CINXE.COM

Search results for: Thermal Analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Thermal Analysis</title> <meta name="description" content="Search results for: Thermal Analysis"> <meta name="keywords" content="Thermal Analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Thermal Analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Thermal Analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30137</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Thermal Analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30107</span> Thermal Performance of Reheat, Regenerative, Inter-Cooled Gas Turbine Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milind%20S.%20Patil">Milind S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Purushottam%20S.%20Desale"> Purushottam S. Desale</a>, <a href="https://publications.waset.org/abstracts/search?q=Eknath%20R.%20Deore"> Eknath R. Deore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal analysis of reheat, regenerative, inter-cooled gas turbine cycle is presented. Specific work output, thermal efficiency and SFC is simulated with respect to operating conditions. Analytical formulas were developed taking into account the effect of operational parameters like ambient temperature, compression ratio, compressor efficiency, turbine efficiency, regenerator effectiveness, pressure loss in inter cooling, reheating and regenerator. Calculations were made for wide range of parameters using engineering equation solver and the results were presented here. For pressure ratio of 12, regenerator effectiveness 0.95, and maximum turbine inlet temperature 1200 K, thermal efficiency decreases by 27% with increase in ambient temperature (278 K to 328 K). With decrease in regenerator effectiveness thermal efficiency decreases linearly. With increase in ambient temperature (278 K to 328 K) for the same maximum temperature and regenerator effectiveness SFC decreases up to a pressure ratio of 10 and then increases. Sharp rise in SFC is noted for higher ambient temperature. With increase in isentropic efficiency of compressor and turbine, thermal efficiency increases by about 40% for low ambient temperature (278 K to 298 K) however, for higher ambient temperature (308 K to 328 K) thermal efficiency increases by about 70%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=reheating" title=" reheating"> reheating</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-cooled" title=" inter-cooled"> inter-cooled</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/3990/thermal-performance-of-reheat-regenerative-inter-cooled-gas-turbine-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30106</span> Design and Thermal Analysis of a Concrete House in Libya Using BEopt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Alamri">Gamal Alamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Iqbal"> Tariq Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20house%20design" title="concrete house design">concrete house design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20climate" title=" hot climate"> hot climate</a>, <a href="https://publications.waset.org/abstracts/search?q=BEopt%20software" title=" BEopt software"> BEopt software</a> </p> <a href="https://publications.waset.org/abstracts/49598/design-and-thermal-analysis-of-a-concrete-house-in-libya-using-beopt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30105</span> The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damiaa%20Saad%20Khudor">Damiaa Saad Khudor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidization" title="fluidization">fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20technology" title=" powder technology"> powder technology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20design" title=" thermal design"> thermal design</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchangers" title=" heat exchangers "> heat exchangers </a> </p> <a href="https://publications.waset.org/abstracts/17881/the-implementation-of-a-numerical-technique-to-thermal-design-of-fluidized-bed-cooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30104</span> Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kimia%20Khoshdel%20Vajari">Kimia Khoshdel Vajari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saber%20Saffar"> Saber Saffar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=X750%20superalloy" title=" X750 superalloy"> X750 superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/157205/investigation-of-gas-tungsten-arc-welding-parameters-on-residual-stress-of-heat-affected-zone-in-inconel-x750-super-alloy-welding-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30103</span> Response of Pavement under Temperature and Vehicle Coupled Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu"> Mei-Jie Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus" title=" dynamic modulus"> dynamic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transformation" title=" integral transformation"> integral transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix" title=" transfer matrix"> transfer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/31808/response-of-pavement-under-temperature-and-vehicle-coupled-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30102</span> An Attempt to Improve Student´s Understanding on Thermal Conductivity Using Thermal Cameras</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Faria%20Brito%20Francisquini">Mariana Faria Brito Francisquini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many thermal phenomena are present and play a substantial role in our daily lives. This presence makes the study of this area at both High School and University levels a very widely explored topic in the literature. However, a lot of important concepts to a meaningful understanding of the world are neglected at the expense of a traditional approach with senseless algebraic problems. In this work, we intend to show how the introduction of new technologies in the classroom, namely thermal cameras, can work in our favor to make a clearer understanding of many of these concepts, such as thermal conductivity. The use of thermal cameras in the classroom tends to diminish the everlasting abstractness in thermal phenomena as they enable us to visualize something that happens right before our eyes, yet we cannot see it. In our study, we will provide the same amount of heat to metallic cylindrical rods of the same length, but different materials in order to study the thermal conductivity of each one. In this sense, the thermal camera allows us to visualize the increase in temperature along each rod in real time enabling us to infer how heat is being transferred from one part of the rod to another. Therefore, we intend to show how this approach can contribute to the exposure of students to more enriching, intellectually prolific, scenarios than those provided by traditional approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teaching%20physics" title="teaching physics">teaching physics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cameras" title=" thermal cameras"> thermal cameras</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20physics" title=" thermal physics"> thermal physics</a> </p> <a href="https://publications.waset.org/abstracts/52305/an-attempt-to-improve-students-understanding-on-thermal-conductivity-using-thermal-cameras" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30101</span> Thermal Analysis of a Channel Partially Filled with Porous Media Using Asymmetric Boundary Conditions and LTNE Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Torabi">Mohsen Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaili%20Zhang"> Kaili Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work considers forced convection in a channel partially filled with porous media from local thermal non-equilibrium (LTNE) point of view. The channel is heated with constant heat flux from the lower side and is isolated on the top side. The wall heat flux is considered to be divided between the solid and fluid phases based on their temperature gradients and effective thermal conductivities. The general forms of the velocity and temperature fields are analytically obtained. To obtain the constant parameters for temperature equations, a numerical solution is considered. Using different thermophysical parameters, both velocity and temperature fields are comprehensively illustrated. Discussions regarding bifurcation phenomenon are provided. Since this geometry has not been considered yet, the present analysis is a useful addition to the literature on thermal performance of porous systems from LTNE perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non-equilibrium" title="local thermal non-equilibrium">local thermal non-equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bifurcation" title=" thermal bifurcation"> thermal bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous-fluid%20interface" title=" porous-fluid interface"> porous-fluid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20analytical-numerical%20solution" title=" combined analytical-numerical solution"> combined analytical-numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/18415/thermal-analysis-of-a-channel-partially-filled-with-porous-media-using-asymmetric-boundary-conditions-and-ltne-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30100</span> Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Su">Bin Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20mass%20effect" title=" building mass effect"> building mass effect</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20thermal%20comfort" title=" building thermal comfort"> building thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20thermal%20performance" title=" building thermal performance"> building thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20building" title=" school building "> school building </a> </p> <a href="https://publications.waset.org/abstracts/18103/field-study-for-evaluating-winter-thermal-performance-of-auckland-school-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30099</span> A Simple Thermal Control Technique for the First Egyptian Pico Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20Assem%20Soliman%20Mossallam">Maged Assem Soliman Mossallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main prospectives on the demand of space exploration is to reduce the costs and efforts for satellite design. Concerning this issue satellite down scaling attracts space scientists and engineers. Picosatellite is the smallest category of satellites. The overall mass is less than 1 kg and dimensions are 10x10x3 cm3. Thermal control target is to keep the Pico-satellite board temperature within the permissible limits of temperature. Thermal design is completely passive which relies mainly on the enhancement of the thermo-optical properties of aluminum using anodization. Transient analysis is given for two different orbits, ISS orbit and 600 km altitude orbit. Results show that board temperature lies within 3 oC to 22 oC using black anodization which is a permissible limit for the satellite internal electronic board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal%20control" title="satellite thermal control">satellite thermal control</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20satellites" title=" small satellites"> small satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=thermooptical%20properties" title=" thermooptical properties "> thermooptical properties </a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20orbit%20analysis" title="transient orbit analysis">transient orbit analysis</a> </p> <a href="https://publications.waset.org/abstracts/151845/a-simple-thermal-control-technique-for-the-first-egyptian-pico-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30098</span> The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orose%20Rugchati">Orose Rugchati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarawut%20Wattanawongpitak"> Sarawut Wattanawongpitak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title="thermal conductivity">thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20meat" title=" porcine meat"> porcine meat</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/98796/the-analysis-of-thermal-conductivity-in-porcine-meat-due-to-electricity-by-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30097</span> Thermal Fatigue Behavior of Austenitic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20exhaust" title=" automotive exhaust"> automotive exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fatigue" title=" thermal fatigue"> thermal fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20relaxation" title=" load relaxation"> load relaxation</a> </p> <a href="https://publications.waset.org/abstracts/9692/thermal-fatigue-behavior-of-austenitic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30096</span> Investigation of Passive Solutions of Thermal Comfort in Housing Aiming to Reduce Energy Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josiane%20R.%20Pires">Josiane R. Pires</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20S.%20Gonz%C3%A1lez"> Marco A. S. González</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20L.%20Brenner"> Bruna L. Brenner</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciana%20S.%20Roos"> Luciana S. Roos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civil%20construction" title="civil construction">civil construction</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a> </p> <a href="https://publications.waset.org/abstracts/1890/investigation-of-passive-solutions-of-thermal-comfort-in-housing-aiming-to-reduce-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30095</span> Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Pasquali">Riccardo Pasquali</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Harlin"> Keith Harlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Muller"> Mark Muller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title="thermal conductivity">thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20source%20heat%20pumps" title=" ground source heat pumps"> ground source heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20geothermal" title=" shallow geothermal"> shallow geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireland" title=" Ireland"> Ireland</a> </p> <a href="https://publications.waset.org/abstracts/130116/mapping-thermal-properties-using-resistivity-lithology-and-thermal-conductivity-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30094</span> Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roisul%20H.%20Galib">Roisul H. Galib</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20R.%20Bandaru"> Prabhakar R. Bandaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20material" title="2D material">2D material</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductance" title=" thermal conductance"> thermal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/150149/total-thermal-resistance-of-graphene-oxide-substrate-stack-role-of-interfacial-thermal-resistance-in-heat-flow-of-2d-material-based-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30093</span> Photo-Thermal Degradation Analysis of Single Junction Amorphous Silicon Solar Module Eva Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20O.%20Osayemwenre">Gilbert O. Osayemwenre</a>, <a href="https://publications.waset.org/abstracts/search?q=Meyer%20L.%20Edson"> Meyer L. Edson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene vinyl acetate (EVA) encapsulation degradation affects the performance of photovoltaic (PV) module. Hotspot formation causes the EVA encapsulation to undergo photothermal deterioration and molecular breakdown by UV radiation. This leads to diffusion of chemical particles into other layers. During outdoor deployment, the EVA encapsulation in the affect region loses its adhesive strength, when this happen the affected region layer undergoes rapid delamination. The presence of photo-thermal degradation is detrimental to PV modules as it causes both optical and thermal degradation. Also, it enables the encapsulant to be more susceptible to chemicals substance and moisture. Our findings show a high concentration of Sodium, Phosphorus and Aluminium which originate from the glass substrate, cell emitter and back contact respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate%20%28EVA%29" title="ethylene vinyl acetate (EVA)">ethylene vinyl acetate (EVA)</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-thermal%20degradation" title=" photo-thermal degradation"> photo-thermal degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis%20%28TGA%29" title=" thermogravimetric analysis (TGA)"> thermogravimetric analysis (TGA)</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20probe%20microscope%20%28SPM%29" title=" scanning probe microscope (SPM)"> scanning probe microscope (SPM)</a> </p> <a href="https://publications.waset.org/abstracts/47891/photo-thermal-degradation-analysis-of-single-junction-amorphous-silicon-solar-module-eva-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30092</span> Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khalil">Muhammad Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abuelfoutouh"> Nader Abuelfoutouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gasser%20Abdelal"> Gasser Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Murphy"> Adrian Murphy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20structures" title="composite structures">composite structures</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20multiphysics" title=" lightning multiphysics"> lightning multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29" title=" magnetohydrodynamic (MHD)"> magnetohydrodynamic (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20thermal-electrical%20analysis" title=" coupled thermal-electrical analysis"> coupled thermal-electrical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20plasmas." title=" thermal plasmas."> thermal plasmas.</a> </p> <a href="https://publications.waset.org/abstracts/81848/numerical-simulation-of-lightning-strike-direct-effects-on-aircraft-skin-composite-laminate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30091</span> Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach">J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brozovsky"> J. Brozovsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials" title="thermal insulating materials">thermal insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool%20fibers" title=" sheep wool fibers"> sheep wool fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/12473/study-of-hydrothermal-behavior-of-thermal-insulating-materials-based-on-natural-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30090</span> Sustainable Refrigerated Transport Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A">A. A</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Belmir"> F. Belmir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Bouari"> A. El Bouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abboud"> Y. Abboud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a study of the thermal performance of a new solar mobile refrigeration prototype for the preservation of perishable foods. The simulation of the refrigeration cycle and the calculation of the thermal balances made it possible to estimate its consumption and to evaluate the capacity of each photovoltaic component necessary for the production of energy. The study provides a description of the refrigerator construction and operation, including an energy balance analysis of the refrigerator performance under typical loads. The photovoltaic system requirements are also detailed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a> </p> <a href="https://publications.waset.org/abstracts/138620/sustainable-refrigerated-transport-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30089</span> Polygeneration Solar Thermal System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Deb">S. K. Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Sarma"> B. C. Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrator" title="concentrator">concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=polygeneration" title=" polygeneration"> polygeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=aperture" title=" aperture"> aperture</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/21797/polygeneration-solar-thermal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30088</span> Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malik">M. Y. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzana%20Khan"> Farzana Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slip%20conditions" title="slip conditions">slip conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20cylinder" title=" stretching cylinder"> stretching cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20generation%2Fabsorption" title=" heat generation/absorption"> heat generation/absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point%20flow" title=" stagnation point flow"> stagnation point flow</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20thermal%20conductivity" title=" variable thermal conductivity"> variable thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/5197/stagnation-point-flow-over-a-stretching-cylinder-with-variable-thermal-conductivity-and-slip-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30087</span> An Overview of Thermal Storage Techniques for Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20Shafiq">Talha Shafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage"> sensible heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20heat%20storage" title=" thermochemical heat storage"> thermochemical heat storage</a> </p> <a href="https://publications.waset.org/abstracts/21035/an-overview-of-thermal-storage-techniques-for-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30086</span> 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Mahfoudi">Nadjiba Mahfoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Moummi"> Abdelhafid Moummi </a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El%20Ganaoui"> Mohammed El Ganaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage "> sensible heat storage </a> </p> <a href="https://publications.waset.org/abstracts/20693/3d-simulation-for-design-and-predicting-performance-of-a-thermal-heat-storage-facility-using-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30085</span> Failure Analysis of Windshield Glass of Automobiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhupinder%20Kaur">Bhupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Pandey"> O. P. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=windshield" title=" windshield"> windshield</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20mismatch" title=" thermal mismatch"> thermal mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/122092/failure-analysis-of-windshield-glass-of-automobiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30084</span> Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athena%20Nguyen">Athena Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rojin%20Belganeh"> Rojin Belganeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry" title="gas chromatography/mass spectrometry">gas chromatography/mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolyzer" title=" pyrolyzer"> pyrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption-GC%2FMS" title=" thermal desorption-GC/MS"> thermal desorption-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/139715/determination-of-brominated-flame-retardants-in-recycled-plastic-toys-using-thermal-desorption-gcms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30083</span> Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Wan">Yuan Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumei%20Cui"> Shumei Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaopeng%20Wu"> Shaopeng Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title="thermal analysis">thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20rise" title=" temperature rise"> temperature rise</a>, <a href="https://publications.waset.org/abstracts/search?q=toroidal%20windings" title=" toroidal windings"> toroidal windings</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20PMSM" title=" high-speed PMSM"> high-speed PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/77995/thermal-analysis-and-optimization-of-a-high-speed-permanent-magnet-synchronous-motor-with-toroidal-windings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30082</span> Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toufic%20Abd%20El-Latif%20Sadek">Toufic Abd El-Latif Sadek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal%20images" title=" satellite thermal images"> satellite thermal images</a>, <a href="https://publications.waset.org/abstracts/search?q=timing" title=" timing"> timing</a> </p> <a href="https://publications.waset.org/abstracts/51827/best-timing-for-capturing-satellite-thermal-images-asphalt-and-concrete-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30081</span> Determination of Thermal Properties of Crosslinked EVA in Outdoor Exposure by DSC, TSC and DMTA Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Agroui">Kamel Agroui</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Collins"> George Collins</a>, <a href="https://publications.waset.org/abstracts/search?q=Rydha%20Yaiche"> Rydha Yaiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to better understand the thermal characteristics and molecular behaviour of cured EVA before and after outdoor exposure. Thermal analysis methods as DSC, TSC and DMTA studies were conducted on EVA material. DSC experiments on EVA show a glass transition at about -33.1° C which is characteristic of crystalline phase and an endothermic peak at temperature of 55 °C characteristic of amorphous phase. The magnitude of the integrated temperature DSC peak for EVA is 14.4 J/g. The basic results by TSC technique is that there are two relaxations that are reproducibly observed in cured EVA encapsulant material. At temperature polarization 85°C, a low temperature relaxation occurs at –24.4°C and a high temperature relaxation occurs at +30.4ºC. DMTA results exhibit two tan peaks located at -14.9°C and +66.6°C. After outdoor exposure cured EVA by DSC analysis revealed two endothermic peaks due to post crystallization phenomenon and TSC suggests that prolonged exposure selectively effects the poly(vinyl acetate)-rich phase, with much less impact on the polyethylene-rich phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EVA" title="EVA">EVA</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation%20process" title=" encapsulation process"> encapsulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title=" PV module"> PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/185220/determination-of-thermal-properties-of-crosslinked-eva-in-outdoor-exposure-by-dsc-tsc-and-dmta-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30080</span> Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Zgueb">Rim Zgueb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxychloride%20cement%20%28MOC%29" title="magnesium oxychloride cement (MOC)">magnesium oxychloride cement (MOC)</a>, <a href="https://publications.waset.org/abstracts/search?q=phototharmal%20deflection%20technique" title=" phototharmal deflection technique"> phototharmal deflection technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Ddensity" title=" Ddensity"> Ddensity</a> </p> <a href="https://publications.waset.org/abstracts/59657/investigation-on-the-thermal-properties-of-magnesium-oxychloride-cement-prepared-with-glass-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30079</span> Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakarya%20Kourdi">Zakarya Kourdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khaouani"> Mohammed Khaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Benyounes%20Bouazza"> Benyounes Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Guen-Bouazza"> Ahlam Guen-Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Boursali"> Amine Boursali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEMT" title="HEMT">HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Effect" title=" Thermal Effect"> Thermal Effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco" title=" Silvaco"> Silvaco</a>, <a href="https://publications.waset.org/abstracts/search?q=InAlN%2FGaN" title=" InAlN/GaN"> InAlN/GaN</a> </p> <a href="https://publications.waset.org/abstracts/25974/thermal-effect-in-power-electrical-for-hemts-devices-with-inalngan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30078</span> Effect of Texture of Orthorhombic Martensite on Thermal Expansion of Metastable Titanium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Stepanova">E. Stepanova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Popov"> N. Popov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Demakov"> S. Demakov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Stepanov"> S. Stepanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the so-called invar-type behavior of metastable titanium alloy subjected to cold rolling. The effect was shown to occur due to the anisotropy of thermal expansion of titanium orthorhombic martensite. By means of X-ray diffraction analysis and dilatometry analyses, the influence of crystallographic texture of orthorhombic martensite on the coefficient of thermal expansion of sheets of metastable titanium alloy VT23 was examined. Anisotropy of the coefficient of thermal expansion has been revealed. It was lower in the rolling plane and higher along the transverse direction of the cold-rolled sheet comparing to the coefficient of thermal expansion of the unprocessed alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invar-type" title="invar-type">invar-type</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20rolling" title=" cold rolling"> cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20titanium%20alloy" title=" metastable titanium alloy"> metastable titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/63456/effect-of-texture-of-orthorhombic-martensite-on-thermal-expansion-of-metastable-titanium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=1004">1004</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=1005">1005</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10