CINXE.COM

Search results for: Eruca sativa

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Eruca sativa</title> <meta name="description" content="Search results for: Eruca sativa"> <meta name="keywords" content="Eruca sativa"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Eruca sativa" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Eruca sativa"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 129</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Eruca sativa</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Evaluation of the Effects of Some Medicinal Plants Extracts on Seed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Ali%20Baeshen">Areej Ali Baeshen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Kamal%20Galal"> Hanaa Kamal Galal</a>, <a href="https://publications.waset.org/abstracts/search?q=Batoul%20Mohamed%20Abdullatif"> Batoul Mohamed Abdullatif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the allelopathic effects of Eruca sativa, Mentha peprinta, and Coriandrum sativum aqueous extracts, prepared by 25 gm and 50 gm of fresh leaves dissolved in 100 ml of double distilled water in addition to the crude extract (100%). The final concentrations were 100 %, 50%, 25% and 0% as control. The extracts were tested for their allelopathic effects on seed germination and other growth parameters of Phaseolous vulgaris. Laboratory experiments were conducted in sterilizes Petri dishes with 5 and 10 day time interval for seed germination and 24 h, 48 h and 72 h for radicle length on an average of 25°C. The effects of different concentrations of aqueous extract were compared to distilled water (0%). 25% and 50% aqueous extracts of Eruca sativa and Coriandrum sativum caused a pronounced inhibitory effect on seed germination and the tested growth parameters of the receptor plant. The inhibitory effect was proportional to the concentration of the extract. Mentha peprinta extracts, on the other hand, caused an increase in germination percentage and other growth parameters in Phaseolous vulgaris. Hence, it could be concluded that the aqueous extracts of Eruca sativa and Coriandrum sativum might contain water-soluble allelochemicals, which could inhibit the seed germination and reduce radicle length of Phaseolous vulgaris. Mentha peprinta has beneficial allelopathic effects on the receptor plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phaseolus%20vulgaris" title="Phaseolus vulgaris">Phaseolus vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa" title=" Eruca sativa"> Eruca sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mentha%20peperinta" title=" Mentha peperinta"> Mentha peperinta</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriandrum%20sativum" title=" Coriandrum sativum"> Coriandrum sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/2075/evaluation-of-the-effects-of-some-medicinal-plants-extracts-on-seed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Morphological and Elements Constituent Effects of Allelopathic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Ali%20Baeshen">Areej Ali Baeshen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Allelopathy is a complex phenomenon that depends on the concentration of allelochemicals. It has both inhibitory and stimulatory effects, which may be decided by concentration of allelochemicals present in extraction. In the present study, the allelopathic effects of Eruca sativa, Mentha peperina, and Coriandrum sativum water extract prepared by grinding fresh leaves of the medicinal plants in distilled water and three concentrations were taken from the crude extracts (100%, 50% and 25% in addition to 0% as control), and were tested for their effects on seed germination and some growth parameters of Zea mays. The experiment was conducted in sterilized Petri dishes under the natural laboratory conditions at temperature of 25°C, with a 24 h, 48 h, 72 h, 96 h and 120 h time interval for seed germination and 24 h, 48 h and 72 h for radicle length. The effects of different concentrations of aqueous extract were compared to distilled water (control, 0%). In maize, germination percentage was suppressed when plants was treated with 100% extracts, however, 50% and 25% of M. peprina increased germination percentage by 4 times more than the control. Moreover, 50% and 25% extracts of M. peperina and 50% of C. sativum increased maize radicle and plumule length by 3 to 4 times that of the control. Results of plumule fresh and dry weights revealed that concentrations of water extracts of 100% and 50% M. peperina, E. sativa 100% and E. sativa 50% reported almost similar plumule fresh weight as in control plants. The most interesting finding is the reduction in harmful salts and TDS which could be a good factor in saline soils of Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zea%20mays" title="Zea mays">Zea mays</a>, <a href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa" title=" Eruca sativa"> Eruca sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mentha%20peperina" title=" Mentha peperina"> Mentha peperina</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriandrum%20sativum" title=" Coriandrum sativum"> Coriandrum sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=allelochemicals" title=" allelochemicals"> allelochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a> </p> <a href="https://publications.waset.org/abstracts/12147/morphological-and-elements-constituent-effects-of-allelopathic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Effects of Essential Oils on the Intestinal Microflora of Termite (Heterotermes indicola)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Aihetasham">Ayesha Aihetasham</a>, <a href="https://publications.waset.org/abstracts/search?q=Najma%20Arshad"> Najma Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobia%20Khan"> Sobia Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage causes by subterranean termites are of major concern today. Termites majorly treated with pesticides resulted in several problems related to health and environment. For this reason, plant-derived natural products specifically essential oils have been evaluated in order to control termites. The aim of the present study was to investigate the antitermitic potential of six essential oils on Heterotermes indicola subterranean termite. No-choice bioassay was used to assess the termiticidal action of essential oils. Further, gut from each set of treated termite group was extracted and analyzed for reduction in number of protozoa and bacteria by protozoal count method using haemocytometer and viable bacterial plate count (dilution method) respectively. In no-choice bioassay it was found that Foeniculum vulgare oil causes high degree of mortality 90 % average mortality at 10 mg oil concentration (10mg/0.42g weight of filter paper). Least mortality appeared to be due to Citrus sinensis oil (43.33 % average mortality at 10 mg/0.42g). The highest activity verified to be of Foeniculum vulgare followed by Eruca sativa, Trigonella foenum-graecum, Peganum harmala, Syzygium cumini and Citrus sinensis. The essential oil which caused maximum reduction in number of protozoa was P. harmala followed by T. foenum-graecum and E. sativa. In case of bacterial count E. sativa oil indicated maximum decrease in bacterial number (6.4×10⁹ CFU/ml). It is concluded that F. vulgare, E. sativa and P. harmala essential oils are highly effective against H. indicola termite and its gut microflora. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20count" title="bacterial count">bacterial count</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Heterotermes%20indicola" title=" Heterotermes indicola"> Heterotermes indicola</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoal%20count" title=" protozoal count"> protozoal count</a> </p> <a href="https://publications.waset.org/abstracts/57388/effects-of-essential-oils-on-the-intestinal-microflora-of-termite-heterotermes-indicola" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> In Silico Study of the Biological and Pharmacological Activity of Nigella sativa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ouahab">Ammar Ouahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Houichi"> Meriem Houichi </a>, <a href="https://publications.waset.org/abstracts/search?q=Sanna%20Mihoubi"> Sanna Mihoubi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Nigella sativa is an annual flowering plant, belongs to the Ranunculaceae family. It has many pharmacological activities such as anti-inflammatory; anti-bacterial; anti-hepatotoxic activities etc. Materials: In order to predict the pharmacological activity of Nigella Sativa’s compounds, some web based servers were used, namely, PubChem, Molinspiration, ADMET-SAR, PASS online and PharMapper. In addition to that, AutoDOCK was used to investigate the different molecular interactions between the selected compounds and their target proteins. Results: All compounds displayed a stable interaction with their targets and satisfactory binding energies, which means that they are active on their targets. Conclusion: Nigella sativa is an effective medicinal plant that has several ethno-medical uses; the latter uses are proven herein via an in-silico study of their pharmacological activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title="Nigella sativa">Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=AutoDOCK" title=" AutoDOCK"> AutoDOCK</a>, <a href="https://publications.waset.org/abstracts/search?q=PubChem" title=" PubChem"> PubChem</a>, <a href="https://publications.waset.org/abstracts/search?q=Molinspiration" title=" Molinspiration"> Molinspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMET-SAR" title=" ADMET-SAR"> ADMET-SAR</a>, <a href="https://publications.waset.org/abstracts/search?q=PharMapper" title=" PharMapper"> PharMapper</a>, <a href="https://publications.waset.org/abstracts/search?q=PASS%20online%20server" title=" PASS online server"> PASS online server</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/108503/in-silico-study-of-the-biological-and-pharmacological-activity-of-nigella-sativa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Invitro Study of Anti-Leishmanial Property of Nigella Sativa Methanalic Black Seed Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawqeer%20Ali%20Syed">Tawqeer Ali Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Chandra"> Prakash Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to evaluate the antileishmanial activity of Nigella sativa black seed extract. This well-known plant extract was taken from the botanical garden of Kashmir. Materials and Methods: The methanolic extracts of these plants were screened for their antileishmanial activity against Leishmania major using 3‑(4.5‑dimethylthiazol‑2yl)‑2.5‑diphenyltetrazolium bromide assay or MTT assay. Results: The methanolic extract of Nigella sativa showed potential antileishmanial activity at an inhibition% value of 80.29% ± 0.65%. IC 50 was calculated after 48 hours to be 964.3 µg/ml. Conclusion: Considering these results, these medicinal plants from Kashmir could serve as potential drug sources for antileishmanial compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title="MTT assay">MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antileishmanial" title=" antileishmanial"> antileishmanial</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title=" cell viability"> cell viability</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a> </p> <a href="https://publications.waset.org/abstracts/138432/invitro-study-of-anti-leishmanial-property-of-nigella-sativa-methanalic-black-seed-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Isolation and Characterization of Endophytic Bacteria Associated with Root-Nodules of Medicago sativa in Al-Ahasa Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Y.%20Z.%20Khalifa">Ashraf Y. Z. Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Almalki"> Mohammed A. Almalki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicago sativa (Alfalfa) is an important forage crop legume worldwide including Saudia Arabia due to its high nutritive value. Soil bacteria exist in root or root-nodules of Medicago sativa in either symbiotic relationships or in associations. The aim of the present study was to isolate and characterize endophytic bacteria that live in association with non-nodulated roots of Medicago sativa growing in Al-Ahsaa region, Saudia Arabia. Several bacterial strains were isolated from sterilized roots of Medicago sativa. Strains were characterized using 16S rRNA gene sequences, phylogenetic relationships analysis, morphological and biochemical characteristics. The strains utilized 50% (10 out of 20) of the different chemical substrates contained in the API20E strip. In general, many strains had the ability to ferment/oxidise all the carbohydrate tested except for rhamnose and the polyol carbohydrate, inositol. Comparative sequence analysis of the 16S rDNA gene indicated that the strains were closely related to the genus Bacillus. Furthermore, the growth parameters of Vigna sinensis were enhanced upon single-inoculation of the isolated strains, compared to the uninoculated control plants. The results highlighted that the root-nodules of Medicago sativa harbor non-nodulating bacterial strains that could have significant agricultural applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa" title="Medicago sativa">Medicago sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytic%20bacteria" title=" endophytic bacteria"> endophytic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Pisum%20sativum" title=" Pisum sativum"> Pisum sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=Vigna%20sinensis" title=" Vigna sinensis"> Vigna sinensis</a> </p> <a href="https://publications.waset.org/abstracts/7225/isolation-and-characterization-of-endophytic-bacteria-associated-with-root-nodules-of-medicago-sativa-in-al-ahasa-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Structure Elucidation of Isolated Active Compounds from Nigella sativa and Calotropis procera and Their Efficacy for Treatment of Asthma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intisar%20S.%20A.%20Elzein">Intisar S. A. Elzein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Saudi Arabia parts of Nigella sativa, and Calotropis procera are commonly used in folk medicine for the treatment of asthma, bronchitis, cough, eczema and other diseases. The purpose of the study is to identify chemical constituents of Nigella sativa seed and Calotropis procera leave isolated by the bioassay guided fractionation process and find out their relevance to the alleged efficacy of the plant in treating asthma. The medicinal properties of both plants for asthma treatment referred to the rich abundance of thymoquinone and phytol compounds isolated from the essential oil of their seed and leave extracts, which they can form a part of molecules of vitamin K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=Calotropis%20procera" title=" Calotropis procera"> Calotropis procera</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20constituents" title=" chemical constituents"> chemical constituents</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20K" title=" vitamin K"> vitamin K</a> </p> <a href="https://publications.waset.org/abstracts/75562/structure-elucidation-of-isolated-active-compounds-from-nigella-sativa-and-calotropis-procera-and-their-efficacy-for-treatment-of-asthma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Inhibition of Pipelines Corrosion Using Natural Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Alzahrani">Eman Alzahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Abo-Dief"> Hala M. Abo-Dief</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20T.%20Mohamed"> Ashraf T. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhibition" title="inhibition">inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20extract" title=" natural extract"> natural extract</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pipelines%20corrosion" title=" oil pipelines corrosion"> oil pipelines corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20compounds" title=" sulphur compounds "> sulphur compounds </a> </p> <a href="https://publications.waset.org/abstracts/33851/inhibition-of-pipelines-corrosion-using-natural-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjadj%20Naima">Hadjadj Naima</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahdi"> K. Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Belhachat"> D. Belhachat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Ait%20Chaouche"> F. S. Ait Chaouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferradji"> A. Ferradji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/31548/physical-parameters-influencing-the-yield-of-nigella-sativa-oil-extracted-by-hydraulic-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Phytochemical Study and Antimicrobial Activity of Nigella sativa L. (Renunculaceae) in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bendifallah">L. Bendifallah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Acheuk"> F. Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djouabi"> M. Djouabi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oukili"> M. Oukili</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghezraoui"> R. Ghezraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Lakhdari"> W. Lakhdari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Allouane"> R. Allouane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title="Nigella sativa">Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemistry" title=" phytochemistry"> phytochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/14224/phytochemical-study-and-antimicrobial-activity-of-nigella-sativa-l-renunculaceae-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Phytochemical Study and Antimicrobial Activity of Nigella Sativa L. (Renunculaceae) in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bendifallah">L. Bendifallah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.Acheuk"> F.Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djouabi"> M. Djouabi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oukili"> M. Oukili</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghezraoui"> R. Ghezraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Lakhdari"> W. Lakhdari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Allouane"> R. Allouane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemistry" title=" phytochemistry"> phytochemistry</a> </p> <a href="https://publications.waset.org/abstracts/23500/phytochemical-study-and-antimicrobial-activity-of-nigella-sativa-l-renunculaceae-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Studying the Anti-Cancer Effects of Thymoquinone on Tumor Cells Through Natural Killer Cells Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20A.%20Aldarmahi">Nouf A. Aldarmahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20I.%20Tarbiah"> Nesrin I. Tarbiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuha%20A.%20Alkhattabi"> Nuha A. Alkhattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20F.%20Alshaibi"> Huda F. Alshaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigella sativa which is known as dark cumin is a well-known example for a widely applicable herbal medicine. Nigella sativa can be effective in a variety of diseases such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer effect of Nigella sativa appeared to be mediated by immune-modulatory effect through stimulating human natural killer (NK) cells. This is a type of lymphocytes which is part of the innate immunity, also known as the first line of defense in the body against pathogens. This study investigated the effect of thymoquinone as a major component of Nigella sativa on the molecular cytotoxic pathway of NK cell and the role of thymoquinone therapeutic effect on NK cells. NK cells were cultured with breast tumor cells in different ways and cultured media was collected and the concentration of perforin, granzyme B and interferon-α were measured by ELISA. The cytotoxic effect of NK cells on breast tumor cells was enhanced in the presence of thymoquinone, with increased activity of perforin in NK cells. This improved anticancer effect of thymoquinone on breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20killer%20cells" title=" natural killer cells"> natural killer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thymoquinone" title=" thymoquinone"> thymoquinone</a> </p> <a href="https://publications.waset.org/abstracts/149104/studying-the-anti-cancer-effects-of-thymoquinone-on-tumor-cells-through-natural-killer-cells-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Investigation of Cytotoxic Compounds in Ethyl Acetate and Chloroform Extracts of Nigella sativa Seeds by Sulforhodamine-B Assay-Guided Fractionation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshani%20Uggallage">Harshani Uggallage</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapila%20D.%20Dissanayaka"> Kapila D. Dissanayaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Sulforhodamine-B assay-guided fractionation on Nigella sativa seeds was conducted to determine the presence of cytotoxic compounds against human hepatoma (HepG2) cells. Initially, a freeze-dried sample of Nigella sativa seeds was sequentially extracted into solvents of increasing polarities. Crude extracts from the sequential extraction of Nigella sativa seeds in chloroform and ethyl acetate showed the highest cytotoxicity. The combined mixture of these two extracts was subjected to bioassay guided fractionation using a modified Kupchan method of partitioning, followed by Sephadex® LH-20 chromatography. This chromatographic separation process resulted in a column fraction with a convincing IC50 (half-maximal inhibitory concentration) value of 13.07µg/ml, which is considerable for developing therapeutic drug leads against human hepatoma. Reversed phase High-Performance Liquid Chromatography (HPLC) was finally conducted for the same column fraction, and the result indicates the presence of one or several main cytotoxic compounds against human HepG2 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds" title="cytotoxic compounds">cytotoxic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=half-maximal%20inhibitory%20concentration" title=" half-maximal inhibitory concentration"> half-maximal inhibitory concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography" title=" high-performance liquid chromatography"> high-performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20HepG2%20cells" title=" human HepG2 cells"> human HepG2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nigella%20sativa%20seeds" title=" nigella sativa seeds"> nigella sativa seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulforhodamine-B%20assay" title=" Sulforhodamine-B assay"> Sulforhodamine-B assay</a> </p> <a href="https://publications.waset.org/abstracts/144007/investigation-of-cytotoxic-compounds-in-ethyl-acetate-and-chloroform-extracts-of-nigella-sativa-seeds-by-sulforhodamine-b-assay-guided-fractionation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Protecting Physicochemical Properties of Black Cumin Seed (Nigella sativa) Oil and Developing Value Added Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeliha%20Ustun">Zeliha Ustun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ersoz"> Mustafa Ersoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the study, a traditional herbal supplement black cumin seed (Nigella sativa) oil properties has been studied to protect the main quality parameters by a new supplement application. Black cumin seed and its oil is used as a dietary supplement and preferred traditional remedy in Africa, Asia and Middle East for centuries. Now it has been consuming by millions of people in America and Europe as natural supplements and/or phytotherapeutic agents to support immune system, asthma, allergic rinnitis etc. by the scientists’ advices. With the study, it is aimed to prove that soft gelatin capsules are a new and more practical way of usage for Nigella sativa oil that has a longer stability. With the study soft gelatin capsules formulation has been developed to protect cold pressed black cumin seed oil physicochemical properties for a longer period. The product design has been developed in laboratory and implemented in pilot scale soft gelatin capsule manufacturing. Physicochemical properties (peroxide value, free fatty acids, fatty acid composition, refractive index, iodine value, saponification value, unsaponifiable matters) of Nigella sativa oil soft gelatin capsules and Nigella sativa oil in liquid form in amber glass bottles have been compared and followed for 8 months. The main parameters for capsules and liquid form found that for free fatty acids 2.29±0.03, 3.92±0.11 % oleic acid, peroxide 23.11±1.18, 27.85±2.50 meqO2/kg, refractive index at 20 0C 1.4738±0.00, 1.4737±0.00, soap 0 ppm, moisture and volatility 0.32±0.01, 0.36±0.01 %, iodine value 123.00±0.00, 122.00±0.00 wijs, saponification value 196.25±0.46, 194.13±0.35 mg KOH/g and unsaponifiable matter 7.72±0.13, 6.88±0.36 g/kg respectively. The main fatty acids are found that linoleic acid 56.17%, oleic acid 24.64%, palmitic acid 11,94 %. As a result, it is found that cold pressed Nigella sativa oil soft gelatin capsules physicochemical properties are more stable than the Nigella sativa oil stored in glass bottles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20cumin%20seed%20%28Nigella%20sativa%29%20oil" title="black cumin seed (Nigella sativa) oil">black cumin seed (Nigella sativa) oil</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20press" title=" cold press"> cold press</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20supplements" title=" nutritional supplements"> nutritional supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20gelatin%20capsule" title=" soft gelatin capsule"> soft gelatin capsule</a> </p> <a href="https://publications.waset.org/abstracts/37166/protecting-physicochemical-properties-of-black-cumin-seed-nigella-sativa-oil-and-developing-value-added-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamsiah%20Jaarin">Kamsiah Jaarin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusof%20Kamisah"> Yusof Kamisah</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizah%20Othman%20Nurul%20Akmal%20Muhammad"> Faizah Othman Nurul Akmal Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakiah%20Jubri"> Zakiah Jubri</a>, <a href="https://publications.waset.org/abstracts/search?q=Qodriyah%20Mohd%20Saad"> Qodriyah Mohd Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Srijit%20Das"> Srijit Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title="Nigella sativa">Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=ICAM" title=" ICAM"> ICAM</a>, <a href="https://publications.waset.org/abstracts/search?q=VCAM" title=" VCAM"> VCAM</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20reactivity" title=" vascular reactivity"> vascular reactivity</a> </p> <a href="https://publications.waset.org/abstracts/8889/effect-of-nigella-sativa-on-blood-pressure-vascular-reactivity-inflammatory-biomarkers-and-nitric-oxide-in-l-name-induced-hypertensive-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Mosbah">Asma Mosbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanane%20Khither"> Hanane Khither</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamelia%20Mosbah"> Kamelia Mosbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Noreddine%20Kacem%20Chaouche"> Noreddine Kacem Chaouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Benboubetra"> Mustapha Benboubetra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohol-induced%20hepatotoxicity" title="alcohol-induced hepatotoxicity">alcohol-induced hepatotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title=" antioxidant enzymes"> antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa%20seeds" title=" Nigella sativa seeds"> Nigella sativa seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20fractions" title=" oil fractions"> oil fractions</a> </p> <a href="https://publications.waset.org/abstracts/86395/protective-effect-of-nigella-sativa-oil-and-its-neutral-lipid-fraction-on-ethanol-induced-hepatotoxicity-in-rat-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Evaluation of Antidiabetic Activity of a Combination Extract of Nigella Sativa &amp; Cinnamomum Cassia in Streptozotocin Induced Type-I Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ginpreet%20Kaur">Ginpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yasir%20Usmani"> Mohammad Yasir Usmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kamil%20Khan"> Mohammed Kamil Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a disease with a high global burden and results in significant morbidity and mortality. In India, the number of people suffering with diabetes is expected to rise from 19 to 57 million in 2025. At present, interest in herbal remedies is growing to reduce the side effects associated with conventional dosage form like oral hypoglycemic agents and insulin for the treatment of diabetes mellitus. Our aim was to investigate the antidiabetic activities of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats. Thus, the present study was undertaken to screen postprandial glucose excursion potential through α- glucosidase inhibitory activity (In Vitro) and effect of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats (In Vivo). In addition changes in body weight, plasma glucose, lipid profile and kidney profile were also determined. The IC50 values for both extract and Acarbose was calculated by extrapolation method. Combinatorial extract of N. sativa & C. cassia at different dosages (100 and 200 mg/kg orally) and Metformin (50 mg/kg orally) as the standard drug was administered for 28 days and then biochemical estimation, body weights and OGTT (Oral glucose tolerance test) were determined. Histopathological studies were also performed on kidney and pancreatic tissue. In In-Vitro the combinatorial extract shows much more inhibiting effect than the individual extracts. The results reveals that combinatorial extract of N. sativa & C. cassia has shown significant decrease in plasma glucose (p<0.0001), total cholesterol and LDL levels when compared with the STZ group The decreasing level of BUN and creatinine revealed the protection of N. sativa & C. cassia extracts against nephropathy associated with diabetes. Combination of N. sativa & C. cassia significantly improved glucose tolerance to exogenously administered glucose (2 g/kg) after 60, 90 and 120 min interval on OGTT in high dose streptozotocin induced diabetic rats compared with the untreated control group. Histopathological studies shown that treatment with N. sativa & C. cassia extract alone and in combination restored pancreatic tissue integrity and was able to regenerate the STZ damaged pancreatic β cells. Thus, the present study reveals that combination of N. sativa & C. cassia extract has significant α- glucosidase inhibitory activity and thus has great potential as a new source for diabetes treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20levels" title="lipid levels">lipid levels</a>, <a href="https://publications.waset.org/abstracts/search?q=OGTT" title=" OGTT"> OGTT</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=herbs" title=" herbs"> herbs</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosidase" title=" glucosidase"> glucosidase</a> </p> <a href="https://publications.waset.org/abstracts/11444/evaluation-of-antidiabetic-activity-of-a-combination-extract-of-nigella-sativa-cinnamomum-cassia-in-streptozotocin-induced-type-i-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Ghnaya">Tahar Ghnaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Majda%20Mnasri"> Majda Mnasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Zaier"> Hanen Zaier</a>, <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ghabriche"> Rim Ghabriche</a>, <a href="https://publications.waset.org/abstracts/search?q=Chedly%20Abdelly"> Chedly Abdelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cd" title="Cd">Cd</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa" title=" Medicago sativa"> Medicago sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbuscular%20mycorrhizal" title=" Arbuscular mycorrhizal"> Arbuscular mycorrhizal</a> </p> <a href="https://publications.waset.org/abstracts/21956/nitrogen-fixing-rhizobacteria-rhizobium-mililoti-2011-enhances-the-tolerance-and-the-accumulation-of-cadmium-in-medicago-sativa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Determination of Morphological Characteristics of Brassica napus, Sinapis arvensis, Sinapis alba and Camelina sativa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20G%C4%B1d%C4%B1k">Betül Gıdık</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadul%20%C3%96nemli"> Fadul Önemli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Brassicaceae (Cruciferae) is an important family of plants that include many economically important vegetable production, industrial oilseed, spice, fodder crop species and energy production. Canola and mustard species that are in Brassicaceae family have too high contribution to world herbal production. In this study, genotypes of two kinds of (Caravel and Excalibul) canola (Brassica napus), wild mustard (Sinapis arvensis), white mustard (Sinapis alba) and Camelina (Camelina sativa) were grown in the experimental field, and their morphological characteristics were determined. According to the results of the research; plant length was varied between 76.75 cm and 151.50 cm, and the longest plant was belonging to species of Sinapis arvensis. The number of branches varied from 3.75 piece/plant to 17.75 piece/plant and the most numerous branch was counted in species of Sinapis alba. It was determined that the number of grains in one capsule was between 3.75 piece/capsule and 35.75 piece/capsule and the largest amount of grains in the one capsule was in the Excalibul variety of species of Brassica napus. In our research, it has been determined that the plant of Sinapis arvensis is a potential plant for industrial of oil production; such as Brassica napus, Sinapis alba and Camelina (Camelina sativa). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brassica%20napus" title="Brassica napus">Brassica napus</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelina%20sativa" title=" Camelina sativa"> Camelina sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=canola" title=" canola"> canola</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinapis%20alba" title=" Sinapis alba"> Sinapis alba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinapis%20arvensis" title=" Sinapis arvensis"> Sinapis arvensis</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20mustard" title=" wild mustard"> wild mustard</a> </p> <a href="https://publications.waset.org/abstracts/77975/determination-of-morphological-characteristics-of-brassica-napus-sinapis-arvensis-sinapis-alba-and-camelina-sativa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Antifungal Activity of Free Fatty Acids Methyl Esters Extracted from Citrullus colocynthis L., Linum usitatissimum L., Nigella sativa L. against Toxigenic Aspergillus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Malainine">H. Malainine</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amrouche"> A. Amrouche</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmehdi"> H. Benmehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work was aimed at evaluating antifungal effect of crude esters and their corresponding FAMEs isolated from Citrullus colocynthis L., Linum usitatissimum L. and Nigella sativa L. seeds against two toxigenic fungal strains namely Aspergillus flavus and Aspergillus ochraceus. The results of the antifungal activity performed radial growth on solid medium (PDA; potatoes dextrose agar) showed that the crude esters and their corresponding FAMEs have exhibited against the two strains tested. Overall, FAMEs have provided an antifungal effect more efficient than that of crude esters. Inhibition of Aspergillus ochraceus has been labeled with percentages ranging from 13.33 to 26.61% by crude esters, While FAMEs inhibition was ranged between 27.33 to 41.13%. However, the inhibition observed against the Aspergillus flavus was varying from 14.68 to 18.59% by crude esters compared with the inhibition percentages ranging from 21.5 to 33.45% by the FAMEs. The antifungal potency of esters oils seeds of the studied plants may be an alternative for consideration by the authorities interested, due to serving the public health, in reducing the fungal enormous peril. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Citrullus%20colocynthis%20L." title="Citrullus colocynthis L.">Citrullus colocynthis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Linum%20usitatissimum%20L." title=" Linum usitatissimum L."> Linum usitatissimum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa%20L." title=" Nigella sativa L."> Nigella sativa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=FAMEs" title=" FAMEs"> FAMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20flavus" title=" Aspergillus flavus"> Aspergillus flavus</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20ochraceus" title=" Aspergillus ochraceus"> Aspergillus ochraceus</a> </p> <a href="https://publications.waset.org/abstracts/13961/antifungal-activity-of-free-fatty-acids-methyl-esters-extracted-from-citrullus-colocynthis-l-linum-usitatissimum-l-nigella-sativa-l-against-toxigenic-aspergillus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Effects of Extract from Lactuca sativa on Sleep in Pentobarbital-Induced Sleep and Caffeine-Induced Sleep Disturbance in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hae%20Dun%20Kim">Hae Dun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo%20Hyun%20Jang"> Joo Hyun Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Geu%20Rim%20Seo"> Geu Rim Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Soo%20Ra"> Kyung Soo Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Joo%20Suh"> Hyung Joo Suh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactuca sativa (lettuce) has been known for its medical property to relieve anxiety and nervous. This study was implemented to investigate sleep-promoting effects of the lettuce alcohol extract (LAE). Caffeine is widely used psychoactive substance known to induced wakefulness and insomnia to its consumers. In the present study, the sedative-hypnotic activity of the LAE was studied using the method of pentobarbital-induced sleep in the mouse model. The LAE was administrated to mice 30 min before the pentobarbital injection. The LAE prolonged the pentobarbital-induced sleep duration and decreased sleep latency. The effects of LAE were comparable to those of induced by diazepam. Another study was performed to examine whether LAE ameliorates caffeine-induced sleep disturbance in mice. Additionally, caffeine (10 mg/kg, p.o) delayed sleep onset and reduced sleep duration of mice. Conversely, LAE treatment (80 or 160 mg/kg, p.o), especially at 160 mg/kg, normalized the sleep disturbance induced by caffeine. LAE supplementation can counter the sleep disturbance induced by caffeine. These results suggest that LAE possess significant sedative-hypnotic activity, which supports the popular use of lettuce for treatment of insomnia and provide the basis for new drug discovery. Furthermore, these results demonstrate that the lettuce extract may be preferable for the treatment of insomnia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caffeine" title="caffeine">caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactuca%20sativa" title=" Lactuca sativa"> Lactuca sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20duration" title=" sleep duration"> sleep duration</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20latency" title=" sleep latency"> sleep latency</a> </p> <a href="https://publications.waset.org/abstracts/49766/effects-of-extract-from-lactuca-sativa-on-sleep-in-pentobarbital-induced-sleep-and-caffeine-induced-sleep-disturbance-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Increased Seedling Vigor Through Phytohomeopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasper%20Jose%20Zanco">Jasper Jose Zanco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants are affected by substances diluted below certain limits. In seeds subjected to ultra-high dilutions (UHD), according to phytohomeopathic methods, it is possible to reduce the concentrations to infinitesimal levels and the effects persist. This research aimed to test different potencies of UHD to modify the vigor of Eruca versicaria (L) Cav. seedlings. The research was carried out at the Plant Production Laboratory of UNISUL University in Santa Catarina, Brazil. Eight UHD treatments were tested, four drops for every 30 mL of distilled water: Control (70% alcohol - A70); Sulphur (S9), Acidum fluoridricum (A30), Calcarea carbonica (C200), Graphies naturalis (G200), Kali carbonicum (K100) Belladonna (B12), diluted and succussed in Hahnemannian centesimal standards. Succussion is a standard pharmaceutical method found in worldwide pharmaceuticals. The statistical design consisted of 50 seeds every 4 replicates per treatment, completely randomized, followed by ANOVA and Tukey's test. Succussion may integrate the high dilution of water treatments, even after successive dilutions, and the product of this process acts through physical-chemical and bioelectric stimuli, causing physiological responses at the cellular level, such as the activation of antioxidant systems, increased resistance to environmental stress or growth modulation. According to some researchers, these responses could be mediated by genetic expression changes or the plants' cellular signaling systems. The results showed significant differences between the control (A70) and the other treatments. Conductivity measurements were made in the seed germination water and impedance; the seedlings were measured for dry weight and total area. The highest conductivity occurred in the control treatment (27.8 μS/cm) and the lowest in K100 (21.3 μS/cm). After germination, on germitest paper, A70 was significantly different from G200 (<1%) and S9 (5%). Both homeopathies differed from the other treatments, with S9 obtaining the best germination (87.1%) and vigor index (IV=7.98) in relation to the other treatments. The control, A70, presented the lowest germination (63.9%) and vigor (IV=4.93). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20dilution" title="ultra high dilution">ultra high dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=condutivity" title=" condutivity"> condutivity</a>, <a href="https://publications.waset.org/abstracts/search?q=eruca%20versicaria" title=" eruca versicaria"> eruca versicaria</a> </p> <a href="https://publications.waset.org/abstracts/192651/increased-seedling-vigor-through-phytohomeopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Cyanobacterial Biofertilizer Technology for Rice Producing Farmers at Nashik District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20N.%20Gaikwad">Krishna N. Gaikwad</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Kakulte"> V. R. Kakulte </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice (Oryza sativa L.) is the main cereal crop of tribal people of western part of Nasik district. There is a wide fluctuation in yield due to the factors like uncertain rains, pest diseases, socio-economic status of farmers, lack of awareness and traditional knowledge of farmers about agro-practices. In order to achieve more yield, it is a need to adopt low cost, eco-friendly blue green algal biofertilizer technology. Communication of useful information to needy people is basic need in present situation. The paper reports different communication modes of paddy technologies, adoption about BGA technology, attitudinal changes of farmers and yield of rice production during year 2011 and 2012. The results indicate that there is significant effect of communication modes of improved BGA technology on rice yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=BGA" title=" BGA"> BGA</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=Oryza%20sativa%20L." title=" Oryza sativa L."> Oryza sativa L.</a> </p> <a href="https://publications.waset.org/abstracts/13654/cyanobacterial-biofertilizer-technology-for-rice-producing-farmers-at-nashik-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Development of Value Added Product Based on Millets and Hemp Seed (cannabis sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khushi%20Kashyap">Khushi Kashyap</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Singh"> Pratibha Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years increasing interest in vegetarian diets has been observed, a major problem in this type of diet is to provide the appropriate amount of protein .Value addition of food is current most talked topic because of increasing nutritional awareness among consumers today. An investigation was conducted to develop protein rich multi-millet hemp seed khakhra. The seeds of cannabis sativa L. have been a significant source of food for thousand of year. In recent years, hemp has not been thoroughly explored for its nutritional potential due to the mistaken belief regarding the cannabis plants. Methodology- two variations was prepared referencing standard recipe. Variation 1 was prepared using 25g ragi, 25g bajra,40g whole wheat flour with 10g hemp seed powder, variation 2(RF-25g,BF25g,WWF-35g,HS-15g). The product was subjected to sensory evolution by semi trained panel members using 9 point hedonic on 50 panelists. Result- result of the sensory evaluation revealed that the product incorporated with 15g of hemp seed were similar to control I texture, taste and overall quality and was more acceptable by the panelist and was selected as final product seed. On estimation of the nutrient content 30g of khakhra provides 107kcal of energy,12g protein,75g carbohydrate, and 9.6g of fats with shelf life of 3 months. Conclusion- khakhras can be eaten as a snack at any time of the day. hemp seed powder incorporated in it enhances its nutritive value and makes it more nutritious. It is suitable for consumption of all the age group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cannabis%20sativa" title="cannabis sativa">cannabis sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp" title=" hemp"> hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a> </p> <a href="https://publications.waset.org/abstracts/161601/development-of-value-added-product-based-on-millets-and-hemp-seed-cannabis-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Effect of Black Cumin (Nigella sativa) Extract on Damaged Brain Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Batul%20Kagalwala">Batul Kagalwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nervous system is made up of complex delicate structures such as the spinal cord, peripheral nerves and the brain. These are prone to various types of injury ranging from neurodegenerative diseases to trauma leading to diseases like Parkinson's, Alzheimer's, multiple sclerosis, amyotrophic lateral sclerosis (ALS), multiple system atrophy etc. Unfortunately, because of the complicated structure of nervous system, spontaneous regeneration, repair and healing is seldom seen due to which brain damage, peripheral nerve damage and paralysis from spinal cord injury are often permanent and incapacitating. Hence, innovative and standardized approach is required for advance treatment of neurological injury. Nigella sativa (N. sativa), an annual flowering plant native to regions of southern Europe and Asia; has been suggested to have neuroprotective and anti-seizures properties. Neuroregeneration is found to occur in damaged cells when treated using extract of N. sativa. Due to its proven health benefits, lots of experiments are being conducted to extract all the benefits from the plant. The flowers are delicate and are usually pale blue and white in color with small black seeds. These seeds are the source of active components such as 30–40% fixed oils, 0.5–1.5% essential oils, pharmacologically active components containing thymoquinone (TQ), ditimoquinone (DTQ) and nigellin. In traditional medicine, this herb was identified to have healing properties and was extensively used Middle East and Far East for treating diseases such as head ache, back pain, asthma, infections, dysentery, hypertension, obesity and gastrointestinal problems. Literature studies have confirmed the extract of N. sativa seeds and TQ have inhibitory effects on inducible nitric oxide synthase and production of nitric oxide as well as anti-inflammatory and anticancer activities. Experimental investigation will be conducted to understand which ingredient of N. sativa causes neuroregeneration and roots to its healing property. An aqueous/ alcoholic extract of N. sativa will be made. Seed oil is also found to have used by researchers to prepare such extracts. For the alcoholic extracts, the seeds need to be powdered and soaked in alcohol for a period of time and the alcohol must be evaporated using rotary evaporator. For aqueous extracts, the powder must be dissolved in distilled water to obtain a pure extract. The mobile phase will be the extract while the suitable stationary phase (substance that is a good adsorbent e.g. silica gels, alumina, cellulose etc.) will be selected. Different ingredients of N. sativa will be separated using High Performance Liquid Chromatography (HPLC) for treating damaged cells. Damaged brain cells will be treated individually and in different combinations of 2 or 3 compounds for different intervals of time. The most suitable compound or a combination of compounds for the regeneration of cells will be determined using DOE methodology. Later the gene will also be determined and using Polymerase Chain Reaction (PCR) it will be replicated in a plasmid vector. This plasmid vector shall be inserted in the brain of the organism used and replicated within. The gene insertion can also be done by the gene gun method. The gene in question can be coated on a micro bullet of tungsten and bombarded in the area of interest and gene replication and coding shall be studied. Investigation on whether the gene replicates in the organism or not will be examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title="black cumin">black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20cells" title=" brain cells"> brain cells</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroregeneration" title=" neuroregeneration"> neuroregeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmids" title=" plasmids"> plasmids</a>, <a href="https://publications.waset.org/abstracts/search?q=vectors" title=" vectors"> vectors</a> </p> <a href="https://publications.waset.org/abstracts/76882/effect-of-black-cumin-nigella-sativa-extract-on-damaged-brain-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Ansari">Abdullah Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinika%20Rambaran"> Sinika Rambaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirpaul%20Jaikishun"> Sirpaul Jaikishun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vermiwash" title="vermiwash">vermiwash</a>, <a href="https://publications.waset.org/abstracts/search?q=earthworms" title=" earthworms"> earthworms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=alternaria%20alternata" title=" alternaria alternata"> alternaria alternata</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/39201/production-of-vermiwash-from-medicinal-plants-and-its-potential-use-as-fungicide-against-the-alternaria-alternata-fr-keissl-affecting-cucumber-cucumis-sativus-l-in-guyana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Effects of Rice Plant Extracts and Phenolic Allelochemicals on Seedling Growth of Radish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shamim%20Hasan%20Mandal">Mohammad Shamim Hasan Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Phu%20Minh"> Phu Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Tan%20%20Khang"> Do Tan Khang</a>, <a href="https://publications.waset.org/abstracts/search?q=Phung%20Thi%20Tuyen"> Phung Thi Tuyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Dang%20Xuan"> Tran Dang Xuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice (Oryza sativa L.) is one of the major crops of Vietnam which has more than thousands of varieties. Many of the local varieties have greater potentiality but they are in danger of extinct. Rice plant contains many secondary metabolites that are allelopathic to other plants. Seven rice varieties were cultivated in the field condition at Hiroshima University, Japan; stems and leaves from each variety were collected later, they were extracted with methanol, hexane, ethyl acetate, butanol, and water. Total phenolic content and total flavonoid contents were high in ethyl acetate extracts. DPPH antioxidant assay results showed that the ethyl acetate extracts had the higher IC50 value. Therefore, the ethyl acetate extracts were selected for laboratory experimentation through petri dish assay. Results showed that the two-local variety Re nuoc and Nan chon completely inhibited the germination of radish seedlings. Further laboratory bioassay and field experimentation will be conducted to validate the laboratory bioassay findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=bioassay" title=" bioassay"> bioassay</a>, <a href="https://publications.waset.org/abstracts/search?q=Oryza%20sativa" title=" Oryza sativa"> Oryza sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphanus%20sativus" title=" Raphanus sativus"> Raphanus sativus</a> </p> <a href="https://publications.waset.org/abstracts/69984/effects-of-rice-plant-extracts-and-phenolic-allelochemicals-on-seedling-growth-of-radish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, Admet and MM-PBSA Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nour">Hassan Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouh%20Mounadi"> Nouh Mounadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Abchir"> Oussama Abchir</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaidi%20Salah"> Belaidi Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Chtita"> Samir Chtita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential Cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L were in-silico screened using molecular docking, pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect towards the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interactions stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries towards the rational development of potent anti-Alzheimer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer%E2%80%99s%20disease" title="alzheimer’s disease">alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=cannabis%20sativa%20l" title=" cannabis sativa l"> cannabis sativa l</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitors" title=" cholinesterase inhibitors"> cholinesterase inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/171130/cannabis-sativa-l-as-natural-source-of-promising-anti-alzheimer-drug-candidates-a-comprehensive-computational-approach-including-molecular-docking-molecular-dynamics-admet-and-mm-pbsa-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Hemp Defoliation Technology and Management before Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rataya%20Yanaphan">Rataya Yanaphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saksiri%20Kuppatarat"> Saksiri Kuppatarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Pinmanee"> Sarita Pinmanee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hemp (Cannabis sativa L. ssp. Sativa) cultivation for fiber is limited by extremely high labor cost, especially for the removal of the leaves before harvest. This study evaluated chemical defoliants as a means to remove the leaves of hemp before harvest, in an effort to reduce labor expenditures in the production on hemp fiber. This study was conducted by spraying the leaves of hemp with five different treatments: saline solution, Urea (CH4N2O), Ethephon, copper Sulphate (CuSO4) and water (control) before harvesting. The largest percentage of leaf loss 6 days after spraying was with saline solution (43%), followed by Ethephon (32%). However, saline solution also caused drying of the stems but Ethephon did not. Thus, Ethephon was evaluated in the second experiment by spraying with Ethephon concentrations of 0, 10, 15 and 20 ml per 1 liter of water at 7 days before harvest. Spraying with 0.5% Ethephon resulted in 13.6% leaf fall. Spraying with 1.5% and 2% Ethephon resulted in 82.2% and 82.3 % leaf fall, respectively. In addition, using Ethephon to defoliate hemp had no detrimental effect the yield. Therefore, Ethephon concentration at 15 ml per 1 liter of water will be recommended for use in removing hemp leaves by spraying at 7 days before harvest to lower labor cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defoliation%20technology" title="defoliation technology">defoliation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=ethephon" title=" ethephon"> ethephon</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20cultivation" title=" hemp cultivation"> hemp cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20solution" title=" saline solution"> saline solution</a> </p> <a href="https://publications.waset.org/abstracts/52525/hemp-defoliation-technology-and-management-before-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nour">Hassan Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouh%20Mounadi"> Nouh Mounadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Abchir"> Oussama Abchir</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaidi%20Salah"> Belaidi Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Chtita"> Samir Chtita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=Cannabis%20sativa%20L." title=" Cannabis sativa L."> Cannabis sativa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitors" title=" cholinesterase inhibitors"> cholinesterase inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMET" title=" ADMET"> ADMET</a>, <a href="https://publications.waset.org/abstracts/search?q=MM-PBSA" title=" MM-PBSA"> MM-PBSA</a> </p> <a href="https://publications.waset.org/abstracts/171128/cannabis-sativa-l-as-natural-source-of-promising-anti-alzheimer-drug-candidates-a-comprehensive-computational-approach-including-molecular-docking-molecular-dynamics-admet-and-mm-pbsa-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10