CINXE.COM

Search results for: arterial blood gases

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: arterial blood gases</title> <meta name="description" content="Search results for: arterial blood gases"> <meta name="keywords" content="arterial blood gases"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="arterial blood gases" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="arterial blood gases"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3203</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: arterial blood gases</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3203</span> Effect of Foot Reflexology Treatment on Arterial Blood Gases among Mechanically Ventilated Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Salah%20Abdullah%20Ismail">Maha Salah Abdullah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20S.%20Ismail"> Manal S. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Saleh"> Amir M. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reflexology treatment is a method for enhancing body relaxation. It is a widely recognized as an alternative therapy, effective for many health conditions. This study aimed to evaluate the effect of reflexology treatment on arterial blood gases among mechanically ventilated patients. A quasi-experimental (pre and post-test) research design was used. Research hypothesis was mechanically ventilated patients who will receive the reflexology treatment will have improvement in their arterial blood gases than those who will not. The current study was carried out in different Intensive Care Units at the Cairo University Hospitals. A purposeful sample of 100 adults’ mechanically ventilated patients was recruited over a period of three months of data collection. The participants were divided into two equally matched groups; (1) The study group who has received the routine care, in addition, two reflexology sessions on the feet, (2) The control group who has received only the routine care. One tool was utilized to collect data pertinent to the study; mechanically ventilated patients' data sheet that consists of demographic and medical data. Result: Majority (58% of the study group and 82% of the control group) were males, with mean age of 50.9 years in both groups. Patients who received the reflexology treatment significantly increase in the oxygen saturation pre second session (t=5.15, p=.000), immediate post sessions (t=4.4, p=.000) and post two hours (t= 4.7, p= .000). The study group was more likely to have lower PaO2 (F=5.025, p=.015), PaCo2 (F=4.952, p=.025) and higher HCo3 (F=15.211, p=.000) than the control group. Conclusion: This study results support the positive effect of reflexology treatment in improving some arterial blood gases among mechanically ventilated patients’ with the conventional therapy as in the study group there was increase in the oxygen saturation. In differences between groups there decrease PaO2, PaCo2 and increase HCo3 in the study group. Recommendation: Nurses should be trained how to demonstrate the foot reflexology among mechanically ventilated patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases" title="arterial blood gases">arterial blood gases</a>, <a href="https://publications.waset.org/abstracts/search?q=foot" title=" foot"> foot</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20ventilated%20patient" title=" mechanical ventilated patient"> mechanical ventilated patient</a>, <a href="https://publications.waset.org/abstracts/search?q=reflexology" title=" reflexology"> reflexology</a> </p> <a href="https://publications.waset.org/abstracts/81864/effect-of-foot-reflexology-treatment-on-arterial-blood-gases-among-mechanically-ventilated-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3202</span> Arterial Line Use for Acute Type 2 Respiratory Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Scurr">C. Scurr</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Jeans"> J. Jeans</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srivastava"> S. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Acute type two respiratory failure (T2RF) has become a common presentation over the last two decades primarily due to an increase in the prevalence of chronic lung disease. Acute exacerbations can be managed either medically or in combination with non-invasive ventilation (NIV) which should be monitored with regular arterial blood gas samples (ABG). Arterial lines allow more frequent arterial blood sampling with less patient discomfort. We present the experience from a teaching hospital emergency department (ED) and level 2 medical high-dependency unit (HDU) that together form the pathway for management of acute type 2 respiratory failure. Methods: Patients acutely presenting to Charing Cross Hospital, London, with T2RF requiring non-invasive ventilation (NIV) over 14 months (2011 to 2012) were identified from clinical coding. Retrospective data collection included: demographics, co-morbidities, blood gas numbers and timing, if arterial lines were used and who performed this. Analysis was undertaken using Microsoft Excel. Results: Coding identified 107 possible patients. 69 notes were available, of which 41 required NIV for type 2 respiratory failure. 53.6% of patients had an arterial line inserted. Patients with arterial lines had 22.4 ABG in total on average compared to 8.2 for those without. These patients had a similar average time to normalizing pH of (23.7 with arterial line vs 25.6 hours without), and no statistically significant difference in mortality. Arterial lines were inserted by Foundation year doctors, Core trainees, Medical registrars as well as the ICU registrar. 63% of these were performed by the medical registrar rather than ICU, ED or a junior doctor. This is reflected in that the average time until an arterial line was inserted was 462 minutes. The average number of ABGs taken before an arterial line was 2 with a range of 0 – 6. The average number of gases taken if no arterial line was ever used was 7.79 (range of 2-34) – on average 4 times as many arterial punctures for each patient. Discussion: Arterial line use was associated with more frequent arterial blood sampling during each inpatient admission. Additionally, patients with an arterial line have less individual arterial punctures in total and this is likely more comfortable for the patient. Arterial lines are normally sited by medical registrars, however this is normally after some delay. ED clinicians could improve patient comfort and monitoring thus allowing faster titration of NIV if arteral lines were regularly inserted in the ED. We recommend that ED doctors insert arterial lines when indicated in order improve the patient experience and facilitate medical management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20invasive%20ventilation" title="non invasive ventilation">non invasive ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gas" title=" arterial blood gas"> arterial blood gas</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20type" title=" acute type"> acute type</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20line" title=" arterial line"> arterial line</a> </p> <a href="https://publications.waset.org/abstracts/1409/arterial-line-use-for-acute-type-2-respiratory-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3201</span> Improving the Design of Blood Pressure and Blood Saturation Monitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Parisi">L. Parisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20saturation" title=" blood saturation"> blood saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=actuators" title=" actuators"> actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20improvement" title=" design improvement"> design improvement</a> </p> <a href="https://publications.waset.org/abstracts/14649/improving-the-design-of-blood-pressure-and-blood-saturation-monitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3200</span> Retinal Vascular Tortuosity in Obstructive Sleep Apnea-COPD Overlap Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabab%20A.%20El%20Wahsh">Rabab A. El Wahsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20M.%20Marey"> Hatem M. Marey</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Yousif"> Maha Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20M.%20Ibrahim"> Asmaa M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: OSA and COPD are associated with microvascular changes. Retinal microvasculature can be directly and non-invasively examined. Aim: to evaluate retinal vascular tortuosity in patients with COPD, OSA, and overlap syndrome. Subjects and method: Sixty subjects were included; 15 OSA patients, 15 COPD patients, 15 COPD-OSA overlap patients, and 15 matched controls. They underwent digital retinal photography, polysomnography, arterial blood gases, spirometry, ESS, and stop-bang questionnaires. Results: Tortuosity of most retinal vessels was higher in all patient groups compared to the control group; tortuosity was more marked in overlap syndrome. There was a negative correlation between tortuosity of retinal vessels and PO2, O2 saturation, and minimum O2 desaturation, and a positive correlation with PCO2, AHI, O2 desaturation index, BMI and smoking index. Conclusion: Retinal vascular tortuosity occurs in OSA, COPD and overlap syndrome. Retinal vascular tortuosity is correlated with arterial blood gases parameters, polysomnographic findings, smoking index and BMI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OSA" title="OSA">OSA</a>, <a href="https://publications.waset.org/abstracts/search?q=COPD" title=" COPD"> COPD</a>, <a href="https://publications.waset.org/abstracts/search?q=overlap%20syndrome" title=" overlap syndrome"> overlap syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20vascular%20tortuosity" title=" retinal vascular tortuosity"> retinal vascular tortuosity</a> </p> <a href="https://publications.waset.org/abstracts/168040/retinal-vascular-tortuosity-in-obstructive-sleep-apnea-copd-overlap-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3199</span> Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al-%20Rawi">Mohammad Al- Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Al-%20Jumaily"> Ahmad Al- Jumaily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20blockage" title="arterial blockage">arterial blockage</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20wave" title=" pulse wave"> pulse wave</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/35958/assessing-arterial-blockages-using-animal-model-and-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3198</span> Components of Arterial Pressure and Its Association with Dietary Inflammatory Potential of Older Individuals: The Multinational Medis Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Demosthenes%20Panagiotakos">Demosthenes Panagiotakos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work was to evaluate dietary habits’ inflammatory potential with various components of arterial blood pressure (hypertension, mean arterial pressure (MAP) and pulse pressure (PP)) in a sample of older Mediterranean people without known cardiovascular disease. During 2005-2011, 2,813 older (aged 65-100 years) individuals from 21 Mediterranean islands and the rural Mani region (Peloponnesus) were voluntarily enrolled. Standard procedures were used to determine arterial blood pressure, as well as PP and MAP, and for the evaluation of dietary habits, lifestyle, anthropometric and clinical characteristics of the participants. A dietary inflammatory index (DII) was assessed based on the participants specific dietary habits, and its calculation was based on a standard procedure. It was reported that the higher the DII level of a diet (adherence to a more pro-inflammatory diet) the greater was the likelihood of having an older adult hypertension [OR=3.82 (95% CI): 1.24 to 11.71]. Moreover, the higher the level of DII (more pro-inflammatory dietary habits) the greater were the levels of MAP [b-coefficient (95% CI): 7.23 (+1.86 to +12.59)] and PP, [b-coefficient (95% CI): 10.86 (+2.70 to +19.01)]. Diet’s inflammatory potential is related with various components of arterial pressure. Adherence to a more pro-inflammatory diet seems to be associated with increased arterial peripheral resistance and arterial stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary%20inflammatory%20index" title="dietary inflammatory index">dietary inflammatory index</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20arterial%20pressure" title=" mean arterial pressure"> mean arterial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a> </p> <a href="https://publications.waset.org/abstracts/69703/components-of-arterial-pressure-and-its-association-with-dietary-inflammatory-potential-of-older-individuals-the-multinational-medis-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3197</span> Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20Tripathi">Bhavya Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhupendra%20Kumar%20Sharma"> Bhupendra Kumar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20blood%20flow" title="two phase blood flow">two phase blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics%20%28MHD%29" title=" magnetohydrodynamics (MHD)"> magnetohydrodynamics (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis" title=" stenosis"> stenosis</a> </p> <a href="https://publications.waset.org/abstracts/78105/effect-of-radiation-on-magnetohydrodynamic-two-phase-stenosed-arterial-blood-flow-with-heat-and-mass-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3196</span> Signal Processing of the Blood Pressure and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Abd%20El%20Kader%20Benghenia">Hadj Abd El Kader Benghenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bereksi%20Reguig"> Fethi Bereksi Reguig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=SBP" title=" SBP"> SBP</a>, <a href="https://publications.waset.org/abstracts/search?q=DBP" title=" DBP"> DBP</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20algorithm" title=" detection algorithm"> detection algorithm</a> </p> <a href="https://publications.waset.org/abstracts/9946/signal-processing-of-the-blood-pressure-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3195</span> A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aminfar">H. Aminfar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadpourfard"> M. Mohammadpourfard</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khajeh"> K. Khajeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDL%20surface%20concentration%20%28LSC%29" title="LDL surface concentration (LSC)">LDL surface concentration (LSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20wall" title=" porous wall"> porous wall</a> </p> <a href="https://publications.waset.org/abstracts/38292/a-numerical-simulation-of-arterial-mass-transport-in-presence-of-magnetic-field-links-to-atherosclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3194</span> Effects of Acute Exposure to WIFI Signals (2,45 GHz) on Heart Variability and Blood Pressure in Albinos Rabbit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Saili">Linda Saili</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Hanini"> Amel Hanini</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiraz%20Smirani"> Chiraz Smirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Iness%20Azzouz"> Iness Azzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Azzouz"> Amina Azzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafedh%20Abdemelek"> Hafedh Abdemelek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihad%20Bouslama"> Zihad Bouslama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45 GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25 cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+ 22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter the maximum amplitude and P waves. After intravenously injection of dopamine (0.50 ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that WIFI alter catecholamines(dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radio frequency can act directly and/or indirectly on the cardiovascular system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20%28HR%29" title="heart rate (HR)">heart rate (HR)</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20pressure%20%28PA%29" title=" arterial pressure (PA)"> arterial pressure (PA)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram%20%28ECG%29" title=" electrocardiogram (ECG)"> electrocardiogram (ECG)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20efficacy%20of%0D%0Acatecholamines" title=" the efficacy of catecholamines"> the efficacy of catecholamines</a>, <a href="https://publications.waset.org/abstracts/search?q=dopamine" title=" dopamine"> dopamine</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a> </p> <a href="https://publications.waset.org/abstracts/40803/effects-of-acute-exposure-to-wifi-signals-245-ghz-on-heart-variability-and-blood-pressure-in-albinos-rabbit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3193</span> Lessons Learnt from a Patient with Pseudohyperkalaemia Secondary to Polycythaemia Rubra Vera in a Neuro-ICU Patient Resulting in Dangerous Interventions: Lessons Learnt on Patient Safety Improvement </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinoo%20Kirthinanda">Dinoo Kirthinanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujani%20Wijeratne"> Sujani Wijeratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudohyperkalaemia is a common benign in vitro phenomenon caused by the release of potassium ions (K+) from cells during specimen processing. Analysis of haemolysed blood samples for predominantly intracellular electrolytes may lead to re-investigation and potentially harmful interventions. We report a case of a 52-year male with myeloproliferative disease manifested as Polycythaemia Rubra Vera, Hypertension and hypertensive nephropathy with stage 3 chronic kidney disease admitted to Neuro-intensive care unit (NICU) with an intra-cerebral haemorrhage secondary to hypertensive bleed. His initial blood investigations showed hyperkalemia with serum K+ 6.2 mmol/L yet the bedside arterial blood gas analysis yielded K+ of 4.6 mmol/L. The patient was however given hyperkalemia regime twice based on venous electrolyte analysis. The discrepancy between the bedside electrolyte analysis using arterial blood and venous blood prompted further evaluation. The 12 lead Electrocardiogram showed U waves and sinus bradycardia corresponding to the serum K+ of 2.8 mmol/L on arterial blood gas analysis. Immediate K+ replacement ensured the patient did not develop life-threatening cardiac complications. Pseudohyperkalaemia may pose diagnostic challenges in the absence of detectable haemolysis and should be suspected in susceptible patients with normal Electrocardiogram and Glomerular Filtration Rate to avoid potentially life-threatening interventions. When in doubt, rapid analysis of arterial blood gas may be useful for accurate quantification of potassium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title="patient safety">patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudohyperkalaemia" title=" pseudohyperkalaemia"> pseudohyperkalaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=haemolysis" title=" haemolysis"> haemolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=myeloproliferative%20disorder" title=" myeloproliferative disorder"> myeloproliferative disorder</a> </p> <a href="https://publications.waset.org/abstracts/105813/lessons-learnt-from-a-patient-with-pseudohyperkalaemia-secondary-to-polycythaemia-rubra-vera-in-a-neuro-icu-patient-resulting-in-dangerous-interventions-lessons-learnt-on-patient-safety-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3192</span> Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreeparna%20Majee">Sreeparna Majee</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Shit"> G. C. Shit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics" title="magnetohydrodynamics">magnetohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20flow" title=" blood flow"> blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis" title=" stenosis"> stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/54085/numerical-simulation-of-magnetohydrodynamic-mhd-blood-flow-in-a-stenosed-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3191</span> Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreeparna%20Majee">Sreeparna Majee</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20%20Shit"> G. C. Shit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20flow" title=" blood flow"> blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a> </p> <a href="https://publications.waset.org/abstracts/108549/mathematical-modelling-of-blood-flow-with-magnetic-nanoparticles-as-carrier-for-targeted-drug-delivery-in-a-stenosed-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3190</span> GUI Design of Mathematical Model of Cardiovascular-Respiratory System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ntaganda%20J.M.">Ntaganda J.M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Maniraguha%20J.D."> Maniraguha J.D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukeshimana%20S."> Mukeshimana S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Harelimana%20D"> Harelimana D</a>, <a href="https://publications.waset.org/abstracts/search?q=Bizimungu%20T."> Bizimungu T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruataganda%20E."> Ruataganda E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of Graphic User Interface (GUI) in Matlab as interaction tool between human and machine. The designed GUI can be used by medical doctors and other experts particularly the physiologists. Matlab packages and estimated parameters of the mathematical model of cardiovascular-respiratory system developed in Rwandan context are used in GUI. The ordinary differential equations (ODE’s) govern a mathematical model in designing GUI in Matlab and a window that sets model estimated parameters and the measured parameters by any user. For healthy subject, these measured parameters include heart rate, systolic blood and diastolic blood pressure, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood, concentration of bound and dissolved oxygen in the mixed venous blood entering the lungs, and concentration of bound and dissolved carbon dioxide in the mixed venous blood entering the lungs. The results of numerical test give a consistent appearance as empirically known results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graphic%20User%20Interface" title="Graphic User Interface">Graphic User Interface</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascur-respiratory%20system" title=" cardiovascur-respiratory system"> cardiovascur-respiratory system</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20physical%20activity" title=" walking physical activity"> walking physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a> </p> <a href="https://publications.waset.org/abstracts/135902/gui-design-of-mathematical-model-of-cardiovascular-respiratory-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3189</span> A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Shukla">Yogesh Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20metabolism" title="rate of metabolism">rate of metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20mass%20flow%20rate" title=" blood mass flow rate"> blood mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20generation" title=" heat generation"> heat generation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/10051/a-mathematical-model-of-blood-perfusion-dependent-temperature-distribution-in-transient-case-in-human-dermal-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3188</span> Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity%20difference" title=" radial velocity difference"> radial velocity difference</a> </p> <a href="https://publications.waset.org/abstracts/51601/evaluation-of-carbon-dioxide-pressure-through-radial-velocity-difference-in-arterial-blood-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3187</span> Methane Production from Biomedical Waste (Blood)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20M.%20Kabbashi">Fatima M. Kabbashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20M.%20Abdalla"> Abdalla M. Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussam%20K.%20Hamad"> Hussam K. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20S.%20Hassan"> Elias S. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells &#39;RBCs&#39;, Blood platelet and Fresh Frozen Plasma &lsquo;FFP&rsquo;) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20waste" title=" biomedical waste"> biomedical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20disposal" title=" eco-friendly disposal"> eco-friendly disposal</a> </p> <a href="https://publications.waset.org/abstracts/84424/methane-production-from-biomedical-waste-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3186</span> Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Yuksel">Esra Yuksel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilek%20Duman"> Dilek Duman</a>, <a href="https://publications.waset.org/abstracts/search?q=Levent%20Yeniay"> Levent Yeniay</a>, <a href="https://publications.waset.org/abstracts/search?q=Sezgin%20Ulukaya"> Sezgin Ulukaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isosulfan%20blue" title="isosulfan blue">isosulfan blue</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20oximetry" title=" pulse oximetry"> pulse oximetry</a>, <a href="https://publications.waset.org/abstracts/search?q=SLNB" title=" SLNB"> SLNB</a>, <a href="https://publications.waset.org/abstracts/search?q=methemoglobinemia" title=" methemoglobinemia"> methemoglobinemia</a> </p> <a href="https://publications.waset.org/abstracts/29529/subcutan-isosulfan-blue-administration-may-interfere-with-pulse-oximetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3185</span> The Effect of Body Positioning on Upper-Limb Arterial Occlusion Pressure and the Reliability of the Method during Blood Flow Restriction Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefanos%20Karanasios">Stefanos Karanasios</a>, <a href="https://publications.waset.org/abstracts/search?q=Charkleia%20Koutri"> Charkleia Koutri</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Moutzouri"> Maria Moutzouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Xergia"> Sofia A. Xergia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasiliki%20Sakellari"> Vasiliki Sakellari</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Gioftsos"> George Gioftsos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precise calculation of arterial occlusive pressure (AOP) is a critical step to accurately prescribe individualized pressures during blood flow restriction training (BFRT). AOP is usually measured in a supine position before training; however, previous reports suggested a significant influence in lower limb AOP across different body positions. The aim of the study was to investigate the effect of three different body positions on upper limb AOP and the reliability of the method for its standardization in clinical practice. Forty-two healthy participants (Mean age: 28.1, SD: ±7.7) underwent measurements of upper limb AOP in supine, seated, and standing positions by three blinded raters. A cuff with a manual pump and a pocket doppler ultrasound were used. A significantly higher upper limb AOP was found in seated compared with supine position (p < 0.031) and in supine compared with standing position (p < 0.031) by all raters. An excellent intraclass correlation coefficient (0.858- 0.984, p < 0.001) was found in all positions. Upper limb AOP is strongly dependent on body position changes. The appropriate measurement position should be selected to accurately calculate AOP before BFRT. The excellent inter-rater reliability and repeatability of the method suggest reliable and consistent results across repeated measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaatsu%20training" title="Kaatsu training">Kaatsu training</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20flow%20restriction%20training" title=" blood flow restriction training"> blood flow restriction training</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20occlusion" title=" arterial occlusion"> arterial occlusion</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/132803/the-effect-of-body-positioning-on-upper-limb-arterial-occlusion-pressure-and-the-reliability-of-the-method-during-blood-flow-restriction-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3184</span> Dietary Flaxseed Decreases Central Blood Pressure and the Concentrations of Plasma Oxylipins Associated with Hypertension in Patients with Peripheral Arterial Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20PB%20Caligiuri">Stephanie PB Caligiuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Harold%20M%20Aukema"> Harold M Aukema</a>, <a href="https://publications.waset.org/abstracts/search?q=Delfin%20Rodriguez-Leyva"> Delfin Rodriguez-Leyva</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ravandi"> Amir Ravandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Randy%20Guzman"> Randy Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Grant%20N.%20Pierce"> Grant N. Pierce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hypertension leads to cardiac and cerebral events and therefore is the leading risk factor attributed to death in the world. Oxylipins may be mediators in these events as they can regulate vascular tone and inflammation. Oxylipins are derived from fatty acids. Dietary flaxseed is rich in the n3 fatty acid, alpha-linolenic acid, and, therefore, may have the ability to change the substrate profile of oxylipins. As a result, this could alter blood pressure. Methods: A randomized, double-blinded, controlled clinical trial, the Flax-PAD trial, was used to assess the impact of dietary flaxseed on blood pressure (BP), and to also assess the relationship of plasma oxylipins to BP in 81 patients with peripheral arterial disease (PAD). Patients with PAD were chosen for the clinical trial as they are at an increased risk for hypertension and cardiac and cerebral events. Thirty grams of ground flaxseed were added to food products to consume on a daily basis for 6 months. The control food products contained wheat germ, wheat bran, and mixed dietary oils instead of flaxseed. Central BP, which is more significantly associated to organ damage, cardiac, and cerebral events versus brachial BP, was measured by pulse wave analysis at baseline and 6 months. A plasma profile of 43 oxylipins was generated using solid phase extraction, HPLC-MS/MS, and stable isotope dilution quantitation. Results: At baseline, the central BP (systolic/diastolic) in the placebo and flaxseed group were, 131/73 ± 2.5/1.4 mmHg and 128/71 ± 2.6/1.4 mmHg, respectively. After 6 months of intervention, the flaxseed group exhibited a decrease in blood pressure of 4.0/1.0 mmHg. The 6 month central BP in the placebo and flaxseed groups were, 132/74 ± 2.9/1.8 mmHg and 124/70 ± 2.6/1.6 mmHg (P<0.05). Correlation and logistic regression analyses between central blood pressure and oxylipins were performed. Significant associations were observed between central blood pressure and 17 oxylipins, primarily produced from arachidonic acid. Every 1 nM increase in 16-hydroxyeicosatetraenoic acid (HETE) increased the odds of having high central systolic BP by 15-fold, of having high central diastolic BP by 6-fold and of having high central mean arterial pressure by 15-fold. In addition, every 1 nM increase in 5,6-dihydroxyeicosatrienoic acid (DHET) and 11,12-DHET increased the odds of having high central mean arterial pressure by 45- and 18-fold, respectively. Flaxseed induced a significant decrease in these as well as 4 other vasoconstrictive oxylipins. Conclusion: Dietary flaxseed significantly lowered blood pressure in patients with PAD and hypertension. Plasma oxylipins were strongly associated with central blood pressure and may have mediated the flaxseed-induced decrease in blood pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension" title="hypertension">hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=flaxseed" title=" flaxseed"> flaxseed</a>, <a href="https://publications.waset.org/abstracts/search?q=oxylipins" title=" oxylipins"> oxylipins</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20arterial%20disease" title=" peripheral arterial disease"> peripheral arterial disease</a> </p> <a href="https://publications.waset.org/abstracts/27856/dietary-flaxseed-decreases-central-blood-pressure-and-the-concentrations-of-plasma-oxylipins-associated-with-hypertension-in-patients-with-peripheral-arterial-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3183</span> The Lamination and Arterial Blood Supply of the Masseter Muscle of Camel (Camelus dromedarius)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsyed%20Fath%20Khalifa">Elsyed Fath Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Mohamed%20Daghash"> Samer Mohamed Daghash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to investigate the structure of the masseter muscle of camel and its attachments to the skull as well as the relationships with its arterial blood supply. Fourteen heads of clinically healthy camels of different ages and sexes were used in the present investigation. The both common carotid arteries of six specimens were cannulated and flushed with warm normal saline solution (0.9%) then injected with red colored neoprine (60%) latex in order to study the pattern of the blood supply to the masseter muscle. Two heads were injected with an eventually mixture of 75gm red lead oxide in 150cc latex and preserved in a cold room for 3-4 days then divided sagittaly along the median plane to avoid super imposition of the arteries. The arteries of the masseter muscle of each half were radiographed. Four heads were used in manual dissection to describe the laminar arrangement of the masseter muscle. The masseter muscle of the camel was very tendinous and was situated far caudally, which enable the camel to open its jaw very wide. In the camel, the masseter muscle was recognized into proper and improper masseter groups. The proper group included the first, second superficial, intermediate and deep masseter layers. The improper group consisted of maxillo-mandibularis and zygomatico-mandibularis. The remaining two heads were used for clearance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomy" title="anatomy">anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=camel" title=" camel"> camel</a>, <a href="https://publications.waset.org/abstracts/search?q=masseter" title=" masseter"> masseter</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20supply" title=" blood supply"> blood supply</a> </p> <a href="https://publications.waset.org/abstracts/24944/the-lamination-and-arterial-blood-supply-of-the-masseter-muscle-of-camel-camelus-dromedarius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3182</span> Electron Microscopical Analysis of Arterial Line Filters During Cardiopulmonary Bypass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won-Gon%20Kim">Won-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The clinical value of arterial line filters is still a controversial issue. Proponents of arterial line filtration argue that filters remove particulate matter and undissolved gas from circulation, while opponents argue the absence of conclusive clinical data. We conducted scanning electron microscope (SEM) studies of arterial line filters used clinically in the CPB circuits during adult cardiac surgery and analyzed the types and characteristics of materials entrapped in the arterial line filters. Material and Methods: Twelve arterial line filters were obtained during routine hypothermic cardiopulmonary bypass in 12 adult cardiac patients. The arterial line filter was a screen type with a pore size of 40 ㎛ (Baxter Health care corporation Bentley division, Irvine, CA, U.S.A.). After opening the housing, the woven polyester strands were examined with SEM. Results and Conclusion: All segments examined(120 segments, each 2.5 X 2.5 cm in size) contained no embolic particles larger in their cross-sectional area than the pore size of the filter(40 ㎛). The origins of embolic particulates were mostly from environmental foreign bodies. This may suggest a possible need for more aggressive filtration of smaller particulates than is generally carried out at the present time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20line%20filter" title="arterial line filter">arterial line filter</a>, <a href="https://publications.waset.org/abstracts/search?q=tubing%20wear" title=" tubing wear"> tubing wear</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/35502/electron-microscopical-analysis-of-arterial-line-filters-during-cardiopulmonary-bypass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3181</span> A Case of Umbilical Arterial Atresia in the Third Trimester of Pregnancy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caixiu%20Pu">Caixiu Pu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Chen"> Zhen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the rare case of umbilical arterial atresia, leading to a good outcome and provide clinical and pathological findings. A 27-year-old nulliparous first gravida with PGDM was found single umbilical artery(SUA) by routine ultrasound san at 30 weeeks of gestation. Fetal status was monitored weekly. A healthy male newborn was delivered by cesarean section at 39 weeks. The umbilical cord was overly twisted and no thrombus was found along the whole diseased vessel. The cause of umbilical arterial atresia was unclear, and the correct diagnosis was a challenge. Expected clinical management was recommended, in which sonographic diagnosis may play a very important part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title="pregnancy">pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20umbilical%20artery" title=" single umbilical artery"> single umbilical artery</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20arterial%20atresia" title=" umbilical arterial atresia"> umbilical arterial atresia</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal%20diagnosis" title=" prenatal diagnosis"> prenatal diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/187319/a-case-of-umbilical-arterial-atresia-in-the-third-trimester-of-pregnancy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3180</span> Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20B.%20Patil">Ravindra B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krishnamoorthy"> P. Krishnamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriram%20Sethuraman"> Shriram Sethuraman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distension%20waveform" title="distension waveform">distension waveform</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Mixture%20Model" title=" Gaussian Mixture Model"> Gaussian Mixture Model</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20ultrasound" title=" RF ultrasound"> RF ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20wall%20movement" title=" arterial wall movement"> arterial wall movement</a> </p> <a href="https://publications.waset.org/abstracts/22974/gaussian-mixture-model-based-identification-of-arterial-wall-movement-for-computation-of-distension-waveform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3179</span> Arteriosclerosis and Periodontitis: Correlation Expressed in the Amount of Fibrinogen in Blood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nevila%20Alliu">Nevila Alliu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saimir%20Heta"> Saimir Heta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilma%20Robo"> Ilma Robo</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Ostreni"> Vera Ostreni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodontitis as an oral pathology caused by specific bacterial flora functions as a focal infection for the onset and aggravation of arteriosclerosis. These two distant pathologies, since they affect organs at a distance from each other, communicate with each other with correlation at the level of markers of inflammation in the blood. Fluctuations in the level of fibrinogen in the blood, depending on the active or passive phase of the existing periodontitis, affect the promotion of arteriosclerosis. The study is of the review type to analyze the effect of non-surgical periodontal treatment on fluctuations in the level of fibrinogen in the blood. The reduction of fibrinogen levels in the blood after non-surgical periodontal treatment of periodontitis in the patient's cavity is visible data and supported by literature sources. Also, the influence of a high amount of fibrinogen in the blood on the occurrence of arteriosclerosis is also another important data that again relies on many sources of literature. Conclusions: Thromboembolism and arteriosclerosis, as risk factors expressed in clinical data, have temporary bacteremia in the blood, which can occur significantly and often between phases of non-surgical periodontal treatment of periodontitis, treatments performed with treatment phases and protocols of predetermined treatment. Arterial thromboembolism has a significant factor, such as high levels of fibrinogen in the blood, which are significantly reduced during the period of non-surgical periodontal treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibrinogen" title="fibrinogen">fibrinogen</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20periodontitis" title=" refractory periodontitis"> refractory periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=non-surgical" title=" non-surgical"> non-surgical</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20treatment" title=" periodontal treatment"> periodontal treatment</a> </p> <a href="https://publications.waset.org/abstracts/164015/arteriosclerosis-and-periodontitis-correlation-expressed-in-the-amount-of-fibrinogen-in-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3178</span> Detection of Arterial Stiffness in Diabetes Using Photoplethysmograph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelamshobha%20Nirala">Neelamshobha Nirala</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Periyasamy"> R. Periyasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Awanish%20Kumar"> Awanish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a metabolic disorder and with the increase of global prevalence of diabetes, cardiovascular diseases and mortality related to diabetes has also increased. Diabetes causes the increase of arterial stiffness by elusive hormonal and metabolic abnormalities. We used photoplethysmograph (PPG), a simple non-invasive method to study the change in arterial stiffness due to diabetes. Toe PPG signals were taken from 29 diabetic subjects with mean age of (65±8.4) years and 21 non-diabetic subjects of mean age of (49±14) years. Mean duration of diabetes is 12±8 years for diabetic group. Rise-time (RT) and area under rise time (AUR) were calculated from the PPG signal of each subject and Welch’s t-test is used to find the significant difference between two groups. We obtained a significant difference of (p-value) 0.0005 and 0.03 for RT and AUR respectively between diabetic and non-diabetic subjects. Average value of RT and AUR is 0.298±0.003 msec and 14.4±4.2 arbitrary units respectively for diabetic subject compared to 0.277±0.0005 msec and 13.66±2.3 a.u respectively for non-diabetic subjects. In conclusion, this study support that arterial stiffness is increased in diabetes and can be detected early using PPG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20under%20rise-time" title="area under rise-time">area under rise-time</a>, <a href="https://publications.waset.org/abstracts/search?q=AUR" title=" AUR"> AUR</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20stiffness" title=" arterial stiffness"> arterial stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmograph" title=" photoplethysmograph"> photoplethysmograph</a>, <a href="https://publications.waset.org/abstracts/search?q=PPG" title=" PPG"> PPG</a>, <a href="https://publications.waset.org/abstracts/search?q=rise-time%20%28RT%29" title=" rise-time (RT)"> rise-time (RT)</a> </p> <a href="https://publications.waset.org/abstracts/65585/detection-of-arterial-stiffness-in-diabetes-using-photoplethysmograph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3177</span> Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rutej%20R.%20Mehta">Rutej R. Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Chappell"> Michael A. Chappell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20spin%20labelling" title="arterial spin labelling">arterial spin labelling</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=perfusion" title=" perfusion"> perfusion</a> </p> <a href="https://publications.waset.org/abstracts/29742/quantification-of-dispersion-effects-in-arterial-spin-labelling-perfusion-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3176</span> Prolonged Ileus in Traumatic Pelvic Ring Injury Patients Who Underwent Arterial Angio-Embolization: A Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suk%20Kyoon%20Song">Suk Kyoon Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Rae%20Cho"> Myung-Rae Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Paralytic ileus occurs in up to 18% of patients with pelvic bone fractures. The aim of this study is to determine if massive bleeding requiring arterial angioembolization is related to the duration of ileus in patients with traumatic pelvic ring injuries. Methods: This retrospective study included 25 patients who underwent arterial angioembolization for traumatic pelvic ring injuries. Data were collected from prospectively maintained databases of two independent hospitals. Results: Demographic characteristics (such as age, sex, body mass index, and Charlson Comorbidity Index), cause of trauma, and severity of pelvic injuries were similar in the non-prolonged and prolonged ileus groups. As expected, the prolonged ileus group had a significantly longer duration of ileus than the non-prolonged ileus group (8.0 ± 4.2 days vs. 1.2 ± 0.4 days, respectively, P < 0.001). The mortality rate was higher in the prolonged ileus group (20% vs. 0%), but it was not significantly different (P = 0.13). Interestingly, the prolonged ileus group received significantly higher amounts of packed red blood cell (PRBC) transfusions (6.1 ± 2.1 units vs. 3.8 ± 2.5 units; P = 0.02). The amount of PRBC transfusions was associated with a greater risk of prolonged ileus development (P = 0.03, OR = 2.04, 95% CI = 1.08-3.88). Conclusion: This study supports the idea that the duration of the ileus is related to the amount of bleeding caused by the traumatic pelvic ring injury. In order to prevent further complications, conservative treatments of the ileus should be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pelvic%20ring%20injury" title="pelvic ring injury">pelvic ring injury</a>, <a href="https://publications.waset.org/abstracts/search?q=bleeding" title=" bleeding"> bleeding</a>, <a href="https://publications.waset.org/abstracts/search?q=ileus" title=" ileus"> ileus</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20angioembolization" title=" arterial angioembolization"> arterial angioembolization</a> </p> <a href="https://publications.waset.org/abstracts/153519/prolonged-ileus-in-traumatic-pelvic-ring-injury-patients-who-underwent-arterial-angio-embolization-a-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3175</span> A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabilah%20Ibrahim">Nabilah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaliza%20Musa"> Khaliza Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-mode%20Ultrasound%20Image" title="B-mode Ultrasound Image">B-mode Ultrasound Image</a>, <a href="https://publications.waset.org/abstracts/search?q=carotid%20artery%20diameter" title=" carotid artery diameter"> carotid artery diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=canny%20edge%20detection" title=" canny edge detection"> canny edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a> </p> <a href="https://publications.waset.org/abstracts/23345/a-study-of-common-carotid-artery-behavior-from-b-mode-ultrasound-image-for-different-gender-and-bmi-categories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3174</span> Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean%20Marie%20Ntaganda">Jean Marie Ntaganda</a>, <a href="https://publications.waset.org/abstracts/search?q=Froduald%20Minani"> Froduald Minani</a>, <a href="https://publications.waset.org/abstracts/search?q=Wellars%20Banzi"> Wellars Banzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydie%20Mpinganzima"> Lydie Mpinganzima</a>, <a href="https://publications.waset.org/abstracts/search?q=Japhet%20Niyobuhungiro"> Japhet Niyobuhungiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Bosco%20Gahutu"> Jean Bosco Gahutu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Dusabejambo"> Vincent Dusabejambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Immaculate%20Kambutse"> Immaculate Kambutse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exercise" title="exercise">exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%2Frespiratory" title=" cardiovascular/respiratory"> cardiovascular/respiratory</a>, <a href="https://publications.waset.org/abstracts/search?q=hemodynamic%20quantities" title=" hemodynamic quantities"> hemodynamic quantities</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=sportsmen%20in%20Rwanda" title=" sportsmen in Rwanda"> sportsmen in Rwanda</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a> </p> <a href="https://publications.waset.org/abstracts/92998/mathematical-modelling-of-human-cardiovascular-respiratory-system-response-to-exercise-in-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=107">107</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10