CINXE.COM

Zero-Knowledge Proofs of Quantumness

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link href="/css/bootstrap/css/bootstrap.min.css" rel="stylesheet"> <script src="/css/bootstrap/js/bootstrap.bundle.min.js"></script> <title>Zero-Knowledge Proofs of Quantumness</title> <link rel="stylesheet" href="/css/iacrcc.css"> <link rel="icon" type="image/png" href="/favicon.ico"> <style> div.authorname { font-weight: 500; margin-bottom: .3rem; } div.author { margin-bottom: 1rem; } span.keyword { font-weight: 500; } span.keyword a { color: black; } div.reference { margin-bottom: .5rem; } ol.bib li:before { margin-left: -1.5rem; content: "[" counter(bcounter) "] "; margin-right: .5rem; } ol.bib { list-style: none; counter-reset: bcounter; } ol.bib li { counter-increment: bcounter; margin-bottom: .5rem; } .card-header { background-color: #d1e7dd !important; } .authorlist { /* border: 1px solid #aaa; padding: 1rem; margin-bottom: 1rem; background-color: white;*/ } </style> <script> MathJax = { tex: { inlineMath: [['$', '$'], ['\\(', '\\)']], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEnvironments: false, processEscapes: true }, "HTML-CSS": { linebreaks: { automatic: true } } }; </script> <script id="MathJax-script" async src="/js/mathjax/tex-chtml.js"></script> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"> <meta name="DC.Creator.PersonalName" content="Duong Hieu Phan"> <meta name="DC.Creator.PersonalName" content="Weiqiang Wen"> <meta name="DC.Creator.PersonalName" content="Xingyu Yan"> <meta name="DC.Creator.PersonalName" content="Jinwei Zheng"> <meta name="DC.Date.created" content="2025-01-13 16:12:07"> <meta name="DC.Date.dateSubmitted" content="2024-10-08"> <meta name="DC.Date.dateAccepted" content="2024-12-03"> <meta name="DC.Description" xml:lang="en" lang="en" content="&lt;p&gt; With the rapid development of quantum computers, proofs of quantumness have recently become an interesting and intriguing research direction. However, in all current schemes for proofs of quantumness, quantum provers almost invariably face the risk of being maliciously exploited by classical verifiers. In fact, through malicious strategies in interaction with quantum provers, classical verifiers could solve some instances of hard problems that arise from the specific scheme in use. In other words, malicious verifiers can break some schemes (that quantum provers are not aware of) through interaction with quantum provers. All this is due to the lack of formalization that prevents malicious verifiers from extracting useful information in proofs of quantumness.&lt;/p&gt;&lt;p&gt;To address this issue, we formalize zero-knowledge proofs of quantumness. Intuitively, the zero-knowledge property necessitates that the information gained by the classical verifier from interactions with the quantum prover should not surpass what can be simulated using a simulated classical prover interacting with the same verifier. As a result, the new zero-knowledge notion can prevent any malicious verifier from exploiting quantum advantage. Interestingly, we find that the classical zero-knowledge proof is sufficient to compile some existing proofs of quantumness schemes into zero-knowledge proofs of quantumness schemes.&lt;/p&gt;&lt;p&gt;Due to some technical reason, it appears to be more general to require zero-knowledge proof on the verifier side instead of the prover side. Intuitively, this helps to regulate the verifier&#39;s behavior from malicious to be honest-but-curious. As a result, both parties will play not only one role in the proofs of quantumness but also the dual role in the classical zero-knowledge proof.&lt;/p&gt;&lt;p&gt;Specifically, the two principle proofs of quantumness schemes: Shor&#39;s factoring-based scheme and learning with errors-based scheme in [Brakerski et al, FOCS, 2018], can be transformed into zero-knowledge proofs of quantumness by requiring an extractable non-interactive zero-knowledge argument on the verifier side. Notably, the zero-knowledge proofs of quantumness can be viewed as an enhanced security notion for proofs of quantumness. To prevent malicious verifiers from exploiting the quantum device&#39;s capabilities or knowledge, it is advisable to transition existing proofs of quantumness schemes to this framework whenever feasible. &lt;/p&gt;"> <meta name="DC.Format" content="application/pdf"> <meta name="DC.Identifier.DOI" content="10.62056/ayiv4fe-3"> <meta name="DC.Identifier.URI" content="https://cic.iacr.org/p/1/4/24"> <meta name="DC.Language" content="en"> <meta name="DC.Rights" content="Copyright (c) 2023 held by author(s)"> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0/"> <meta name="DC.Source" content="IACR Communications in Cryptology"> <meta name="DC.Source.ISSN" content="3006-5496"> <meta name="DC.Source.Issue" content="4"> <meta name="DC.Source.Volume" content="1"> <meta name="DC.Subject" xml:lang="en" lang="en" content="Quantum cryptography"> <meta name="DC.Subject" xml:lang="en" lang="en" content="Zero-knowledge"> <meta name="DC.Subject" xml:lang="en" lang="en" content="Proofs of quantumness."> <meta name="DC.Title" content="Zero-Knowledge Proofs of Quantumness"> <meta name="DC.Type" content="Text.Serial.Journal"> <meta name="DC.Type.articleType" content="Articles"> <meta name="citation_journal_title" content="IACR Communications in Cryptology"> <meta name="citation_journal_abbrev" content="CiC"> <meta name="citation_issn" content="3006-5496"><meta name="citation_author" content="Duong Hieu Phan"> <meta name="citation_author_institution" content="LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris"> <meta name="citation_author" content="Weiqiang Wen"> <meta name="citation_author_institution" content="LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris"> <meta name="citation_author" content="Xingyu Yan"> <meta name="citation_author_institution" content="State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876"> <meta name="citation_author_institution" content="School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, 100081"> <meta name="citation_author" content="Jinwei Zheng"> <meta name="citation_author_institution" content="LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris"> <meta name="citation_title" content="Zero-Knowledge Proofs of Quantumness"> <meta name="citation_language" content="en"> <meta name="citation_date" content="2025-01-13"> <meta name="citation_volume" content="1"> <meta name="citation_issue" content="4"> <meta name="citation_doi" content="10.62056/ayiv4fe-3"> <meta name="citation_abstract_html_url" content="https://cic.iacr.org/p/1/4/24"> <meta name="citation_keywords" xml:lang="en" lang="en" content="Quantum cryptography"><meta name="citation_keywords" xml:lang="en" lang="en" content="Zero-knowledge"><meta name="citation_keywords" xml:lang="en" lang="en" content="Proofs of quantumness."> <meta name="citation_pdf_url" content="https://cic.iacr.org/p/1/4/24/pdf"> </head> <body> <noscript> <h1 class="text-center">What a lovely hat</h1> <h4 class="text-center">Is it made out of <a href="https://iacr.org/tinfoil.html">tin foil</a>?</h4> </noscript> <div class="pageTop d-flex justify-content-md-around justify-content-between align-items-center"> <a href="https://iacr.org"><img id="logo" class="d-none d-lg-block ms-5" src="/images/iacrlogo_small.png" title="International Association for Cryptologic Research" alt="IACR logo"></a> <span class="headerTitle d-none d-md-block">Communications in Cryptology</span> <span class="headerTitle d-md-none">IACR CiC</span> <div class="dropdown ps-lg-2 me-5"> <button class="btn border-0" type="button" id="dropdownMenuButton1" data-bs-toggle="dropdown" aria-expanded="true"> <img src="/images/search.svg" class="searchIcon" alt="Search Button" style="width:33px;"> </button> <div id="searchDd" class="dropdown-menu dropdown-menu-end bg-transparent border-0" aria-labelledby="dropdownMenuButton1" data-bs-popper="none"> <form action="/search" method="GET" class="me-3"> <div class="input-group"> <input id="searchbox" name="q" type="search" class="form-control shadow-none" autocomplete="off" > <input type="hidden" name="d" value="/var/www/wsgi/cicjournal/webapp/search_index/xapian.db"> <button class="btn btn-outline-dark border border-dark input-group-append"> Search </button> </div> </form> <div id="results" class="bg-light"></div> </div> </div> </div> <nav id="sitenav" class="navbar navbar-expand-md"> <div class="container"> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#collapseContent" aria-controls="collapseContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="collapseContent"> <ul class="navbar-nav nav-fill w-100 justify-content-between"> <li class="nav-item"> <a class="nav-link active" aria-current="page" href="/">Home</a> </li> <li class="nav-item"> <a class="nav-link" href="/contents">Papers</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" role="button" data-bs-toggle="dropdown" aria-expanded="false"> Submissions </a> <ul class="dropdown-menu ms-3 ms-lg-5"> <li><a class="dropdown-item" href="/callforpapers">Call for papers</a></li> <li><a class="dropdown-item" href="/ethics">Publication ethics</a></li> <li><a class="dropdown-item" href="/irregular">Irregular submissions</a></li> <li><a class="dropdown-item" href="/conflicts">Conflict of interest</a></li> <li><a class="dropdown-item" href="/retraction">Retraction policy</a></li> </ul> </li> <li class="nav-item"> <a class="nav-link" href="/faq">FAQ</a> </li> <li class="nav-item"> <a class="nav-link" href="/contact">Contact</a> </li> <li class="nav-item"> <a class="nav-link" href="/board">Editorial board</a> </li> <li class="nav-item dropdown"> <a href="#" class="ms-md-5 nav-link dropdown-toggle" data-bs-toggle="dropdown"><img alt="Login" src="/images/user.svg"></a> <ul class="dropdown-menu"> <li><a href="/login" class="dropdown-item">Admin login</a></li> </ul> </li> </ul> </div> </div> </nav> <main id="mainContent" class="container"> <nav aria-label="breadcrumb" class="mt-3"> <ol class="breadcrumb"> <li class="breadcrumb-item"><a href="/">Home</a></li> <li class="breadcrumb-item"><a href="/v/1">Volume 1</a></li> <li class="breadcrumb-item"><a href="/i/1/4">Issue 4</a></li> <li class="breadcrumb-item active" aria-current="page">24</li> </ol> </nav> <h2>Zero-Knowledge Proofs of Quantumness</h2> <div class="row mt-3"> <div class="col-12 col-md-8"> <h3 class="mt-2">Authors</h3> <div class="fs-4 mb-4 mt-2 d-flex justify-content-between flex-column flex-lg-row"> <div>Duong Hieu Phan, Weiqiang Wen, Xingyu Yan, Jinwei Zheng</div> <button role="button" aria-expanded="false" aria-controls="authorlist" class="ms-4 btn me-3 dropdown-toggle" data-bs-toggle="collapse" data-bs-target="#authorlist">Author Info</button> </div> <div id="authorlist" class="authorlist collapse"> <div class="author"> <div class="authorname">Duong Hieu Phan <a target="_blank" href="https://orcid.org/0000-0003-1136-4064"><img alt="ORCID" class="align-baseline orcidIcon" src="/images/orcid.svg"></a> </div> <div class="ms-4 mb-2"> LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris, France<br> <span class="font-monospace">hieu dot phan at telecom-paris dot fr</span> </div> </div> <div class="author"> <div class="authorname">Weiqiang Wen <a target="_blank" href="https://orcid.org/0000-0001-5272-2572"><img alt="ORCID" class="align-baseline orcidIcon" src="/images/orcid.svg"></a> </div> <div class="ms-4 mb-2"> LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris, France<br> <span class="font-monospace">weiqiang dot wen at telecom-paris dot fr</span> </div> </div> <div class="author"> <div class="authorname">Xingyu Yan <a target="_blank" href="https://orcid.org/0000-0001-9147-6554"><img alt="ORCID" class="align-baseline orcidIcon" src="/images/orcid.svg"></a> </div> <div class="ms-4 mb-2"> State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China<br> School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, 100081, China<br> <span class="font-monospace">yanxy2020 at bupt dot edu dot cn</span> </div> </div> <div class="author"> <div class="authorname">Jinwei Zheng </div> <div class="ms-4 mb-2"> LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris, France<br> <span class="font-monospace">jinwei dot zheng at telecom-paris dot fr</span> </div> </div> </div> <div class="mb-3"> <strong class="fs-4">Keywords: </strong> <span class="badge p-2 text-bg-light keyword ms-2 my-1" alt="Quantum cryptography" title="Quantum cryptography"><a href="/search?q=Quantum%20cryptography">Quantum cryptography</a></span> <span class="badge p-2 text-bg-light keyword ms-2 my-1" alt="Zero-knowledge" title="Zero-knowledge"><a href="/search?q=Zero-knowledge">Zero-knowledge</a></span> <span class="badge p-2 text-bg-light keyword ms-2 my-1" alt="Proofs of quantumness." title="Proofs of quantumness."><a href="/search?q=Proofs%20of%20quantumness.">Proofs of quantumness.</a></span> </div> <h3 class="mt-4">Abstract</h3> <p><p> With the rapid development of quantum computers, proofs of quantumness have recently become an interesting and intriguing research direction. However, in all current schemes for proofs of quantumness, quantum provers almost invariably face the risk of being maliciously exploited by classical verifiers. In fact, through malicious strategies in interaction with quantum provers, classical verifiers could solve some instances of hard problems that arise from the specific scheme in use. In other words, malicious verifiers can break some schemes (that quantum provers are not aware of) through interaction with quantum provers. All this is due to the lack of formalization that prevents malicious verifiers from extracting useful information in proofs of quantumness.</p><p>To address this issue, we formalize zero-knowledge proofs of quantumness. Intuitively, the zero-knowledge property necessitates that the information gained by the classical verifier from interactions with the quantum prover should not surpass what can be simulated using a simulated classical prover interacting with the same verifier. As a result, the new zero-knowledge notion can prevent any malicious verifier from exploiting quantum advantage. Interestingly, we find that the classical zero-knowledge proof is sufficient to compile some existing proofs of quantumness schemes into zero-knowledge proofs of quantumness schemes.</p><p>Due to some technical reason, it appears to be more general to require zero-knowledge proof on the verifier side instead of the prover side. Intuitively, this helps to regulate the verifier's behavior from malicious to be honest-but-curious. As a result, both parties will play not only one role in the proofs of quantumness but also the dual role in the classical zero-knowledge proof.</p><p>Specifically, the two principle proofs of quantumness schemes: Shor's factoring-based scheme and learning with errors-based scheme in [Brakerski et al, FOCS, 2018], can be transformed into zero-knowledge proofs of quantumness by requiring an extractable non-interactive zero-knowledge argument on the verifier side. Notably, the zero-knowledge proofs of quantumness can be viewed as an enhanced security notion for proofs of quantumness. To prevent malicious verifiers from exploiting the quantum device's capabilities or knowledge, it is advisable to transition existing proofs of quantumness schemes to this framework whenever feasible. </p></p> <h3 class="mb-3">References</h3> <div class="d-flex"> <div style="min-width:9rem;">[AA11]</div> <div><div id="ref-aaronson2011computational" class="bibitem">Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In <em>43rd Annual ACM Symposium on Theory of Computing</em>, pages 333–342. 2011. DOI: <a href="https://doi.org/10.1145/1993636.1993682">10.1145/1993636.1993682</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Scott+Aaronson+Alex+Arkhipov+The+computational+complexity+of+linear+optics+2011" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Scott+Aaronson+Alex+Arkhipov&amp;title=The+computational+complexity+of+linear+optics&amp;submittedafter=2010&amp;submittedbefore=2012" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[AAB<sup>+</sup>19]</div> <div><div id="ref-Arute2019quantum" class="bibitem">Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, and David A and others Buell. Quantum supremacy using a programmable superconducting processor. <em>Nature</em>, 574(7779):505–510, 2019. DOI: <a href="https://doi.org/10.1038/s41586-019-1666-5">10.1038/s41586-019-1666-5</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Frank+Arute+Kunal+Arya+Ryan+Babbush+Dave+Bacon+Joseph+C+Bardin+Rami+Barends+Rupak+Biswas+Sergio+Boixo+Fernando+GSL+Brandao+David+A+and+others+Buell+Quantum+supremacy+using+a+programmable+superconducting+processor+2019" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Frank+Arute+Kunal+Arya+Ryan+Babbush+Dave+Bacon+Joseph+C+Bardin+Rami+Barends+Rupak+Biswas+Sergio+Boixo+Fernando+GSL+Brandao+David+A+and+others+Buell&amp;title=Quantum+supremacy+using+a+programmable+superconducting+processor&amp;submittedafter=2018&amp;submittedbefore=2020" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[ACGH20]</div> <div><div id="ref-alagic2020non" class="bibitem">Gorjan Alagic, Andrew M Childs, Alex B Grilo, and Shih-Han Hung. Non-interactive classical verification of quantum computation. In <em>Theory of Cryptography Conference</em>, pages 153–180. 2020. Springer. DOI: <a href="https://doi.org/https://doi.org/10.1007/978-3-030-64381-2_6">https://doi.org/10.1007/978-3-030-64381-2_6</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Gorjan+Alagic+Andrew+M+Childs+Alex+B+Grilo+Shih-Han+Hung+Non-interactive+classical+verification+of+quantum+computation+2020" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Gorjan+Alagic+Andrew+M+Childs+Alex+B+Grilo+Shih-Han+Hung&amp;title=Non-interactive+classical+verification+of+quantum+computation&amp;submittedafter=2019&amp;submittedbefore=2021" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[AMMW24]</div> <div><div id="ref-alnawakhtha2024lattice" class="bibitem">Yusuf Alnawakhtha, Atul Mantri, and Daochen Miller Carl A and Wang. Lattice-based quantum advantage from rotated measurements. <em>Quantum</em>, 8:1399, 2024. DOI: <a href="https://doi.org/https://doi.org/10.22331/q-2024-07-04-1399">https://doi.org/10.22331/q-2024-07-04-1399</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Yusuf+Alnawakhtha+Atul+Mantri+Daochen+Miller+Carl+A+and+Wang+Lattice-based+quantum+advantage+from+rotated+measurements+2024" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Yusuf+Alnawakhtha+Atul+Mantri+Daochen+Miller+Carl+A+and+Wang&amp;title=Lattice-based+quantum+advantage+from+rotated+measurements&amp;submittedafter=2023&amp;submittedbefore=2025" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[BCM<sup>+</sup>18]</div> <div><div id="ref-brakerski2021cryptographic" class="bibitem">Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device. In <em>59th Annual Symposium on Foundations of Computer Science</em>, pages 320-331. 2018. DOI: <a href="https://doi.org/10.1109/FOCS.2018.00038">10.1109/FOCS.2018.00038</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Zvika+Brakerski+Paul+Christiano+Urmila+Mahadev+Umesh+Vazirani+Thomas+Vidick+A+Cryptographic+Test+of+Quantumness+and+Certifiable+Randomness+from+a+Single+Quantum+Device+2018" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Zvika+Brakerski+Paul+Christiano+Urmila+Mahadev+Umesh+Vazirani+Thomas+Vidick&amp;title=A+Cryptographic+Test+of+Quantumness+and+Certifiable+Randomness+from+a+Single+Quantum+Device&amp;submittedafter=2017&amp;submittedbefore=2019" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[BG92]</div> <div><div id="ref-bellare1992defining" class="bibitem">Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In <em>Advances in Cryptology - CRYPTO 1992</em>, pages 390–420. 1992. Springer. DOI: <a href="https://doi.org/https://doi.org/10.1007/3-540-48071-4_28">https://doi.org/10.1007/3-540-48071-4_28</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Mihir+Bellare+Oded+Goldreich+On+defining+proofs+of+knowledge+1992" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Mihir+Bellare+Oded+Goldreich&amp;title=On+defining+proofs+of+knowledge&amp;submittedafter=1991&amp;submittedbefore=1993" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[BGKM<sup>+</sup>23]</div> <div><div id="ref-brakerski2023simple" class="bibitem">Zvika Brakerski, Alexandru Gheorghiu, Gregory D. Kahanamoku-Meyer, Eitan Porat, and Thomas Vidick. Simple Tests of Quantumness Also Certify Qubits. In <em>Advances in Cryptology – CRYPTO 2023</em>, pages 162–191, Cham. 2023. Springer Nature Switzerland. DOI: <a href="https://doi.org/https://doi.org/10.1007/978-3-031-38554-4_6">https://doi.org/10.1007/978-3-031-38554-4_6</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Zvika+Brakerski+Alexandru+Gheorghiu+Gregory+D.+Kahanamoku-Meyer+Eitan+Porat+Thomas+Vidick+Simple+Tests+of+Quantumness+Also+Certify+Qubits+2023" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Zvika+Brakerski+Alexandru+Gheorghiu+Gregory+D.+Kahanamoku-Meyer+Eitan+Porat+Thomas+Vidick&amp;title=Simple+Tests+of+Quantumness+Also+Certify+Qubits&amp;submittedafter=2022&amp;submittedbefore=2024" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[BJS11]</div> <div><div id="ref-bremner2011classical" class="bibitem">Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. <em>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</em>, 467(2126):459–472, 2011. DOI: <a href="https://doi.org/https://doi.org/10.1098/rspa.2010.0301">https://doi.org/10.1098/rspa.2010.0301</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Michael+J+Bremner+Richard+Jozsa+Dan+J+Shepherd+Classical+simulation+of+commuting+quantum+computations+implies+collapse+of+the+polynomial+hierarchy+2011" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Michael+J+Bremner+Richard+Jozsa+Dan+J+Shepherd&amp;title=Classical+simulation+of+commuting+quantum+computations+implies+collapse+of+the+polynomial+hierarchy&amp;submittedafter=2010&amp;submittedbefore=2012" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[BKVV20]</div> <div><div id="ref-brakerski2020simpler" class="bibitem">Zvika Brakerski, Venkata Koppula, Umesh Vazirani, and Thomas Vidick. Simpler Proofs of Quantumness. In <em>15th Conference on the Theory of Quantum Computation, Communication and Cryptography</em>. 2020. DOI: <a href="https://doi.org/https://doi.org/10.4230/LIPIcs.TQC.2020.8">https://doi.org/10.4230/LIPIcs.TQC.2020.8</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Zvika+Brakerski+Venkata+Koppula+Umesh+Vazirani+Thomas+Vidick+Simpler+Proofs+of+Quantumness+2020" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Zvika+Brakerski+Venkata+Koppula+Umesh+Vazirani+Thomas+Vidick&amp;title=Simpler+Proofs+of+Quantumness&amp;submittedafter=2019&amp;submittedbefore=2021" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[CGJL23]</div> <div><div id="ref-chardouvelis2023quantum" class="bibitem">Orestis Chardouvelis, Vipul Goyal, Aayush Jain, and Jiahui Liu. <a href="https://eprint.iacr.org/2023/1640">Quantum Key Leasing for PKE and FHE with a Classical Lessor</a>. Cryptology ePrint Archive, Paper 2023/1640. 2023.</div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Orestis+Chardouvelis+Vipul+Goyal+Aayush+Jain+Jiahui+Liu+Quantum+Key+Leasing+for+PKE+and+FHE+with+a+Classical+Lessor+2023" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Orestis+Chardouvelis+Vipul+Goyal+Aayush+Jain+Jiahui+Liu&amp;title=Quantum+Key+Leasing+for+PKE+and+FHE+with+a+Classical+Lessor&amp;submittedafter=2022&amp;submittedbefore=2024" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[GMW86]</div> <div><div id="ref-goldreich1986proofs" class="bibitem">Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In <em>27th Annual Symposium on Foundations of Computer Science</em>. 1986. DOI: <a href="https://doi.org/doi: 10.1109/SFCS.1986.47">doi: 10.1109/SFCS.1986.47</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Oded+Goldreich+Silvio+Micali+Avi+Wigderson+Proofs+that+yield+nothing+but+their+validity+and+a+methodology+of+cryptographic+protocol+design+1986" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Oded+Goldreich+Silvio+Micali+Avi+Wigderson&amp;title=Proofs+that+yield+nothing+but+their+validity+and+a+methodology+of+cryptographic+protocol+design&amp;submittedafter=1985&amp;submittedbefore=1987" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[JK25]</div> <div><div id="ref-JK23" class="bibitem">Ruta Jawale and Dakshita Khurana. Unclonable Non-interactive Zero-Knowledge. In <em>Advances in Cryptology – ASIACRYPT 2024</em>, pages 94–128, Singapore. 2025. Springer Nature Singapore. DOI: <a href="https://doi.org/https://doi.org/10.1007/978-981-96-0947-5_4">https://doi.org/10.1007/978-981-96-0947-5_4</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Ruta+Jawale+Dakshita+Khurana+Unclonable+Non-interactive+Zero-Knowledge+2025" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Ruta+Jawale+Dakshita+Khurana&amp;title=Unclonable+Non-interactive+Zero-Knowledge&amp;submittedafter=2024&amp;submittedbefore=2026" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[KLVY23]</div> <div><div id="ref-KLVY" class="bibitem">Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum advantage from any non-local game. In <em>55th Annual ACM Symposium on Theory of Computing</em>, pages 1617–1628. 2023. DOI: <a href="https://doi.org/10.1145/3564246.3585164">10.1145/3564246.3585164</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Yael+Kalai+Alex+Lombardi+Vinod+Vaikuntanathan+Lisa+Yang+Quantum+advantage+from+any+non-local+game+2023" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Yael+Kalai+Alex+Lombardi+Vinod+Vaikuntanathan+Lisa+Yang&amp;title=Quantum+advantage+from+any+non-local+game&amp;submittedafter=2022&amp;submittedbefore=2024" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[KMCVY22]</div> <div><div id="ref-KCVY" class="bibitem">Gregory D Kahanamoku-Meyer, Soonwon Choi, Umesh V Vazirani, and Norman Y Yao. Classically verifiable quantum advantage from a computational Bell test. <em>Nature Physics</em>, 18(8):918–924, 2022. DOI: <a href="https://doi.org/https://doi.org/10.1038/s41567-022-01643-7">https://doi.org/10.1038/s41567-022-01643-7</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Gregory+D+Kahanamoku-Meyer+Soonwon+Choi+Umesh+V+Vazirani+Norman+Y+Yao+Classically+verifiable+quantum+advantage+from+a+computational+Bell+test+2022" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Gregory+D+Kahanamoku-Meyer+Soonwon+Choi+Umesh+V+Vazirani+Norman+Y+Yao&amp;title=Classically+verifiable+quantum+advantage+from+a+computational+Bell+test&amp;submittedafter=2021&amp;submittedbefore=2023" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[MLA<sup>+</sup>22]</div> <div><div id="ref-madsen2022quantum" class="bibitem">Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais, Trevor Vincent, Jacob FF Bulmer, Filippo M Miatto, Leonhard Neuhaus, Lukas G Helt, Matthew J Collins, and others. Quantum computational advantage with a programmable photonic processor. <em>Nature</em>, 606(7912):75–81, 2022. DOI: <a href="https://doi.org/https://doi.org/10.1038/s41586-022-04725-x">https://doi.org/10.1038/s41586-022-04725-x</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Lars+S+Madsen+Fabian+Laudenbach+Mohsen+Falamarzi+Askarani+Fabien+Rortais+Trevor+Vincent+Jacob+FF+Bulmer+Filippo+M+Miatto+Leonhard+Neuhaus+Lukas+G+Helt+Matthew+J+Collins+others+Quantum+computational+advantage+with+a+programmable+photonic+processor+2022" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Lars+S+Madsen+Fabian+Laudenbach+Mohsen+Falamarzi+Askarani+Fabien+Rortais+Trevor+Vincent+Jacob+FF+Bulmer+Filippo+M+Miatto+Leonhard+Neuhaus+Lukas+G+Helt+Matthew+J+Collins+others&amp;title=Quantum+computational+advantage+with+a+programmable+photonic+processor&amp;submittedafter=2021&amp;submittedbefore=2023" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[MP13]</div> <div><div id="ref-C:MicPei13" class="bibitem">Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with Small Parameters. In <em>Advances in Cryptology – CRYPTO 2013</em>, pages 21–39, Berlin, Heidelberg. 2013. Springer Berlin Heidelberg. DOI: <a href="https://doi.org/https://doi.org/10.1007/978-3-642-40041-4_2">https://doi.org/10.1007/978-3-642-40041-4_2</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Daniele+Micciancio+Chris+Peikert+Hardness+of+SIS+and+LWE+with+Small+Parameters+2013" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Daniele+Micciancio+Chris+Peikert&amp;title=Hardness+of+SIS+and+LWE+with+Small+Parameters&amp;submittedafter=2012&amp;submittedbefore=2014" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[Reg24]</div> <div><div id="ref-regev2023efficient" class="bibitem">Oded Regev. An efficient quantum factoring algorithm. <em>Journal of the ACM</em>, 2024. DOI: <a href="https://doi.org/https://doi.org/10.1145/3708471">https://doi.org/10.1145/3708471</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Oded+Regev+An+efficient+quantum+factoring+algorithm+2024" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Oded+Regev&amp;title=An+efficient+quantum+factoring+algorithm&amp;submittedafter=2023&amp;submittedbefore=2025" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[Sho94]</div> <div><div id="ref-shor1994algorithms" class="bibitem">Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In <em>35th Annual Symposium on Foundations of Computer Science</em>, pages 124–134. 1994. IEEE. DOI: <a href="https://doi.org/10.1109/SFCS.1994.365700">10.1109/SFCS.1994.365700</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Peter+W+Shor+Algorithms+for+quantum+computation%3A+discrete+logarithms+and+factoring+1994" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Peter+W+Shor&amp;title=Algorithms+for+quantum+computation%3A+discrete+logarithms+and+factoring&amp;submittedafter=1993&amp;submittedbefore=1995" target="_blank" class="ms-3">ePrint</a> </div> <div class="d-flex"> <div style="min-width:9rem;">[WBC<sup>+</sup>21]</div> <div><div id="ref-wu2021strong" class="bibitem">Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, and others. Strong quantum computational advantage using a superconducting quantum processor. <em>Physical Review Letters</em>, 127(18):180501, 2021. DOI: <a href="https://doi.org/https://doi.org/10.1103/physrevlett.127.180501">https://doi.org/10.1103/physrevlett.127.180501</a></div></div> </div> <div class="text-end mb-4"> <a href="https://scholar.google.com/scholar?hl=en&amp;q=Yulin+Wu+Wan-Su+Bao+Sirui+Cao+Fusheng+Chen+Ming-Cheng+Chen+Xiawei+Chen+Tung-Hsun+Chung+Hui+Deng+Yajie+Du+Daojin+Fan+others+Strong+quantum+computational+advantage+using+a+superconducting+quantum+processor+2021" target="_blank" class="ms-3">Google Scholar</a> <a href="https://eprint.iacr.org/search?relevance=on&amp;authors=Yulin+Wu+Wan-Su+Bao+Sirui+Cao+Fusheng+Chen+Ming-Cheng+Chen+Xiawei+Chen+Tung-Hsun+Chung+Hui+Deng+Yajie+Du+Daojin+Fan+others&amp;title=Strong+quantum+computational+advantage+using+a+superconducting+quantum+processor&amp;submittedafter=2020&amp;submittedbefore=2022" target="_blank" class="ms-3">ePrint</a> </div> </div> <div class="col-12 col-md-4"> <p class="mt-4"> <a class="btn btn-outline-dark" href="/p/1/4/24/pdf"><img alt="PDF" class="icon" src="/images/file-pdf.svg">PDF</a> <img style="margin-left: 1rem;max-width: 1.2rem;" src="/images/open_access.svg" title="Open access" alt="Open access"> </p> <div class="my-4"> <span class="fw-bold me-2">DOI:</span> <a href="https://doi.org/10.62056/ayiv4fe-3">https://doi.org/10.62056/ayiv4fe-3</a> </div> <div class="card mb-4"> <h5 class="card-header">History</h5> <div class="card-body"> <strong>Submitted</strong>: 2024-10-08<br> <strong>Accepted</strong>: 2024-12-03<br> <strong>Published</strong>: 2025-01-13<br> <!-- begin crossmark --> <script src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js"></script> <a data-target="crossmark"><img style="margin-top:4px;" src="https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_horizontal.svg" width="150" /></a> <!-- end crossmark --> </div> </div> <div class="card mb-4"> <h5 class="card-header">How to cite</h5> <div class="card-body"> <p>Duong Hieu Phan, Weiqiang Wen, Xingyu Yan, and Jinwei Zheng, Zero-Knowledge Proofs of Quantumness. <span class="fst-italic">IACR Communications in Cryptology</span>, vol. 1, no. 4, Jan 13, 2025, doi: 10.62056/ayiv4fe-3. </p> <button type="button" id="citationModalLabel" class="float-end btn btn-outline-dark" data-bs-toggle="modal" data-bs-target="#citationModal"> BibTeX, etc </button> </div> </div> <div class="card mb-4"> <h5 class="card-header">License</h5> <div class="card-body"> <p>Copyright is held by the author(s)</p> <p> This work is licensed under a <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution (CC BY)</a> license. </p> </div> </div> </div> </div> <div class="modal fade" id="citationModal" tabindex="-1" aria-labelledby="citationModalLabel" aria-hidden="true"> <div class="modal-dialog modal-xl"> <div class="modal-content"> <div class="modal-header"> <h1 class="modal-title fs-3">How to cite this</h1> <button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button> </div> <div class="modal-body p-4"> <ul class="nav nav-tabs" id="myTab" role="tablist"> <li class="nav-item" role="presentation"> <button class="nav-link active" id="bibtex-tab" data-bs-toggle="tab" data-bs-target="#bibtex-pane" type="button" role="tab" aria-controls="bibtex-pane" aria-selected="true">BibTeX</button> </li> <li class="nav-item" role="presentation"> <button class="nav-link" id="ris-tab" data-bs-toggle="tab" data-bs-target="#ris-pane" type="button" role="tab" aria-controls="ris-pane" aria-selected="false">RIS/Endnote/Zotero/Mendeley</button> </li> <li class="nav-item" role="presentation"> <button class="nav-link" id="text-tab" data-bs-toggle="tab" data-bs-target="#text-pane" type="button" role="tab" aria-controls="text-pane" aria-selected="false">Text</button> </li> </ul> <div class="tab-content p-4"> <div class="tab-pane active" id="bibtex-pane" role="tabpanel" aria-labelledby="bibtex-tab" tabindex="0"> <pre id="bib">@article{CiC-1-4-24, author = &#34;Phan, Duong Hieu and Wen, Weiqiang and Yan, Xingyu and Zheng, Jinwei&#34;, journal = &#34;{IACR} {C}ommunications in {C}ryptology&#34;, publisher = &#34;{I}nternational {A}ssociation for {C}ryptologic {R}esearch&#34;, title = &#34;Zero-Knowledge Proofs of Quantumness&#34;, volume = &#34;1&#34;, number = &#34;4&#34;, date = &#34;2025-01-13&#34;, year = &#34;2025&#34;, issn = &#34;3006-5496&#34;, doi = &#34;10.62056/ayiv4fe-3&#34; } </pre> <button id="bibtexcopy" class="btn btn-sm btn-primary" aria-label="Copy to clipboard" onclick="copyMetadata('bibtexcopy', 'bib')">Copy to clipboard</button> <button id="bibtexdownload" class="ms-3 btn btn-sm btn-primary" aria-label="Download BibTeX .bib file" onclick="sendCitation('bib')">Download .bib file</button> </div> <div class="tab-pane" id="ris-pane" role="tabpanel" aria-labelledby="ris-tab" tabindex="0"> <pre id="ris">TY - JOUR AU - Phan, Duong AU - Wen, Weiqiang AU - Yan, Xingyu AU - Zheng, Jinwei PY - 2025 TI - Zero-Knowledge Proofs of Quantumness JF - IACR Communications in Cryptology JA - CIC VL - 1 IS - 4 DO - 10.62056/ayiv4fe-3 UR - https://doi.org/10.62056/ayiv4fe-3 AB - &lt;p&gt; With the rapid development of quantum computers, proofs of quantumness have recently become an interesting and intriguing research direction. However, in all current schemes for proofs of quantumness, quantum provers almost invariably face the risk of being maliciously exploited by classical verifiers. In fact, through malicious strategies in interaction with quantum provers, classical verifiers could solve some instances of hard problems that arise from the specific scheme in use. In other words, malicious verifiers can break some schemes (that quantum provers are not aware of) through interaction with quantum provers. All this is due to the lack of formalization that prevents malicious verifiers from extracting useful information in proofs of quantumness.&lt;/p&gt;&lt;p&gt;To address this issue, we formalize zero-knowledge proofs of quantumness. Intuitively, the zero-knowledge property necessitates that the information gained by the classical verifier from interactions with the quantum prover should not surpass what can be simulated using a simulated classical prover interacting with the same verifier. As a result, the new zero-knowledge notion can prevent any malicious verifier from exploiting quantum advantage. Interestingly, we find that the classical zero-knowledge proof is sufficient to compile some existing proofs of quantumness schemes into zero-knowledge proofs of quantumness schemes.&lt;/p&gt;&lt;p&gt;Due to some technical reason, it appears to be more general to require zero-knowledge proof on the verifier side instead of the prover side. Intuitively, this helps to regulate the verifier&#39;s behavior from malicious to be honest-but-curious. As a result, both parties will play not only one role in the proofs of quantumness but also the dual role in the classical zero-knowledge proof.&lt;/p&gt;&lt;p&gt;Specifically, the two principle proofs of quantumness schemes: Shor&#39;s factoring-based scheme and learning with errors-based scheme in [Brakerski et al, FOCS, 2018], can be transformed into zero-knowledge proofs of quantumness by requiring an extractable non-interactive zero-knowledge argument on the verifier side. Notably, the zero-knowledge proofs of quantumness can be viewed as an enhanced security notion for proofs of quantumness. To prevent malicious verifiers from exploiting the quantum device&#39;s capabilities or knowledge, it is advisable to transition existing proofs of quantumness schemes to this framework whenever feasible. &lt;/p&gt; ER -</pre> <button id="riscopy" class="btn btn-sm btn-primary" aria-label="Copy to clipboard" onclick="copyMetadata('riscopy', 'ris')">Copy to clipboard</button> <button id="risdownload" class="ms-3 btn btn-sm btn-primary" aria-label="Download RIS file" onclick="sendCitation('ris')">Download .ris file</button> </div> <div class="tab-pane" id="text-pane" role="tabpanel" aria-labelledby="text-tab" tabindex="0"> <div class="w-75" id="textcitation">Duong Hieu Phan, Weiqiang Wen, Xingyu Yan, and Jinwei Zheng, Zero-Knowledge Proofs of Quantumness. <span class="fst-italic">IACR Communications in Cryptology</span>, vol. 1, no. 4, Jan 13, 2025, doi: 10.62056/ayiv4fe-3.</div> <button id="textcopy" class="btn btn-sm btn-primary mt-3" aria-label="Copy to clipboard" onclick="copyMetadata('textcopy', 'textcitation')">Copy to clipboard</button> </div> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="modal fade" id="citationsModal" tabindex="-1" aria-labelledby="citationsModalLabel" aria-hidden="true"> <div class="modal-dialog modal-dialog-scrollable modal-lg"> <div class="modal-content"> <div class="modal-header"> <h1 class="modal-title fs-3">Known citations</h1> <button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button> </div> <div class="modal-body p-4"> <p> We do not crawl the web, so we are only able to identify citations from papers that are registered with a DOI in crossref.org and the publisher reports their citations to crossref, and crossref can identify a DOI from the reference. That includes (most) articles from Springer and many from ACM, but it excludes citations from USENIX because they don't issue DOIs. It also excludes citations from arxiv and eprint. You may find more citations in <a href="https://scholar.google.com/scholar?hl=en&q=Zero-Knowledge+Proofs+of+Quantumness">Google Scholar</a>. </p> <ol> </ol> </div> <div class="modal-footer"> <button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button> </div> </div> </div> </div> <script> function copyMetadata(buttid, id) { let range = document.createRange(); range.selectNode(document.getElementById(id)); window.getSelection().removeAllRanges(); window.getSelection().addRange(range); document.execCommand('copy'); window.getSelection().removeAllRanges(); const copyTooltip = new bootstrap.Tooltip('#' + buttid, {trigger: 'manual', title: 'Copied!'}); copyTooltip.show(); setTimeout(function() { copyTooltip.dispose(); }, 2000); } function sendCitation(typ) { // typ is 'bib' or 'ris' let data = document.getElementById(typ).innerHTML; atag = document.createElement('a'); atag.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(data)); atag.setAttribute('download', '1-4-24.' + typ); if (document.createEvent) { let event = document.createEvent('MouseEvents'); event.initEvent('click', true, true); atag.dispatchEvent(event); } else { atag.click(); } } </script> </main> <div class="container-fluid mt-auto" id="pageFooter"> </div> <footer class="text-center footer py-3"> <small> <a href="https://iacr.org/copyright.html">Copyright © 2025</a> <span class="d-none d-md-inline">by the </span><span class="d-md-none">IACR</span> <span class="d-none d-md-inline">International Association for Cryptologic Research</span> <span class="d-none d-md-inline">• </span><br class="d-md-none"> <a href="https://iacr.org/privacy.html">Privacy Policy</a> </small> </footer> <script id="results-template" type="text/x-handlebars-template"> <div class="p-3 shadow" style="margin-bottom:1rem;max-height:70vh;overflow-y:scroll"> <p>{{estimated_results}} results (if more than 100, then refine your query)</p> <ol> {{#each results}} <li role="presentation"><a href="{{url}}">{{title}}</a><br> {{#each authors }}{{this}}{{#unless @last}}, {{/unless}}{{/each}}</li> {{/each}} </ol> </div> </script> <script src="/static/js/handlebars-v4.7.7.js"></script> <script> var theTemplateScript = document.getElementById('results-template').innerHTML; var resultsTemplate = Handlebars.compile(theTemplateScript); var textinput = document.getElementById('searchbox'); // Returns a function, that, as long as it continues to be invoked, will not // be triggered. The function will be called after it stops being called for // N milliseconds. If `immediate` is passed, trigger the function on the // leading edge, instead of the trailing. function debounce(func, wait, immediate) { var timeout; return function() { var context = this, args = arguments; var later = function() { timeout = null; if (!immediate) func.apply(context, args); }; var callNow = immediate && !timeout; clearTimeout(timeout); timeout = setTimeout(later, wait); if (callNow) func.apply(context, args); }; }; let controller; let signal; var doSearch = debounce(function() { args = {'d': '/var/www/wsgi/cicjournal/webapp/search_index/xapian.db'} if (textinput.value) { args['q'] = textinput.value; if (controller !== undefined) { console.log('killing'); controller.abort(); } controller = new AbortController(); signal = controller.signal; let search_url = "https://cic.iacr.org/api/search" + "?" + new URLSearchParams(args); console.log(search_url); fetch(search_url, {signal}) .then((response) => response.json()) .then((data) => { console.log(data); let elem = document.getElementById('view'); if (elem) {elem.innerHTML = '';} if (data.results.length > 0) { document.getElementById('results').innerHTML = resultsTemplate(data); } else { document.getElementById('results').innerHTML = '<div class="p-3 shadow">no results</div>'; } controller = undefined; }).catch((error) => { console.log('error in fetch'); console.log(error); }); } else { console.log('no query'); } }, 500); // only after 250 ms. document.querySelectorAll('input').forEach((elem) => { elem.addEventListener('input', doSearch); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10