CINXE.COM

Search results for: energy conservation studies

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy conservation studies</title> <meta name="description" content="Search results for: energy conservation studies"> <meta name="keywords" content="energy conservation studies"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy conservation studies" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy conservation studies"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19609</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy conservation studies</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19399</span> Towards Achieving Energy Efficiency in Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aigerim%20Uyzbayeva">Aigerim Uyzbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeriya%20Tyo"> Valeriya Tyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurlan%20Ibrayev"> Nurlan Ibrayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kazakhstan is currently one of the dynamically developing states in its region. The stable growth in all sectors of the economy leads to a corresponding increase in energy consumption. Thus, country consumes a significant amount of energy due to the high level of industralisation and the presence of energy-intensive manufacturing such as mining and metallurgy which in turn leads to low energy efficiency. With allowance for this the Government has set several priorities to adopt a transition of Republic of Kazakhstan to a “green economy”. This article provides an overview of Kazakhstan’s energy efficiency situation in for the period of 1991-2014. First, the dynamics of production and consumption of conventional energy resources are given. Second, the potential of renewable energy sources is summarised, followed by the description of GHG emissions trends in the country. Third, Kazakhstan’ national initiatives, policies and locally implemented projects in the field of energy efficiency are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20in%20Kazakhstan" title="energy efficiency in Kazakhstan">energy efficiency in Kazakhstan</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/17698/towards-achieving-energy-efficiency-in-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19398</span> Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Ullah">Fahim Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman"> Muhammad Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20deficiency" title="energy deficiency">energy deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20trade" title=" energy trade"> energy trade</a>, <a href="https://publications.waset.org/abstracts/search?q=PQL%20analysis" title=" PQL analysis"> PQL analysis</a> </p> <a href="https://publications.waset.org/abstracts/183640/investigating-the-nexus-between-energy-deficiency-environmental-sustainability-and-renewable-energy-the-role-of-energy-trade-in-global-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19397</span> Thatsana Nataya Chatri Dance: A Creative Conservation Process of Cultural Performing Arts for Competition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dusittorn%20Ngamying">Dusittorn Ngamying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research on Thatsana Nataya Chatri Dance: A Creative Conservation Process of Cultural Performing Arts for Competition was aimed at 1) studying the creative conservation process of cultural performing arts; 2) creating conservation process of cultural performing arts of Thatsana Nataya Chatri dance; and 3) utilizing the created performing arts for the competition. The study was conducted using the qualitative research method in the Central region provinces of Thailand through documentary study and data from field observations, interviews and focus group meetings. Data were collected from 50 informants consisting of 10 experts on the subject, 30 practitioners and 10 general information providers. The data collection instruments consisted of participatory and non-participatory forms, structured and non-structured interview schedules and focus group note forms. The data were verified by the triangulation technique and presented using the descriptive analysis. The results of the study reveal that the creative conservation process of cultural performing arts should be initiated by those who have experienced using a prior knowledge in the pursuit of new knowledge. The new knowledge is combined to generate creative work with the conservation process in 9 aspects: acquiring the related knowledge, creating theme and inspiration, designing the music and melody, designing costumes, inventing dance postures, selecting dancers, transferring the dance postures, preparing the stage and performance equipment, planning the performance event. Inventing the conservation process of cultural performing arts Thatsana Nataya Chatri dance consists of 33 dance postures and 14 transformed patterns. The performance requires 6 dancers, 3 males and 3 females. Costume features both male and female classical and modified dancer’s costumes. The duration of the show takes 5 minutes. As for the application for the competition, this creative work has been selected by Dramatic Works Association (Thailand) to represent Thailand at the Lombok International Dance Sports Festival 2015 held at Lombok, Indonesia. The team has been awarded the Second Place in the Traditional Dance category. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creative%20conservation%20process" title="creative conservation process">creative conservation process</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20performing%20arts" title=" cultural performing arts"> cultural performing arts</a>, <a href="https://publications.waset.org/abstracts/search?q=Thatsana%20Nataya%20Chatri%20dance" title=" Thatsana Nataya Chatri dance"> Thatsana Nataya Chatri dance</a>, <a href="https://publications.waset.org/abstracts/search?q=competition" title=" competition"> competition</a> </p> <a href="https://publications.waset.org/abstracts/47633/thatsana-nataya-chatri-dance-a-creative-conservation-process-of-cultural-performing-arts-for-competition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19396</span> Evaluating the Effects of Rainfall and Agricultural Practices on Soil Erosion (Palapye Case Study)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mpaphi%20Major">Mpaphi Major</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is becoming an important aspect of land degradation. Therefore it is of great consideration to note any factor that may escalate the rate of soil erosion in our arable land. There exist 3 main driving forces in soil erosion which are rainfall, wind and land use of which in this project only rainfall and land use will be looked at. With the increase in world population at an alarming rate, the demand for food production is expected to increase which will in turn lead to more land being converted from forests to agricultural use of which very few of it are now fertile. In our country Botswana, the rate of crop production is decreasing due to the wearing away of the fertile top soil and poor arable land management. As a result, some studies on the rate of soil loss and farm management practices should be conducted so that best soil and water conservation practices should be employed and hence reduce the risk of soil loss and increase the rate of crop production and yield. The Soil loss estimation model for Southern Africa (SLEMSA) will be used to estimate the rate of soil loss in some selected arable farms within the Palapye watershed and some field observations will be made to determine the management practices used and their impact on the arable land. Upon observations it have been found that many arable fields have been exposed to soil erosion, of which the affected parts are no longer suitable for any crop production unless the land areas are modified. Improper land practices such as ploughing along the slope and land cultivation practices were observed. As a result farmers need to be educated on best conservation practices that can be used to manage their arable land hence reduced risk of soil erosion and improved crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20water%20conservation" title="soil and water conservation">soil and water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SLEMSA" title=" SLEMSA"> SLEMSA</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a> </p> <a href="https://publications.waset.org/abstracts/35597/evaluating-the-effects-of-rainfall-and-agricultural-practices-on-soil-erosion-palapye-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19395</span> Corrosion Characteristics and Electrochemical Treatment of Heritage Silver Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20N.%20Abu-Baker">Ahmad N. Abu-Baker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the corrosion of a group of heritage silver-copper alloy coins and their conservation treatment by potentiostatic methods. The corrosion products of the coins were characterized by a combination of scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD) analyses. Cathodic polarization curves, measured by linear sweep voltammetry (LSV), also identified the corrosion products and the working conditions to treat the coins using a potentiostatic reduction method, which was monitored by chronoamperometry. The corrosion products showed that the decay mechanisms were dominated by selective attack on the copper-rich phases of the silver-copper alloys, which is consistent with an internal galvanic corrosion phenomenon, which leads to the deposition of copper corrosion products on the surface of the coins. Silver chloride was also detected on the coins, which reflects selective corrosion of the silver-rich phases under different chemical environments. The potentiostatic treatment showed excellent effectiveness in determining treatment parameters and monitoring the reduction process of the corrosion products on the coins, which helped to preserve surface details in the cleaning process and to prevent over-treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20alloys" title="silver alloys">silver alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage" title=" heritage"> heritage</a> </p> <a href="https://publications.waset.org/abstracts/112170/corrosion-characteristics-and-electrochemical-treatment-of-heritage-silver-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19394</span> Rejuvenating a Space into World Class Environment through Conservation of Heritage Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhimanyu%20Sharma">Abhimanyu Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India is known for its cultural heritage. As the country is rich in diversity along its length and breadth, the state of Jammu & Kashmir is world famous for the beautiful tourist destinations in the Kashmir region of the state. However, equally destined destinations are also located in Jammu region of the said state. For most of the time in last 50-60 years, the prime focus of development was centered around Kashmir region. But now due to an ever increase in globalization, the focus is decentralizing throughout the country. Pertinently, the potential of Jammu Region needs to be incorporated into the world tourist map in particular. One such spot in the Jammu region of the state is a place called ‘Mubarak Mandi’ – the palace with the royal residence of the Maharaja of Jammu & Kashmir from the Dogra Dynasty, is located in the heart of Jammu city (the winter capital of the state). Since the place is destined with a heritage importance but yet lack the supporting infrastructure to attract the national tourist in general and worldwide tourist at large. For such places, conservation and restoration of the existing structures are the potential tools to overcome the present limiting nature of the place. The rejuvenation of this place through potential and dynamic conservation techniques is targeted through this paper. This paper deals with developing and restoring the areas within the whole campus with appropriate building materials, conservation techniques, etc. to promote a great number of visitors by developing it into a prioritised tourist attraction point. Major thrust shall be on studying the criteria’s for developing the place considering the psychological effect needed to create a socially interactive environment. Additionally, thrust shall be on the spatial elements that will aid in creating a common platform for all kinds of tourists. Accordingly, different conservation guidelines (or model) shall be targeted through this paper so that this Jammu region shall also be an equally contributor to the tourist graph of the country as the Kashmir part is. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20architecture" title=" heritage architecture"> heritage architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=rejuvenating" title=" rejuvenating"> rejuvenating</a>, <a href="https://publications.waset.org/abstracts/search?q=restoration" title=" restoration"> restoration</a> </p> <a href="https://publications.waset.org/abstracts/55108/rejuvenating-a-space-into-world-class-environment-through-conservation-of-heritage-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19393</span> Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assabo%20Mohamed">Assabo Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bile%20Mohamed"> Bile Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Farah"> Ali Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Isman%20Souleiman"> Isman Souleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Alos%20Ramos"> Olga Alos Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Cadet"> Marie Cadet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20conservation" title="dry conservation">dry conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sizing" title=" sizing"> sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20station" title=" water station"> water station</a> </p> <a href="https://publications.waset.org/abstracts/52141/sizing-of-drying-processes-to-optimize-conservation-of-the-nuclear-power-plants-on-stationary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19392</span> C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Noei">Maziar Noei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensor" title="sensor">sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube" title=" nanotube"> nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylacetylene" title=" ethylacetylene"> ethylacetylene</a> </p> <a href="https://publications.waset.org/abstracts/18000/c4h6-adsorption-on-the-surface-of-a-bn-nanotube-a-dft-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19391</span> A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalil%20Boudjadar">Jalil Boudjadar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-critical%20systems" title="time-critical systems">time-critical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore%20systems" title=" multicore systems"> multicore systems</a>, <a href="https://publications.waset.org/abstracts/search?q=schedulability%20analysis" title=" schedulability analysis"> schedulability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20analysis" title=" performance analysis"> performance analysis</a> </p> <a href="https://publications.waset.org/abstracts/117875/a-study-of-the-trade-off-energy-consumption-performance-schedulability-for-dvfs-multicore-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19390</span> The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Medve">András Medve</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Szabad"> Katalin Szabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Istv%C3%A1n%20Patk%C3%B3"> István Patkó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title="sustainable energy">sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20of%20geothermic%20energy%20in%20Hungary" title=" development of geothermic energy in Hungary "> development of geothermic energy in Hungary </a> </p> <a href="https://publications.waset.org/abstracts/9895/the-environmental-impact-of-geothermal-energy-and-opportunities-for-its-utilization-in-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19389</span> Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Hamisham%20Harun"> Nor Hamisham Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title="Malaysia">Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=non-renewable%20energy" title=" non-renewable energy"> non-renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a> </p> <a href="https://publications.waset.org/abstracts/54485/role-of-non-renewable-and-renewable-energy-for-sustainable-electricity-generation-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19388</span> Exploring Perceptions of Non-Energy Benefits and Energy Efficiency Investment in the Malaysian Industrial Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noor%20Baiti%20Binti%20Mustafa">Siti Noor Baiti Binti Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy management studies regarding energy efficiency investments in Malaysia has yet to address the lack of empirical research that examines pro- sustainability behavior of managers in the industrial sector and how it influences energy efficiency investment decision-making. This study adopts the Theory of Planned Behavior (TPB) to examine the relationship between personal attitude, subjective norms, and perceived behavioral control (PBC), the intention of energy efficiency investments, and how perceptions of Non-Energy Benefits (NEB) influence these intentions among managers in the industrial sector in Malaysia. Managers from various sub-sectors in the industrial sector were selected from a sample of companies that are participants of the Government-led program named the Energy Audit Conditional Grant (EACG) that aimed to promote energy efficiency. Data collection was conducted through an online semi-structured, open-ended questionnaire and then later interviewed. The results of this explorative sequential qualitative study showed that perceived behavioral control was a significant predictor of energy efficiency investment intentions as compared to factors such as attitude and subjective norms. The level of awareness and perceptions towards NEB further played a significant factor in influencing energy efficiency investment decision-making as well. Various measures and policy recommendations are provided together with insights on factors that influence decision-makers intention to invest in energy efficiency, whilst new knowledge on NEB perceptions will be useful to enhance the attractiveness of energy-efficient investments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20investments" title="energy efficiency investments">energy efficiency investments</a>, <a href="https://publications.waset.org/abstracts/search?q=non-energy%20benefits" title=" non-energy benefits"> non-energy benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20planned%20behavior" title=" theory of planned behavior"> theory of planned behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20attitude" title=" personal attitude"> personal attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20norms" title=" subjective norms"> subjective norms</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20behavioral%20control" title=" perceived behavioral control"> perceived behavioral control</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia%20industrial%20sector" title=" Malaysia industrial sector"> Malaysia industrial sector</a> </p> <a href="https://publications.waset.org/abstracts/168320/exploring-perceptions-of-non-energy-benefits-and-energy-efficiency-investment-in-the-malaysian-industrial-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19387</span> Design Analysis of Solar Energy Panels for Tropical Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Agochi%20Okorowo">Cyril Agochi Okorowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man have greatly influenced climate change over the years as a result of a consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discusses solar energy as the abundant renewable energy in the tropical Nigeria, processes of harvesting the energy and recommends solar energy as an alternative means of electric power generation in a time the demand for power in Nigeria supersedes supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a> </p> <a href="https://publications.waset.org/abstracts/73228/design-analysis-of-solar-energy-panels-for-tropical-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19386</span> Sustainable Agriculture in Nigeria: Integrating Energy Efficiency and Renewables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vicx%20Farm">Vicx Farm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the critical role of energy efficiency management and renewable energy in fostering sustainable agricultural practices in Nigeria. With the growing concerns over energy security, environmental degradation, and climate change, there is an urgent need to transition towards more sustainable energy sources and practices in the agricultural sector. Nigeria, being a significant player in the global agricultural market, stands to benefit immensely from integrating energy efficiency measures and renewable energy solutions into its agricultural activities. This paper discusses the current energy challenges facing Nigerian agriculture, explores the potential benefits of energy efficiency and renewable energy adoption, and proposes strategies for effective implementation. The paper concludes with recommendations for policymakers, stakeholders, and practitioners to accelerate the adoption of energy-efficient and renewable energy technologies in Nigerian agriculture, thereby promoting sustainable development and resilience in the sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a> </p> <a href="https://publications.waset.org/abstracts/183031/sustainable-agriculture-in-nigeria-integrating-energy-efficiency-and-renewables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19385</span> Feasibility Study of Air Conditioners Operated by Solar Energy in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Simbawa">Eman Simbawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Budur%20Alasmri"> Budur Alasmri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Munahir"> Hanan Munahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanin%20Munahir"> Hanin Munahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy has become currently the subject of attention around the world and is undergoing many researches and studies. Using solar energy, which is a renewable energy, is aligned with the Saudi Vision 2030. People are more aware of it and are starting to use it more for environmental and economical reasons. A questionnaire was conducted in this paper to measure the awareness of people in Saudi Arabia regarding solar energy and their attitude towards it. Then, two kinds of air conditioners (one powered by electricity only and one powered by solar panels and electricity) are compared in terms of their cost over a period of 20 years. This will help the users to decide which kind of device to use depending on its cost. The result shows that as the electricity tariffs in Saudi Arabia increases, depending on the sector, the solar air conditioner is cheaper. In fact, if the tariff in the future increases to reach 50 Halalah/kWh, the solar air conditioner is more economical. This will influence users to buy more solar powered devices, and it will decrease the consumption of electricity. Therefore, the dependence on oil will decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Airconditioner" title="Airconditioner">Airconditioner</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cells" title=" photovoltaic cells"> photovoltaic cells</a>, <a href="https://publications.waset.org/abstracts/search?q=present%20value" title=" present value"> present value</a> </p> <a href="https://publications.waset.org/abstracts/123833/feasibility-study-of-air-conditioners-operated-by-solar-energy-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19384</span> Is Electricity Consumption Stationary in Turkey?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Dogan">Eyup Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of research articles analyzing the integration properties of energy variables has rapidly increased in the energy literature for about a decade. The stochastic behaviors of energy variables are worth knowing due to several reasons. For instance, national policies to conserve or promote energy consumption, which should be taken as shocks to energy consumption, will have transitory effects in energy consumption if energy consumption is found to be stationary in one country. Furthermore, it is also important to know the order of integration to employ an appropriate econometric model. Despite being an important subject for applied energy (economics) and having a huge volume of studies, several known limitations still exist with the existing literature. For example, many of the studies use aggregate energy consumption and national level data. In addition, a huge part of the literature is either multi-country studies or solely focusing on the U.S. This is the first study in the literature that considers a form of energy consumption by sectors at sub-national level. This research study aims at investigating unit root properties of electricity consumption for 12 regions of Turkey by four sectors in addition to total electricity consumption for the purpose of filling the mentioned limits in the literature. In this regard, we analyze stationarity properties of 60 cases . Because the use of multiple unit root tests make the results robust and consistent, we apply Dickey-Fuller unit root test based on Generalized Least Squares regression (DFGLS), Phillips-Perron unit root test (PP) and Zivot-Andrews unit root test with one endogenous structural break (ZA). The main finding of this study is that electricity consumption is trend stationary in 7 cases according to DFGLS and PP, whereas it is stationary process in 12 cases when we take into account the structural change by applying ZA. Thus, shocks to electricity consumption have transitory effects in those cases; namely, agriculture in region 1, region 4 and region 7, industrial in region 5, region 8, region 9, region 10 and region 11, business in region 4, region 7 and region 9, total electricity consumption in region 11. Regarding policy implications, policies to decrease or stimulate the use of electricity have a long-run impact on electricity consumption in 80% of cases in Turkey given that 48 cases are non-stationary process. On the other hand, the past behavior of electricity consumption can be used to predict the future behavior of that in 12 cases only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unit%20root" title="unit root">unit root</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20consumption" title=" electricity consumption"> electricity consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sectoral%20data" title=" sectoral data"> sectoral data</a>, <a href="https://publications.waset.org/abstracts/search?q=subnational%20data" title=" subnational data"> subnational data</a> </p> <a href="https://publications.waset.org/abstracts/30404/is-electricity-consumption-stationary-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19383</span> Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre of Visual Arts in the Context of Agile, Lean and Hybrid Project Management Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Ledinskaya">Maria Ledinskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts in the context of Agile, Lean, and Hybrid project management. It is part case study and part literature review. To date, relatively little has been written about non-traditional project management approaches in heritage conservation. This paper seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation, by referencing their practical application on a recent museum-based conservation project. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre for Visual Arts by private collectors Michael and Joyce Morris. The first part introduces the chronological timeline and key elements of the project. It describes a medium-size conservation project of moderate complexity, which was planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown condition and materials, unconfirmed budget. The project was also impacted by the unknown unknowns of the COVID-19 pandemic, such as indeterminate lockdowns, and the need to accommodate social distancing and remote communications. The author, a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Collection Conservation Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. Subsequent sections examine the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment, due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Collection Conservation Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, as well as the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics, particularly with respect to change management, bespoke ethics, shared decision-making, and value-based cost-benefit conservation strategy. The author concludes that the Morris Collection Conservation Project had multiple Agile and Lean features which were instrumental to the successful delivery of the project. These key features are identified as distributed decision making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point largely in favour of a Hybrid model which combines traditional and alternative project processes and tools to suit the specific needs of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=project%20management" title="project management">project management</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=waterfall" title=" waterfall"> waterfall</a>, <a href="https://publications.waset.org/abstracts/search?q=agile" title=" agile"> agile</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a> </p> <a href="https://publications.waset.org/abstracts/146169/qualitative-evaluation-of-the-morris-collection-conservation-project-at-the-sainsbury-centre-of-visual-arts-in-the-context-of-agile-lean-and-hybrid-project-management-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19382</span> Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Alshuwaikhat">Habib Alshuwaikhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hossain"> Nahid Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title="Saudi Arabia">Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20sector" title=" residential sector"> residential sector</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20evaluation" title=" policy evaluation"> policy evaluation</a> </p> <a href="https://publications.waset.org/abstracts/14763/investigating-best-practice-energy-efficiency-policies-and-programs-and-their-replication-potential-for-residential-sector-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19381</span> Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhu">Li Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Binghua%20Wang"> Binghua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun"> Yong Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agritourism%20complex" title="agritourism complex">agritourism complex</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title=" energy planning"> energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20simulation" title=" energy demand simulation"> energy demand simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure%20model" title=" hierarchical structure model"> hierarchical structure model</a> </p> <a href="https://publications.waset.org/abstracts/103773/energy-planning-analysis-of-an-agritourism-complex-based-on-energy-demand-simulation-a-case-study-of-wuxi-yangshan-agritourism-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19380</span> Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jainendra%20Singh">Jainendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaheeruddin"> Zaheeruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a> </p> <a href="https://publications.waset.org/abstracts/58744/routing-and-energy-efficiency-through-data-coupled-clustering-in-large-scale-wireless-sensor-networks-wsns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19379</span> Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Khazali">Amirhossein Khazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Kalantar"> Mohsen Kalantar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20reserve%20market" title="energy and reserve market">energy and reserve market</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20device" title=" energy storage device"> energy storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20generation" title=" wind generation"> wind generation</a> </p> <a href="https://publications.waset.org/abstracts/36215/stochastic-energy-and-reserve-scheduling-with-wind-generation-and-generic-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19378</span> High Performance Nanomaterials for Sustainable and Modern Façade Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farrin%20Ghorbanalavi">Farrin Ghorbanalavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Ar%C4%B1o%C4%9Flu"> Nihal Arıoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of enhancing mechanical /thermal/physical properties of architectural materials is being practiced for over five decades. In comparison with other approaches, the current nanotechnology era equally attracted the structural scientists, engineers, and industries. It simply promises that using building blocks with dimensions in the nano size range makes it possible to design and develop new multi-functional materials. This research focuses on understanding the effects of nanotechnology on the building facade and new facade concepts based on the new possibilities of nanotechnology. Mentioned factors are very prosperous for the comfort as well as sustainability of the building itself. Furthermore, the study suggests that the potential for energy conservation and reduced waste, toxicity, non-renewable resource consumption, and carbon emissions through the architectural applications of nanotechnologies significant. More clearly, it provides us the information about what does the future hold for surface structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20materials" title=" nano materials"> nano materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade" title=" façade"> façade</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency "> energy efficiency </a> </p> <a href="https://publications.waset.org/abstracts/27592/high-performance-nanomaterials-for-sustainable-and-modern-facade-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19377</span> Prioritizing Forest Conservation Strategies Using a Multi-Attribute Decision Model to Address Concerns with the Survival of the Endangered Dragon Tree (Dracaena ombet Kotschy and Peyr.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesfay%20Gidey">Tesfay Gidey</a>, <a href="https://publications.waset.org/abstracts/search?q=Emiru%20Birhane"> Emiru Birhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashenafi%20Manaye"> Ashenafi Manaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailemariam%20Kassa"> Hailemariam Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfay%20Atsbha"> Tesfay Atsbha</a>, <a href="https://publications.waset.org/abstracts/search?q=Negasi%20Solomon"> Negasi Solomon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadgu%20Hishe"> Hadgu Hishe</a>, <a href="https://publications.waset.org/abstracts/search?q=Aklilu%20Negussie"> Aklilu Negussie</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Madera"> Petr Madera</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20G.%20Borges"> Jose G. Borges</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The globally endangered Dracaena ombet is one of the ten dragon multipurpose tree species in arid ecosystems. Anthropogenic and natural factors are now impacting the sustainability of the species. This study was conducted to prioritize criteria and alternative strategies for the conservation of the species using the analytical hierarchy process (AHP) model by involving all relevant stakeholders in the Desa'a dry Afromontane forest in northern Ethiopia. Information about the potential alternative strategies and the criteria for their evaluation was first collected from experts, personal experiences, and literature reviews. Afterward, they were validated using stakeholders' focus group discussions. Five candidate strategies with three evaluation criteria were considered for prioritization using the AHP techniques. The overall priority ranking value of the stakeholders showed that the ecological criterion was deemed as the most essential factor for the choice of alternative strategies, followed by the economic and social criteria. The minimum cut-off strategy, combining exclosures with the collection of only 5% of plant parts from the species, soil and water conservation, and silviculture interventions, was selected as the best alternative strategy for sustainable D. ombet conservation. The livelihood losses due to the selected strategy should be compensated by the collection of non-timber forest products, poultry farming, home gardens, rearing small ruminants, beekeeping, and agroforestry. This approach may be extended to study other dragon tree species and explore strategies for the conservation of other arid ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20strategies" title="conservation strategies">conservation strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20hierarchy%20process%20model" title=" analytical hierarchy process model"> analytical hierarchy process model</a>, <a href="https://publications.waset.org/abstracts/search?q=Desa%27a%20forest" title=" Desa&#039;a forest"> Desa&#039;a forest</a>, <a href="https://publications.waset.org/abstracts/search?q=endangered%20species" title=" endangered species"> endangered species</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=overexploitation" title=" overexploitation"> overexploitation</a> </p> <a href="https://publications.waset.org/abstracts/174113/prioritizing-forest-conservation-strategies-using-a-multi-attribute-decision-model-to-address-concerns-with-the-survival-of-the-endangered-dragon-tree-dracaena-ombet-kotschy-and-peyr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19376</span> Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Cacho">Jeffrey Cacho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherwin%20Reyes"> Sherwin Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20roasting%20furnace" title="biomass roasting furnace">biomass roasting furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20storage" title=" heat storage"> heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20chute" title=" combustion chute"> combustion chute</a>, <a href="https://publications.waset.org/abstracts/search?q=start-up%20roasting%20business" title=" start-up roasting business"> start-up roasting business</a> </p> <a href="https://publications.waset.org/abstracts/185153/design-and-evaluation-of-oven-type-furnace-using-earth-materials-for-roasting-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19375</span> Investigation of the Historical Background of Monumental Mosques in Kocaeli, Turkey by IRT Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kishal%C4%B1">Emre Kishalı</a>, <a href="https://publications.waset.org/abstracts/search?q=Neslihan%20T%C3%BCrkmeno%C4%9FLu%20Bayraktar"> Neslihan TürkmenoğLu Bayraktar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical buildings may face various impacts throughout their life cycle. There have been environmental, structural, public works actions on old monuments influencing sustainability and maintenance issues. As a result, ancient monuments can have been undergone various changes in the context of restoration and repair. Currently, these buildings face integrated conditions including city planning macro solutions, old intervention methods, modifications in building envelope and artefacts in terms of conservation. Moreover, documentation of phases is an essential for assessing the historical building, yet it can result in highly complicated and interwoven issues. Herein, two monuments constructed in the 16th century are selected as case studies in Kocaeli, Turkey which are located in different micro climatic conditions and/or exposed to different interventions and which are important for the city as cultural property. Pertev Paşa Mosque (also known as Yenicuma Mosque) -constructed by Architect Sinan-; Gebze Çoban Mustafa Paşa Mosque -constructed in 1523 and known as the work of Architect Sinan but various names asserted as the architect of building according to resources. Active water infiltration and damages, recent material interventions, hidden niches, and foundation techniques of the mosque are investigated via Infrared Thermography under the project of 114K284, “Non-Destructive Test Applications, in the Context of Planned Conservation, through Historical Mosques of Kocaeli: Coban Mustafa Pasa Mosque, Fevziye Mosque and Pertev Pasa Mosque” funded by TUBITAK. It is aimed to reveal active deteriorations on building elements generated by unwanted effects of structural and climatic conditions, historical interventions, and modifications by monitoring the variation of surface temperature and humidity by IRT visualization method which is an important non- destructive process for investigation of monuments in the conservation field in the context of planned conservation. It is also concluded that in-situ monitoring process via IRT through different climatic conditions give substantial information on the behaviour of the envelope to the physical environmental conditions by observation of thermal performance, degradations. However, it is obvious that monitoring of historical buildings cannot be pursued by implementing a single non-destructive technique to have complete data of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IRT" title="IRT">IRT</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=planned%20conservation" title=" planned conservation"> planned conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=mosque" title=" mosque"> mosque</a> </p> <a href="https://publications.waset.org/abstracts/66153/investigation-of-the-historical-background-of-monumental-mosques-in-kocaeli-turkey-by-irt-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19374</span> Wave Energy: Efficient Conversion of the Big Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Moniruzzaman">Md. Moniruzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchor" title="anchor">anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20object" title=" floating object"> floating object</a>, <a href="https://publications.waset.org/abstracts/search?q=pump" title=" pump"> pump</a>, <a href="https://publications.waset.org/abstracts/search?q=ship%20city" title=" ship city"> ship city</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy" title=" wave energy"> wave energy</a> </p> <a href="https://publications.waset.org/abstracts/154060/wave-energy-efficient-conversion-of-the-big-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19373</span> Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20Jati%20Mat%20Sahid"> Endang Jati Mat Sahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country&rsquo;s limited indigenous energy resources have resulted in an increased of the country&rsquo;s net import. Therefore, acknowledging the precarious position of the country&rsquo;s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity" title="electricity">electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/46632/illuminating-the-policies-affecting-energy-security-in-malaysias-electricity-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19372</span> A Review on Various Approaches for Energy Conservation in Green Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumati%20Manchanda">Sumati Manchanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is one of the most recent developing engineering and is consistently utilized as a part of different IT firms so as to make benefits like expense sparing or financial minimization, it must be eco cordial also. In this manner, Green Cloud Computing is the need of the today's current situation. It is an innovation that is rising as data correspondence engineering. This paper surveys the unequivocal endeavors made by different specialists to make Cloud Computing more vitality preserving, to break down its vitality utilization focused around sorts of administrations gave furthermore to diminish the carbon foot shaped impression rate by colossal methodologies furthermore edify virtualization idea alongside different diverse methodologies which utilize virtual machines scheduling and migration. The summary of the proposed work by various authors that we have reviewed is also presented in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cloud%20computing" title=" green cloud computing"> green cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/23948/a-review-on-various-approaches-for-energy-conservation-in-green-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19371</span> Association Between Renewable Energy and Community Forest User Group: A Case of Siranchowk Rural Municipality, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prem%20Bahadur%20Giri">Prem Bahadur Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=MathineeYucharoen"> MathineeYucharoen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Community forest user groups (CFUGs) have been the core stone of forest management efforts in Nepal. Due to the lack of a smooth transition into the local governance structure in 2017, policy instruments have not been effectively cascaded to the local level, creating ambiguity and inconsistency in forest governance. Descriptive mixed-method research was performed with community users and stakeholders of the Tarpakha community forest, Siranchowk Rural Municipality, to understand the role of the political economy in CFUG management. The household survey was conducted among 100 households (who also are existing members of the Tarpakha CFUG) to understand and document their energy consumption preferences and practices. Likewise, ten key informant interviews and five focus group discussions with the municipality and forest management officials were also conducted to have a wider overview of the factors and political, socio-economic, and religious contexts behind the utilization of renewable energy for sustainable development. Findings from our study suggest that only 3% of households use biogas as their main source of energy. The rest of the households mention liquid petroleum gas (LPG), electricity, and firewood as major sources of energy for domestic purposes. Community members highlighted the difficulty in accessing firewood due to strict regulations from the CFUG, lack of cattle and manpower to rear cattle to produce cow dung (for biogas), and lack of technical expertise at the community level for the operation and maintenance of solar energy, among others as challenges of the resource. Likewise, key informants have mentioned policy loopholes at both the federal and local levels, especially with regard to the promotion of alternative or renewable energy, as there are no clear mandates and provisions to regulate the renewable energy industry. The study recommends doing an in-depth study on the feasibility of renewable energy sources, especially in the context of CFUGs, where biodiversity conservation aspects need to be equally taken into consideration while thinking of the promotion and expansion of renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/193154/association-between-renewable-energy-and-community-forest-user-group-a-case-of-siranchowk-rural-municipality-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19370</span> Establishing Forecasts Pointing Towards the Hungarian Energy Change Based on the Results of Local Municipal Renewable Energy Production and Energy Export</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balazs%20Kulcsar">Balazs Kulcsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Professional energy organizations perform analyses mainly on the global and national levels about the expected development of the share of renewables in electric power generation, heating, and cooling, as well as the transport sectors. There are just a few publications, research institutions, non-profit organizations, and national initiatives with a focus on studies in the individual towns, settlements. Issues concerning the self-supply of energy on the settlement level have not become too wide-spread. The goal of our energy geographic studies is to determine the share of local renewable energy sources in the settlement-based electricity supply across Hungary. The Hungarian energy supply system defines four categories based on the installed capacities of electric power generating units. From these categories, the theoretical annual electricity production of small-sized household power plants (SSHPP) featuring installed capacities under 50 kW and small power plants with under 0.5 MW capacities have been taken into consideration. In the above-mentioned power plant categories, the Hungarian Electricity Act has allowed the establishment of power plants primarily for the utilization of renewable energy sources since 2008. Though with certain restrictions, these small power plants utilizing renewable energies have the closest links to individual settlements and can be regarded as the achievements of the host settlements in the shift of energy use. Based on the 2017 data, we have ranked settlements to reflect the level of self-sufficiency in electricity production from renewable energy sources. The results show that the supply of all the energy demanded by settlements from local renewables is within reach now in small settlements, e.g., in the form of the small power plant categories discussed in the study, and is not at all impossible even in small towns and cities. In Hungary, 30 settlements produce more renewable electricity than their own annual electricity consumption. If these overproductive settlements export their excess electricity towards neighboring settlements, then full electricity supply can be realized on further 29 settlements from renewable sources by local small power plants. These results provide an opportunity for governmental planning of the realization of energy shift (legislative background, support system, environmental education), as well as framing developmental forecasts and scenarios until 2030. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20geography" title="energy geography">energy geography</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungary" title=" Hungary"> Hungary</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20small%20power%20plants" title=" local small power plants"> local small power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficiency%20settlements" title=" self-sufficiency settlements"> self-sufficiency settlements</a> </p> <a href="https://publications.waset.org/abstracts/113777/establishing-forecasts-pointing-towards-the-hungarian-energy-change-based-on-the-results-of-local-municipal-renewable-energy-production-and-energy-export" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=7" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=653">653</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=654">654</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies&amp;page=9" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10