CINXE.COM
Search results for: column orientation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: column orientation</title> <meta name="description" content="Search results for: column orientation"> <meta name="keywords" content="column orientation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="column orientation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="column orientation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1837</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: column orientation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1837</span> Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saraswati%20Verma">Saraswati Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Batra"> Ankit Batra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20storey" title="soft storey">soft storey</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20irregularity" title=" mass irregularity"> mass irregularity</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20irregularity" title=" geometric irregularity"> geometric irregularity</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20orientation" title=" column orientation"> column orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20column" title=" square column"> square column</a> </p> <a href="https://publications.waset.org/abstracts/6735/effect-of-column-stiffness-and-orientation-on-seismic-behaviour-of-buildings-with-vertical-irregularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Study of Effect of Steering Column Orientation and Operator Platform Position on the Hand Vibration in Compactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Bandaru">Sunil Bandaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Yv"> Suresh Yv</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Vanapalli"> Srinivas Vanapalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy machinery especially compactors has more vibrations induced from the compactor mechanism than the engines. Since the operator’s comfort is most important in any of the machines, this paper shows interest in studying the vibrations on the steering wheel for a double drum compactor. As there are no standard procedures available for testing vibrations on the steering wheel of double drum compactors, this paper tries to evaluate the vibrations on the steering wheel by considering most of the possibilities. In addition to the feasibility for the operator to adjust the steering wheel tilt as in the case of automotive, there is an option for the operator to change the orientation of the operator platform for the complete view of the road’s edge on both the ends of the front and rear drums. When the orientation is either +/-180°, the operator will be closer to the compactor mechanism; also there is a possibility for the shuffle in the modes with respect to the operator. Hence it is mandatory to evaluate the vibrations levels in both cases. This paper attempts to evaluate the vibrations on the steering wheel by considering the two operator platform positions and three steering wheel tilting angles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEA" title="FEA">FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=CAE" title=" CAE"> CAE</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20column" title=" steering column"> steering column</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20column%20orientation%20position" title=" steering column orientation position"> steering column orientation position</a> </p> <a href="https://publications.waset.org/abstracts/139895/study-of-effect-of-steering-column-orientation-and-operator-platform-position-on-the-hand-vibration-in-compactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Mechanical Behavior of CFTR Column Joint under Pull out Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasruddin%20Junus">Nasruddin Junus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFTR column is one of the improvements CFT columns by inserting reinforcing steel bars into infill concrete. The presence of inserting reinforcing steel bars is increasing the excellent structural performance of the CFT column, especially on the fire-resisting performance. Investigation on the mechanical behavior of CFTR column connection is summarized in the three parts; column to column joint, column to beam connection, and column base. Experiment that reported in this paper is concerned on the mechanical behavior of CFTR column joint under pull out testing, especially on its stress transfer mechanism. A number series of the pull out test on the CFT with inserting reinforcing steel bar are conducted. Ten test specimens are designed, constructed, and tested to examine experimentally the effect of the size of square steel tube, size of the bearing plate, length of embedment steel bars, kind of steel bars, and the numbers of rib plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFTR%20column" title="CFTR column">CFTR column</a>, <a href="https://publications.waset.org/abstracts/search?q=pull%20out" title=" pull out"> pull out</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20mechanism" title=" transfer mechanism"> transfer mechanism</a> </p> <a href="https://publications.waset.org/abstracts/43639/mechanical-behavior-of-cftr-column-joint-under-pull-out-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Effectiveness of Column Geometry in High-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Man%20Singh%20Meena">Man Singh Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building" title="high-rise building">high-rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20geometry" title=" column geometry"> column geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20modelling" title=" building modelling"> building modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ETABS%20analysis" title=" ETABS analysis"> ETABS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20design" title=" building design"> building design</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/177789/effectiveness-of-column-geometry-in-high-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> A Study on Determining Market Orientation, Innovation Orientation and Firm Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emel%20Gelmez">Emel Gelmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20%C3%96zilhan"> Derya Özilhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the relationship between market orientation, innovation orientation and firm performance in the hotel enterprises in Konya was examined. Research data was obtained by survey method and the research was conducted on the enterprises operating in tourism business in Konya. Hypothesis were tested in terms of the main aim of the present study. According to the findings it was determined that there is a positive and significant relationship between each parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firm%20performance" title="firm performance">firm performance</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20orientation" title=" innovation orientation"> innovation orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20orientation" title=" market orientation"> market orientation</a> </p> <a href="https://publications.waset.org/abstracts/29148/a-study-on-determining-market-orientation-innovation-orientation-and-firm-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> Comparative Study of Stone Column with and without Encasement Using Waste Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Stalin">V. K. Stalin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Paneerselvam"> V. Paneerselvam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bharath"> M. Bharath</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kirithika"> M. Kirithika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing countries like India due to the rapid urbanization, large amount of waste materials are produced every year. These waste materials can be utilized in the improvement of problematic soils. Stone column is one of the best methods to improve soft clay deposits. In this study, load tests were conducted to ensure the suitability of waste as column materials. The variable parameters studied are material, number of column and encasement. The materials used for the study are stone aggregate, copper slag, construction waste, for one, two and three number of columns with geotextile and geogrid encasement. It was found that the performance of waste as column material are comparable to that of conventional stone column with and without encasement. Hence, it is concluded that the copper slag and construction waste may be used as a column material in place of conventional stone aggregate to improve the soft clay advantage being utilization of waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title="stone column">stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=geocomposite" title=" geocomposite"> geocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20waste" title=" construction waste"> construction waste</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20slag" title=" copper slag"> copper slag</a> </p> <a href="https://publications.waset.org/abstracts/57622/comparative-study-of-stone-column-with-and-without-encasement-using-waste-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1831</span> Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities <em>U</em><sub>G</sub> in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at <em>U</em><sub>G</sub>=0.025 m/s and <em>U</em><sub>G</sub>=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at <em>U</em><sub>G</sub>=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20X-ray%20tomography" title=" ultrafast X-ray tomography"> ultrafast X-ray tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title=" information entropy"> information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20entropy" title=" reconstruction entropy"> reconstruction entropy</a> </p> <a href="https://publications.waset.org/abstracts/43128/entropy-analysis-in-a-bubble-column-based-on-ultrafast-x-ray-tomography-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1830</span> Texture Observation of Bending by XRD and EBSD Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Sakai">Takashi Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Shimomura"> Yuri Shimomura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20backscatter%20diffraction" title=" electron backscatter diffraction"> electron backscatter diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=IPF%20map" title=" IPF map"> IPF map</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20distribution%20function" title=" orientation distribution function"> orientation distribution function</a> </p> <a href="https://publications.waset.org/abstracts/74539/texture-observation-of-bending-by-xrd-and-ebsd-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1829</span> Numerical Investigation of the Jacketing Method of Reinforced Concrete Column </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boukais">S. Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nekmouche"> A. Nekmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khelil"> N. Khelil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kezmane"> A. Kezmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strengthening" title="strengthening">strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=jacketing" title=" jacketing"> jacketing</a>, <a href="https://publications.waset.org/abstracts/search?q=rienforced%20concrete%20column" title=" rienforced concrete column"> rienforced concrete column</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title=" Abaqus"> Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/118072/numerical-investigation-of-the-jacketing-method-of-reinforced-concrete-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1828</span> Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mahmood">Mohammed Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Tizani"> Walid Tizani</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlo%20Sansour"> Carlo Sansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5 mm to 6.3 mm seems to be higher than that when increasing it from 6.3 mm to 8 mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchored%20bolted%20connection" title="anchored bolted connection">anchored bolted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Extended%20Hollobolt" title=" Extended Hollobolt"> Extended Hollobolt</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20faces%20bending" title=" column faces bending"> column faces bending</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20filled%20hollow%20sections" title=" concrete filled hollow sections "> concrete filled hollow sections </a> </p> <a href="https://publications.waset.org/abstracts/9404/effect-of-tube-thickness-on-the-face-bending-for-blind-bolted-connection-to-concrete-filled-tubular-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1827</span> Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bum%20Yean%20Cho">Bum Yean Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Heung-Youl%20Kim"> Heung-Youl Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Seok%20Kwon"> Ki-Seok Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Su%20Kim"> Kang-Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFT%20%28concrete-filled%20tube%29%20column" title="CFT (concrete-filled tube) column">CFT (concrete-filled tube) column</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance%20performance" title=" fire resistance performance"> fire resistance performance</a>, <a href="https://publications.waset.org/abstracts/search?q=slot" title=" slot"> slot</a>, <a href="https://publications.waset.org/abstracts/search?q=weld" title=" weld"> weld</a> </p> <a href="https://publications.waset.org/abstracts/94352/experiment-and-analytical-study-on-fire-resistance-performance-of-slot-type-concrete-filled-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1826</span> The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranogajec%20G.%20Jonjaua"> Ranogajec G. Jonjaua</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20materials" title="clay materials">clay materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fix%20bed%20adsorption%20column" title=" fix bed adsorption column"> fix bed adsorption column</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20developer" title=" printing developer"> printing developer</a> </p> <a href="https://publications.waset.org/abstracts/38605/the-purification-of-waste-printing-developer-with-the-fixed-bed-adsorption-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1825</span> Investigation on an Innovative Way to Connect RC Beam and Steel Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20El-Masry">Ahmed H. El-Masry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Dabaon"> Mohamed A. Dabaon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20F.%20El-Shafiey"> Tarek F. El-Shafiey</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Hakim%20A.%20Khalil"> Abd El-Hakim A. Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20column" title="composite column">composite column</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20column" title=" steel column"> steel column</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20part" title=" transfer part"> transfer part</a> </p> <a href="https://publications.waset.org/abstracts/27407/investigation-on-an-innovative-way-to-connect-rc-beam-and-steel-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1824</span> Hysteretic Behavior of the Precast Concrete Column with Head Splice Sleeve Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seo%20Soo-Yeon">Seo Soo-Yeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Sang-Ku"> Kim Sang-Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=Noh%20Sang-Hyun"> Noh Sang-Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ji-Eun"> Lee Ji-Eun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Seol-Ki"> Kim Seol-Ki</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Jong-Wook"> Lim Jong-Wook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a test result to find the structural capacity of Hollow-Precast Concrete (HPC) column with Head-Splice Sleeve (HSS) for the connection of bars under horizontal cyclic load. Two Half-scaled HPC column specimens were made with the consideration of construction process in site. The difference between the HPC specimens is the location of HSS for bar connection. The location of the first one is on the bottom slab or foundation while the other is above the bottom slab or foundation. Reinforced concrete (RC) column was also made for the comparison. In order to evaluate the hysteretic behavior of the specimens, horizontal cyclic load was applied to the top of specimen under constant axial load. From the test, it is confirmed that the HPC columns with HSS have enough structural capacity that can be emulated to RC column. This means that the HPC column with HSS can be used in the moment resisting frame system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20capacity" title="structural capacity">structural capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow-precast%20concrete%20column" title=" hollow-precast concrete column"> hollow-precast concrete column</a>, <a href="https://publications.waset.org/abstracts/search?q=head-splice%20sleeve" title=" head-splice sleeve"> head-splice sleeve</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load" title=" horizontal cyclic load"> horizontal cyclic load</a> </p> <a href="https://publications.waset.org/abstracts/54811/hysteretic-behavior-of-the-precast-concrete-column-with-head-splice-sleeve-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1823</span> Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossein%20Zade"> M. Hossein Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encased%20stone%20column" title="encased stone column">encased stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=laterally%20load" title=" laterally load"> laterally load</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20stone%20column" title=" ordinary stone column"> ordinary stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/55939/numerical-analysis-of-geosynthetic-encased-stone-columns-under-laterally-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1822</span> Construction and Analysis of Partially Balanced Sudoku Design of Prime Order</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Danbaba">Abubakar Danbaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sudoku squares have been widely used to design an experiment where each treatment occurs exactly once in each row, column or sub-block. For some experiments, the size of row (or column or sub-block) may be larger than the number of treatments. Since each treatment appears only once in each row (column or sub-block) with an additional empty cell such designs are partially balanced Sudoku designs (PBSD) with NP-complete structures. This paper proposed methods for constructing PBSD of prime order of treatments by a modified Kronecker product and swap of matrix row (or column) in cyclic order. In addition, linear model and procedure for the analysis of data for PBSD are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sudoku%20design" title="sudoku design">sudoku design</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20sudoku" title=" partial sudoku"> partial sudoku</a>, <a href="https://publications.waset.org/abstracts/search?q=NP-complete" title=" NP-complete"> NP-complete</a>, <a href="https://publications.waset.org/abstracts/search?q=Kronecker%20product" title=" Kronecker product"> Kronecker product</a>, <a href="https://publications.waset.org/abstracts/search?q=row%20and%20column%20swap" title=" row and column swap"> row and column swap</a> </p> <a href="https://publications.waset.org/abstracts/47207/construction-and-analysis-of-partially-balanced-sudoku-design-of-prime-order" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1821</span> Nonlinear Finite Element Modeling of Reinforced Concrete Flat Plate-Inclined Column Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabab%20Allouzi">Rabab Allouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Alkloub"> Amer Alkloub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the complex shaped buildings become a popular trend for architects, this paper is presented to investigate the performance of reinforced concrete flat plate-inclined column connection. The studies on the inclined column and flat plate connections are not sufficient in comparison to those on the conventional structures. The effect of column angle of inclination on the punching shear strength is found significant and studied herein. This paper presents a non-linear finite element based modeling approach to estimate behavior of RC flat plate inclined column connection. Results from simulations of RC flat plate-straight column connection show good agreement with experimental response of specimens tested by other researchers. The model is further used to study the response of inclined columns to punching at various ranges of inclination angles. The inclination angle can be included in the punching shear strength provisions provided by ACI 318-14 to account for the effect of column inclination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title="punching shear">punching shear</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20finite%20element" title=" non-linear finite element"> non-linear finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20columns" title=" inclined columns"> inclined columns</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20connection" title=" reinforced concrete connection"> reinforced concrete connection</a> </p> <a href="https://publications.waset.org/abstracts/77848/nonlinear-finite-element-modeling-of-reinforced-concrete-flat-plate-inclined-column-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1820</span> A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hakim%20Chikho">Abdul Hakim Chikho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20ultimate%20load" title="column ultimate load">column ultimate load</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20rigid%20connections" title=" semi rigid connections"> semi rigid connections</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20%20column" title=" steel column"> steel column</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20panel" title=" infill panel"> infill panel</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/140264/a-simple-design-procedure-for-calculating-the-column-ultimate-load-of-steel-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1819</span> Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20El%20Kamash">Walid El Kamash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encased%20sand%20column" title="encased sand column">encased sand column</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20mixed%20column" title=" Deep mixed column"> Deep mixed column</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=improving%20soft%20soil" title=" improving soft soil"> improving soft soil</a> </p> <a href="https://publications.waset.org/abstracts/56795/comparison-study-between-deep-mixed-columns-and-encased-sand-column-for-soft-clay-soil-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifqi%20Irvansyah">Rifqi Irvansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Abdullah"> Abdullah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunita%20Idris"> Yunita Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Bunga%20Raihanda"> Bunga Raihanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tsunami%20inundation" title="tsunami inundation">tsunami inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20damage" title=" column damage"> column damage</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20interaction%20diagram" title=" column interaction diagram"> column interaction diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20effort" title=" mitigation effort"> mitigation effort</a> </p> <a href="https://publications.waset.org/abstracts/181471/feasibility-of-building-structure-due-to-decreased-concrete-quality-of-school-building-in-banda-aceh-city-19-years-after-tsunami" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> Ductility of Slab-Interior Column Connections Transferring Shear and Moment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Ben-Sasi">Omar M. Ben-Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductility of slab-column connections of flat slab structures is a desirable property that should be considered when designing such connections which are susceptible to punching failure around their columns. Tests to failure on six half-scale specimens were conducted for slab-interior column connections transferring shear force and unbalanced moment. The influences on connection ductility of four parameters; namely, the moment to shear force ratio, the ratio of column side length to slab effective depth, the aspect ratio of the column cross section, and the presence of four square openings located next to column corners were investigated. The study revealed marked effects of these parameters on connection ductility. Increasing the first and second parameters, were found to be in favor of increasing connection ductility, while the third and fourth parameters were found to have negative effects on the connection ductility. These findings should, hopefully, help in designing interior connections of flat slab structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20slab" title=" flat slab"> flat slab</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20force" title=" shear force"> shear force</a>, <a href="https://publications.waset.org/abstracts/search?q=moment" title=" moment"> moment</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20moment" title=" unbalanced moment"> unbalanced moment</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20failure" title=" punching failure"> punching failure</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a>, <a href="https://publications.waset.org/abstracts/search?q=interior-column%20connection" title=" interior-column connection"> interior-column connection</a> </p> <a href="https://publications.waset.org/abstracts/8917/ductility-of-slab-interior-column-connections-transferring-shear-and-moment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> Enterpreneurial Orientation Dimensions for Sustainable Development in Construction Firms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kudirat%20I.%20Zakariyyah">Kudirat I. Zakariyyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Iniobong%20B.%20John"> Iniobong B. John</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20O.%20Faremi"> Julius O. Faremi</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Adio-Moses"> David Adio-Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key contributors to firms’ growth, performance, and sustainability is entrepreneurial orientation (EO). Most studies on EO, however, are in other industries than construction and, more often, exploratory. The purpose of this study is thus to create an awareness on entrepreneurial orientation and its dimensions in contracting firms. Considering the need for sustainability, the study thus examined contracting firms’ entrepreneurial orientation dimensions that are required in order to keep pace with the demands for sustainable development. This was done by giving out questionnaires to a sample of 116 respondents from a population of 166 construction firms in Lagos state. Data were collected through a survey and analysed using mean scores and analysis of variance (ANOVA). The result revealed the prevalence of the four dimensions of EO, though in moderate proportion. In addition, the study identified review of organisational structure as the top entrepreneurial orientation dimension needed for sustainable development. The study concludes that the firms should identify the existing orientation dimensions and its relevance with sustainability so as to be able to know the required review that will be appropriate in the industry. It is recommended that the firms need to do more on raising the level of prevalence of the various orientation dimensions in order to achieve the merits of the different constructs of sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=culture" title=" culture"> culture</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurial-orientation" title=" entrepreneurial-orientation"> entrepreneurial-orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension" title=" dimension"> dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/115907/enterpreneurial-orientation-dimensions-for-sustainable-development-in-construction-firms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Pavithra">L. Pavithra</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharmila"> R. Sharmila</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Sridhar"> Shivani Sridhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20column" title="RC column">RC column</a>, <a href="https://publications.waset.org/abstracts/search?q=Seismic%20behaviour" title=" Seismic behaviour"> Seismic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behaviour" title=" cyclic behaviour"> cyclic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20testing" title=" biaxial testing"> biaxial testing</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20behaviour" title=" ductile behaviour"> ductile behaviour</a> </p> <a href="https://publications.waset.org/abstracts/26015/behaviour-of-rc-column-under-biaxial-cyclic-loading-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Interactive Effects of Organizational Learning and Market Orientation on New Product Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qura-tul-aain%20Khair">Qura-tul-aain Khair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organizational%20learning" title="organizational learning">organizational learning</a>, <a href="https://publications.waset.org/abstracts/search?q=proactive%20market%20orientation" title=" proactive market orientation"> proactive market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=responsive%20market%20orientation" title=" responsive market orientation"> responsive market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20product%20performance" title=" new product performance "> new product performance </a> </p> <a href="https://publications.waset.org/abstracts/1832/interactive-effects-of-organizational-learning-and-market-orientation-on-new-product-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhou">Ying Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Hua%20Wang"> Jian-Hua Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goal%20orientation" title="goal orientation">goal orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=self-regulated%20strategies" title=" self-regulated strategies"> self-regulated strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=achievement" title=" achievement"> achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=adult%20distance%20students" title=" adult distance students"> adult distance students</a> </p> <a href="https://publications.waset.org/abstracts/101894/goal-orientation-learning-strategies-and-academic-performance-in-adult-distance-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Settlement Performance of Granular Column Reinforced Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneerah%20Jeludin">Muneerah Jeludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vibrated column has been widely used over the last three decades to improve the performance of soft ground and engineered compacted fill. The main reason for adopting this technique is that it is economically viable and environmental friendly. The performance of granular column with regards to bearing capacity has been well documented; however, information regarding the settlement behavior of granular columns is still limited. This paper aims to address the findings from a laboratory model study in terms of its settlement improvement. A 300 mm diameter and 400 mm high kaolin clay model was used in this investigation. Columns of various heights were installed in the clay bed using replacement method. The results in relation to load sharing mechanism between the column and surrounding clay just under the footing indicated that in short column, the available shaft resistance was not significant and introduces a potential for end braing failure as opposed to bulging failure in long columns. The settlement improvement factor corroborates well with field observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a> </p> <a href="https://publications.waset.org/abstracts/59271/settlement-performance-of-granular-column-reinforced-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Fiber Orientation Measurements in Reinforced Thermoplastics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihsane%20Modhaffar">Ihsane Modhaffar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection" title="injection">injection</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=short-fiber%20reinforced%20thermoplastics" title=" short-fiber reinforced thermoplastics"> short-fiber reinforced thermoplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20orientation" title=" fiber orientation"> fiber orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=incompressible%20fluid" title=" incompressible fluid"> incompressible fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/15900/fiber-orientation-measurements-in-reinforced-thermoplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> The Relationships between Market Orientation and Competitiveness of Companies in Banking Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Jangl">Patrik Jangl</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Mikul%C3%A1%C5%A1t%C3%ADk"> Milan Mikuláštík</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the paper is to measure and compare market orientation of Swiss and Czech banks, as well as examine statistically the degree of influence it has on competitiveness of the institutions. The analysis of market orientation is based on the collecting, analysis and correct interpretation of the data. Descriptive analysis of market orientation describe current situation. Research of relation of competitiveness and market orientation in the sector of big international banks is suggested with the expectation of existence of a strong relationship. Partially, the work served as reconfirmation of suitability of classic methodologies to measurement of banks’ market orientation. Two types of data were gathered. Firstly, by measuring subjectively perceived market orientation of a company and secondly, by quantifying its competitiveness. All data were collected from a sample of small, mid-sized and large banks. We used numerical secondary character data from the international statistical financial Bureau Van Dijk’s BANKSCOPE database. Statistical analysis led to the following results. Assuming classical market orientation measures to be scientifically justified, Czech banks are statistically less market-oriented than Swiss banks. Secondly, among small Swiss banks, which are not broadly internationally active, small relationship exist between market orientation measures and market share based competitiveness measures. Thirdly, among all Swiss banks, a strong relationship exists between market orientation measures and market share based competitiveness measures. Above results imply existence of a strong relation of this measure in sector of big international banks. A strong statistical relationship has been proven to exist between market orientation measures and equity/total assets ratio in Switzerland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market%20orientation" title="market orientation">market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing%20strategy" title=" marketing strategy"> marketing strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20of%20market%20orientation" title=" measurement of market orientation"> measurement of market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=relation%20between%20market%20orientation%20and%20competitiveness" title=" relation between market orientation and competitiveness"> relation between market orientation and competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=banking%20sector" title=" banking sector"> banking sector</a> </p> <a href="https://publications.waset.org/abstracts/9587/the-relationships-between-market-orientation-and-competitiveness-of-companies-in-banking-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> Reduction of Differential Column Shortening in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hansoo%20Kim">Hansoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghak%20Shin"> Seunghak Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20shortening" title="column shortening">column shortening</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20behavior" title=" long-term behavior"> long-term behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/4789/reduction-of-differential-column-shortening-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Lee">Y. T. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Na"> J. H. Na</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Kim"> S. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Hong"> S. U. Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20echo%20method" title="impact echo method">impact echo method</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=slab%20depth" title=" slab depth"> slab depth</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20size" title=" column size"> column size</a>, <a href="https://publications.waset.org/abstracts/search?q=rebar%20location" title=" rebar location"> rebar location</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/6106/estimation-of-slab-depth-column-size-and-rebar-location-of-concrete-specimen-using-impact-echo-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=column%20orientation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>