CINXE.COM
Search results for: cigarette smoke condensate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cigarette smoke condensate</title> <meta name="description" content="Search results for: cigarette smoke condensate"> <meta name="keywords" content="cigarette smoke condensate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cigarette smoke condensate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cigarette smoke condensate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 273</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cigarette smoke condensate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Cigarette Smoke Detection Based on YOLOV3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li">Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuo%20Yang"> Tuo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20detection" title=" cigarette smoke detection"> cigarette smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOV3" title=" YOLOV3"> YOLOV3</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20feature%20extraction" title=" color feature extraction"> color feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/159151/cigarette-smoke-detection-based-on-yolov3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Supported Gold Nanocatalysts for CO Oxidation in Mainstream Cigarette Smoke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Tabakova"> Tatyana Tabakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefka%20Kirkova"> Stefka Kirkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Stoilova"> Anna Stoilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova"> Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been suggested that nicotine, CO and tar in mainstream smoke are the most important substances and have been judged as the most harmful compounds, responsible for the health hazards of smoking. As nicotine is extremely important for smoking qualities of cigarettes and the tar yield in the tobacco smoke is significantly reduced due to the use of filters with various content and design, the main efforts of cigarettes researchers and manufacturers are related to the search of opportunities for CO content reduction. Highly active ceria supported gold catalyst was prepared by the deposition-precipitation method, and the possibilities for CO oxidation in the synthetic gaseous mixture were evaluated using continuous flow equipment with fixed bed glass reactor at atmospheric pressure. The efficiently of the catalyst in CO oxidation in the real cigarette smoke was examined by a single port, puf-by-puff smoking machine. Quality assessment of smoking using cigarette holder containing catalyst was carried out. It was established that the catalytic activity toward CO oxidation in cigarette smoke rapidly decreases from 70% for the first cigarette to nearly zero for the twentieth cigarette. The present study shows that there are two critical factors which do not permit the successful use of catalysts to reduce the CO content in the mainstream cigarette smoke: (i) significant influence of the processes of adsorption and oxidation on the main characteristics of tobacco products and (ii) rapid deactivation of the catalyst due to the covering of the catalyst’s grains with condensate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke" title="cigarette smoke">cigarette smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%20oxidation" title=" CO oxidation"> CO oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20catalyst" title=" gold catalyst"> gold catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mainstream" title=" mainstream"> mainstream</a> </p> <a href="https://publications.waset.org/abstracts/79868/supported-gold-nanocatalysts-for-co-oxidation-in-mainstream-cigarette-smoke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Kumar">Subodh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Sharma"> Sanjeev Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kaushik"> Gaurav Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Avti"> Pramod Avti</a>, <a href="https://publications.waset.org/abstracts/search?q=Phulen%20Sarma"> Phulen Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikash%20Medhi"> Bikash Medhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishan%20Lal%20Khanduja"> Krishan Lal Khanduja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate" title="cigarette smoke condensate">cigarette smoke condensate</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20A%E2%82%82" title=" phospholipase A₂"> phospholipase A₂</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20epithelium" title=" alveolar epithelium"> alveolar epithelium</a>, <a href="https://publications.waset.org/abstracts/search?q=bromoenol%20lactone" title=" bromoenol lactone"> bromoenol lactone</a> </p> <a href="https://publications.waset.org/abstracts/100096/curative-role-of-bromoenol-lactone-an-inhibitor-of-phospholipase-a2-enzyme-during-cigarette-smoke-condensate-induced-anomalies-in-lung-epithelium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Effects of Smoking on the Indoor Air Quality and COVID-19</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Sandal">Sonam Sandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Verghese%20P."> Susan Verghese P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phrase "environmental tobacco smoke" (ETS) refers to exposure to tobacco smoke that isn't from your own smoking but instead is caused by being in close proximity to someone else's cigar, cigarette, or pipe smoke. Environmental cigarette smoke is one of the main contributors to indoor air pollution (IAP), which is exceedingly harmful to human health and results in millions of deaths each year, according to the World Health Organization. Sidestream smoke (SS), which is discharged from a cigarette's burning end in between puffs, is the primary cause of ETS. The bulk of the ETS residue is composed of gases that are produced while smoking through the cigarette paper, mainstream smoke (MS) ingested, and side stream smoke emitted while inhaling a puff from the burning end. Each of these mixtures—SS, ETS, and MS—is an aerosol composed of an IAP-causing vapor phase and a particle phase. Therefore, indoor air-cleaning equipment designed to remove particles will not significantly alter nicotine exposure but will alter the concentrations of other dangerous substances, including particulate matter (PM), PM 2.5, and PM 10. In conclusion, indoor airborne contaminants pose serious risks to human health. ETS degrades the air quality, and when someone breathes this bad air, it weakens their lungs and makes them more susceptible to COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pm%2010" title="pm 10">pm 10</a>, <a href="https://publications.waset.org/abstracts/search?q=covid-19" title=" covid-19"> covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20pollution" title=" indoor air pollution"> indoor air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke." title=" cigarette smoke."> cigarette smoke.</a>, <a href="https://publications.waset.org/abstracts/search?q=pm%202.5" title=" pm 2.5"> pm 2.5</a> </p> <a href="https://publications.waset.org/abstracts/172180/effects-of-smoking-on-the-indoor-air-quality-and-covid-19" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Effect of Oxidative Stress from Smoking on Erythrocyte Phosphatidylserine Externalization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratchaneewan%20Maneemaroj">Ratchaneewan Maneemaroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Paveena%20Noisuwan"> Paveena Noisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chonlada%20Lakhonphon"> Chonlada Lakhonphon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The smoking is one of the major risk factors in Non-Communicable Disease. Free radicals from cigarette smoke can cause oxidative stress. The oxidative insults can lead to red blood cell (RBC) senescence and are involved in the clearance of red blood cells. The objective of the present study is to assess the association between smoke, oxidative stress evaluated with serum Malondialdehyde (MDA) level and phosphatidylserine (PS) externalization (biomarker of RBC senescence) evaluated with annexin V binding. A total of sixty-four male volunteers aged 25-60 years old were recruited in this study. MDA was measured by colorimetric method. Annexin V binding was detected by flow cytometry. Our results show that there was a significant increase in MDA levels in cigarette smokers as compared to non-smokers (p < 0.001). However, there was no significant different between annexin V binding (% gate) in cigarette smokers and non-smokers (p = 0.978). These results provide evidence of free radical from smoking is associated with oxidative damage to erythrocytes. However, our results suggest that PS externalization is unlikely to have a role in RBC senescence pathway of stressed erythrocytes from cigarette smoke. The other biomarker of RBC senescence should be determined on cigarette smoker erythrocytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde" title="malondialdehyde">malondialdehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphatidylserine" title=" phosphatidylserine"> phosphatidylserine</a>, <a href="https://publications.waset.org/abstracts/search?q=RBC%20senescence" title=" RBC senescence"> RBC senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=annexin%20V" title=" annexin V"> annexin V</a> </p> <a href="https://publications.waset.org/abstracts/28190/effect-of-oxidative-stress-from-smoking-on-erythrocyte-phosphatidylserine-externalization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Characteristic Composition and Sensory Contributions of Acidic Aroma in Mainstream Cigarette Smoke of Cherry-Red Tobacco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian%20Yangyang">Tian Yangyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Zihe"> Xu Zihe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Junping"> Lu Junping</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Jizhou"> Yang Jizhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Yiqun"> Xu Yiqun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Jiansong"> Wang Jiansong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chao"> Chen Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mengmeng"> Yang Mengmeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Jianhua"> Guo Jianhua</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%20Wenjun"> Mu Wenjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Guiyao"> Wang Guiyao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Chaoqun"> Xue Chaoqun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Taibo"> Liang Taibo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Liwei"> Hu Liwei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cherry-red tobacco is receiving constant attention from cigarette enterprises because of its special flavor. This study aims to explore the material basis for the formation of the characteristic flavor of cherry-red tobacco and to clarify the distribution characteristics of the acidic aroma component groups in its mainstream smoke. In order to reach the aims of current study, this study employs GC/MS to examine the differences of distribution characteristics in particulate matter of mainstream cigarette smoke between cherry-red and common tobacco, meanwhile the aroma activity values (OVA) was used to compare the contribution of acidic aroma of cherry-red tobacco. The results showed that: 1) Isovaleric acid, acetic acid and butyric acid were the key acidic components in the mainstream smoke of the samples, followed by 3-methylvaleric acid, 4-methylvaleric acid and n-valeric acid. 2)Analysis of the release of these key sour fragrance components showed that the acidic aroma of "YUN 85" mainstream smoke was stronger than the leaf group, cherry-red tobacco was the weakest. In addition, aging had the effect of reducing the acidic components of cherry-red tobacco and the addition of cherry-red tobacco had little effect on the acidic components of the original leaf group. 3) For 14 acidic aroma(OAV>1) in smoke of cherry-red tobacco, 3-methylpentanoic acid, 4-methylpentanoic acid, pentanoic acid, and isovaleric acid were very prominent in contributing to acidic aroma, while pyruvic acid, 2-methylbutyric acid, hydrogenated acid, and propionic acid were less contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cherry-red%20tobacco" title="cherry-red tobacco">cherry-red tobacco</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic%20aroma" title=" acidic aroma"> acidic aroma</a>, <a href="https://publications.waset.org/abstracts/search?q=GC%2FMS" title=" GC/MS"> GC/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=mainstream%20cigarette%20smoke" title=" mainstream cigarette smoke"> mainstream cigarette smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=odor%20activity%20value" title=" odor activity value"> odor activity value</a> </p> <a href="https://publications.waset.org/abstracts/157217/characteristic-composition-and-sensory-contributions-of-acidic-aroma-in-mainstream-cigarette-smoke-of-cherry-red-tobacco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Effect of Cigarette Smoke on Micro-Architecture of Respiratory Organs with and without Dietary Probiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Khan">Komal Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafsa%20Zaneb"> Hafsa Zaneb</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Masood"> Saima Masood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younus"> Muhammad Younus</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanan%20Raza"> Sanan Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cigarette smoke induces many physiological and pathological changes in respiratory tract like goblet cell hyperplasia and regional distention of airspaces. It is also associated with elevation of inflammatory profiles in different airway compartments. As probiotics are generally known to promote mucosal tolerance, it was postulated that prophylactic use of probiotics can be helpful in reduction of respiratory damage induced by cigarette smoke exposure. Twenty-four adult mice were randomly divided into three groups (cigarette-smoke (CS) group, cigarette-smoke+ Lactobacillus (CS+ P) group, control (Cn) group), each having 8 mice. They were exposed to cigarette smoke for 28 days (6 cigarettes/ day for 6 days/week). Wright-Giemsa staining of bronchoalveolar lavage fluid (BALF) was performed in three mice per group. Tissue samples of trachea and lungs of 7 mice from each group were processed by paraffin embedding technique for haematoxylin & eosin (H & E) and alcian blue- periodic acid-Schiff (AB-PAS) staining. Then trachea (goblet cell number, ratio and loss of cilia) and lungs (airspace distention) were studied. The results showed that the number of goblet cells was increased in CS group as a result of defensive mechanism of the respiratory system against irritating substances. This study also revealed that the cells of CS group having acidic glycoprotein were found to be higher in quantity as compared to those containing neutral glycoprotein. However, CS + P group showed a decrease in goblet cell index due to enhanced immunity by prophylactically used probiotics. Moreover, H & E stained tracheas showed significant loss of cilia in CS group due to propelling of mucous but little loss in CS + P group because of having good protective tracheal epithelium. In lungs, protection of airspaces was also much more evident in CS+ P group as compared to CS group having distended airspaces, especially at 150um distance from terminal bronchiole. In addition, a comprehensive analysis of inflammatory cells population of BALF showed neutrophilia and eosinophilia was significantly reduced in CS+ P group. This study proved that probiotics are found to be useful for reduction of changes in micro-architecture of the respiratory system. Thus, dietary supplementation of probiotic as prophylactic measure can be useful in achieving immunomodulatory effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke" title="cigarette smoke">cigarette smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=goblet%20cells" title=" goblet cells"> goblet cells</a>, <a href="https://publications.waset.org/abstracts/search?q=airspace%20enlargement" title=" airspace enlargement"> airspace enlargement</a>, <a href="https://publications.waset.org/abstracts/search?q=BALF" title=" BALF"> BALF</a> </p> <a href="https://publications.waset.org/abstracts/48424/effect-of-cigarette-smoke-on-micro-architecture-of-respiratory-organs-with-and-without-dietary-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubomir%20Machuca">Lubomir Machuca</a>, <a href="https://publications.waset.org/abstracts/search?q=Vit%20Fara"> Vit Fara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodialysis" title=" electrodialysis"> electrodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeionization" title=" electrodeionization"> electrodeionization</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20industry" title=" fertilizer industry"> fertilizer industry</a> </p> <a href="https://publications.waset.org/abstracts/5846/combination-of-electrodialysis-and-electrodeionization-for-treatment-of-condensate-from-ammonium-nitrate-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alavi">F. S. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mowla"> D. Mowla</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-condensate%20reservoir" title="gas-condensate reservoir">gas-condensate reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20modelling" title=" compositional modelling"> compositional modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20condensate%20recovery" title=" enhanced condensate recovery"> enhanced condensate recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection" title=" gas injection"> gas injection</a> </p> <a href="https://publications.waset.org/abstracts/153670/evaluating-the-effects-of-gas-injection-on-enhanced-gas-condensate-recovery-and-reservoir-pressure-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Real Time Video Based Smoke Detection Using Double Optical Flow Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20Stadler">Anton Stadler</a>, <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Ike"> Thorsten Ike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20density" title="low density">low density</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=upward%20smoke%20motion" title=" upward smoke motion"> upward smoke motion</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20based%20smoke%20detection" title=" video based smoke detection"> video based smoke detection</a> </p> <a href="https://publications.waset.org/abstracts/49542/real-time-video-based-smoke-detection-using-double-optical-flow-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Determination of Iron, Zinc, Copper, Cadmium and Lead in Different Cigarette Brands in Yemen by Atomic Absorption Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Mutair">Ali A. Mutair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concentration levels of iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in different cigarette brands commonly produced and sold in Yemen were determined. Convenient sample treatment for cigarette tobacco of freshly opened packs was achieved by a sample preparation method based on dry digestion, and the concentrations of the analysed metals were measured by Flame Atomic Absorption Spectrometry (FAAS). The mean values obtained for Fe, Zn, Cu, Cd, and Pb in different Yemeni cigarette tobacco were 311, 52.2, 10.11, 1.71 and 4.06 µg/g dry weight, respectively. There is no more significant difference among cigarette brands tested. It was found that Fe was at the highest concentration, followed by Zn, Cu, Pb and Cd. The average relative standard deviation (RSD) ranged from 1.77% to 19.34%. The accuracy and precision of the results were checked by blank and recovery tests. The results show that Yemeni cigarettes contain heavy metal concentration levels that are similar to those in foreign cigarette brands reported by other studies in the worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron" title="iron">iron</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=tobacco" title=" tobacco"> tobacco</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemeni%20cigarette%20brands" title=" Yemeni cigarette brands"> Yemeni cigarette brands</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrometry" title=" atomic absorption spectrometry"> atomic absorption spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/4809/determination-of-iron-zinc-copper-cadmium-and-lead-in-different-cigarette-brands-in-yemen-by-atomic-absorption-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alavi">F. S. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mowla"> D. Mowla</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reservoir%20simulation" title="reservoir simulation">reservoir simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20injection" title=" methane injection"> methane injection</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20condensate%20recovery" title=" enhanced condensate recovery"> enhanced condensate recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20core" title=" reservoir core"> reservoir core</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/153704/thermodynamic-modeling-of-methane-injection-in-gas-condensate-reservoir-core-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamison%20Duckworth">Jamison Duckworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankarachary%20Ragi"> Shankarachary Ragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-RCNN" title=" mask-RCNN"> mask-RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20plumes" title=" smoke plumes"> smoke plumes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20bands" title=" spectral bands"> spectral bands</a> </p> <a href="https://publications.waset.org/abstracts/150196/instance-segmentation-of-wildfire-smoke-plumes-using-mask-rcnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Amroun">Hamdi Amroun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Benziani"> Yacine Benziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ammi"> Mehdi Ammi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iot" title="Iot">Iot</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20classification" title=" automatic classification"> automatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20environment" title=" unconstrained environment"> unconstrained environment</a> </p> <a href="https://publications.waset.org/abstracts/89965/long-short-term-memory-based-model-for-modeling-nicotine-consumption-using-an-electronic-cigarette-and-internet-of-things-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Cigarette Smoking and Alcohol Use among Mauritian Adolescents: Analysis of 2017 WHO Global School-Based Student Health Survey </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyanujesu%20Adereti">Iyanujesu Adereti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tajudeen%20Basiru"> Tajudeen Basiru</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodamola%20Olanipekun"> Ayodamola Olanipekun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Substance abuse among adolescents is of public health concern globally. Despite being the most abused by adolescents, there are limited studies on the prevalence of alcohol use and cigarette smoking among adolescents in Mauritius. Objectives: To determine the prevalence of cigarette smoking, alcohol use and associated correlates among school-going adolescents in Mauritius. Methodology: Data obtained from 2017 WHO Global School-based Student Health Survey (GSHS) survey of 3,012 school-going adolescents in Mauritius was analyzed using STATA. Descriptive statistics were used to obtain prevalence. Bivariate and multivariate logistic regression analysis was used to evaluate predictors of cigarette smoking and alcohol use. Results: Prevalence of alcohol consumption and cigarette smoking were 26.0% and 17.1%, respectively. Smoking and alcohol use was more prevalent among males, younger adolescents, and those in higher school grades (p-value <.000). In multivariable logistic regression, male gender was associated with a higher risk of cigarette smoking (adjusted Odds Ratio (aOR) [95%Confidence Interval (CI)]= 1.51[1.06-2.14]) but lower risk of alcohol use (aOR[95%CI]= 0.69[0.53-0.90]) while older age (mid and late adolescence) and parental smoking were found to be associated with increased risk of alcohol use (aOR[95%CI]= 1.94[1.34-2.99] and 1.36[1.05-1.78] respectively). Marijuana use, truancy, being in a fight and suicide ideation were associated with increased odds of alcohol use (aOR[95%CI]= 3.82[3.39-6.09]; 2.15[1.62-2.87]; 1.83[1.34-2.49] and 1.93[1.38-2.69] respectively) and cigarette smoking (aOR[95%CI]= 17.28[10.4 - 28.51]; 1.73[1.21-2. 49]; 1.67[1.14-2.45] and 2.17[1.43-3.28] respectively) while involvement in sexual activity was associated with reduced risk of alcohol use (aOR[95%CI]= 0.50[0.37-0.68]) and cigarette smoking (aOR[95%CI]= 0.47[0.33-0.69]). Parental support and parental monitoring were uniquely associated with lower risk of cigarette smoking (aOR[95%CI]= 0.69[0.47-0.99] and 0.62[0.43-0.91] respectively). Conclusion: The high prevalence of alcohol use and cigarette smoking in this study shows the need for the government of Mauritius to enhance policies that will help address this issue putting into accounts the various risk and protective factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescent%20health" title="adolescent health">adolescent health</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20use" title=" alcohol use"> alcohol use</a>, <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoking" title=" cigarette smoking"> cigarette smoking</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20school-based%20student%20health%20survey" title=" global school-based student health survey"> global school-based student health survey</a> </p> <a href="https://publications.waset.org/abstracts/135757/cigarette-smoking-and-alcohol-use-among-mauritian-adolescents-analysis-of-2017-who-global-school-based-student-health-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mirrashid">Alireza Mirrashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khoshbin"> Mohammad Khoshbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Atghaei"> Ali Atghaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Shahbazi"> Hassan Shahbazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention" title="attention">attention</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20detection" title=" fire detection"> fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20detection" title=" smoke detection"> smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal" title=" spatio-temporal"> spatio-temporal</a> </p> <a href="https://publications.waset.org/abstracts/153248/attention-based-spatio-temporal-approach-for-fire-and-smoke-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khazam">M. Khazam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Altawil"> M. Altawil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Eljabri"> A. Eljabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EoS%20models" title="EoS models">EoS models</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-condensate" title=" gas-condensate"> gas-condensate</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20cycling" title=" gas cycling"> gas cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20critical%20fluid" title=" near critical fluid"> near critical fluid</a> </p> <a href="https://publications.waset.org/abstracts/61658/phase-behavior-modelling-of-libyan-near-critical-gas-condensate-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xufei%20Liu">Xufei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Meow%20Liew"> Kim Meow Liew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20kinetics" title="corrosion kinetics">corrosion kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20mechanism" title=" corrosion mechanism"> corrosion mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20combustible" title=" mixed combustible"> mixed combustible</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%2FEDS" title=" SEM/EDS"> SEM/EDS</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20corrosivity" title=" smoke corrosivity"> smoke corrosivity</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/74726/corrosivity-of-smoke-generated-by-polyvinyl-chloride-and-polypropylene-with-different-mixing-ratios-towards-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20F.%20Akkoc">Ramazan F. Akkoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Erdem"> Elif Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nalan%20Kaya"> Nalan Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonca%20Ozan"> Gonca Ozan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20%C3%96zlem%20Dabak"> D. Özlem Dabak</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozan"> Enver Ozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal tobacco smoke exposure is known to cause growth retardation in the neonatal skeletal system. Alpha lipoic acid, a natural antioxidant found in some foods, limits the activities of osteoclasts and supports the osteoblast's bone formation mechanism. In this study, it was aimed to investigate the effects of alpha lipoic acid (ALA) on the height, long bones and tail lengths of pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1) control group, 2) tobacco smoke group, 3) tobacco smoke + ALA group, and 4) ALA group. Rats in the group 2 (tobacco smoke), group 3 (tobacco smoke + ALA) were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group 3 (tobacco smoke + ALA). Only alpha lipoic acid was administered to the rats in the group 4. On day 21 postpartum, the height and tail lengths of the pups in all groups were measured, and the length of the extremity long bones was measured after decapitation. All morphometric measurements performed in group 2 (tobacco smoke) showed a significant decrease compared to group 1 (control), while all measurements in group 3 (tobacco smoke + ALA) showed a significant increase compared to group 2 (tobacco smoke). It has been shown that ALA has a protective effect against the regression of height, long bones and tail lengths of pups exposed to maternal tobacco smoke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha%20lipoic%20acid" title="alpha lipoic acid">alpha lipoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometry" title=" morphometry"> morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=tobacco%20smoke" title=" tobacco smoke"> tobacco smoke</a> </p> <a href="https://publications.waset.org/abstracts/74245/effects-of-alpha-lipoic-acid-on-limb-lengths-in-neonatal-rats-exposed-to-maternal-tobacco-smoke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Web-Based Intervention for Addressing Cigarette Smoking Prevention among College Students </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Jalilian">Farzad Jalilian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mirzaei%20Alavijeh"> Mehdi Mirzaei Alavijeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ahmadpanah"> Mohammad Ahmadpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Karami%20Matin"> Behzad Karami Matin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Aghaei"> Abbas Aghaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ali%20Eslami"> Ahmad Ali Eslami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Smoking is introduced as one of the main risky factors to develop different types of diseases around the world, especially related to non-contagious diseases. The goal of the present study was assessment of the effectiveness of web based education program to prevent cigarette smoking among college students. Methods: In a randomized controlled trial, during 2014, 150 male college students in Isfahan and Kermanshah University of medical sciences were assigned to intervention group (receiving web based education program) and control groups. The study information was analyzed by SPSS software version 21 using cross-tabulation, t-test, repeated measures and GEE. Results: It was found significantly that average response for attitude towards cigarette smoking and sensation seeking after education reduced (P < 0.05). After intervention there was no significant difference between intervention and control group of cigarette smoking (P > 0.05). Conclusion: web based education have usefulness to reduce belief towards cigarette smoking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web-based%20intervention" title="web-based intervention">web-based intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=smoking" title=" smoking"> smoking</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/33736/web-based-intervention-for-addressing-cigarette-smoking-prevention-among-college-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Reducing Tobacco Consumption in a Rural Village of Sri Lanka Though a Community Based Health Promotion Intervention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20N.%20Madubashini">B. A. N. Madubashini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anojan"> S. Anojan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Thurka"> S. Thurka</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20C.%20J.%20Nawasinghe"> N. M. C. J. Nawasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20S.%20Milanga"> G. A. S. Milanga</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20I.%20S.%20Weerakoon"> W. M. I. S. Weerakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20D.%20N.%20Ihalahewage"> I. D. N. Ihalahewage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evidence-based health promotional approaches are known to be successful ways of reducing tobacco consumption in a rural village. Hence tobacco prevention is essential in improving lives of people, and community-based approaches are considered as effective. This community-based health promotion intervention implemented to reduce high consumption of tobacco in a rural area in Sri Lanka. This intervention was conducted in a rural village of Sri Lanka. In the beginning, facilitation discussions conducted with community members to identify determinants leading to tobacco consumption among villagers. Intervention was planed based on those determinants. Community actions through small active groups to demote smoking were generated. Children groups displayed cigarette buds collected around common places such as temple to community gatherings including funeral welfare society elaborating the cost and the money spent on cigarettes. A till (expenditure box) was introduced, and smokers in family were encouraged to put money on a cigarette to it when they decide to smoke instead. This way they could monitor potential savings if quit. Children groups introduced a tool 'Engalanthe puthata (for overseas son)' to shops. Shop owners agreed to add a pebble to a box whenever they sell a cigarette. The money spent on cigarettes in that shop was calculated regularly, and that was considered as money sent to tobacco company overseas, so to the son of the company owner. This was useful to encourage quitting and to stop selling cigarette in the shops. All four shops in the community volunteered to stop selling cigarettes. Eleven percent of users quitted smoking and 37% users reduced smoking. Child empowerment was high, and 60% of children had shown their disapproval on smoking publicly at least once. Similar community-based health promotion intervention can be used to generate community actions leading to reduction of tobacco consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette" title="cigarette">cigarette</a>, <a href="https://publications.waset.org/abstracts/search?q=community" title=" community"> community</a>, <a href="https://publications.waset.org/abstracts/search?q=empowerment" title=" empowerment"> empowerment</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20promotion" title=" health promotion"> health promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention" title=" intervention"> intervention</a> </p> <a href="https://publications.waset.org/abstracts/93077/reducing-tobacco-consumption-in-a-rural-village-of-sri-lanka-though-a-community-based-health-promotion-intervention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> The Effects of Ellagic Acid on Rat Liver Induced Tobacco Smoke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalan%20Kaya">Nalan Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Erdem"> Elif Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20Kisacam"> Mehmet Ali Kisacam</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonca%20Ozan"> Gonca Ozan</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozan"> Enver Ozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tobacco smokers continuously inhale thousands of carcinogens and free radicals. It is estimated that about 1017 oxidant molecules are present in each puff of tobacco smoke. It is known that smoking has adverse effects on the structure and functions of the liver. Ellagic acid (EA) has antioxidant, antiapoptotic, anticarcinogenic, antibacterial and antiinflammatory effects. The aim of our study was to investigate the possible protective effect of ellagic acid against tobacco smoke-mediated oxidative stress in the rat liver. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (control), group II (tobacco smoke), group III (tobacco smoke + corn oil) and group IV (tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. An equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated, and liver tissues were removed. Histological and biochemical analyzes were performed. Sinusoidal dilatation, inflammatory cell infiltration in portal area, increased Kuppfer cells were examined in tobacco smoke group and tobacco smoke+ corn oil groups. The results, observed in tobacco smoke and tobacco smoke+corn oil groups, were found significantly decreased in tobacco smoke+EA group. Group-II and group-III MDA levels were significantly higher, and GSH activities were not different than group-I. Compared to group-II, group-IV MDA level was decreased, and GSH activities was increased significantly. The results indicate that ellagic acid could protect the liver tissue from the tobacco smoke harmful effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ellagic%20acid" title="ellagic acid">ellagic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=tobacco%20smoke" title=" tobacco smoke"> tobacco smoke</a> </p> <a href="https://publications.waset.org/abstracts/74247/the-effects-of-ellagic-acid-on-rat-liver-induced-tobacco-smoke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Performance of an Automotive Engine Running on Gasoline-Condensate Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Ehsan">Md. Ehsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrus%20Ashok%20Arupratan%20Atis"> Cyrus Ashok Arupratan Atis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensates" title="condensates">condensates</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20performance" title=" engine performance"> engine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20adulteration" title=" fuel adulteration"> fuel adulteration</a>, <a href="https://publications.waset.org/abstracts/search?q=gasoline-condensate%20blends" title=" gasoline-condensate blends"> gasoline-condensate blends</a> </p> <a href="https://publications.waset.org/abstracts/59788/performance-of-an-automotive-engine-running-on-gasoline-condensate-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingjun%20Xu">Mingjun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Pun%20Wan"> Man Pun Wan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title="performance-based design">performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20tenability" title=" perpetual tenability"> perpetual tenability</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20control" title=" smoke control"> smoke control</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20plume" title=" fire plume"> fire plume</a> </p> <a href="https://publications.waset.org/abstracts/172186/zonal-and-sequential-extraction-design-for-large-flat-space-to-achieve-perpetual-tenability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Performance Analysis on the Smoke Management System of the Weiwuying Center for the Arts Using Hot Smoke Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Yang">K. H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Yeh"> T. C. Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Lu"> P. S. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Yang"> F. C. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Wu"> T. Y. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Sung"> W. J. Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a series of full-scale hot smoke tests has been conducted to validate the performances of the smoke management system in the WWY center for arts before grand opening. Totaled 19 scenarios has been established and experimented with fire sizes ranging from 2 MW to 10 MW. The measured ASET data provided by the smoke management system experimentation were compared with the computer-simulated RSET values for egress during the design phase. The experimental result indicated that this system could successfully provide a safety margin of 200% and ensure a safe evacuation in case of fire in the WWY project, including worst-cases and fail-safe scenarios. The methodology developed and results obtained in this project can provide a useful reference for future applications, such as for the large-scale indoor sports dome and arena, stadium, shopping malls, airport terminals, and stations or tunnels for railway and subway systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20hot%20smoke%20tests" title="building hot smoke tests">building hot smoke tests</a>, <a href="https://publications.waset.org/abstracts/search?q=performance-based%20smoke%20management%20system%20designs" title=" performance-based smoke management system designs"> performance-based smoke management system designs</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20experimental%20validation" title=" full-scale experimental validation"> full-scale experimental validation</a>, <a href="https://publications.waset.org/abstracts/search?q=tenable%20condition%20criteria" title=" tenable condition criteria"> tenable condition criteria</a> </p> <a href="https://publications.waset.org/abstracts/74068/performance-analysis-on-the-smoke-management-system-of-the-weiwuying-center-for-the-arts-using-hot-smoke-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> First Step into a Smoke-Free Life: The Effectivity of Peer Education Programme of Midwifery Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Genc">Rabia Genc</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysun%20Eksioglu"> Aysun Eksioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Serap%20Sarican"> Emine Serap Sarican</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Icke"> Sibel Icke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today the habit of cigarette smoking is among one of the most important public health concerns because of the health problems it leads to. The most important and hazardous group to use tobacco and tobacco products is adolescents and teenagers. And one of the most effective ways to prevent them from starting to smoke is education. This research is a kind of educational intervention study which was carried out in order to evaluate the effect of peer education on the teenagers' knowledge about smoking. The research was carried out between October 15, 2013 and September 9, 2015 at Ege University Ataturk Vocational Health School. The population of the research comprised of the students that have been studying at Ege University Atatürk Vocational Health School, Midwifery Department (N=390). The peer educator group that would give training on smoking consisted of 10 people, and the peer groups that would be trained were divided into two groups via simple randomization as experimental group (n=185) and control group (n=185). Questionnaire, information evaluation form, and informed consent forms were used as date collection tools. The analysis of the data which were collected in the study was carried out on Statistical Package for Social Science (SPSS 15.0). It was found out that 62.5 % of the students who were in peer educator group had smoked in some period of their lives; however, none of them continued to smoke. When they were asked about their reasons to start smoking, 25% said they just wanted to try it, and 25% of them answered that it was because of their friend groups. When the pre-peer education and post-peer education point averages of peer educator group were evaluated, the results showed that there was a significant difference between the point averages (p < 0.05). When the cigarette use of experimental group and the control group were evaluated, it was clear that 18.2% of the experimental group and 24.2%of the control group still smokes. 9.1% of the experimental group and 14.8% of control group stated that they started smoking because of their friend groups. Among the students who smoke 15.9% of the ones who belongs to the experimental group and 21.9% of the ones who belong to the control group stated they are thinking of quitting smoking. It was clear that there is a significant difference between the pre-education and post-education point averages of experimental group statistically (p ≤ 0.05); however, in terms of control group, there were no significant differences between the pre-test post-test averages statistically. Between the pre-test post-test averages of experimental and control groups there were not any statistically significant differences (p > 0.05). It was found out in the study that the peer education programme is not effective on the smoking habit of Vocational Health School students. When the future studies are being planned in order to evaluate the peer education activity, it can be taken into consideration that the peer education takes a long term and the students in the educator group will be more enthusiastic and a kind of leader in their environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=midwifery" title="midwifery">midwifery</a>, <a href="https://publications.waset.org/abstracts/search?q=peer" title=" peer"> peer</a>, <a href="https://publications.waset.org/abstracts/search?q=peer%20education" title=" peer education"> peer education</a>, <a href="https://publications.waset.org/abstracts/search?q=smoking" title=" smoking"> smoking</a> </p> <a href="https://publications.waset.org/abstracts/59061/first-step-into-a-smoke-free-life-the-effectivity-of-peer-education-programme-of-midwifery-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Caspase-11 and AIM2 Inflammasome are Involved in Smoking-Induced COPD and Lung Adenocarcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Colarusso">Chiara Colarusso</a>, <a href="https://publications.waset.org/abstracts/search?q=Michela%20Terlizzi"> Michela Terlizzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldo%20Pinto"> Aldo Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosalinda%20Sorrentino"> Rosalinda Sorrentino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cigarette smoking is the main cause and the most common risk factor for both COPD and lung cancer. In our previous studies, we proved that caspase-11 in mice and its human analogue, caspase-4, are involved in lung carcinogenesis and that AIM2 inflammasome might play a pro-cancerous role in lung cancer. Therefore, the aim of this study was to investigate potential crosstalk between COPD and lung cancer, focusing on AIM2 and caspase-11-dependent inflammasome signaling pathway. To mimic COPD, we took advantage of an experimental first-hand smoking mouse model and, to confirm what was observed in mice, we used human samples of lung adenocarcinoma patients stratified according to the smoking and COPD status. We demonstrated that smoke exposure led to emphysema-like features, bronchial tone impairment, and release of IL-1-like cytokines (IL-1α, IL-1β, IL-33, IL-18) in a caspase-1 independent manner in C57Bl/6N. Rather, a dysfunctional caspase-11 in smoke-exposed 129Sv mice was associated to lower bronchial inflammation, collagen deposition, and IL-1-like inflammation. In addition, for the first time, we found that AIM2 inflammasome is involved in lung inflammation in smoking and COPD, in that its expression was higher in smoke-exposed C57Bl/6N compared to 129Sv smoking mice, who instead did not show any alteration of AIM2 in both macrophages and dendritic cells. Moreover, we found that AIM2 expression in the cancerous tissue, albeit higher than non-cancerous tissue, was not statistically different according to the COPD and smoking status. Instead, the higher expression of AIM2 in non-cancerous tissue of smoker COPD patients than smokers who did not have COPD was correlated to a higher hazard ratio of poor survival rate than patients who presented lower levels of AIM2. In conclusion, our data highlight that caspase-11 in mice is associated to smoke-induced lung latent inflammation which could drive the establishment of lung cancer, and that AIM2 inflammasome plays a role at the crosstalk between smoking/COPD and lung adenocarcinoma in that its higher presence is correlated to lower survival rate of smoker COPD adenocarcinoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COPD" title="COPD">COPD</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammasome" title=" inflammasome"> inflammasome</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20inflammation" title=" lung inflammation"> lung inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke" title=" smoke"> smoke</a> </p> <a href="https://publications.waset.org/abstracts/143446/caspase-11-and-aim2-inflammasome-are-involved-in-smoking-induced-copd-and-lung-adenocarcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Ultrastructural Changes Occur in Mice Lungs After Cessation to Exposure of Incense Smoke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Rabah">Samar Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Incense woods are special kind of trees called Agarwood, which characterized by good smelling odors and many medical benefits. Incense smoke is heavily used in Saudi Arabia although comprehensive studies of its effects on health are limited. The present study demonstrated lung ultrastructure changes of mice after exposure and cessation to Incense smoke. Eighty mice are divided equally into four groups, three groups are exposed to different concentrations of Incense smoke (2, 4 and 6 gm) for three months, while the fourth group is control one. At the end of each month, lungs of five animals from each group are gathered, while the last five animals from each group are kept for another 60 days without exposure to the Incense smoke to allow for recovery. Results: Transmission electron microscope investigations of all exposed groups showed hypertrophy and hyperplasia in Clara Cells and some an enlargement of the macrophage to the point that it fills a large part of the alveolar lumen. Scanning electron microscope marks presence of mucus materials attached to the epithelial bronchioles. After prevention of exposure to the Incense smoke for 60 days, necrosis and degeneration in some cells of epithelial bronchioles, fibrosis of peribronchial, thickening in alveolar walls and aggregation of lymphoid cells were demonstrated. Conclusion: Based on the above findings and other related studies (not published), we conclude that exposure to Incense smoke causes harmful effects due to sever changes in pulmonary ultrastructure, such effects do not disappear even when Incense smoke inhalation was stopped. Therefore, we recommend that Incense smoke should use only in open places to reduce its harms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Incense%20smoke" title="Incense smoke">Incense smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=lungs" title=" lungs"> lungs</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrastructure%20of%20lungs" title=" ultrastructure of lungs"> ultrastructure of lungs</a>, <a href="https://publications.waset.org/abstracts/search?q=Agarwood" title=" Agarwood"> Agarwood</a> </p> <a href="https://publications.waset.org/abstracts/26850/ultrastructural-changes-occur-in-mice-lungs-after-cessation-to-exposure-of-incense-smoke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> The Effects of Ellagic Acid on Rat Heart Induced Tobacco Smoke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalan%20Kaya">Nalan Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ozlem%20Dabak"> D. Ozlem Dabak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonca%20Ozan"> Gonca Ozan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Erdem"> Elif Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozan"> Enver Ozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the common causes of cardiovascular disease (CVD) is smoking. Moreover, tobacco smoke decreases the amount of oxygen that the blood can carry and increases the tendency for blood clots. Ellagic acid is a powerful antioxidant found especially in red fruits. It was shown to block atherosclerotic process suppressing oxidative stress and inflammation. The aim of this study was to examine the protective effects of ellagic acid against oxidative damage on heart tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. An equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Heart tissues and blood samples were taken. Histological and biochemical analyzes were performed. Vascular congestion, hyperemic areas, inflammatory cell infiltration and increased connective tissue in the perivascular area were observed in tobacco smoke and tobacco smoke + corn oil groups. Increased connective tissue in the perivascular area, hemorrhage and inflammatory cell infiltration were decreased in tobacco smoke + EA group. Group-II GSH level was not changed (significantly), CAT, SOD, GPx activities were significantly higher than group-I. Compared to group-II, group-IV GSH, SOD, CAT, GPx activities were increased, and MDA level was decreased significantly. Group-II and Group-III levels were similar. The results indicate that ellagic acid could protect the heart tissue from the tobacco smoke harmful effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ellagic%20acid" title="ellagic acid">ellagic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=tobacco%20smoke" title=" tobacco smoke"> tobacco smoke</a> </p> <a href="https://publications.waset.org/abstracts/74249/the-effects-of-ellagic-acid-on-rat-heart-induced-tobacco-smoke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Madhusudana%20Rao%20Kapavarapu">Venkata Madhusudana Rao Kapavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrity" title="integrity">integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20%26%20gas" title=" oil & gas"> oil & gas</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technology" title=" new technology"> new technology</a> </p> <a href="https://publications.waset.org/abstracts/166960/an-integrated-approach-to-handle-sour-gas-transportation-problems-and-pipeline-failures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>