CINXE.COM

Search results for: xylitol

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: xylitol</title> <meta name="description" content="Search results for: xylitol"> <meta name="keywords" content="xylitol"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="xylitol" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="xylitol"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: xylitol</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Biosynthesis of L-Xylose from Xylitol Using a Dual Enzyme Cascade in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-xylose is an important intermediate in the pharmaceutical industry, playing a key role in the production of various antiviral and anticancer drugs. Despite its significance, L-xylose is a rare and costly sugar with limited availability in nature. In recent years, enzymatic production methods have garnered considerable attention due to their benefits over conventional chemical synthesis. In this research, a dual enzyme cascade system was developed to synthesize L-xylose from an inexpensive substrate, xylitol. The study involved cloning and co-expressing two key genes: the L-fucose isomerase (L-fucI) gene from Escherichia coli K-12 and the xylitol-4-dehydrogenase (xdh) gene from Pantoea ananatis ATCC 43072 in Escherichia coli. The resulting recombinant cells, engineered with the PET28a-xdh/L-fucI vector, were able to effectively convert xylitol to L-xylose. The system showed optimal performance at 40°C and a pH of 10.0. Moreover, Zn²⁺ (7.5 mM) enhanced the catalytic activity by 1.34 times. This approach yielded 52.2 g/L of L-xylose from an initial 80 g/L xylitol concentration, with a 65% conversion efficiency and a productivity rate of 1.86. The study highlights a practical method for producing L-xylose from xylitol through a co-expression system carrying the L-fucI and xdh genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=l-fucose%20isomerase" title="l-fucose isomerase">l-fucose isomerase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol-4-dehydrogenase" title=" xylitol-4-dehydrogenase"> xylitol-4-dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=l-xylose" title=" l-xylose"> l-xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=co-expression" title=" co-expression"> co-expression</a> </p> <a href="https://publications.waset.org/abstracts/192338/biosynthesis-of-l-xylose-from-xylitol-using-a-dual-enzyme-cascade-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Efficient L-Xylulose Production Using Whole-Cell Biocatalyst With NAD+ Regeneration System Through Co-Expression of Xylitol Dehydrogenase and NADH Oxidase in Escherichia Coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-Xylulose is a potentially valuable rare sugar used as starting material for antiviral and anticancer drug development in pharmaceutical industries. L-Xylulose exist in a very low concentration in nature and have to be synthesized from cheap starting materials such as xylitol through biotechnological approaches. In this study, cofactor engineering and deep eutectic solvent were applied to improve the efficiency of L-xylulose production from xylitol. A water-forming NAD+ regeneration enzyme (NADH oxidase) from Streptococcus mutans ATCC 25175 was introduced into E. coli with xylitol-4-dehydrogenase (XDH) of Pantoea ananatis resulting in recombinant cells harboring the vector pETDuet-xdh-SmNox. Further, three deep eutectic solvents (DES) including, Choline chloride/glycerol (ChCl/G), Choline chloride/urea (ChCl/U), and Choline chloride/ethylene glycol (ChCl/EG) have been employed to facilitate the conversion efficiency of L-xylulose from xylitol. The co-expression system exhibited optimal activity at a temperature of 37 ℃ and pH 8.5, and the addition of Mg2+ enhanced the catalytic activity by 1.19-fold. Co-expression of NADH oxidase with XDH enzyme resulted in increased L-xylulose concentration and productivity from xylitol as well as the intracellular NAD+ concentration. Two of the DES used (ChCl/U and ChCl/EG) show positive effects on product yield and the ChCl/G has inhibiting effects. The optimum concentration of ChCl/U was 2.5%, which increased the L-xylulose yields compared to the control without DES. In a 1 L fermenter the final concentration and productivity of L-xylulose from 50 g/L of xylitol reached 48.45 g/L, and 2.42 g/L.h respectively, which was the highest report. Overall, this study is a suitable approach for large-scale production of L-xylulose from xylitol using the engineered E. coli cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xylitol-4-dehydrogenase" title="Xylitol-4-dehydrogenase">Xylitol-4-dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=NADH%20oxidase" title=" NADH oxidase"> NADH oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=L-xylulose" title=" L-xylulose"> L-xylulose</a>, <a href="https://publications.waset.org/abstracts/search?q=Xylitol" title=" Xylitol"> Xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=Coexpression" title=" Coexpression"> Coexpression</a>, <a href="https://publications.waset.org/abstracts/search?q=DESs" title=" DESs"> DESs</a> </p> <a href="https://publications.waset.org/abstracts/192242/efficient-l-xylulose-production-using-whole-cell-biocatalyst-with-nad-regeneration-system-through-co-expression-of-xylitol-dehydrogenase-and-nadh-oxidase-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharon%20Mano%20Pappu">J. Sharon Mano Pappu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathyanarayana%20N.%20Gummadi"> Sathyanarayana N. Gummadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-substrate" title="co-substrate">co-substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=cybernetic%20model" title=" cybernetic model"> cybernetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=diauxic%20growth" title=" diauxic growth"> diauxic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a> </p> <a href="https://publications.waset.org/abstracts/69333/cybernetic-modeling-of-growth-dynamics-of-debaryomyces-nepalensis-ncyc-3413-and-xylitol-production-in-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyosthna%20Khanna%20Goli">Jyosthna Khanna Goli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Naseeruddin"> Shaik Naseeruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hameeda%20Bee"> Hameeda Bee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delignification" title="delignification">delignification</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20hydrolysis" title=" acid hydrolysis"> acid hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis"> enzyme hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/121313/pretreatment-of-aquatic-weed-typha-latifolia-with-sodium-bisulphate-for-enhanced-acid-and-enzyme-hydrolysis-for-production-of-xylitol-and-bioethanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Antimicrobial Effect of Toothpastes Containing Fluoride, Xylitol or Xylitol-Probiotic on Salivary Streptococcus mutans and Lactobacillus in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eda%20Arat%20Maden">Eda Arat Maden</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceyhan%20Altun"> Ceyhan Altun</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Ozmen"> Bilal Ozmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Feridun%20Basak"> Feridun Basak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The purpose of this study was to compare the antimicrobial effect of toothpastes containing fluoride, xylitol or xylitol-probiotic in vivo, Streptococcus mutans and Lactobacillus in 13-15 years old children. Method: The study consisted of 60 pediatric patients were randomly divided into 3 groups of 20 each. Group 1 received fluoride toothpaste (Colgate Max Fresh), group 2 used xylitol toothpaste (Xyliwhite) and group 3 used xylitol-probiotic toothpaste (PerioBiotic). Subjects were asked to use the allocated dentifrice two times a day, for 6 weeks. We performed tests on the samples of saliva in the beginning of the study and after 6 weeks’ duration following the use of toothpaste. Result and Conclusion: All of the participants of the study stated that they brushed their teeth well twice a day by using the toothpastes given to them for 6 weeks. Majority of the subjects had high counts of salivary mutans streptococci and Lactobacillus at baseline. When the number of cariogenic bacteria (S. mutans and Lactobacillus) at the start of the PerioBiotic Probiotic toothpaste usage are compared with the results measured after 6 weeks, an important decrease is observed in the S. mutans and Lactobacillus bacteria according to the CRT Tests. After the 6-week use of Probiotic toothpaste, the S. mutans (≥105) decreased to 20% from 75% in the group with S. mutans and Lactobacillus (≥105) decreased to 30% from 60% in the group with Lactobacillus. In addition, an important decrease was recorded in the participants with the S. mutans percentage (80% - 45%) and Lactobacillus (70% - 55%) after using the Colgate Max Fresh toothpaste for six weeks. On the other hand, it was determined with the Chi-square that there were not important changes between the Xyliwhite toothpaste group and the other groups with S. mutans (80% - 75%) and Lactobacillus (75% -65%). It was also determined after the comparison of the groups that the decrease in the S. mutans was higher than the group using PerioBiotic Probiotic toothpaste at a significant level, when compared with the Colgate Max Fresh toothpaste and Xyliwhite toothpaste. S. mutans were more sensitive to the antimicrobial activity of the PerioBiotic Probiotic toothpaste and to the Colgate Max Fresh toothpaste when compared with the Lactobacillus. In the light of the data obtained in this in vivo study, the use of probiotics ensure the balance between the bacterial flora in the oral cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title="lactobacillus">lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococcus%20mutans" title=" Streptococcus mutans"> Streptococcus mutans</a>, <a href="https://publications.waset.org/abstracts/search?q=toothpaste" title=" toothpaste"> toothpaste</a> </p> <a href="https://publications.waset.org/abstracts/54134/antimicrobial-effect-of-toothpastes-containing-fluoride-xylitol-or-xylitol-probiotic-on-salivary-streptococcus-mutans-and-lactobacillus-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Astorga-Trejo%20Rebeca">Astorga-Trejo Rebeca</a>, <a href="https://publications.waset.org/abstracts/search?q=Fonseca-Peralta%20H%C3%A9ctor%20Manuel"> Fonseca-Peralta Héctor Manuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Beltr%C3%A1n-Arredondo%20Laura%20Ivonne"> Beltrán-Arredondo Laura Ivonne</a>, <a href="https://publications.waset.org/abstracts/search?q=Castro-Mart%C3%ADnez%20Claudia"> Castro-Martínez Claudia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20stover" title=" corn stover"> corn stover</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title=" biorefinery"> biorefinery</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol%202G" title=" bioethanol 2G"> bioethanol 2G</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a> </p> <a href="https://publications.waset.org/abstracts/143684/use-of-corn-stover-for-the-production-of-2g-bioethanol-enzymes-and-xylitol-under-a-biorefinery-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Metabolic and Adaptive Laboratory Evolutionary Engineering (ALE) of Saccharomyces cerevisiae for Second Generation Biofuel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Yusuf">Farnaz Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Naseem%20A.%20Gaur"> Naseem A. Gaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in environmental concerns, rapid depletion of fossil fuel reserves and intense interest in achieving energy security has led to a global research effort towards developing renewable sources of fuels. Second generation biofuels have attracted more attention recently as the use of lignocellulosic biomass can reduce fossil fuel dependence and is environment-friendly. Xylose is the main pentose and second most abundant sugar after glucose in lignocelluloses. Saccharomyces cerevisiae does not readily uptake and use pentose sugars. For an economically feasible biofuel production, both hexose and pentose sugars must be fermented to ethanol. Therefore, it is important to develop S. cerevisiae host platforms with more efficient xylose utilization. This work aims to construct a xylose fermenting yeast strains with engineered oxido-reductative pathway for xylose metabolism. Engineered strain was further improved by adaptive evolutionary engineering approach. The engineered strain is able to grow on xylose as sole carbon source with the maximum ethanol yield of 0.39g/g xylose and productivity of 0.139g/l/h at 96 hours. The further improvement in strain development involves over expression of pentose phosphate pathway and protein engineering of xylose reductase/xylitol dehydrogenase to change their cofactor specificity in order to reduce xylitol accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a> </p> <a href="https://publications.waset.org/abstracts/60367/metabolic-and-adaptive-laboratory-evolutionary-engineering-ale-of-saccharomyces-cerevisiae-for-second-generation-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rangrong%20Yoksan">Rangrong Yoksan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amporn%20Sane"> Amporn Sane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattaporn%20Khanoonkon"> Nattaporn Khanoonkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanakorn%20Yokesahachart"> Chanakorn Yokesahachart</a>, <a href="https://publications.waset.org/abstracts/search?q=Narumol%20Noivoil"> Narumol Noivoil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khanh%20Minh%20Dang"> Khanh Minh Dang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title="polylactic acid">polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=Jute%20fiber" title=" Jute fiber"> Jute fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=blend" title=" blend"> blend</a> </p> <a href="https://publications.waset.org/abstracts/36519/effect-of-starch-and-plasticizer-types-and-fiber-content-on-properties-of-polylactic-acidthermoplastic-starch-blend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaran%20Letchmanan">Kumaran Letchmanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shou-Cang%20Shen"> Shou-Cang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Kiong%20Ng"> Wai Kiong Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomechanical%20properties" title=" biomechanical properties"> biomechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20cement" title=" bone cement"> bone cement</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20release" title=" sustained release"> sustained release</a> </p> <a href="https://publications.waset.org/abstracts/50015/mechanical-properties-and-antibiotic-release-characteristics-of-polymethyl-methacrylate-based-bone-cement-formulated-with-mesoporous-silica-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dehong%20Li">Dehong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Chen"> Yuchen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kaboorani"> Alireza Kaboorani</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Rodrigue"> Denis Rodrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20%28Alice%29%20Wang"> Xiaodong (Alice) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohols" title=" alcohols"> alcohols</a> </p> <a href="https://publications.waset.org/abstracts/164542/alcohols-as-a-phase-change-material-with-excellent-thermal-storage-properties-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efri%20%20Mardawati">Efri Mardawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20Purwadi"> Ronny Purwadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Made%20Tri%20Ari%20%20Penia%20Kresnowati"> Made Tri Ari Penia Kresnowati</a>, <a href="https://publications.waset.org/abstracts/search?q=Tjandra%20Setiadi"> Tjandra Setiadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunches%20%28EFB%29" title="oil palm empty fruit bunches (EFB)">oil palm empty fruit bunches (EFB)</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20modelling" title=" kinetic modelling"> kinetic modelling</a> </p> <a href="https://publications.waset.org/abstracts/3158/optimization-and-kinetic-analysis-of-the-enzymatic-hydrolysis-of-oil-palm-empty-fruit-bunch-to-xylose-using-crude-xylanase-from-trichoderma-viride-itb-cc-l67" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9e%20M.%20Ripken">Renée M. Ripken</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20G.%20E.%20Gardeniers"> Johannes G. E. Gardeniers</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9verine%20Le%20Gac"> Séverine Le Gac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20conversion" title="biomass conversion">biomass conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20and%20high%20temperature%20microfluidics" title=" high pressure and high temperature microfluidics"> high pressure and high temperature microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagrams" title=" phase diagrams"> phase diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=superheating" title=" superheating"> superheating</a> </p> <a href="https://publications.waset.org/abstracts/63404/real-time-monitoring-of-complex-multiphase-behavior-in-a-high-pressure-and-high-temperature-microfluidic-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Techno-Economic Assessments of Promising Chemicals from a Sugar Mill Based Biorefinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kathleen%20Frances%20Haigh">Kathleen Frances Haigh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mieke%20Nieder-Heitmann"> Mieke Nieder-Heitmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Farzad"> Somayeh Farzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ali%20Mandegari"> Mohsen Ali Mandegari</a>, <a href="https://publications.waset.org/abstracts/search?q=Johann%20Ferdinand%20Gorgens"> Johann Ferdinand Gorgens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulose can be converted to a range of biochemicals and biofuels. Where this is derived from agricultural waste, issues of competition with food are virtually eliminated. One such source of lignocellulose is the South African sugar industry. Lignocellulose could be accessed by changes to the current farming practices and investments in more efficient boilers. The South African sugar industry is struggling due to falling sugar prices and increasing costs and it is proposed that annexing a biorefinery to a sugar mill will broaden the product range and improve viability. Process simulations of the selected chemicals were generated using Aspen Plus®. It was envisaged that a biorefinery would be annexed to a typical South African sugar mill. Bagasse would be diverted from the existing boilers to the biorefinery and mixed with harvest residues. This biomass would provide the feedstock for the biorefinery and the process energy for the biorefinery and sugar mill. Thus, in all scenarios a portion of the biomass was diverted to a new efficient combined heat and power plant (CHP). The Aspen Plus® simulations provided the mass and energy balance data to carry out an economic assessment of each scenarios. The net present value (NPV), internal rate of return (IRR) and minimum selling price (MSP) was calculated for each scenario. As a starting point scenarios were generated to investigate the production of ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol, and Fischer-Tropsch syncrude. The bypass to the CHP plant is a useful indicator of the energy demands of the chemical processes. An iterative approach was used to identify a suitable bypass because increasing this value had the combined effect of increasing the amount of energy available and reducing the capacity of the chemical plant. Bypass values ranged from 30% for syncrude production to 50% for combined ethanol and furfural production. A hurdle rate of 15.7% was selected for the IRR. The butanol, combined ethanol and furfural, or the Fischer-Tropsch syncrude scenarios are unsuitable for investment with IRRs of 4.8%, 7.5% and 11.5% respectively. This provides valuable insights into research opportunities. For example furfural from sugarcane bagasse is an established process although the integration of furfural production with ethanol is less well understood. The IRR for the ethanol scenario was 14.7%, which is below the investment criteria, but given the technological maturity it may still be considered for investment. The scenarios which met the investment criteria were the combined ethanol and lactic acid, and the methanol scenarios with IRRs of 20.5% and 16.7%, respectively. These assessments show that the production of biochemicals from lignocellulose can be commercially viable. In addition, this assessment have provided valuable insights for research to improve the commercial viability of additional chemicals and scenarios. This has led to further assessments of the production of itaconic acid, succinic acid, citric acid, xylitol, polyhydroxybutyrate, polyethylene, glucaric acid and glutamic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biorefineries" title="biorefineries">biorefineries</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20mill" title=" sugar mill"> sugar mill</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a> </p> <a href="https://publications.waset.org/abstracts/81650/techno-economic-assessments-of-promising-chemicals-from-a-sugar-mill-based-biorefinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> DH-Students Promoting Underage Asylum Seekers&#039; Oral Health in Finland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eeva%20Wallenius-Nareneva">Eeva Wallenius-Nareneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuula%20Toivanen-Labiad"> Tuula Toivanen-Labiad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Oral health promotion event was organised for forty Afghanistan, Iraqi and Bangladeshi underage asylum seekers in Finland. The invitation to arrange this coaching occasion was accepted in the Degree Programme in Oral Hygiene in Metropolia. The personnel in the reception center found the need to improve oral health among the youngsters. The purpose was to strengthen the health literacy of the boys in their oral self-care and to reduce dental fears. The Finnish studies, especially the terminology of oral health was integrated to coaching with the help of interpreters. Cooperative learning was applied. Methods: Oral health was interactively discussed in four study group sessions: 1. The importance of healthy eating habits; - Good and bad diets, - Regular meals, - Acid attack o Xylitol. 2. Oral diseases − connection to general health; - Aetiology of gingivitis, periodontitis and caries, - Harmfulness of smoking 3. Tools and techniques for oral self-care; - Brushing and inter dental cleaning. 4. Sharing earlier dental care experiences; - Cultural differences, - Dental fear, - Regular check-ups. Results: During coaching deficiencies appeared in brushing and inter dental cleaning techniques. Some boys were used to wash their mouth with salt justifying it by salt’s antiseptic properties. Many brushed their teeth by vertical movements. The boys took feedback positively when a demonstration with model jaws revealed the inefficiency of the technique. The advantages of fluoride tooth paste were advised. Dental care procedures were new and frightening for many boys. Finnish dental care system was clarified. The safety and indolence of the treatments and informed consent were highlighted. Video presentations and the dialog lowered substantially the threshold to visit dental clinic. The occasion gave the students means for meeting patients from different cultural and language backgrounds. The information hidden behind the oral health problems of the asylum seekers was valuable. Conclusions: Learning dental care practices used in different cultures is essential for dental professionals. The project was a good start towards multicultural oral health care. More experiences are needed before graduation. Health education themes should be held simple regardless of the target group. The heterogeneity of the group does not pose a problem. Open discussion with questions leading to the theme works well in clarifying the target group’s knowledge level. Sharing own experiences strengthens the sense of equality among the participants and encourages them to express own opinions. Motivational interview method turned out to be successful. In the future coaching occasions must confirm active participation of everyone. This could be realized by dividing the participants to even smaller groups. The different languages impose challenges but they can be solved by using more interpreters. Their presence ensures that everyone understands the issues properly although the use of plain and sign languages are helpful. In further development, it would be crucial to arrange a rehearsal occasion to the same participants in two/three months’ time. This would strengthen the adaption of self-care practices and give the youngsters opportunity to pose more open questions. The students would gain valuable feedback regarding the effectiveness of their work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperative%20learning" title="cooperative learning">cooperative learning</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20methods" title=" interactive methods"> interactive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=motivational%20interviewing" title=" motivational interviewing"> motivational interviewing</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20health%20promotion" title=" oral health promotion"> oral health promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=underage%20asylum%20seekers" title=" underage asylum seekers"> underage asylum seekers</a> </p> <a href="https://publications.waset.org/abstracts/51228/dh-students-promoting-underage-asylum-seekers-oral-health-in-finland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10