CINXE.COM
Search results for: spectral based IMs
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spectral based IMs</title> <meta name="description" content="Search results for: spectral based IMs"> <meta name="keywords" content="spectral based IMs"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spectral based IMs" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spectral based IMs"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28645</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spectral based IMs</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28645</span> Bi-Dimensional Spectral Basis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Zerroug">Abdelhamid Zerroug</a>, <a href="https://publications.waset.org/abstracts/search?q=Mlle%20Ismahene%20Sehili"> Mlle Ismahene Sehili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectral methods are usually applied to solve uni-dimensional boundary value problems. With the advantage of the creation of multidimensional basis, we propose a new spectral method for bi-dimensional problems. In this article, we start by creating bi-spectral basis by different ways, we developed also a new relations to determine the expressions of spectral coefficients in different partial derivatives expansions. Finally, we propose the principle of a new bi-spectral method for the bi-dimensional problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problems" title="boundary value problems">boundary value problems</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-spectral%20methods" title=" bi-spectral methods"> bi-spectral methods</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-dimensional%20Legendre%20basis" title=" bi-dimensional Legendre basis"> bi-dimensional Legendre basis</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a> </p> <a href="https://publications.waset.org/abstracts/38573/bi-dimensional-spectral-basis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28644</span> Asymptotic Spectral Theory for Nonlinear Random Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kimouche">Karima Kimouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20nonlinear%20processes" title="spatial nonlinear processes">spatial nonlinear processes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20estimators" title=" spectral estimators"> spectral estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=GMC%20condition" title=" GMC condition"> GMC condition</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20method" title=" bootstrap method"> bootstrap method</a> </p> <a href="https://publications.waset.org/abstracts/12479/asymptotic-spectral-theory-for-nonlinear-random-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28643</span> On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Dosso">Mouhamadou Dosso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20dichotomy%20method" title="spectral dichotomy method">spectral dichotomy method</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20projector" title=" spectral projector"> spectral projector</a>, <a href="https://publications.waset.org/abstracts/search?q=eigensubspaces" title=" eigensubspaces"> eigensubspaces</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue" title=" eigenvalue"> eigenvalue</a> </p> <a href="https://publications.waset.org/abstracts/159807/on-a-generalization-of-the-spectral-dichotomy-method-of-a-matrix-with-respect-to-parabolas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28642</span> Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Xu">Chao Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title="vulnerability">vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20seismic%20demand%20analysis" title=" probability seismic demand analysis"> probability seismic demand analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion%20intensity%20measure" title=" ground motion intensity measure"> ground motion intensity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=sufficiency" title=" sufficiency"> sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20time%20history%20analysis" title=" inelastic time history analysis"> inelastic time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/48653/vulnerability-assessment-of-reinforced-concrete-frames-based-on-inelastic-spectral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28641</span> A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20Shahi">Kaveh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmi%20Z.%20M.%20Shafri"> Helmi Z. M. Shafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Taherzadeh"> Ebrahim Taherzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20index" title="spectral index">spectral index</a>, <a href="https://publications.waset.org/abstracts/search?q=shadow%20detection" title=" shadow detection"> shadow detection</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20images" title=" remote sensing images"> remote sensing images</a>, <a href="https://publications.waset.org/abstracts/search?q=World-View%202" title=" World-View 2"> World-View 2</a> </p> <a href="https://publications.waset.org/abstracts/13500/a-novel-spectral-index-for-automatic-shadow-detection-in-urban-mapping-based-on-worldview-2-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28640</span> Spectral Clustering for Manufacturing Cell Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yessica%20Nataliani">Yessica Nataliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Miin-Shen%20Yang"> Miin-Shen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20technology" title="group technology">group technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20formation" title=" cell formation"> cell formation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20clustering" title=" spectral clustering"> spectral clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=grouping%20efficiency" title=" grouping efficiency"> grouping efficiency</a> </p> <a href="https://publications.waset.org/abstracts/72294/spectral-clustering-for-manufacturing-cell-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28639</span> Surface Topography Measurement by Confocal Spectral Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Manallah">A. Manallah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Meier"> C. Meier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confocal%20spectral%20interferometry" title="confocal spectral interferometry">confocal spectral interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20testing" title=" nondestructive testing"> nondestructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20metrology" title=" optical metrology"> optical metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20topography" title=" surface topography"> surface topography</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/70452/surface-topography-measurement-by-confocal-spectral-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28638</span> Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golayeh%20Yousefi">Golayeh Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Homaee"> Mehdi Homaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Norouzi"> Ali Akbar Norouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20bands" title=" spectral bands"> spectral bands</a>, <a href="https://publications.waset.org/abstracts/search?q=PLS%20regression" title=" PLS regression"> PLS regression</a> </p> <a href="https://publications.waset.org/abstracts/160387/investigating-the-potential-of-spectral-bands-in-the-detection-of-heavy-metals-in-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28637</span> All-Optical Function Based on Self-Similar Spectral Broadening for 2R Regeneration in High-Bit-Rate Optical Transmission Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Graini">Leila Graini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate basic all-optical functions for 2R regeneration (Re-amplification and Re-shaping) based on self-similar spectral broadening in low normal dispersion and highly nonlinear fiber (ND-HNLF) to regenerate the signal through optical filtering including the transfer function characteristics, and output extinction ratio. Our approach of all-optical 2R regeneration is based on those of Mamyshev. The numerical study reveals the self-similar spectral broadening very effective for 2R all-optical regeneration; the proposed design presents high stability compared to a conventional regenerator using SPM broadening with reduction of the intensity fluctuations and improvement of the extinction ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-optical%20function" title="all-optical function">all-optical function</a>, <a href="https://publications.waset.org/abstracts/search?q=2R%20optical%20regeneration" title=" 2R optical regeneration"> 2R optical regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=self-similar%20broadening" title=" self-similar broadening"> self-similar broadening</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamyshev%20regenerator" title=" Mamyshev regenerator"> Mamyshev regenerator</a> </p> <a href="https://publications.waset.org/abstracts/101178/all-optical-function-based-on-self-similar-spectral-broadening-for-2r-regeneration-in-high-bit-rate-optical-transmission-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28636</span> An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akrem%20Sellami">Akrem Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=Imed%20Riadh%20Farah"> Imed Riadh Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Basel%20Solaiman"> Basel Solaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20selection" title="band selection">band selection</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20imagery" title=" hyperspectral imagery"> hyperspectral imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20interpretation" title=" semantic interpretation"> semantic interpretation</a> </p> <a href="https://publications.waset.org/abstracts/55370/an-adaptive-dimensionality-reduction-approach-for-hyperspectral-imagery-semantic-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28635</span> Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Kallel">Fathi Kallel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ben%20Hamida"> Ahmed Ben Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Berger-Vachon"> Christian Berger-Vachon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20enhancement" title="speech enhancement">speech enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20substracion" title=" spectral substracion"> spectral substracion</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20estimation" title=" noise estimation"> noise estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=cochlear%20impalnt" title=" cochlear impalnt"> cochlear impalnt</a> </p> <a href="https://publications.waset.org/abstracts/18785/dual-channel-multi-band-spectral-subtraction-algorithm-dedicated-to-a-bilateral-cochlear-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28634</span> A Posteriori Analysis of the Spectral Element Discretization of Heat Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chor%20Nejmeddine">Chor Nejmeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ines%20Ben%20Omrane"> Ines Ben Omrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdelwahed"> Mohamed Abdelwahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler's implicit scheme in time and spectral method in space. We propose two families of error indicators, both of which are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title="heat equation">heat equation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20elements%20discretization" title=" spectral elements discretization"> spectral elements discretization</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20indicators" title=" error indicators"> error indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler" title=" Euler"> Euler</a> </p> <a href="https://publications.waset.org/abstracts/4041/a-posteriori-analysis-of-the-spectral-element-discretization-of-heat-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28633</span> Matrix Valued Difference Equations with Spectral Singularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serifenur%20Cebesoy">Serifenur Cebesoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelda%20Aygar"> Yelda Aygar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elgiz%20Bairamov"> Elgiz Bairamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotics" title="asymptotics">asymptotics</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spectrum" title=" continuous spectrum"> continuous spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title=" difference equations"> difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=jost%20functions" title=" jost functions"> jost functions</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20singularities" title=" spectral singularities"> spectral singularities</a> </p> <a href="https://publications.waset.org/abstracts/32256/matrix-valued-difference-equations-with-spectral-singularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28632</span> Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sabre">R. Sabre</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Horrigue"> W. Horrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Simon"> J. C. Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20density" title="spectral density">spectral density</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20processes" title=" stable processes"> stable processes</a>, <a href="https://publications.waset.org/abstracts/search?q=aliasing" title=" aliasing"> aliasing</a>, <a href="https://publications.waset.org/abstracts/search?q=periodogram" title=" periodogram"> periodogram</a> </p> <a href="https://publications.waset.org/abstracts/118023/discrete-estimation-of-spectral-density-for-alpha-stable-signals-observed-with-an-additive-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28631</span> Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Djemili">Rafik Djemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Bourouba"> Hocine Bourouba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Amara%20Korba"> M. C. Amara Korba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain-computer%20interface" title="brain-computer interface">brain-computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20imagery" title=" motor imagery"> motor imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title=" electroencephalogram"> electroencephalogram</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/6971/comparative-analysis-of-spectral-estimation-methods-for-brain-computer-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28630</span> Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ahmad">Mohammad Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayalan%20Kasilingam"> Dayalan Kasilingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation" title="electric field integral equation">electric field integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20multipole%20method" title=" fast multipole method"> fast multipole method</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20moments" title=" method of moments"> method of moments</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20scattering" title=" wave scattering"> wave scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20domain" title=" spectral domain"> spectral domain</a> </p> <a href="https://publications.waset.org/abstracts/65787/spectral-domain-fast-multipole-method-for-solving-integral-equations-of-one-and-two-dimensional-wave-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28629</span> Multi-Spectral Deep Learning Models for Forest Fire Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smitha%20Haridasan">Smitha Haridasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zelalem%20Demissie"> Zelalem Demissie</a>, <a href="https://publications.waset.org/abstracts/search?q=Atri%20Dutta"> Atri Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajita%20Rattani"> Ajita Rattani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20fire%20detection" title=" forest fire detection"> forest fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-spectral%20learning" title=" multi-spectral learning"> multi-spectral learning</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20hazard%20detection" title=" natural hazard detection"> natural hazard detection</a> </p> <a href="https://publications.waset.org/abstracts/146865/multi-spectral-deep-learning-models-for-forest-fire-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28628</span> Spectral Clustering from the Discrepancy View and Generalized Quasirandomness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Bolla">Marianna Bolla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to compare spectral, discrepancy, and degree properties of expanding graph sequences. As we can prove equivalences and implications between them and the definition of the generalized (multiclass) quasirandomness of Lovasz–Sos (2008), they can be regarded as generalized quasirandom properties akin to the equivalent quasirandom properties of the seminal Chung-Graham-Wilson paper (1989) in the one-class scenario. Since these properties are valid for deterministic graph sequences, irrespective of stochastic models, the partial implications also justify for low-dimensional embedding of large-scale graphs and for discrepancy minimizing spectral clustering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20random%20graphs" title="generalized random graphs">generalized random graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=multiway%20discrepancy" title=" multiway discrepancy"> multiway discrepancy</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20modularity%20spectra" title=" normalized modularity spectra"> normalized modularity spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20clustering" title=" spectral clustering"> spectral clustering</a> </p> <a href="https://publications.waset.org/abstracts/95238/spectral-clustering-from-the-discrepancy-view-and-generalized-quasirandomness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28627</span> A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Chen">Kai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguang%20Cui"> Shuguang Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Yin"> Feng Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process" title="Gaussian process">Gaussian process</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20mixture" title=" spectral mixture"> spectral mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stationary" title=" non-stationary"> non-stationary</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution" title=" convolution"> convolution</a> </p> <a href="https://publications.waset.org/abstracts/131675/a-time-varying-and-non-stationary-convolution-spectral-mixture-kernel-for-gaussian-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28626</span> Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Zhaoming">Wang Zhaoming</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao%20Shegang"> Shao Shegang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Xiaorong"> Chen Xiaorong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Yanan"> Qi Yanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Lei"> Tian Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Jian"> Wang Jian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title="spectral analysis">spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement%20aging" title=" asphalt pavement aging"> asphalt pavement aging</a>, <a href="https://publications.waset.org/abstracts/search?q=high-resolution%20remote%20sensing" title=" high-resolution remote sensing"> high-resolution remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20health%20assessment" title=" pavement health assessment"> pavement health assessment</a> </p> <a href="https://publications.waset.org/abstracts/189326/quantitative-assessment-of-road-infrastructure-health-using-high-resolution-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28625</span> Spectral Assessing of Topographic Effects on Seismic Behavior of Trapezoidal Hill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amelsakhi">M. Amelsakhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sohrabi-Bidar"> A. Sohrabi-Bidar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shareghi"> A. Shareghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important issues about the structural damages caused by earthquake is the evaluating of the spectral response of the site on which the construction is built. This fact has demonstrated during many earlier earthquakes and many researchers’ reports have concerned with it. According to these reports, features of the site materials and geometry of the ground surface are considered the main factors. This study concentrates on the specific form of topographies like hills. Assessing of spectral responses of different points on the hills and beside demonstrates considerable differences between 1D and 2D methods of geotechnical analyses. A general trend of amplifications on the top of the hills and de-amplifications near the toe of the hills has been appeared within the acceleration, velocity and displacement response spectrums of horizontal motion. Evaluating of spectral responses of different sizes of the hills revealed that as much as the hill-size enlarges differences between spectral responses of 1D and 2D analyses transfers to longer range of periods and becomes wider. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topography%20effect" title="topography effect">topography effect</a>, <a href="https://publications.waset.org/abstracts/search?q=amplification%20ratio" title=" amplification ratio"> amplification ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum" title=" response spectrum"> response spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20resources%20engineering" title=" earth resources engineering"> earth resources engineering</a> </p> <a href="https://publications.waset.org/abstracts/7842/spectral-assessing-of-topographic-effects-on-seismic-behavior-of-trapezoidal-hill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28624</span> Outdoor Anomaly Detection with a Spectroscopic Line Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20J.%20G.%20Somsen">O. J. G. Somsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopic%20line%20imaging" title=" spectroscopic line imaging"> spectroscopic line imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20detection" title=" outdoor detection "> outdoor detection </a> </p> <a href="https://publications.waset.org/abstracts/34329/outdoor-anomaly-detection-with-a-spectroscopic-line-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28623</span> Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal">Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Narayan"> J. P. Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20viscoelastic%20simulation" title="3D viscoelastic simulation">3D viscoelastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=basin-generated%20surface%20waves" title=" basin-generated surface waves"> basin-generated surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=basin-shape-ratio%20effects" title=" basin-shape-ratio effects"> basin-shape-ratio effects</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20spectral%20amplification" title=" average spectral amplification"> average spectral amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=aggravation%20factors%20and%20differential%20ground%20motion" title=" aggravation factors and differential ground motion"> aggravation factors and differential ground motion</a> </p> <a href="https://publications.waset.org/abstracts/21727/study-of-effects-of-3d-semi-spheriacl-basin-shape-ratio-on-the-frequency-content-and-spectral-amplitudes-of-the-basin-generated-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28622</span> A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongquan%20Zhao">Yongquan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Huang"> Bo Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20spatial-temporal-spectral%20fusion" title="hybrid spatial-temporal-spectral fusion">hybrid spatial-temporal-spectral fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20resolution%20synthetic%20imagery" title=" high resolution synthetic imagery"> high resolution synthetic imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20regression" title=" least square regression"> least square regression</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20transformation" title=" spectral transformation"> spectral transformation</a> </p> <a href="https://publications.waset.org/abstracts/74667/a-hybrid-image-fusion-model-for-generating-high-spatial-temporal-spectral-resolution-data-using-oli-modis-hyperion-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28621</span> Prediction of Maximum Inter-Story Drifts of Steel Frames Using Intensity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ed%C3%A9n%20Boj%C3%B3rquez">Edén Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Baca"> Victor Baca</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Reyes-Salazar"> Alfredo Reyes-Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gonz%C3%A1lez"> Jorge González</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, simplified equations to predict maximum inter-story drift demands of steel framed buildings are proposed in terms of two ground motion intensity measures based on the acceleration spectral shape. For this aim, the maximum inter-story drifts of steel frames with 4, 6, 8 and 10 stories subjected to narrow-band ground motion records are estimated and compared with the spectral acceleration at first mode of vibration Sa(T1) which is commonly used in earthquake engineering and seismology, and with a new parameter related with the structural response known as INp. It is observed that INp is the parameter best related with the structural response of steel frames under narrow-band motions. Finally, equations to compute maximum inter-story drift demands of steel frames as a function of spectral acceleration and INp are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intensity%20measures" title="intensity measures">intensity measures</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20shape" title=" spectral shape"> spectral shape</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frames" title=" steel frames"> steel frames</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demands" title=" peak demands"> peak demands</a> </p> <a href="https://publications.waset.org/abstracts/42810/prediction-of-maximum-inter-story-drifts-of-steel-frames-using-intensity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28620</span> Multi-Temporal Urban Land Cover Mapping Using Spectral Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Ilme%20Faridatul">Mst Ilme Faridatul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wu"> Bo Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title="land cover">land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal" title=" multi-temporal"> multi-temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20indices" title=" spectral indices"> spectral indices</a> </p> <a href="https://publications.waset.org/abstracts/103491/multi-temporal-urban-land-cover-mapping-using-spectral-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28619</span> Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20L%C3%B3pez">Danilo López</a>, <a href="https://publications.waset.org/abstracts/search?q=Johana%20Hern%C3%A1ndez"> Johana Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Rivas"> Edwin Rivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20user" title=" primary user"> primary user</a> </p> <a href="https://publications.waset.org/abstracts/61993/algorithm-and-software-based-on-multilayer-perceptron-neural-networks-for-estimating-channel-use-in-the-spectral-decision-stage-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28618</span> Design of Transmit Beamspace and DOA Estimation in MIMO Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ilakkiya">S. Ilakkiya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Merline"> A. Merline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20and%20non-adaptive%20spectral%20estimation" title="adaptive and non-adaptive spectral estimation">adaptive and non-adaptive spectral estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival%20estimation" title=" direction of arrival estimation"> direction of arrival estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO%20radar" title=" MIMO radar"> MIMO radar</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20invariance%20property" title=" rotational invariance property"> rotational invariance property</a>, <a href="https://publications.waset.org/abstracts/search?q=transmit" title=" transmit"> transmit</a>, <a href="https://publications.waset.org/abstracts/search?q=receive%20beamforming" title=" receive beamforming "> receive beamforming </a> </p> <a href="https://publications.waset.org/abstracts/30032/design-of-transmit-beamspace-and-doa-estimation-in-mimo-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28617</span> Spectral Analysis Applied to Variables of Oil Wells Profiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Leit%C3%A3o%20Russo">Suzana Leitão Russo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayara%20Laysa%20de%20Oliveira%20Silva"> Mayara Laysa de Oliveira Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Augusto%20Andrade%20Filho"> José Augusto Andrade Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20Hugo%20Simon"> Vitor Hugo Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=well" title=" well"> well</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20extraction" title=" oil extraction"> oil extraction</a> </p> <a href="https://publications.waset.org/abstracts/19979/spectral-analysis-applied-to-variables-of-oil-wells-profiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28616</span> Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyahia">A. Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amir"> M. Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fodil"> M. Fodil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DT" title="DT">DT</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20eddy%20current" title=" pulsed eddy current"> pulsed eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20hat%20wavelet%20mother" title=" Mexican hat wavelet mother"> Mexican hat wavelet mother</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density." title=" power spectral density."> power spectral density.</a> </p> <a href="https://publications.waset.org/abstracts/88425/enhancement-of-pulsed-eddy-current-response-based-on-power-spectral-density-after-continuous-wavelet-transform-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=954">954</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=955">955</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>