342" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.30492/ijcce.2019.36342">https://doi.org/10.30492/ijcce.2019.36342</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.30492/ijcce.2019.36342" data-track-item_id="10.30492/ijcce.2019.36342" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.30492%2Fijcce.2019.36342" aria-label="Article reference 26" data-doi="10.30492/ijcce.2019.36342">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXitVektrk%3D" aria-label="CAS reference 26">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=Methylene%20blue%20adsorption%20by%20magnesium%20oxide%20nanoparticles%20immobilized%20with%20chitosan%20%28CS-MgONP%29%3A%20response%20surface%20methodology%2C%20isotherm%2C%20kinetics%20and%20thermodynamic%20studies&journal=Iran%20J%20Chem%20Chem%20Eng&doi=10.30492%2Fijcce.2019.36342&volume=39&issue=6&pages=29-42&publication_year=2020&author=Myneni%2CVR&author=Kanidarapu%2CNR&author=Vangalapati%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR27">Ningsih SKW, Khair M (2017) Synthesis and characterization of nio nanocrystals by using sol-gel method with various precursors. Makara J Sci. <a href="https://doi.org/10.7454/mss.v21i1.7533" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.7454/mss.v21i1.7533">https://doi.org/10.7454/mss.v21i1.7533</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.7454/mss.v21i1.7533" data-track-item_id="10.7454/mss.v21i1.7533" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.7454%2Fmss.v21i1.7533" aria-label="Article reference 27" data-doi="10.7454/mss.v21i1.7533">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%20and%20characterization%20of%20nio%20nanocrystals%20by%20using%20sol-gel%20method%20with%20various%20precursors&journal=Makara%20J%20Sci&doi=10.7454%2Fmss.v21i1.7533&publication_year=2017&author=Ningsih%2CSKW&author=Khair%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR28">Nodehi A, Atashi H, Mansouri M (2019) Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO 2 nanoparticles. J Dispers Sci Technol 40(5):766–776. <a href="https://doi.org/10.1080/01932691.2018.1499522" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/01932691.2018.1499522">https://doi.org/10.1080/01932691.2018.1499522</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01932691.2018.1499522" data-track-item_id="10.1080/01932691.2018.1499522" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01932691.2018.1499522" aria-label="Article reference 28" data-doi="10.1080/01932691.2018.1499522">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvVChu7fO" aria-label="CAS reference 28">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=Improved%20photocatalytic%20degradation%20of%20reactive%20blue%2081%20using%20NiO-doped%20ZnO%E2%80%93ZrO%202%20nanoparticles&journal=J%20Dispers%20Sci%20Technol&doi=10.1080%2F01932691.2018.1499522&volume=40&issue=5&pages=766-776&publication_year=2019&author=Nodehi%2CA&author=Atashi%2CH&author=Mansouri%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR29">Orozco M, Mendoza A, Cota M, Basurto RL, and Galaviz L (2023) Solvothermal synthesis and photocatalytic evaluation of TiO 2/ZnO based nanoparticles. 16(1): 43–49 <a href="https://doi.org/10.9790/5736-1601024349" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.9790/5736-1601024349">https://doi.org/10.9790/5736-1601024349</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR30">Popaliya M (2023) Modified zeolite as an adsorbent for dyes, drugs, and heavy metal removal. Int J Environ Sci Technol 20:12919–12936</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13762-022-04603-z" data-track-item_id="10.1007/s13762-022-04603-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13762-022-04603-z" aria-label="Article reference 30" data-doi="10.1007/s13762-022-04603-z">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB38XislOjsr%2FE" aria-label="CAS reference 30">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=Modified%20zeolite%20as%20an%20adsorbent%20for%20dyes%2C%20drugs%2C%20and%20heavy%20metal%20removal&journal=Int%20J%20Environ%20Sci%20Technol&doi=10.1007%2Fs13762-022-04603-z&volume=20&pages=12919-12936&publication_year=2023&author=Popaliya%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR31">Rakass S et al (2021) Highly efficient methylene blue dye removal by nickel molybdate nanosorbent. Molecules 26(5):1–19. <a href="https://doi.org/10.3390/molecules26051378" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/molecules26051378">https://doi.org/10.3390/molecules26051378</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/molecules26051378" data-track-item_id="10.3390/molecules26051378" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fmolecules26051378" aria-label="Article reference 31" data-doi="10.3390/molecules26051378">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXmslWhur4%3D" aria-label="CAS reference 31">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=Highly%20efficient%20methylene%20blue%20dye%20removal%20by%20nickel%20molybdate%20nanosorbent&journal=Molecules&doi=10.3390%2Fmolecules26051378&volume=26&issue=5&pages=1-19&publication_year=2021&author=Rakass%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR32">Ramesh M, Rao MPC, Anandan S, Nagaraja H (2018) Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J Mater Res 33(5):601–610. <a href="https://doi.org/10.1557/jmr.2018.30" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1557/jmr.2018.30">https://doi.org/10.1557/jmr.2018.30</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1557/jmr.2018.30" data-track-item_id="10.1557/jmr.2018.30" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1557%2Fjmr.2018.30" aria-label="Article reference 32" data-doi="10.1557/jmr.2018.30">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXks1Gktbs%3D" aria-label="CAS reference 32">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Adsorption%20and%20photocatalytic%20properties%20of%20NiO%20nanoparticles%20synthesized%20via%20a%20thermal%20decomposition%20process&journal=J%20Mater%20Res&doi=10.1557%2Fjmr.2018.30&volume=33&issue=5&pages=601-610&publication_year=2018&author=Ramesh%2CM&author=Rao%2CMPC&author=Anandan%2CS&author=Nagaraja%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR33">Saeed SR, Ajmal M, Bibi I, Shah SS, Siddiq M (2022) Synthesis and characterization of SiO2–NiO xerogel nanocomposite prepared by sol–gel method for catalytic reduction of p-nitrophenol. J Taibah Univ Sci 16(1):472–479. <a href="https://doi.org/10.1080/16583655.2022.2073541" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/16583655.2022.2073541">https://doi.org/10.1080/16583655.2022.2073541</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/16583655.2022.2073541" data-track-item_id="10.1080/16583655.2022.2073541" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F16583655.2022.2073541" aria-label="Article reference 33" data-doi="10.1080/16583655.2022.2073541">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%20and%20characterization%20of%20SiO2%E2%80%93NiO%20xerogel%20nanocomposite%20prepared%20by%20sol%E2%80%93gel%20method%20for%20catalytic%20reduction%20of%20p-nitrophenol&journal=J%20Taibah%20Univ%20Sci&doi=10.1080%2F16583655.2022.2073541&volume=16&issue=1&pages=472-479&publication_year=2022&author=Saeed%2CSR&author=Ajmal%2CM&author=Bibi%2CI&author=Shah%2CSS&author=Siddiq%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR34">Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587. <a href="https://doi.org/10.1039/c8ra04290j" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1039/c8ra04290j">https://doi.org/10.1039/c8ra04290j</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/c8ra04290j" data-track-item_id="10.1039/c8ra04290j" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2Fc8ra04290j" aria-label="Article reference 34" data-doi="10.1039/c8ra04290j">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1yrsbfN" aria-label="CAS reference 34">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Regeneration%20performance%20of%20clay-based%20adsorbents%20for%20the%20removal%20of%20industrial%20dyes%3A%20a%20review&journal=RSC%20Adv&doi=10.1039%2Fc8ra04290j&volume=8&issue=43&pages=24571-24587&publication_year=2018&author=Shahadat%2CM&author=Isamil%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR35">Shikuku VO, Mishra T (2021) Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Appl Water Sci. <a href="https://doi.org/10.1007/s13201-021-01440-2" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s13201-021-01440-2">https://doi.org/10.1007/s13201-021-01440-2</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13201-021-01440-2" data-track-item_id="10.1007/s13201-021-01440-2" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13201-021-01440-2" aria-label="Article reference 35" data-doi="10.1007/s13201-021-01440-2">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=Adsorption%20isotherm%20modeling%20for%20methylene%20blue%20removal%20onto%20magnetic%20kaolinite%20clay%3A%20a%20comparison%20of%20two-parameter%20isotherms&journal=Appl%20Water%20Sci&doi=10.1007%2Fs13201-021-01440-2&publication_year=2021&author=Shikuku%2CVO&author=Mishra%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR36">Singh RP, Singh RL (2019) Advances in biological treatment of industrial waste water and their recycling for a sustainable future. Springer, Berlin. <a href="https://doi.org/10.1007/978-981-13-1468-1" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-981-13-1468-1">https://doi.org/10.1007/978-981-13-1468-1</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-981-13-1468-1" data-track-item_id="10.1007/978-981-13-1468-1" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-981-13-1468-1" aria-label="Book reference 36" data-doi="10.1007/978-981-13-1468-1">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Advances%20in%20biological%20treatment%20of%20industrial%20waste%20water%20and%20their%20recycling%20for%20a%20sustainable%20future&doi=10.1007%2F978-981-13-1468-1&publication_year=2019&author=Singh%2CRP&author=Singh%2CRL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR37">Tarekegn MM, Balakrishnan RM, Hiruy AM, Dekebo AH (2021) Removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay-a comparative study. RSC Adv 11(48):30109–30131. <a href="https://doi.org/10.1039/d1ra03918k" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1039/d1ra03918k">https://doi.org/10.1039/d1ra03918k</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/d1ra03918k" data-track-item_id="10.1039/d1ra03918k" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2Fd1ra03918k" aria-label="Article reference 37" data-doi="10.1039/d1ra03918k">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvFyhtrvL" aria-label="CAS reference 37">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=Removal%20of%20methylene%20blue%20dye%20using%20nano%20zerovalent%20iron%2C%20nanoclay%20and%20iron%20impregnated%20nanoclay-a%20comparative%20study&journal=RSC%20Adv&doi=10.1039%2Fd1ra03918k&volume=11&issue=48&pages=30109-30131&publication_year=2021&author=Tarekegn%2CMM&author=Balakrishnan%2CRM&author=Hiruy%2CAM&author=Dekebo%2CAH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR38">Türkyılmaz ŞŞ, Güy N, Özacar M (2017) Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals. J Photochem Photobiol A Chem 341(15):39–50</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jphotochem.2017.03.027" data-track-item_id="10.1016/j.jphotochem.2017.03.027" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jphotochem.2017.03.027" aria-label="Article reference 38" data-doi="10.1016/j.jphotochem.2017.03.027">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=Photocatalytic%20efficiencies%20of%20Ni%2C%20Mn%2C%20Fe%20and%20Ag%20doped%20ZnO%20nanostructures%20synthesized%20by%20hydrothermal%20method%3A%20the%20synergistic%2Fantagonistic%20effect%20between%20ZnO%20and%20metals&journal=J%20Photochem%20Photobiol%20A%20Chem&doi=10.1016%2Fj.jphotochem.2017.03.027&volume=341&issue=15&pages=39-50&publication_year=2017&author=T%C3%BCrky%C4%B1lmaz%2C%C5%9E%C5%9E&author=G%C3%BCy%2CN&author=%C3%96zacar%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR39">Younas F et al (2021) Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water (Switzerland) 13(2):1–25. <a href="https://doi.org/10.3390/w13020215" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/w13020215">https://doi.org/10.3390/w13020215</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/w13020215" data-track-item_id="10.3390/w13020215" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fw13020215" aria-label="Article reference 39" data-doi="10.3390/w13020215">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhslKrtLzJ" aria-label="CAS reference 39">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=Current%20and%20emerging%20adsorbent%20technologies%20for%20wastewater%20treatment%3A%20Trends%2C%20limitations%2C%20and%20environmental%20implications&journal=Water%20%28Switzerland%29&doi=10.3390%2Fw13020215&volume=13&issue=2&pages=1-25&publication_year=2021&author=Younas%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR40">Zaher A, Taha M, Farghali AA, Mahmoud RK (2020) Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environ Sci Pollut Res 27(11):12256–12269. <a href="https://doi.org/10.1007/s11356-020-07750-3" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/s11356-020-07750-3">https://doi.org/10.1007/s11356-020-07750-3</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11356-020-07750-3" data-track-item_id="10.1007/s11356-020-07750-3" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11356-020-07750-3" aria-label="Article reference 40" data-doi="10.1007/s11356-020-07750-3">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXjvVWltL8%3D" aria-label="CAS reference 40">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Zn%2FFe%20LDH%20as%20a%20clay-like%20adsorbent%20for%20the%20removal%20of%20oxytetracycline%20from%20water%3A%20combining%20experimental%20results%20and%20molecular%20simulations%20to%20understand%20the%20removal%20mechanism&journal=Environ%20Sci%20Pollut%20Res&doi=10.1007%2Fs11356-020-07750-3&volume=27&issue=11&pages=12256-12269&publication_year=2020&author=Zaher%2CA&author=Taha%2CM&author=Farghali%2CAA&author=Mahmoud%2CRK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR41">Zhang J, Li J (2022) The oxygen vacancy defect of ZnO/NiO nanomaterials improves photocatalytic performance and ammonia sensing performance. Nanomaterials. <a href="https://doi.org/10.3390/nano12030433" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.3390/nano12030433">https://doi.org/10.3390/nano12030433</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/nano12030433" data-track-item_id="10.3390/nano12030433" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fnano12030433" aria-label="Article reference 41" data-doi="10.3390/nano12030433">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&title=The%20oxygen%20vacancy%20defect%20of%20ZnO%2FNiO%20nanomaterials%20improves%20photocatalytic%20performance%20and%20ammonia%20sensing%20performance&journal=Nanomaterials&doi=10.3390%2Fnano12030433&publication_year=2022&author=Zhang%2CJ&author=Li%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR42">Zhao B, Liu L, Cheng H (2014) Rational design of kaolinite-based photocatalytic materials for environment decontamination. Appl Clay Sci. <a href="https://doi.org/10.1016/j.clay.2021.106098" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.clay.2021.106098">https://doi.org/10.1016/j.clay.2021.106098</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.clay.2021.106098" data-track-item_id="10.1016/j.clay.2021.106098" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.clay.2021.106098" aria-label="Article reference 42" data-doi="10.1016/j.clay.2021.106098">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&title=Rational%20design%20of%20kaolinite-based%20photocatalytic%20materials%20for%20environment%20decontamination&journal=Appl%20Clay%20Sci&doi=10.1016%2Fj.clay.2021.106098&publication_year=2014&author=Zhao%2CB&author=Liu%2CL&author=Cheng%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR43">Zhao J, Wu Q, Tang Y, Zhou J, Guo H (2022) Tannery wastewater treatment: conventional and promising processes, an updated 20-year review. J Leather Sci Eng. <a href="https://doi.org/10.1186/s42825-022-00082-7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1186/s42825-022-00082-7">https://doi.org/10.1186/s42825-022-00082-7</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1186/s42825-022-00082-7" data-track-item_id="10.1186/s42825-022-00082-7" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1186/s42825-022-00082-7" aria-label="Article reference 43" data-doi="10.1186/s42825-022-00082-7">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&title=Tannery%20wastewater%20treatment%3A%20conventional%20and%20promising%20processes%2C%20an%20updated%2020-year%20review&journal=J%20Leather%20Sci%20Eng&doi=10.1186%2Fs42825-022-00082-7&publication_year=2022&author=Zhao%2CJ&author=Wu%2CQ&author=Tang%2CY&author=Zhou%2CJ&author=Guo%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR44">Zyoud AH et al (2019) Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: zero-point charge and pH effects. Appl Clay Sci 182:105294. <a href="https://doi.org/10.1016/j.clay.2019.105294" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.clay.2019.105294">https://doi.org/10.1016/j.clay.2019.105294</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.clay.2019.105294" data-track-item_id="10.1016/j.clay.2019.105294" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.clay.2019.105294" aria-label="Article reference 44" data-doi="10.1016/j.clay.2019.105294">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFKhurvL" aria-label="CAS reference 44">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&title=Kaolin-supported%20ZnO%20nanoparticle%20catalysts%20in%20self-sensitized%20tetracycline%20photodegradation%3A%20zero-point%20charge%20and%20pH%20effects&journal=Appl%20Clay%20Sci&doi=10.1016%2Fj.clay.2019.105294&volume=182&publication_year=2019&author=Zyoud%2CAH"> Google Scholar</a> </p></li></ul><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s13201-024-02282-4?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>The authors thank the generous support of the American people through the United States Agency for International Development (USAID). The contents are the author’s responsibility and do not necessarily reflect the views of USAID or the United States Government.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>The research was supported by the Center of Excellence for Water and the US Agency for International Development (USAID) under the research grant number (COE)-WATER-CA # 72026319CA00001.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt</p><p class="c-article-author-affiliation__authors-list">Sarah A. Farag & Nabila Shehata</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Reference Laboratory, Holding Company for Water and Wastewater, Cairo, Egypt</p><p class="c-article-author-affiliation__authors-list">M. Farouk</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Sarah_A_-Farag-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Sarah A. Farag</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Sarah%20A.%20Farag" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Sarah%20A.%20Farag" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Sarah%20A.%20Farag%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-M_-Farouk-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">M. Farouk</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=M.%20Farouk" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=M.%20Farouk" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22M.%20Farouk%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Nabila-Shehata-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Nabila Shehata</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Nabila%20Shehata" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Nabila%20Shehata" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Nabila%20Shehata%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>Sarah A. Farag involved in methodology, investigation, data curation, and writing—original draft. M. Farouk involved in supervision and writing—review and editing. Nabila Shehata involved in conceptualization, supervision, and writing—review and editing.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:Nabila.shehata@psas.bsu.edu.eg">Nabila Shehata</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Conflict of interest</h3> <p>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</p> <h3 class="c-article__sub-heading" id="FPar2">Ethical approval</h3> <p>The authors have complied with all ethical standards while writing the article and conducting the research.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" rel="license">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Evaluation%20of%20ZnO%2FNiO%2Fkaolin%20nanocomposite%20as%20a%20sorbent%2Fphotocatalyst%20in%20hybrid%20water%20remediation%20process&author=Sarah%20A.%20Farag%20et%20al&contentID=10.1007%2Fs13201-024-02282-4&copyright=The%20Author%28s%29&publication=2190-5487&publicationDate=2024-11-16&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY-NC-ND">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s13201-024-02282-4" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s13201-024-02282-4" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Farag, S.A., Farouk, M. & Shehata, N. Evaluation of ZnO/NiO/kaolin nanocomposite as a sorbent/photocatalyst in hybrid water remediation process. <i>Appl Water Sci</i> <b>14</b>, 259 (2024). https://doi.org/10.1007/s13201-024-02282-4</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s13201-024-02282-4?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-12-31">31 December 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-08-30">30 August 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-11-16">16 November 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s13201-024-02282-4</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Adsorption&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Adsorption</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Kaolin&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Kaolin</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Methylene%20blue&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Methylene blue</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Nanocomposite&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Nanocomposite</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Nickel%20oxide&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Nickel oxide</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Photocatalysis&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Photocatalysis</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Water%20remediation&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Water remediation</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Zinc%20oxide&facet-discipline="Earth%20Sciences"" data-track="click" data-track-action="view keyword" data-track-label="link">Zinc oxide</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=13201" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/13201/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s13201-024-02282-4;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>