CINXE.COM
Thomas Pettke | University of Bern - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Thomas Pettke | University of Bern - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="6anoaRv78DMNSk0TotuXzWnFh8baRCq00VKV3SUnB43iSlt6VqxGfi/fFMLOxm3U1Qdyo9AatJDL2zYIxmUAjQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="thomas pettke" /> <meta name="description" content="Thomas Pettke, University of Bern: 197 Followers, 325 Research papers. Research interests: Subduction Zones, LA-ICP-MS, and Geochemistry." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277184131,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732464121000); window.Aedu.timeDifference = new Date().getTime() - 1732464121000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://unibe-ch2.academia.edu/ThomasPettke" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke","photo":"https://0.academia-photos.com/38936760/15264497/15930802/s65_thomas.pettke.jpg","has_photo":true,"department":{"id":2025253,"name":"Institute of Geological Sciences","url":"https://unibe-ch2.academia.edu/Departments/Institute_of_Geological_Sciences/Documents","university":{"id":38871,"name":"University of Bern","url":"https://unibe-ch2.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":333831,"name":"Subduction Zones","url":"https://www.academia.edu/Documents/in/Subduction_Zones"},{"id":50744,"name":"LA-ICP-MS","url":"https://www.academia.edu/Documents/in/LA-ICP-MS"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16937,"name":"Petrology and Geochemistry","url":"https://www.academia.edu/Documents/in/Petrology_and_Geochemistry"},{"id":2354232,"name":"Subduction Zone Fluids","url":"https://www.academia.edu/Documents/in/Subduction_Zone_Fluids"},{"id":2098500,"name":"Fluid Chemistry","url":"https://www.academia.edu/Documents/in/Fluid_Chemistry"},{"id":333832,"name":"Serpentinites","url":"https://www.academia.edu/Documents/in/Serpentinites"},{"id":82911,"name":"fluid Inclusions","url":"https://www.academia.edu/Documents/in/fluid_Inclusions"},{"id":48543,"name":"Fluids","url":"https://www.academia.edu/Documents/in/Fluids"},{"id":34196,"name":"Gold Mineralization","url":"https://www.academia.edu/Documents/in/Gold_Mineralization"},{"id":133925,"name":"Hydrothermal Ore Deposits","url":"https://www.academia.edu/Documents/in/Hydrothermal_Ore_Deposits"},{"id":134398,"name":"Mantle metasomatism","url":"https://www.academia.edu/Documents/in/Mantle_metasomatism"},{"id":191165,"name":"Pb isotopes","url":"https://www.academia.edu/Documents/in/Pb_isotopes"},{"id":20823,"name":"High-pressure rocks (blueschists and eclogites) associated with ophiolites.","url":"https://www.academia.edu/Documents/in/High-pressure_rocks_blueschists_and_eclogites_associated_with_ophiolites."},{"id":931798,"name":"Alpine and Arctic Research","url":"https://www.academia.edu/Documents/in/Alpine_and_Arctic_Research"},{"id":9359,"name":"Supercritical fluids","url":"https://www.academia.edu/Documents/in/Supercritical_fluids"},{"id":20000,"name":"Radiogenic Isotope Geochemistry","url":"https://www.academia.edu/Documents/in/Radiogenic_Isotope_Geochemistry"},{"id":7959,"name":"Stable Isotope Geochemistry","url":"https://www.academia.edu/Documents/in/Stable_Isotope_Geochemistry"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://unibe-ch2.academia.edu/ThomasPettke","location":"/ThomasPettke","scheme":"https","host":"unibe-ch2.academia.edu","port":null,"pathname":"/ThomasPettke","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-1f985bcc-8e49-4b4f-ad14-78a10c7448b7"></div> <div id="ProfileCheckPaperUpdate-react-component-1f985bcc-8e49-4b4f-ad14-78a10c7448b7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Thomas Pettke" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/38936760/15264497/15930802/s200_thomas.pettke.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Thomas Pettke</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://unibe-ch2.academia.edu/">University of Bern</a>, <a class="u-tcGrayDarker" href="https://unibe-ch2.academia.edu/Departments/Institute_of_Geological_Sciences/Documents">Institute of Geological Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Thomas" data-follow-user-id="38936760" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="38936760"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">197</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">26</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="38936760">View All (18)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38936760" href="https://www.academia.edu/Documents/in/Subduction_Zones"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://unibe-ch2.academia.edu/ThomasPettke","location":"/ThomasPettke","scheme":"https","host":"unibe-ch2.academia.edu","port":null,"pathname":"/ThomasPettke","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Subduction Zones"]}" data-trace="false" data-dom-id="Pill-react-component-d60c6d5e-8377-44cd-9326-c278f58be80a"></div> <div id="Pill-react-component-d60c6d5e-8377-44cd-9326-c278f58be80a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38936760" href="https://www.academia.edu/Documents/in/LA-ICP-MS"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["LA-ICP-MS"]}" data-trace="false" data-dom-id="Pill-react-component-d26b57b7-ff9a-41b9-8041-6fba991cfca3"></div> <div id="Pill-react-component-d26b57b7-ff9a-41b9-8041-6fba991cfca3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38936760" href="https://www.academia.edu/Documents/in/Geochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Geochemistry"]}" data-trace="false" data-dom-id="Pill-react-component-1675a928-6e3b-49a5-a6dc-f9282ae733b0"></div> <div id="Pill-react-component-1675a928-6e3b-49a5-a6dc-f9282ae733b0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38936760" href="https://www.academia.edu/Documents/in/Petrology_and_Geochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Petrology and Geochemistry"]}" data-trace="false" data-dom-id="Pill-react-component-ee0bafbf-e017-4300-9b1a-c5b18ee7b452"></div> <div id="Pill-react-component-ee0bafbf-e017-4300-9b1a-c5b18ee7b452"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="38936760" href="https://www.academia.edu/Documents/in/Subduction_Zone_Fluids"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Subduction Zone Fluids"]}" data-trace="false" data-dom-id="Pill-react-component-58c69318-83db-4887-811a-013fa15d3b74"></div> <div id="Pill-react-component-58c69318-83db-4887-811a-013fa15d3b74"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Thomas Pettke</h3></div><div class="js-work-strip profile--work_container" data-work-id="113389397"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389397/Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3"><img alt="Research paper thumbnail of Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3" class="work-thumbnail" src="https://attachments.academia-assets.com/110360049/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389397/Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3">Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="283b895d7912abe12a560c7179bcb5d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110360049,"asset_id":113389397,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110360049/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389397"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389397]").text(description); $(".js-view-count[data-work-id=113389397]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389397']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389397, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "283b895d7912abe12a560c7179bcb5d8" } } $('.js-work-strip[data-work-id=113389397]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389397,"title":"Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3","translated_title":"","metadata":{"grobid_abstract":"Pb \u003c 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at $3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.","grobid_abstract_attachment_id":110360049},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389397/Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3","translated_internal_url":"","created_at":"2024-01-12T06:53:00.768-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110360049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360049/thumbnails/1.jpg","file_name":"Pettke_et_al_Paleoceanography_2002.pdf","download_url":"https://www.academia.edu/attachments/110360049/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_evolution_of_Asian_climate_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360049/Pettke_et_al_Paleoceanography_2002-libre.pdf?1705078468=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_evolution_of_Asian_climate_and.pdf\u0026Expires=1732361393\u0026Signature=WANjqtmYAeuhCtIqnyj6sZ9SCZ3lsqxyHuNk3zLAMY0zvySPbNgiUkyZ5yRKHP1-dv6he01D-M9rfOUf3mXK7pxYbHBdk4rfD4Pq4c3A1CrJMO7j~iuy3lqPFaMAon5T3t2Bi3Dl7E8H6G-HUj7Hq71gv4mQVJpqOpj1udCUQEuyYk-xCqMNnSt25XJrw6EnplfyPrCmSA-bENdrn4nQRCRFPRt6qMFseYRchjuFuffA7fcr6k-ebwY8loUym1CmGbdB2FKBDdkbZiCHq9t4kS4jKH4rU~Aa32MbPrUAE4yEUZ0qiJvBTDIC6nsiVdnpUx5eZOj5yCuCr-nN4QmVLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110360049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360049/thumbnails/1.jpg","file_name":"Pettke_et_al_Paleoceanography_2002.pdf","download_url":"https://www.academia.edu/attachments/110360049/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_evolution_of_Asian_climate_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360049/Pettke_et_al_Paleoceanography_2002-libre.pdf?1705078468=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_evolution_of_Asian_climate_and.pdf\u0026Expires=1732361393\u0026Signature=WANjqtmYAeuhCtIqnyj6sZ9SCZ3lsqxyHuNk3zLAMY0zvySPbNgiUkyZ5yRKHP1-dv6he01D-M9rfOUf3mXK7pxYbHBdk4rfD4Pq4c3A1CrJMO7j~iuy3lqPFaMAon5T3t2Bi3Dl7E8H6G-HUj7Hq71gv4mQVJpqOpj1udCUQEuyYk-xCqMNnSt25XJrw6EnplfyPrCmSA-bENdrn4nQRCRFPRt6qMFseYRchjuFuffA7fcr6k-ebwY8loUym1CmGbdB2FKBDdkbZiCHq9t4kS4jKH4rU~Aa32MbPrUAE4yEUZ0qiJvBTDIC6nsiVdnpUx5eZOj5yCuCr-nN4QmVLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389282"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389282/The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions"><img alt="Research paper thumbnail of The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions" class="work-thumbnail" src="https://attachments.academia-assets.com/110360027/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389282/The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions">The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ed718012869a18dde78a046fdf820f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110360027,"asset_id":113389282,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110360027/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389282"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389282"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389282; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389282]").text(description); $(".js-view-count[data-work-id=113389282]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389282; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389282']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389282, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ed718012869a18dde78a046fdf820f0" } } $('.js-work-strip[data-work-id=113389282]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389282,"title":"The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions","translated_title":"","metadata":{"grobid_abstract":"The global supply of Mo and much of Cu and Au comes from porphyry-type ore deposits associated with hydrous magmas of broadly calc-alkaline composition, thought to be generated by contemporaneous subduction zone processes. Molybdenum is generally considered to be derived from the continental crust while Cu and Au are sourced in the mantle wedge above subducting slabs. Here we show that neither contemporaneous subduction nor derivation of Mo from crustal sources is required to explain the genesis of porphyry-Cu-Mo-Au deposits on Proterozoic lithosphere in the eastern Rocky Mountains. Uniform Pb isotope ratios measured by LA-MC-ICP-MS in individual fluid inclusions from distinct Cu-Au and later Mo ore-forming stages at Bingham Canyon, USA, demonstrate a common metal source. Uranogenic Pb isotope ratios are particularly non-radiogenic (17.494 b 206 Pb/ 204 Pb b 17.534; 15.553 b 207 Pb/ 204 Pb b 15.588) and plot to the left of the geochron and above the mantle Pb evolution line. In 207 Pb/ 206 Pb vs. 208 Pb/ 206 Pb space, the fluid Pb isotope data cluster at the non-radiogenic end of a mixing line described by N 80 feldspar data from igneous rocks intimately associated with magmatic-hydrothermal ore formation, which extends to modern depleted mantle or upper crust. Forward Monte Carlo simulations require three events for the U-Th-Pb isotope evolution of the fluid: (1) Late Archean formation of enriched crust is followed by (2) preferential extraction of Pb from this aged crust into a subduction fluid characterized by drastically reduced U/Pb that metasomatized lithospheric mantle at ∼ 1.8 Ga. This mantle reservoir then evolved to produce the retarded uranogenic Pb isotope signatures of the Bingham Canyon Cu-Mo-Au deposit in the Cenozoic (3). Similarly retarded uranogenic Pb isotope data characterize the giant porphyry-Mo and Climax-type Mo deposits of Henderson, Questa, Butte, and SE Arizona that occur in Proterozoic sutures of the central and eastern Rocky Mountains. We propose that Cenozoic melting of subcontinental lithospheric mantle metasomatized by subduction fluids during early Proterozoic amalgamation of terranes to the Wyoming Craton provides the metal endowment and subduction flavour to the giant magmatic-hydrothermal Cu-Mo-Au ore deposits in western North America, which together constitute the world's major molybdenum ore province.","grobid_abstract_attachment_id":110360027},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389282/The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions","translated_internal_url":"","created_at":"2024-01-12T06:51:08.307-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110360027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360027/thumbnails/1.jpg","file_name":"Pettke_et_al_EPSL_2010_inkl_SOM.pdf","download_url":"https://www.academia.edu/attachments/110360027/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_magma_and_metal_source_of_giant_porp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360027/Pettke_et_al_EPSL_2010_inkl_SOM-libre.pdf?1705078475=\u0026response-content-disposition=attachment%3B+filename%3DThe_magma_and_metal_source_of_giant_porp.pdf\u0026Expires=1732361393\u0026Signature=fOUgRu8XlPHOALJFK6G4ZhUocv4EpRQ-Ute4V-cpS6EYVSZolNycQ32wHKS~UhwsDxri~kzr~tg1iTU1jKxlq2LsTOeQgDrYvBIX-ZU1GxCAMHFH3LGBJYFhfPUIcqZyS5jkUmp1W~rjrQxgcYjJ5G6-K6~W6iTYCPUz0DDbkYrBrmcdB6fKaK0nTAHo8D3pCDFqcAqAYMe2iZSVydUMr4rOsOtbI6peIqsJSfmv~sx7Mq0BlARNMj4EdY5IG0xEwtAAk2w7bsBGvTkgWrhRShW3CmCoyuqgbdH4IHAxqhZMMLdfVuJgkKLIReXAPHDVOWDVKg-n4qbJpp4cMSm6GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110360027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360027/thumbnails/1.jpg","file_name":"Pettke_et_al_EPSL_2010_inkl_SOM.pdf","download_url":"https://www.academia.edu/attachments/110360027/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_magma_and_metal_source_of_giant_porp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360027/Pettke_et_al_EPSL_2010_inkl_SOM-libre.pdf?1705078475=\u0026response-content-disposition=attachment%3B+filename%3DThe_magma_and_metal_source_of_giant_porp.pdf\u0026Expires=1732361393\u0026Signature=fOUgRu8XlPHOALJFK6G4ZhUocv4EpRQ-Ute4V-cpS6EYVSZolNycQ32wHKS~UhwsDxri~kzr~tg1iTU1jKxlq2LsTOeQgDrYvBIX-ZU1GxCAMHFH3LGBJYFhfPUIcqZyS5jkUmp1W~rjrQxgcYjJ5G6-K6~W6iTYCPUz0DDbkYrBrmcdB6fKaK0nTAHo8D3pCDFqcAqAYMe2iZSVydUMr4rOsOtbI6peIqsJSfmv~sx7Mq0BlARNMj4EdY5IG0xEwtAAk2w7bsBGvTkgWrhRShW3CmCoyuqgbdH4IHAxqhZMMLdfVuJgkKLIReXAPHDVOWDVKg-n4qbJpp4cMSm6GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389136"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389136/Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS"><img alt="Research paper thumbnail of Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS" class="work-thumbnail" src="https://attachments.academia-assets.com/110359944/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389136/Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS">Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc5eb9856c454f2f58ce430eb70a1fb6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359944,"asset_id":113389136,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359944/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389136"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389136"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389136; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389136]").text(description); $(".js-view-count[data-work-id=113389136]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389136; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389136']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389136, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc5eb9856c454f2f58ce430eb70a1fb6" } } $('.js-work-strip[data-work-id=113389136]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389136,"title":"Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389136/Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS","translated_internal_url":"","created_at":"2024-01-12T06:48:28.639-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359944/thumbnails/1.jpg","file_name":"Pettke_et_al_Ore_Geol_Rev_2012.pdf","download_url":"https://www.academia.edu/attachments/110359944/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recent_developments_in_element_concentra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359944/Pettke_et_al_Ore_Geol_Rev_2012-libre.pdf?1705071016=\u0026response-content-disposition=attachment%3B+filename%3DRecent_developments_in_element_concentra.pdf\u0026Expires=1732045359\u0026Signature=XdMkFqeCk~E5Bq~AkcRw1fbu9JmjZNFVqlnS9vPrVoq2pysA~l7iJAoVI-J~2FmkgwSjQGYDdzAGQaJdf8ZUMQ1BTLvMMX0L150Qj6e8CxN1ZtoFxE4-7RVNw-9fngwNVlt0XQKVMJdJiYMEl7Bxh2pQxlEJj8R~~jS7WVVnzuDADBkb3EsAp9tTR-rfvSkcalcLkmonhpnTNoJeJ1xzR22dcA05s-~2sww-nsI37VWYF-5S5bDjQY7plX3k6BDOMtw1XZev9lFBeoTy81gY0iQ5t2zcO5idPnX-jb0xZI53sg7jxNNsDjw3kIoBRk-5F1qshj6BZDuRz681JLpAqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359944/thumbnails/1.jpg","file_name":"Pettke_et_al_Ore_Geol_Rev_2012.pdf","download_url":"https://www.academia.edu/attachments/110359944/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recent_developments_in_element_concentra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359944/Pettke_et_al_Ore_Geol_Rev_2012-libre.pdf?1705071016=\u0026response-content-disposition=attachment%3B+filename%3DRecent_developments_in_element_concentra.pdf\u0026Expires=1732045359\u0026Signature=XdMkFqeCk~E5Bq~AkcRw1fbu9JmjZNFVqlnS9vPrVoq2pysA~l7iJAoVI-J~2FmkgwSjQGYDdzAGQaJdf8ZUMQ1BTLvMMX0L150Qj6e8CxN1ZtoFxE4-7RVNw-9fngwNVlt0XQKVMJdJiYMEl7Bxh2pQxlEJj8R~~jS7WVVnzuDADBkb3EsAp9tTR-rfvSkcalcLkmonhpnTNoJeJ1xzR22dcA05s-~2sww-nsI37VWYF-5S5bDjQY7plX3k6BDOMtw1XZev9lFBeoTy81gY0iQ5t2zcO5idPnX-jb0xZI53sg7jxNNsDjw3kIoBRk-5F1qshj6BZDuRz681JLpAqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389120"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389120/From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle"><img alt="Research paper thumbnail of From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle" class="work-thumbnail" src="https://attachments.academia-assets.com/110359931/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389120/From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle">From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="586145c09ecd4cb31bfff58f022d33a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359931,"asset_id":113389120,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359931/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389120"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389120"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389120; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389120]").text(description); $(".js-view-count[data-work-id=113389120]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389120; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389120']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389120, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "586145c09ecd4cb31bfff58f022d33a2" } } $('.js-work-strip[data-work-id=113389120]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389120,"title":"From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle","translated_title":"","metadata":{"grobid_abstract":"Of the isotopically distinctive mantle domains, the so-called HIMU (\"high-μ\"; μ = 238 U/ 204 Pb) source is the most extreme, and its genesis continues to be debated. We report very strong U enrichment at unchanged Th concentrations in Cretaceous oceanic serpentinites with exceptionally high 206 Pb/ 204 Pb (reaching 56) but unchanged 208 Pb/ 204 Pb. Similar, but less extreme, features are found in 1.9 billion years old altered oceanic crust (AOC). Forward modelling demonstrates that mantle, if metasomatised by supercritical liquids derived from AOC and serpentinites, evolves to the HIMU Pb isotope signatures, while satisfying experimental and empirical constraints on subduction zone element processing. By contrast, no model solutions for the conventional proposal of the HIMU source representing residual igneous altered oceanic crust can be reconciled with 208 Pb/ 204 Pb, strengthening the need for a paradigm shift regarding HIMU OIB genesis. Over time, the net U addition to the convecting mantle via deeply subducted serpentinite has expressed itself as the so-called second terrestrial Pb isotope paradox, or kappa conundrum.","grobid_abstract_attachment_id":110359931},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389120/From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle","translated_internal_url":"","created_at":"2024-01-12T06:48:05.718-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359931/thumbnails/1.jpg","file_name":"Pettke_et_al_Lithos_2018.pdf","download_url":"https://www.academia.edu/attachments/110359931/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_ocean_to_mantle_new_evidence_for_U.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359931/Pettke_et_al_Lithos_2018-libre.pdf?1705071315=\u0026response-content-disposition=attachment%3B+filename%3DFrom_ocean_to_mantle_new_evidence_for_U.pdf\u0026Expires=1732361393\u0026Signature=L2v7uGbzm9Mv7FXOpHtwpNYmJhDpsIyi8zmtepcwiBF4Lfp2kKUx5~~KGoRTd6-oqjJGB4xDUA3Iokh7v~jVB7wrNUS5XeDSptEf1W03bZnqPonclGOp~09ay1HpLHhwKsbKVuLtvGw~53NTV2V4VPgbfe9-ombJ3CjsG4BHLGi2aiEr8sBz-oFMPtcmd6bjOak3BZggFALtyMVmTAWnYt6DvjRUwHYJcqt3kYwfQh5Pk9uERdzXawjGZw9XHp-i9jbvGQCP6T1VyxTMPG~MzaUpT-kLAXnasHVHzWvCpc29khg2o4UcQXbUGdcogTYhVMJuDbgKF3W4LG4LPQZycA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359931/thumbnails/1.jpg","file_name":"Pettke_et_al_Lithos_2018.pdf","download_url":"https://www.academia.edu/attachments/110359931/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_ocean_to_mantle_new_evidence_for_U.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359931/Pettke_et_al_Lithos_2018-libre.pdf?1705071315=\u0026response-content-disposition=attachment%3B+filename%3DFrom_ocean_to_mantle_new_evidence_for_U.pdf\u0026Expires=1732361393\u0026Signature=L2v7uGbzm9Mv7FXOpHtwpNYmJhDpsIyi8zmtepcwiBF4Lfp2kKUx5~~KGoRTd6-oqjJGB4xDUA3Iokh7v~jVB7wrNUS5XeDSptEf1W03bZnqPonclGOp~09ay1HpLHhwKsbKVuLtvGw~53NTV2V4VPgbfe9-ombJ3CjsG4BHLGi2aiEr8sBz-oFMPtcmd6bjOak3BZggFALtyMVmTAWnYt6DvjRUwHYJcqt3kYwfQh5Pk9uERdzXawjGZw9XHp-i9jbvGQCP6T1VyxTMPG~MzaUpT-kLAXnasHVHzWvCpc29khg2o4UcQXbUGdcogTYhVMJuDbgKF3W4LG4LPQZycA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389058"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389058/Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland"><img alt="Research paper thumbnail of Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland" class="work-thumbnail" src="https://attachments.academia-assets.com/110359897/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389058/Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland">Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc390e6b920132692669cb00cbe50bbd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359897,"asset_id":113389058,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359897/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389058"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389058]").text(description); $(".js-view-count[data-work-id=113389058]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389058']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389058, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc390e6b920132692669cb00cbe50bbd" } } $('.js-work-strip[data-work-id=113389058]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389058,"title":"Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland","translated_title":"","metadata":{"grobid_abstract":"Oxide minerals contained in ultramafic rocks are useful tools to assess the redox conditions of the rock and fluids liberated upon progressive serpentinite dehydration during subduction, as these minerals contain a relevant redox-sensitive element, iron. Previous studies have revealed that magnetite predominates across the antigorite-out reaction. However, the fate of magnetite and other oxides at higher pressure and temperature conditions has remained underexplored. We present a comprehensive petrological and geochemical study of oxide-sulfide-silicate mineral assemblages in metaperidotites beyond antigorite-and chlorite-out reactions (T = 650-850 °C and P = 1-3 GPa). Several ultramafic lenses, covering different bulk rock compositions and extents of oxidation upon oceanic serpentinization, were investigated from the Central Alps, Switzerland. Results point to two endmember scenarios: (i) Most frequently, metaperidotites have olivine with a Mg# of 89-91 (defined as molar Mg/(Mg + Fe tot) × 100) and contain low oxide modes (0.06-1.41 vol.%), hematite is absent, and redox conditions are weakly oxidized and buffered by orthopyroxene-olivine-magnetite. (ii) Rare occurrence, high olivine Mg# \u003e 94.5 metaperidotites display coexisting hematite and magnetite, high oxide modes (up to 4 vol.%), and redox conditions are hematite-magnetite (HM) buffered (Δlog 10 fO 2 , QFM of + 3 to + 4). Spinel displays evolving compositions from magnetite over chromite to Al-Cr-spinel, roughly correlating with increasing temperature. Most of the samples buffered by the olivineorthopyroxene-magnetite assemblage contain coexisting pentlandite ± pyrrhotite, thus identifying stable sulfides beyond antigorite dehydration for these weakly oxidized samples (Δlog 10 fO 2 , QFM \u003c 2.5). No sulfides were recognized in the highly oxidized sample. The transition of magnetite to chromite at around 700 °C goes along with a shift in fO 2 to lower values. At the prevailing oxygen fugacity in the weakly oxidized metaperidotites sulfur in a coexisting fluid is always present in its reduced form. However, oxidized sulfur can be stable in the dehydration fluids released from highly oxidized serpentinites.","grobid_abstract_attachment_id":110359897},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389058/Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland","translated_internal_url":"","created_at":"2024-01-12T06:46:27.527-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359897,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359897/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_CMP_2023.pdf","download_url":"https://www.academia.edu/attachments/110359897/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Oxide_silicate_petrology_and_geochemistr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359897/Vieira_Duarte_et_al_CMP_2023-libre.pdf?1705071027=\u0026response-content-disposition=attachment%3B+filename%3DOxide_silicate_petrology_and_geochemistr.pdf\u0026Expires=1732361393\u0026Signature=LgV7jPpW9dW-H68SB2vL3JEPevD2ErShpZ-LN8jcwsLNm9cLyNn19tIpM-ig0I6kY2vBh58YSy5xbA1t5kh2b8cM1-0eiEuSKKF8sPls5S7~AKDCfuSFXzHn4varTfI9ey-fjP~5bB9QqY9HlY-d7CdPmXb3WrlXO4daThhQK08ipw0HzAoy9NPCd6Rxhqi0d10v7oupMLWUwuu-pnQx0i650z0Vy1cU3BnL1DWxLs3gL~OePfZ2oRPZoOfc9DBuqJmDysk80r16MCtTzMNXGC5SAuaVmB4-YazLMrOeuGJ~5neXMNCWVT1GR1JRxr1Gm3z~rFI-YrhHwrWMOvwyDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359897,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359897/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_CMP_2023.pdf","download_url":"https://www.academia.edu/attachments/110359897/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Oxide_silicate_petrology_and_geochemistr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359897/Vieira_Duarte_et_al_CMP_2023-libre.pdf?1705071027=\u0026response-content-disposition=attachment%3B+filename%3DOxide_silicate_petrology_and_geochemistr.pdf\u0026Expires=1732361393\u0026Signature=LgV7jPpW9dW-H68SB2vL3JEPevD2ErShpZ-LN8jcwsLNm9cLyNn19tIpM-ig0I6kY2vBh58YSy5xbA1t5kh2b8cM1-0eiEuSKKF8sPls5S7~AKDCfuSFXzHn4varTfI9ey-fjP~5bB9QqY9HlY-d7CdPmXb3WrlXO4daThhQK08ipw0HzAoy9NPCd6Rxhqi0d10v7oupMLWUwuu-pnQx0i650z0Vy1cU3BnL1DWxLs3gL~OePfZ2oRPZoOfc9DBuqJmDysk80r16MCtTzMNXGC5SAuaVmB4-YazLMrOeuGJ~5neXMNCWVT1GR1JRxr1Gm3z~rFI-YrhHwrWMOvwyDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113388999"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113388999/Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction"><img alt="Research paper thumbnail of Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction" class="work-thumbnail" src="https://attachments.academia-assets.com/110359842/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113388999/Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction">Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db9723d8d9b7f468d75b691ffa5e3cd1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359842,"asset_id":113388999,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359842/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113388999"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113388999"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113388999; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113388999]").text(description); $(".js-view-count[data-work-id=113388999]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113388999; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113388999']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113388999, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db9723d8d9b7f468d75b691ffa5e3cd1" } } $('.js-work-strip[data-work-id=113388999]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113388999,"title":"Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction","translated_title":"","metadata":{"grobid_abstract":"Magnetite stability in ultramafic systems undergoing subduction plays a major role in controlling redox states of the fluids liberated upon dehydration reactions, as well as of residual rocks. Despite their relevance for the evaluation of the redox conditions, the systematics and geochemistry of oxide minerals have remained poorly constrained in subducted ultramafic rocks. Here, we present a detailed petrological and geochemical study of magnetite in hydrous ultramafic rocks from Cerro del Almirez (Spain). Our results indicate that prograde to peak magnetite, ilmenite-hematite solid solution minerals, and sulfides coexist in both antigorite-serpentinite and chlorite-harzburgite at c. 670 C and 1Á6 GPa, displaying successive crystallization stages, each characterized by specific mineral compositions. In antigorite-serpentinite, magnetite inherited from seafloor hydration and recrystallized during subduction has moderate Cr (Cr 2 O 3 \u003c 10 wt%) and low Al and V concentrations. In chlorite-harzburgite, polygonal magnetite is in textural equilibrium with olivine, orthopyroxene, chlorite, pentlandite, and ilmenite-hematite solid solution minerals. The Cr 2 O 3 contents of this magnetite are up to 19 wt%, higher than any magnetite data obtained for antigoriteserpentinite, along with higher Al and V, derived from antigorite breakdown, and lower Mn concentrations. This polygonal magnetite displays conspicuous core to rim zoning as recognized on elemental maps. Cr-V-Al-Fe 3þ mass-balance calculations, assuming conservative behavior of total Fe 3þ and Al, were employed to model magnetite compositions and modes in the partially dehydrated product chlorite-harzburgite starting from antigorite-serpentinite, as well as in the serpentinite protolith starting from the chlorite-harzburgite. The model results disagree with measured Cr and V compositions in magnetite from antigorite-serpentinites and chlorite-harzburgites. This indicates that these two rock types had different initial bulk compositions and thus cannot be directly compared. Our mass-balance analysis also reveals that new magnetite formation is required across the antigorite-breakdown reaction to account for the mass conservation of fluid-immobile elements such as Cr-V-Al-Fe 3þ. Complete recrystallization and formation of new magnetite in equilibrium with peak olivine (Mg# 89-91), chlorite (Mg# $95), orthopyroxene (Mg# 90-91), and pentlandite buffer the released fluid to redox conditions of $1 log unit above the quartz-fayalite-magnetite buffer. This is consistent with the observation that the Fe-Ti solid solution minerals (hemo-ilmenite and ilmeno-hematite) crystallized as homogeneous phases and exsolved upon exhumation and cooling. We conclude that antigorite-dehydration reaction fluids carry only a moderate redox budget and therefore may not be the only reason why the magmas are comparatively oxidized.","grobid_abstract_attachment_id":110359842},"translated_abstract":null,"internal_url":"https://www.academia.edu/113388999/Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction","translated_internal_url":"","created_at":"2024-01-12T06:45:46.055-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359842,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359842/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_JPet_2021_complete.pdf","download_url":"https://www.academia.edu/attachments/110359842/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Textural_and_Geochemical_Evidence_for_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359842/Vieira_Duarte_et_al_JPet_2021_complete-libre.pdf?1705071053=\u0026response-content-disposition=attachment%3B+filename%3DTextural_and_Geochemical_Evidence_for_Ma.pdf\u0026Expires=1732361393\u0026Signature=AEOMw34kmx1BZFcBdTV6e-LU~u1kdHrRpVw2~CXmAbsUycivcGF-qqre1Vo-bAs0L5wA9rLeiILqv-Ea40hi28trz8bIbl4KvFOtMcFDwMJr2yqRduiyzTz6qgHG1sp74oTm7PnoF2BXXs0k73UpXHp-5YCNCVPlXFcTL7Yg30pJ85tejdyL2WboHDSTnMBxmSWUlhrU-K68soKg249nXRbD~LGWWjzUav7vdEfIptbLjvJxds1WObsMCz2waGHYdGeN14sYrTfZaKv0knIESjmK0TH4xOGxOac9egxEhRqZoqs2vpmlgiT6~vfmtrmDs3r7hSW1SIc3To0Wmqnpog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359842,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359842/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_JPet_2021_complete.pdf","download_url":"https://www.academia.edu/attachments/110359842/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Textural_and_Geochemical_Evidence_for_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359842/Vieira_Duarte_et_al_JPet_2021_complete-libre.pdf?1705071053=\u0026response-content-disposition=attachment%3B+filename%3DTextural_and_Geochemical_Evidence_for_Ma.pdf\u0026Expires=1732361393\u0026Signature=AEOMw34kmx1BZFcBdTV6e-LU~u1kdHrRpVw2~CXmAbsUycivcGF-qqre1Vo-bAs0L5wA9rLeiILqv-Ea40hi28trz8bIbl4KvFOtMcFDwMJr2yqRduiyzTz6qgHG1sp74oTm7PnoF2BXXs0k73UpXHp-5YCNCVPlXFcTL7Yg30pJ85tejdyL2WboHDSTnMBxmSWUlhrU-K68soKg249nXRbD~LGWWjzUav7vdEfIptbLjvJxds1WObsMCz2waGHYdGeN14sYrTfZaKv0knIESjmK0TH4xOGxOac9egxEhRqZoqs2vpmlgiT6~vfmtrmDs3r7hSW1SIc3To0Wmqnpog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113388841"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113388841/Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective"><img alt="Research paper thumbnail of Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective" class="work-thumbnail" src="https://attachments.academia-assets.com/110359735/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113388841/Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective">Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9fe973d07ba8d27faa43700637cae408" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359735,"asset_id":113388841,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359735/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113388841"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113388841"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113388841; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113388841]").text(description); $(".js-view-count[data-work-id=113388841]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113388841; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113388841']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113388841, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9fe973d07ba8d27faa43700637cae408" } } $('.js-work-strip[data-work-id=113388841]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113388841,"title":"Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective","translated_title":"","metadata":{"grobid_abstract":"Serpentinites are central to water (re)cycling in subduction zones and thus effect fluid-mediated element transfer between the hydrosphere and the Earth's mantle and back into continental crust via calcalkaline magmatism. Diverse and often controversial models exist on the relevance of various source contributions to the budget of fluid mobile elements of hydrous peridotites and how these evolve during the subduction cycle. This work offers novel constraints on ongoing debates. We present a comprehensive bulk rock and silicate mineral major to trace element study covering the antigorite dehydration reaction based on Cerro del Almirez antigorite-serpentinites and chlorite-harzburgites, including the systematics of As, Sb, B, W, Li, In, Tl, Bi, Cd, and Sn-so far unavailable for Almirez, and there exist only few such data for orogenic serpentinites in general. We integrate these with reviewed literature data and develop a general model for the geochemical systematics of subducting hydrous slab mantle covering magmatic peridotite conditioning, element enrichment upon oceanic hydration, compositional evolution with progressive subduction to peak temperature antigorite dehydration, and retrograde metasomatism upon exhumation. Pre-hydration magmatic processes produce strong compositional variations on centimetre to metre to kilometre scales. Serpentinisation via seawater and sediment-equilibrated pore fluids produces highly variable fluidmobile element (FME) bulk rock enrichments in B, As, Sb, W, Cs, ±Li, ±Bi, ±Pb, ±U exceeding primitive mantle concentrations. Hydration enrichment numbers represent a novel concept introduced in this work to refine the extent of hydration-mediated FME enrichment. They represent the measured ratio of fluid-mobile element over a fluid-immobile element of closely comparable magmatic compatibility normalised to its corresponding primitive mantle abundance ratio. Hydration enrichment numbers are highest for Sb and As (up to 650) and lowest for Ba and Rb (down to 0.06) for Almirez data, quantifying fractions of minimal enrichment (values \u003e1) and minimal prograde subduction loss (values \u003c1). FME enrichment occurred primarily in ocean floor to trench to shallow forearc settings where sediment-equilibrated pore fluids are relevant, while addition from deeper sediment metamorphic dehydration fluids with progressive subduction is subordinate at best. Prominent fractions of As,","grobid_abstract_attachment_id":110359735},"translated_abstract":null,"internal_url":"https://www.academia.edu/113388841/Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective","translated_internal_url":"","created_at":"2024-01-12T06:43:29.550-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359735/thumbnails/1.jpg","file_name":"Pettke_Bretscher_Earth_Sci_Rev_2022_all.pdf","download_url":"https://www.academia.edu/attachments/110359735/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_mediated_element_cycling_in_subduc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359735/Pettke_Bretscher_Earth_Sci_Rev_2022_all-libre.pdf?1705071415=\u0026response-content-disposition=attachment%3B+filename%3DFluid_mediated_element_cycling_in_subduc.pdf\u0026Expires=1732361393\u0026Signature=anJQON5q9y2-yqUbkw9Pybrn~BXl~ULhBq8TSKC4avUQeOfz3Be3ows8k3C4X1eWjX0MZbhv9dkvYx5AMaoE5osPvWI5bD6leAos1oC3W~eMxUOIf9ESCB0u0jLZ0d8xNfC~URLu0hm8tdKpWVDziPIElSYf3F~ntQQoII9ibgxV~oG5enRz6Rfy6W4CU1nyupzSb1AB9Tqmi2ZJC8n~tFKgVeTmMS2yg0DQDe-93oCA~Cc8vYHX3e76Tg3FGbGhiYKYHy-x3JG950sjMqKJMe8ev-q4w-1YbEHJRNCRCGjFcakwbufHtyyV9z3ZpFyiMFQjlzL2p6wP7naDRCHy5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective","translated_slug":"","page_count":37,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359735/thumbnails/1.jpg","file_name":"Pettke_Bretscher_Earth_Sci_Rev_2022_all.pdf","download_url":"https://www.academia.edu/attachments/110359735/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_mediated_element_cycling_in_subduc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359735/Pettke_Bretscher_Earth_Sci_Rev_2022_all-libre.pdf?1705071415=\u0026response-content-disposition=attachment%3B+filename%3DFluid_mediated_element_cycling_in_subduc.pdf\u0026Expires=1732361393\u0026Signature=anJQON5q9y2-yqUbkw9Pybrn~BXl~ULhBq8TSKC4avUQeOfz3Be3ows8k3C4X1eWjX0MZbhv9dkvYx5AMaoE5osPvWI5bD6leAos1oC3W~eMxUOIf9ESCB0u0jLZ0d8xNfC~URLu0hm8tdKpWVDziPIElSYf3F~ntQQoII9ibgxV~oG5enRz6Rfy6W4CU1nyupzSb1AB9Tqmi2ZJC8n~tFKgVeTmMS2yg0DQDe-93oCA~Cc8vYHX3e76Tg3FGbGhiYKYHy-x3JG950sjMqKJMe8ev-q4w-1YbEHJRNCRCGjFcakwbufHtyyV9z3ZpFyiMFQjlzL2p6wP7naDRCHy5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100257851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100257851/Interesting_Papers_in_Other_Journals"><img alt="Research paper thumbnail of Interesting Papers in Other Journals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100257851/Interesting_Papers_in_Other_Journals">Interesting Papers in Other Journals</a></div><div class="wp-workCard_item"><span>Economic Geology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel, Christelle Marlin, Laurent Dever, Jean-Luc Morel ... 12, 2002 Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO 2 surveysAnthony Finizola ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100257851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100257851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100257851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100257851]").text(description); $(".js-view-count[data-work-id=100257851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100257851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100257851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100257851, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100257851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100257851,"title":"Interesting Papers in Other Journals","translated_title":"","metadata":{"abstract":"... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel, Christelle Marlin, Laurent Dever, Jean-Luc Morel ... 12, 2002 Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO 2 surveysAnthony Finizola ...","publisher":"Society of Economic Geologists","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Economic Geology"},"translated_abstract":"... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel, Christelle Marlin, Laurent Dever, Jean-Luc Morel ... 12, 2002 Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO 2 surveysAnthony Finizola ...","internal_url":"https://www.academia.edu/100257851/Interesting_Papers_in_Other_Journals","translated_internal_url":"","created_at":"2023-04-16T03:18:14.180-07:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interesting_Papers_in_Other_Journals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":2406,"name":"Economic Geology","url":"https://www.academia.edu/Documents/in/Economic_Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215039/Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens"><img alt="Research paper thumbnail of Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens" class="work-thumbnail" src="https://attachments.academia-assets.com/98175404/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215039/Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens">Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens</a></div><div class="wp-workCard_item"><span>Geochimica et Cosmochimica Acta</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55fe6b53b69c16758404ad56604236e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175404,"asset_id":96215039,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175404/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215039]").text(description); $(".js-view-count[data-work-id=96215039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215039, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55fe6b53b69c16758404ad56604236e4" } } $('.js-work-strip[data-work-id=96215039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215039,"title":"Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The processes of carbon mobilisation at convergent plate boundaries are hotly debated. Recent findings suggest that carbon release along subduction geothermal gradients may well be more relevant than previously thought; however, it has remained difficult to achieve steady state atmospheric CO 2 conditions over geological time scales based on current volatile cycle models. Here, we report on meta-ophicarbonate rocks in the contact metamorphic aureole of the Bergell intrusion, Val Malenco, European Alps, that reached T-P conditions of at least 650°C at 0.35 GPa. We demonstrate by combined field evidence, geochemistry, and closed-system thermodynamic modelling that over 50% of the rock carbonate has been mobilised locally in response to reactive fluid flow upon progressive isobaric heating from 350 to \u003e650°C. Despite complete mineral transformation at the antigorite + calcite devolatilisation reaction, the resulting tremolite-ophicarbonate preserves the original ophicarbonate texture by olivine-chlorite clasts, representing the former antigorite-serpentinite fraction, embedded in a monomineralic tremolite matrix formed from the calcite fraction that often exceeded 50 vol%. Closed system thermodynamic modelling based on an ophicarbonate composition of 80 wt% serpentinite +20 wt% calcite reveals that rock-buffered fluid X CO2 values evolve from \u003c0.09 to as high as $0.16, and the total H 2 O-CO 2 fluid fraction released may be as high as 14 wt%; values that are highly sensitive to bulk ophicarbonate composition. Major to trace element geochemistry reveals a history of peridotite melt depletion followed by ocean floor hydration and ophicarbonate formation, consistent with the ocean continent transition (OCT) setting of the mantle rocks in the Mesozoic. This is demonstrated by positive anomalies in B, U, As, Sb, Bi, and W, and by bulk rock and notably carbonate primitive mantle normalised REE patterns that are basically identical to that of calcite precipitated from Jurassic seawater except for its negative Eu anomaly. Prograde metamorphic tremolite and diopside possess enrichments notably in Sr and REE inherited from reactant calcite, as is also supported by a good match between measured and modelled silicate mineral compositions. Specific geochemical characteristics of the prograde meta-ophicarbonate rocks imply fluid mediated, open system processes. Antigorite dehydration fluid ingress, likely produced in neighbouring antigorite-serpentinites, may have shifted bulk tremolite ophicarbonate rock compositions towards higher SiO 2 /MgO ratios along with an increase in B contents and depletion in fluid mobile elements such as As, Sb, and Sr. The massive, contact metamorphic CO 2 mobilisation documented here occurred at P-T conditions that are similar to those that can be achieved in collisional orogenic settings, whose clockwise P-T-t paths are often characterised by further heating upon initial decompression. They thus evolve at large angle to devolatilisation reactions and silicate-carbonate rock-buffered fluid X CO2 isopleths, thus fostering carbon mobilisation towards metamorphic peak temperatures at moderate to low pressures (in the region of between \u003e700°C-1.0 GPa and \u003e600°C-0.3 GPa). Barrovian metamorphism, too, can reach T-P conditions of 800°C-1 GPa. Amagmatic CO 2 mobilised this way will eventually reach the atmosphere via dispersion in the groundwater","publication_name":"Geochimica et Cosmochimica Acta","grobid_abstract_attachment_id":98175404},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215039/Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens","translated_internal_url":"","created_at":"2023-02-03T00:07:58.944-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175404/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175404/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Antigorite_dehydration_fluids_boost_carb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175404/main-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3DAntigorite_dehydration_fluids_boost_carb.pdf\u0026Expires=1732441830\u0026Signature=DIjtwe6fzTpstTWw~NxcUzj~hYMxRD~mazGnt-BbPJbNoHgw3MAW8dKagXKtzo0t3IaC3qrMSuJbx3IZeIQldPH-1xgmvHnk-nOMKSz3tl4PjyaHClpW9t1QrOa1TxYA0ad7SdEGU2BPF3mS1BVLnROHtGZUoiYuTwI~uer-HvHwYMda4HoXSKXaPjpdKt175Q~V6EE8bZy4DMEVZa6FzhnbRQlQSeZqrpmTfq1O~T0QXw0XMUXtRq~gzDTdmllhIMe3XKmrVOFX~Hj4KnIM5EsLoIMCtgkEHX6uoRs0~ULqzRHHxAl2DOFupQ4gvEdEzbfEi01Cn4VQEqPUVoa7YQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175404/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175404/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Antigorite_dehydration_fluids_boost_carb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175404/main-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3DAntigorite_dehydration_fluids_boost_carb.pdf\u0026Expires=1732441830\u0026Signature=DIjtwe6fzTpstTWw~NxcUzj~hYMxRD~mazGnt-BbPJbNoHgw3MAW8dKagXKtzo0t3IaC3qrMSuJbx3IZeIQldPH-1xgmvHnk-nOMKSz3tl4PjyaHClpW9t1QrOa1TxYA0ad7SdEGU2BPF3mS1BVLnROHtGZUoiYuTwI~uer-HvHwYMda4HoXSKXaPjpdKt175Q~V6EE8bZy4DMEVZa6FzhnbRQlQSeZqrpmTfq1O~T0QXw0XMUXtRq~gzDTdmllhIMe3XKmrVOFX~Hj4KnIM5EsLoIMCtgkEHX6uoRs0~ULqzRHHxAl2DOFupQ4gvEdEzbfEi01Cn4VQEqPUVoa7YQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"},{"id":346274,"name":"Dehydration","url":"https://www.academia.edu/Documents/in/Dehydration"},{"id":1870658,"name":"Outgassing","url":"https://www.academia.edu/Documents/in/Outgassing"}],"urls":[{"id":28644394,"url":"https://api.elsevier.com/content/article/PII:S0016703721001277?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215038/Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_M%C3%BCnchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions"><img alt="Research paper thumbnail of Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/98175407/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215038/Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_M%C3%BCnchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions">Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bba1c11a43a240de423b43478eb7804d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175407,"asset_id":96215038,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175407/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215038]").text(description); $(".js-view-count[data-work-id=96215038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215038, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bba1c11a43a240de423b43478eb7804d" } } $('.js-work-strip[data-work-id=96215038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215038,"title":"Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Eclogites, metagabbros, and paragneisses from the Variscan Münchberg Massif record a complex succession of igneous, hydrothermal and metamorphic processes. The geodynamic setting related to the protolith formation and the impact of different types of fluid-rock interactions have been uncertain up to now. We use major and trace element chemistry as well as oxygen isotopes to disentangle the geochemical signatures related to the different stages of the rocks' history. In the Münchberg Massif, dark eclogites (kyanite-free; Fe-Ti-MORB signature) are distinguished from light eclogites (kyanite-bearing; higher Mg#, Al 2 O 3 , and Cr; lower incompatible element contents; positive Eu anomalies; MORB to arc basalt signature). The δ 18 O values for both types (+5.0 to +10.8‰) are equal to, or higher than those of MORB. Amphibolite facies metagabbros have a more enriched, almost OIB-like trace element signature and high δ 18 O values (+9.4 to +10.3‰). Good linear correlations between fluid-immobile elements throughout the eclogite types confirm their derivation from a common, N-MORB to E-MORB-like parental magma. We interpret the light eclogites as former plagioclase-rich cumulates and the dark eclogites as their complementary differentiates. This relationship is partly obscured by variable degrees of magma contamination by sediments, which also affected the metagabbros. However, the metagabbros originated from a more enriched mantle source than the eclogites. Following intrusion, the eclogites were subjected to hydrothermal alteration under the influence of seawater, as indicated by positive correlations between Li, B, Sb, and δ 18 O. Metamorphic fluid-rock interactions appear to be mostly of limited extent, probably due to the lack of lawsonite dehydration as a fluid source. Nevertheless, the contents at least of some fluid-mobile elements, such as LILE, Li, and Pb, were probably modified during the subductionexhumation cycle of the eclogites. The crustal contamination of the protolith magmas argues against derivation of the eclogites and metagabbros from typical oceanic crust. Instead, a rift-drift transition setting related to the opening of the Rheic or Saxothuringian Ocean seems most likely. The eclogites and metagabbros, alongside with similar rocks in the Mariánské Lázně complex and other resembling high-pressure massifs, may record different stages of this rift-drift transition.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Chemical Geology","grobid_abstract_attachment_id":98175407},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215038/Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_M%C3%BCnchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions","translated_internal_url":"","created_at":"2023-02-03T00:07:58.784-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175407,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175407/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175407/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trace_element_and_oxygen_isotope_study_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175407/main-libre.pdf?1675414780=\u0026response-content-disposition=attachment%3B+filename%3DTrace_element_and_oxygen_isotope_study_o.pdf\u0026Expires=1732441830\u0026Signature=Zqzf0RkrUc5JrJv7A~nLfSxiBlEZQROgwZaOR1icBWVDWXXoM~TpXWG9bANhTWK9TVI15ZKKflpf6TyFRraVIa7NlVGJeUHfbzj6qNPsYNCiRRFeNLyM7g-NEC3xksCGeGLCdlCOYW-DuB44ZQsgO5LTVZKR7z-FZfSq-VVkneuvMLTCVHTdizjfW0eD7l0ZMyonZcphMFqu2u8KOvosjvfGn64jcLuTSr0KaPfHYPKrKcVJZKllLPwptVVrOdYJOd35u2eedop30F78A4v0RLtMJLVafxgiLpR9QXK9vESV4lBHVQMMJ28SEbTb80j3IsLvN~lo1O4Pz525PEDIMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_Münchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175407,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175407/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175407/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trace_element_and_oxygen_isotope_study_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175407/main-libre.pdf?1675414780=\u0026response-content-disposition=attachment%3B+filename%3DTrace_element_and_oxygen_isotope_study_o.pdf\u0026Expires=1732441830\u0026Signature=Zqzf0RkrUc5JrJv7A~nLfSxiBlEZQROgwZaOR1icBWVDWXXoM~TpXWG9bANhTWK9TVI15ZKKflpf6TyFRraVIa7NlVGJeUHfbzj6qNPsYNCiRRFeNLyM7g-NEC3xksCGeGLCdlCOYW-DuB44ZQsgO5LTVZKR7z-FZfSq-VVkneuvMLTCVHTdizjfW0eD7l0ZMyonZcphMFqu2u8KOvosjvfGn64jcLuTSr0KaPfHYPKrKcVJZKllLPwptVVrOdYJOd35u2eedop30F78A4v0RLtMJLVafxgiLpR9QXK9vESV4lBHVQMMJ28SEbTb80j3IsLvN~lo1O4Pz525PEDIMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":1749179,"name":"Eclogite","url":"https://www.academia.edu/Documents/in/Eclogite"},{"id":3265172,"name":"kyanite","url":"https://www.academia.edu/Documents/in/kyanite"}],"urls":[{"id":28644393,"url":"https://api.elsevier.com/content/article/PII:S0009254121002965?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215037"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215037/Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends"><img alt="Research paper thumbnail of Magma genesis and Cu-Au ore formation (Apuseni Mountains, Romania) in light of Pb, Sr and Nd isotopic and chemical trends" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215037/Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends">Magma genesis and Cu-Au ore formation (Apuseni Mountains, Romania) in light of Pb, Sr and Nd isotopic and chemical trends</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215037"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215037"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215037; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215037]").text(description); $(".js-view-count[data-work-id=96215037]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215037; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215037']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215037, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96215037]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215037,"title":"Magma genesis and Cu-Au ore formation (Apuseni Mountains, Romania) in light of Pb, Sr and Nd isotopic and chemical trends","translated_title":"","metadata":{"publisher":"ETH Zurich","publication_date":{"day":1,"month":5,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215037/Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends","translated_internal_url":"","created_at":"2023-02-03T00:07:58.664-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":197592,"name":"Magma","url":"https://www.academia.edu/Documents/in/Magma"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215036/Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031"><img alt="Research paper thumbnail of Geochemistry of eolian dust from sediment core LL44-GPC-3, supplement to: Pettke, Thomas; Halliday, Alex N; Rea, David K (2002): Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3), 1031" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215036/Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031">Geochemistry of eolian dust from sediment core LL44-GPC-3, supplement to: Pettke, Thomas; Halliday, Alex N; Rea, David K (2002): Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3), 1031</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 &gt; epsilon-Nd(t) &gt; ~10.81) and Pb (18.625 &lt; 206/4Pb &lt; 18.879; 15.624 &lt; 207/4Pb &lt; 15.666; 38.611 &lt; 208/4Pb &lt; 38.960; 0.8294 &lt; 207/6Pb &lt; 0.8389; 2.0539 &lt; 208/6Pb &lt; 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215036]").text(description); $(".js-view-count[data-work-id=96215036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215036, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96215036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215036,"title":"Geochemistry of eolian dust from sediment core LL44-GPC-3, supplement to: Pettke, Thomas; Halliday, Alex N; Rea, David K (2002): Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3), 1031","translated_title":"","metadata":{"abstract":"The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 \u0026gt; epsilon-Nd(t) \u0026gt; ~10.81) and Pb (18.625 \u0026lt; 206/4Pb \u0026lt; 18.879; 15.624 \u0026lt; 207/4Pb \u0026lt; 15.666; 38.611 \u0026lt; 208/4Pb \u0026lt; 38.960; 0.8294 \u0026lt; 207/6Pb \u0026lt; 0.8389; 2.0539 \u0026lt; 208/6Pb \u0026lt; 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the c...","publisher":"PANGAEA - Data Publisher for Earth \u0026 Environmental Science","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 \u0026gt; epsilon-Nd(t) \u0026gt; ~10.81) and Pb (18.625 \u0026lt; 206/4Pb \u0026lt; 18.879; 15.624 \u0026lt; 207/4Pb \u0026lt; 15.666; 38.611 \u0026lt; 208/4Pb \u0026lt; 38.960; 0.8294 \u0026lt; 207/6Pb \u0026lt; 0.8389; 2.0539 \u0026lt; 208/6Pb \u0026lt; 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the c...","internal_url":"https://www.academia.edu/96215036/Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031","translated_internal_url":"","created_at":"2023-02-03T00:07:58.519-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":284182,"name":"Sediment Core","url":"https://www.academia.edu/Documents/in/Sediment_Core"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215035/The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study"><img alt="Research paper thumbnail of The relation between 2 Li ↔ Na substitution and hydrogen bonding in five-periodic 3 single-chain silicates nambulite and marsturite: A single crystal X-ray study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215035/The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study">The relation between 2 Li ↔ Na substitution and hydrogen bonding in five-periodic 3 single-chain silicates nambulite and marsturite: A single crystal X-ray study</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215035]").text(description); $(".js-view-count[data-work-id=96215035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215035, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96215035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215035,"title":"The relation between 2 Li ↔ Na substitution and hydrogen bonding in five-periodic 3 single-chain silicates nambulite and marsturite: A single crystal X-ray study","translated_title":"","metadata":{"publisher":"Mineralogical Society of America","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215035/The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study","translated_internal_url":"","created_at":"2023-02-03T00:07:58.402-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215034/Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3"><img alt="Research paper thumbnail of Revision 1 1 Magnetic anisotropy in natural amphibole crystals 2 3" class="work-thumbnail" src="https://attachments.academia-assets.com/98175357/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215034/Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3">Revision 1 1 Magnetic anisotropy in natural amphibole crystals 2 3</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 deformed rocks. In order to do so quantitatively, it is necessary to quantify the intrinsic 17 magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in 18 mafic igneous and metamorphic rocks and often define rock texture due to their general 19 prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to 20 felsic igneous rocks and in some metamorphic rock types, because they have a high Fe 21 concentration and they can develop a strong crystallographic preferred orientation. In this 22 study, the AMS is characterized in 28 single crystals and one crystal aggregate of 23 compositionally diverse clinoand ortho-amphiboles. High-field methods were used to isolate 24 the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic 25 inclusions that often occur in amphibole crystals. Laue imaging, laser ablati...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e14d2f7d75c80dfc8d9feaa884f12b2b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175357,"asset_id":96215034,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175357/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215034]").text(description); $(".js-view-count[data-work-id=96215034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215034, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e14d2f7d75c80dfc8d9feaa884f12b2b" } } $('.js-work-strip[data-work-id=96215034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215034,"title":"Revision 1 1 Magnetic anisotropy in natural amphibole crystals 2 3","translated_title":"","metadata":{"abstract":"15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 deformed rocks. In order to do so quantitatively, it is necessary to quantify the intrinsic 17 magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in 18 mafic igneous and metamorphic rocks and often define rock texture due to their general 19 prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to 20 felsic igneous rocks and in some metamorphic rock types, because they have a high Fe 21 concentration and they can develop a strong crystallographic preferred orientation. In this 22 study, the AMS is characterized in 28 single crystals and one crystal aggregate of 23 compositionally diverse clinoand ortho-amphiboles. High-field methods were used to isolate 24 the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic 25 inclusions that often occur in amphibole crystals. Laue imaging, laser ablati...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 deformed rocks. In order to do so quantitatively, it is necessary to quantify the intrinsic 17 magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in 18 mafic igneous and metamorphic rocks and often define rock texture due to their general 19 prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to 20 felsic igneous rocks and in some metamorphic rock types, because they have a high Fe 21 concentration and they can develop a strong crystallographic preferred orientation. In this 22 study, the AMS is characterized in 28 single crystals and one crystal aggregate of 23 compositionally diverse clinoand ortho-amphiboles. High-field methods were used to isolate 24 the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic 25 inclusions that often occur in amphibole crystals. Laue imaging, laser ablati...","internal_url":"https://www.academia.edu/96215034/Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3","translated_internal_url":"","created_at":"2023-02-03T00:07:58.261-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175357/thumbnails/1.jpg","file_name":"AM100P1940.pdf","download_url":"https://www.academia.edu/attachments/98175357/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Revision_1_1_Magnetic_anisotropy_in_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175357/AM100P1940-libre.pdf?1675414767=\u0026response-content-disposition=attachment%3B+filename%3DRevision_1_1_Magnetic_anisotropy_in_natu.pdf\u0026Expires=1732045359\u0026Signature=f0ew7XVlhZwyGdtrHYdqSJ4Kq3lTfGzkRWc6hvPbaOAa7Iq2mME5idcZxLyf5Mj782Jo78oJsBJQcZSodOvSxvY0XP5juMfdXG9UGILP7t7cSNM8H6Jr~qmnFs7kYF71JaD0bYl0KMgcCEHzQ9saqsCODIbO7ZdmWskYfwiY~cOnipiEs76oWzqCTKuM0wjDnRcBZ7YZxjo8QLMXvcXS58ISiZWqFIxso~cWwGaJ-g3JMnce6W7REfBH7xojPCgWEjMZj3dhgnOP0S6TpDT3fxoFRWUY8Py7Rr41fl~rAjZgw3f37EIRk-14XiGPe1gCEkUoMmfpafjJJEomxQxQ5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3","translated_slug":"","page_count":42,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175357/thumbnails/1.jpg","file_name":"AM100P1940.pdf","download_url":"https://www.academia.edu/attachments/98175357/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Revision_1_1_Magnetic_anisotropy_in_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175357/AM100P1940-libre.pdf?1675414767=\u0026response-content-disposition=attachment%3B+filename%3DRevision_1_1_Magnetic_anisotropy_in_natu.pdf\u0026Expires=1732045359\u0026Signature=f0ew7XVlhZwyGdtrHYdqSJ4Kq3lTfGzkRWc6hvPbaOAa7Iq2mME5idcZxLyf5Mj782Jo78oJsBJQcZSodOvSxvY0XP5juMfdXG9UGILP7t7cSNM8H6Jr~qmnFs7kYF71JaD0bYl0KMgcCEHzQ9saqsCODIbO7ZdmWskYfwiY~cOnipiEs76oWzqCTKuM0wjDnRcBZ7YZxjo8QLMXvcXS58ISiZWqFIxso~cWwGaJ-g3JMnce6W7REfBH7xojPCgWEjMZj3dhgnOP0S6TpDT3fxoFRWUY8Py7Rr41fl~rAjZgw3f37EIRk-14XiGPe1gCEkUoMmfpafjJJEomxQxQ5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28644392,"url":"http://www.minsocam.org/MSA/AmMin/Public_Access/2015_public/AM100P1940.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215033/Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth"><img alt="Research paper thumbnail of Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth" class="work-thumbnail" src="https://attachments.academia-assets.com/98175359/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215033/Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth">Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests that serpentinisation of oceanic lithospheric mantle occurred along bend faults or as detached slices in the shallow forearc by fluids equilibrated within the accretionary prism 2 Initial heterogeneities will govern the spatial extent of serpentinisation and FME enrichment, ultimately amplifying heterogeneities 2 FME enrichments from serpentinisation are largely retained and reincorporated into the convecting mantle, providing potential fractionation mechanisms for U-Th systematics (HIMU) and enriched mantle (EM) sources 2 FMEs such as As, Sb, W and Bi, which are rarely quantified, can provide essential information to further discriminate between serpentinisation environments</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8378be99462394f58b89c7789faa5037" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175359,"asset_id":96215033,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175359/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215033]").text(description); $(".js-view-count[data-work-id=96215033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215033, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8378be99462394f58b89c7789faa5037" } } $('.js-work-strip[data-work-id=96215033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215033,"title":"Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth","translated_title":"","metadata":{"abstract":"Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests that serpentinisation of oceanic lithospheric mantle occurred along bend faults or as detached slices in the shallow forearc by fluids equilibrated within the accretionary prism 2 Initial heterogeneities will govern the spatial extent of serpentinisation and FME enrichment, ultimately amplifying heterogeneities 2 FME enrichments from serpentinisation are largely retained and reincorporated into the convecting mantle, providing potential fractionation mechanisms for U-Th systematics (HIMU) and enriched mantle (EM) sources 2 FMEs such as As, Sb, W and Bi, which are rarely quantified, can provide essential information to further discriminate between serpentinisation environments","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests that serpentinisation of oceanic lithospheric mantle occurred along bend faults or as detached slices in the shallow forearc by fluids equilibrated within the accretionary prism 2 Initial heterogeneities will govern the spatial extent of serpentinisation and FME enrichment, ultimately amplifying heterogeneities 2 FME enrichments from serpentinisation are largely retained and reincorporated into the convecting mantle, providing potential fractionation mechanisms for U-Th systematics (HIMU) and enriched mantle (EM) sources 2 FMEs such as As, Sb, W and Bi, which are rarely quantified, can provide essential information to further discriminate between serpentinisation environments","internal_url":"https://www.academia.edu/96215033/Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth","translated_internal_url":"","created_at":"2023-02-03T00:07:58.077-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175359/thumbnails/1.jpg","file_name":"AGU_Conference_Poster_2016.pdf","download_url":"https://www.academia.edu/attachments/98175359/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_rock_Interactions_recorded_in_Serp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175359/AGU_Conference_Poster_2016-libre.pdf?1675414817=\u0026response-content-disposition=attachment%3B+filename%3DFluid_rock_Interactions_recorded_in_Serp.pdf\u0026Expires=1731456474\u0026Signature=BTpVGeMV0-i-XbUPAzCbSEPCgKsEiGzC-Rbd3szcW65Q~wcTmI~O~zXE1gm78mUalCgOrMaSUjzN9DDVgY25CpUoLqjmx1TFYUevN4yh-siDQPUbxu-pIpuU6oPTwLbOoumftEDsqGlMZ8Yus3xZRVgMwBDXOmXyAvKNoRcRY7RW-jlXOUWFpJkNoPOoC~2Tu3ReDm6kw-D1YEDFkBvyNoZV1l6nJncpZOtraMVW6O~8yQdFH-ZDBSKfOJY4r09i0npXD60Z--3hsyMr4zoUpl0hM2uV9oVsf-U6yIXAhD7UKJ2X8bvYqoS7Drzw20XHZpurx81b-lNU1~v3I13I0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175359/thumbnails/1.jpg","file_name":"AGU_Conference_Poster_2016.pdf","download_url":"https://www.academia.edu/attachments/98175359/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_rock_Interactions_recorded_in_Serp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175359/AGU_Conference_Poster_2016-libre.pdf?1675414817=\u0026response-content-disposition=attachment%3B+filename%3DFluid_rock_Interactions_recorded_in_Serp.pdf\u0026Expires=1731456474\u0026Signature=BTpVGeMV0-i-XbUPAzCbSEPCgKsEiGzC-Rbd3szcW65Q~wcTmI~O~zXE1gm78mUalCgOrMaSUjzN9DDVgY25CpUoLqjmx1TFYUevN4yh-siDQPUbxu-pIpuU6oPTwLbOoumftEDsqGlMZ8Yus3xZRVgMwBDXOmXyAvKNoRcRY7RW-jlXOUWFpJkNoPOoC~2Tu3ReDm6kw-D1YEDFkBvyNoZV1l6nJncpZOtraMVW6O~8yQdFH-ZDBSKfOJY4r09i0npXD60Z--3hsyMr4zoUpl0hM2uV9oVsf-U6yIXAhD7UKJ2X8bvYqoS7Drzw20XHZpurx81b-lNU1~v3I13I0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":98175358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175358/thumbnails/1.jpg","file_name":"AGU_Conference_Poster_2016.pdf","download_url":"https://www.academia.edu/attachments/98175358/download_file","bulk_download_file_name":"Fluid_rock_Interactions_recorded_in_Serp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175358/AGU_Conference_Poster_2016-libre.pdf?1675414833=\u0026response-content-disposition=attachment%3B+filename%3DFluid_rock_Interactions_recorded_in_Serp.pdf\u0026Expires=1731456474\u0026Signature=AsVbBZqstsW1dgkFQPPfMI1q4xoqtHsIqaU2f3WYSZX74uyWvOIyof1InXUt8cBtkacdc1ioZSNlpUmY1W1rWH4EVwKrulvEfv9A~wS4W7h9-JJ9DErgawtQFZozPQh-Nimfl6ep8brAMPQhCCOpW48hFoKm3MBfaXG9QDp87wujZXeHMUNK8trJ6ruAj7iMFFf6SrWNcfZJlMbiSh8mJsnr7WpfYac3fFiX9Nl-AcDevB-H2y0fH9hd1X22bkJqTYUALxmDBWOrP4OAVHZyPQiK3P3CBQFTW3eQ98Zx3CZYovQnPIRlB4GvWLHwpiZ5nsAWreW6MedjCE-p-h5fbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":28644391,"url":"http://zip-itn.eu/wp-content/uploads/2014/02/AGU_Conference_Poster_2016.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215032"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215032/Die_Welt_unter_den_Vulkanen"><img alt="Research paper thumbnail of Die "Welt" unter den Vulkanen" class="work-thumbnail" src="https://attachments.academia-assets.com/98175397/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215032/Die_Welt_unter_den_Vulkanen">Die "Welt" unter den Vulkanen</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fd3e551e4a40b6d2f07fbb9e7b4521f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175397,"asset_id":96215032,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175397/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215032"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215032"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215032; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215032]").text(description); $(".js-view-count[data-work-id=96215032]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215032; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215032']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215032, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fd3e551e4a40b6d2f07fbb9e7b4521f" } } $('.js-work-strip[data-work-id=96215032]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215032,"title":"Die \"Welt\" unter den Vulkanen","translated_title":"","metadata":{"grobid_abstract":"Vielleicht haben Sie gerade Licht eingeschaltet, um diesen Artikel zu lesen. Vielleicht geistern die letzten Nachrichten betreffend des steigenden Ölpreises noch in ihrem Hinterkopf umher. Nicht unerschöpflich ist die Quelle fossiler Brennstoffe; erneuerbar ist nur die Wasserkraft, predigt die hiesige Energielobby. Seit dem Altertum basieren verblüffend viele menschliche Errungenschaften auf metallischen Rohstoffen: Eine Aufgabe der Geologen ist es, die zukünftige Versorgung unserer Gesellschaft mit essenziellen Metallen zu sichern.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"grobid_abstract_attachment_id":98175397},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215032/Die_Welt_unter_den_Vulkanen","translated_internal_url":"","created_at":"2023-02-03T00:07:57.963-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175397/thumbnails/1.jpg","file_name":"die_20welt_20unter_20den_20vulkanen.pdf","download_url":"https://www.academia.edu/attachments/98175397/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Die_Welt_unter_den_Vulkanen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175397/die_20welt_20unter_20den_20vulkanen-libre.pdf?1675414731=\u0026response-content-disposition=attachment%3B+filename%3DDie_Welt_unter_den_Vulkanen.pdf\u0026Expires=1732441830\u0026Signature=AH2QGkBtkw7zFXstC7A9sTONFdlBRuQw6DGxSrUdnJsVCIzYEv7f2aITjG-ZlB77gdpFEQTl50CVro6A-IqoY11CV7r8Y5F94UTQcZIVeNxcottJW28HwGdS9Er41otoJaW63aXPI9LgopfGgje5uY9HtBWA5GzKyEEiN4YS0OGlV~NuhBrduL2V9H~Ul2EtKOjqlhbNCNI7S2i~ZmswH71GdzZeBKg8Y1n7svIOTnrdU1Old2wDPl34OwWfLU9~hjCdcnvTEuf9U1rpAuAviowWwx7rgagmeGbWYk~paPUnmn9IZWGV7CSun1PU7XHkq0IUKbkU0Be3YNzSZhob7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Die_Welt_unter_den_Vulkanen","translated_slug":"","page_count":4,"language":"de","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175397/thumbnails/1.jpg","file_name":"die_20welt_20unter_20den_20vulkanen.pdf","download_url":"https://www.academia.edu/attachments/98175397/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Die_Welt_unter_den_Vulkanen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175397/die_20welt_20unter_20den_20vulkanen-libre.pdf?1675414731=\u0026response-content-disposition=attachment%3B+filename%3DDie_Welt_unter_den_Vulkanen.pdf\u0026Expires=1732441830\u0026Signature=AH2QGkBtkw7zFXstC7A9sTONFdlBRuQw6DGxSrUdnJsVCIzYEv7f2aITjG-ZlB77gdpFEQTl50CVro6A-IqoY11CV7r8Y5F94UTQcZIVeNxcottJW28HwGdS9Er41otoJaW63aXPI9LgopfGgje5uY9HtBWA5GzKyEEiN4YS0OGlV~NuhBrduL2V9H~Ul2EtKOjqlhbNCNI7S2i~ZmswH71GdzZeBKg8Y1n7svIOTnrdU1Old2wDPl34OwWfLU9~hjCdcnvTEuf9U1rpAuAviowWwx7rgagmeGbWYk~paPUnmn9IZWGV7CSun1PU7XHkq0IUKbkU0Be3YNzSZhob7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215031"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215031/Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS"><img alt="Research paper thumbnail of Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS" class="work-thumbnail" src="https://attachments.academia-assets.com/98175356/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215031/Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS">Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g−1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="72e1b26039153e727a1d48a55db436b4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175356,"asset_id":96215031,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175356/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215031"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215031"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215031; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215031]").text(description); $(".js-view-count[data-work-id=96215031]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215031; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215031']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215031, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "72e1b26039153e727a1d48a55db436b4" } } $('.js-work-strip[data-work-id=96215031]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215031,"title":"Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS","translated_title":"","metadata":{"abstract":"An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g−1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, ...","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g−1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, ...","internal_url":"https://www.academia.edu/96215031/Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS","translated_internal_url":"","created_at":"2023-02-03T00:07:57.818-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175356,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175356/thumbnails/1.jpg","file_name":"EGU2016-7219.pdf","download_url":"https://www.academia.edu/attachments/98175356/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Major_to_ultra_trace_element_bulk_rock_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175356/EGU2016-7219-libre.pdf?1675414733=\u0026response-content-disposition=attachment%3B+filename%3DMajor_to_ultra_trace_element_bulk_rock_a.pdf\u0026Expires=1731456474\u0026Signature=UE~2KudGio3VRm4TqJkPz83GII2c4ZkZzqKVxpoxgo8VCTg6tLFn~uTitLz7HxL1FzFZbjQkq9uf2x~zAHP0TGC1Ackp3k65UXnBnABhRgL2q4kpdh2RedSsPRzaS5~MD5ns4Vda70b~wGBpBQ1uDqaZrhpBYYnf7UqcfIDj8B631L5jdLpatIDoBxVF6jNWwwVyK~OGqfimUcwaVsqf1ohO6Y6hmnHT5aSDWCdlvk8yvGOZS7bY8m-Tikdc9UbpHeOlLYF1T0~y4x-xoiFQCGOZhUl3VdD7SZvC48g4KDyJsuV21aFEqcdKJcKPrDvxr1-2thHKs6~KIamS3KfwJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175356,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175356/thumbnails/1.jpg","file_name":"EGU2016-7219.pdf","download_url":"https://www.academia.edu/attachments/98175356/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Major_to_ultra_trace_element_bulk_rock_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175356/EGU2016-7219-libre.pdf?1675414733=\u0026response-content-disposition=attachment%3B+filename%3DMajor_to_ultra_trace_element_bulk_rock_a.pdf\u0026Expires=1731456474\u0026Signature=UE~2KudGio3VRm4TqJkPz83GII2c4ZkZzqKVxpoxgo8VCTg6tLFn~uTitLz7HxL1FzFZbjQkq9uf2x~zAHP0TGC1Ackp3k65UXnBnABhRgL2q4kpdh2RedSsPRzaS5~MD5ns4Vda70b~wGBpBQ1uDqaZrhpBYYnf7UqcfIDj8B631L5jdLpatIDoBxVF6jNWwwVyK~OGqfimUcwaVsqf1ohO6Y6hmnHT5aSDWCdlvk8yvGOZS7bY8m-Tikdc9UbpHeOlLYF1T0~y4x-xoiFQCGOZhUl3VdD7SZvC48g4KDyJsuV21aFEqcdKJcKPrDvxr1-2thHKs6~KIamS3KfwJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":119199,"name":"Pellets","url":"https://www.academia.edu/Documents/in/Pellets"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"}],"urls":[{"id":28644390,"url":"http://www.meetingorganizer.copernicus.org/EGU2016/EGU2016-7219.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215030/189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS"><img alt="Research paper thumbnail of 189 Chapter 12: Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by La–(Mc–)Icp–MS" class="work-thumbnail" src="https://attachments.academia-assets.com/98175354/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215030/189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS">189 Chapter 12: Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by La–(Mc–)Icp–MS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="29c08531ab3b97538844cd2ad81f016b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175354,"asset_id":96215030,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175354/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215030]").text(description); $(".js-view-count[data-work-id=96215030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215030, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "29c08531ab3b97538844cd2ad81f016b" } } $('.js-work-strip[data-work-id=96215030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215030,"title":"189 Chapter 12: Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by La–(Mc–)Icp–MS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215030/189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS","translated_internal_url":"","created_at":"2023-02-03T00:07:57.653-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175354,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175354/thumbnails/1.jpg","file_name":"Pettke_MAC40_2008.pdf","download_url":"https://www.academia.edu/attachments/98175354/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"189_Chapter_12_Analytical_Protocols_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175354/Pettke_MAC40_2008-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3D189_Chapter_12_Analytical_Protocols_for.pdf\u0026Expires=1732243506\u0026Signature=TQBjLvy-XkEJdP2tG6vPmB0M8TUAHxh-QdLJLJsvqG8Gr3pPejQjImfRXYkHgg8JYsKpwxGBKTjJyitIaOCmcRJb80EL7STMssXeHcmjMX~44uBThY78IuNMigKX9K4l97VMuYq~LP6LddXsZcxPSomeYFEcJWeQPpGFI6QnmRwanWQf0TAuoA105c6lgzMmfFej4UC6dm35QIocJuyyhtQ1rBa4MFCniA2Eo759zbJWeuam9EZd9iRv-Ve2yQVsfsAjSeTKBCw6iE6abM22h73lowZF-XzYjtalNz~YaCvvsClsFY9S3buqhXxQs9UL0J9HFNPiKqeASqeEdZy1Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175354,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175354/thumbnails/1.jpg","file_name":"Pettke_MAC40_2008.pdf","download_url":"https://www.academia.edu/attachments/98175354/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"189_Chapter_12_Analytical_Protocols_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175354/Pettke_MAC40_2008-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3D189_Chapter_12_Analytical_Protocols_for.pdf\u0026Expires=1732243506\u0026Signature=TQBjLvy-XkEJdP2tG6vPmB0M8TUAHxh-QdLJLJsvqG8Gr3pPejQjImfRXYkHgg8JYsKpwxGBKTjJyitIaOCmcRJb80EL7STMssXeHcmjMX~44uBThY78IuNMigKX9K4l97VMuYq~LP6LddXsZcxPSomeYFEcJWeQPpGFI6QnmRwanWQf0TAuoA105c6lgzMmfFej4UC6dm35QIocJuyyhtQ1rBa4MFCniA2Eo759zbJWeuam9EZd9iRv-Ve2yQVsfsAjSeTKBCw6iE6abM22h73lowZF-XzYjtalNz~YaCvvsClsFY9S3buqhXxQs9UL0J9HFNPiKqeASqeEdZy1Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":98175355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175355/thumbnails/1.jpg","file_name":"Pettke_MAC40_2008.pdf","download_url":"https://www.academia.edu/attachments/98175355/download_file","bulk_download_file_name":"189_Chapter_12_Analytical_Protocols_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175355/Pettke_MAC40_2008-libre.pdf?1675414754=\u0026response-content-disposition=attachment%3B+filename%3D189_Chapter_12_Analytical_Protocols_for.pdf\u0026Expires=1732243506\u0026Signature=buj4a9R9WPFsHwCaG8GrWPRdzItTQjyD9HymOy330ynpKGwErLm3Nk9ztfJ1SmXTLeolvaG8e-nuAZp5xRhanphKHi1gZgRbYecPlR8oaGAdSAgMrXN~rtewT~ETk8iNFj8kYUqPFFeZYK59VZnauUce~RBCkWB2tIWR6ybxq4cYhU0uFsDXcH0jnxK5icpngttdfk0ZjYkH3VUzDDXh~rRnu0Nwr7NqAsiiOy94CIvnxzHTFC9WkyJXH0zNkCCauXd5HR3~jTXTv2Acw7fFleu1ODrNpEpOMJyOQQQza1n3u77plCI~wmo9NugpX34rHGTHv0WHPjU9qDr6CttX8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28644389,"url":"https://mineral.cuso.ch/fileadmin/mineral/Pettke_MAC40_2008.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215029/Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions"><img alt="Research paper thumbnail of Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/98175399/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215029/Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions">Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9921dc6dbbbac7608b73d7f5bdd1ff26" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175399,"asset_id":96215029,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175399/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215029]").text(description); $(".js-view-count[data-work-id=96215029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215029, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9921dc6dbbbac7608b73d7f5bdd1ff26" } } $('.js-work-strip[data-work-id=96215029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215029,"title":"Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Chemical Geology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215029/Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions","translated_internal_url":"","created_at":"2023-02-03T00:07:57.240-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175399,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175399/thumbnails/1.jpg","file_name":"Kaufmann_ChemGeo_2021.pdf","download_url":"https://www.academia.edu/attachments/98175399/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molybdenum_isotope_fractionation_at_uppe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175399/Kaufmann_ChemGeo_2021-libre.pdf?1675414786=\u0026response-content-disposition=attachment%3B+filename%3DMolybdenum_isotope_fractionation_at_uppe.pdf\u0026Expires=1732045359\u0026Signature=CJawJ8mqENNjUzoXjmSyE-~itMdDGcNe0IetvRStzvBTHuY8PfQlc1ph21kOEcoUPYUqBjVIJmINWymrayae~eC6HeBAtRoXgtJI4yIagISoXcPLoBqDf~jJvCFuhAuCWj-yfC0zMWebTAx4xphxqAfCh8~0f21eW3vGioZZqwXzzAvGdDhT-l2CnJwRomZjmwmEacz1b0BYPaaY6NKClDJxwTvGgQ7vW8nf-oNUPmpsjgKzjp2oocBZB0Uwg2B7vaHewZhQjYQS1jjM~-VfITPH6u3KdUqeti3JjwU6-PTQTi9kUZgH3XinzctTBV8e9raPNU8Q3Pbf1PJJjtc88w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175399,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175399/thumbnails/1.jpg","file_name":"Kaufmann_ChemGeo_2021.pdf","download_url":"https://www.academia.edu/attachments/98175399/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molybdenum_isotope_fractionation_at_uppe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175399/Kaufmann_ChemGeo_2021-libre.pdf?1675414786=\u0026response-content-disposition=attachment%3B+filename%3DMolybdenum_isotope_fractionation_at_uppe.pdf\u0026Expires=1732045359\u0026Signature=CJawJ8mqENNjUzoXjmSyE-~itMdDGcNe0IetvRStzvBTHuY8PfQlc1ph21kOEcoUPYUqBjVIJmINWymrayae~eC6HeBAtRoXgtJI4yIagISoXcPLoBqDf~jJvCFuhAuCWj-yfC0zMWebTAx4xphxqAfCh8~0f21eW3vGioZZqwXzzAvGdDhT-l2CnJwRomZjmwmEacz1b0BYPaaY6NKClDJxwTvGgQ7vW8nf-oNUPmpsjgKzjp2oocBZB0Uwg2B7vaHewZhQjYQS1jjM~-VfITPH6u3KdUqeti3JjwU6-PTQTi9kUZgH3XinzctTBV8e9raPNU8Q3Pbf1PJJjtc88w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":74607,"name":"Quartz","url":"https://www.academia.edu/Documents/in/Quartz"},{"id":82911,"name":"fluid Inclusions","url":"https://www.academia.edu/Documents/in/fluid_Inclusions"},{"id":159300,"name":"Molybdenum","url":"https://www.academia.edu/Documents/in/Molybdenum"},{"id":640682,"name":"Isotope fractionation","url":"https://www.academia.edu/Documents/in/Isotope_fractionation"}],"urls":[{"id":28644388,"url":"https://api.elsevier.com/content/article/PII:S0009254121002631?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215028/The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction"><img alt="Research paper thumbnail of The influence of oceanic oxidation on serpentinite dehydration during subduction" class="work-thumbnail" src="https://attachments.academia-assets.com/98175393/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215028/The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction">The influence of oceanic oxidation on serpentinite dehydration during subduction</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c9985dbfb957957b8a771bd188307191" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175393,"asset_id":96215028,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175393/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215028]").text(description); $(".js-view-count[data-work-id=96215028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215028, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c9985dbfb957957b8a771bd188307191" } } $('.js-work-strip[data-work-id=96215028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215028,"title":"The influence of oceanic oxidation on serpentinite dehydration during subduction","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Serpentinites are central to carry water and fluid-mobile elements down subduction zones. The breakdown of antigorite represents the most prominent aqueous fluid release, boosting fluid-mediated element cycling from the slab to the mantle wedge. At Cerro del Almirez, Spain, an antigorite dehydration reaction front is preserved in subducted serpentinites. Bulk rock and mineral major formed from the reaction of brucite with antigorite (Ol-1a) or from the reaction of diopside and antigorite (Ol-1b; Fig. 2). Atg-1 forms the variably foliated rock matrix, and larger antigorite blades are less well oriented and may grow over inclusion-rich olivine or clinopyroxene but not tremolite. Dusty Cpx-1 (Fig. 3a) is the only relic mantle mineral, showing occasional magnetite lamellae. Prograde Cpx-2 forms clear rims on Cpx-1 or isolated clear neoblasts. Euhedral Tr-1 may overgrow clinopyroxene (Fig. 3b) or is rarely present as up to 700 µm sized rhombohedral, unoriented crystals that may grow over Ol-1 and the Atg-1 matrix. Chlorite occurs either as a fine-grained felt associated with magnetite (Chl-1, \u003c0.5 vol%) or as inclusions in recrystallized relic clinopyroxene (Chl-2). Ti-chu-1 forms small grains dispersed throughout the matrix. Opaque phases include Cr-rich magnetite (up to 500 µm), subordinate Fe-Ni sulphide, and a Fe-Ti-oxide. Orthopyroxene crystals (Padrón-Navarta et al., 2011) were not observed in our Atg-serpentinite samples. Chlorite serpentinite and Atg-Chl-Opx-Ol rock: These lithologies characterise the cm to m thick, irregular reaction front between Atg-serpentinites and Chl-harzburgites and document the progressive replacement of antigorite from Atg-serpentinite by antigorite + chlorite, followed by growth of orthopyroxene and olivine until complete antigorite exhaustion. Contacts to the neighbouring rocks are gradational at cm to dm scale and oblique to the regional foliation. Chl-serpentinite represents the recrystallisation product of foliated Atg-1 from Atg-serpentinite into coarser grained and randomly oriented Atg-2 and Chl-3. The most conspicuous features are (i) euhedral Chl-3 flakes of up to 1 mm, topotactically overgrown by Atg-2 (Fig. 3c and d), and (ii) the absence of clinopyroxene. Tr-1 occurs either as euhedral crystals containing microscopic inclusions of olivine, or interstitially between Chl-3-Atg-2 intergrowths. Ol-2 forms mm-sized aggregates of individual, clear crystals. Atg-2 grain boundaries against talc are irregular. Atg-Chl-Opx-Ol rock (i) represents the appearance of orthopyroxene (Opx-1), (ii) has abundant flaky Chl-3 not overgrown by antigorite, (iii) is characterised by reduction in Atg-content to below 10 vol% along with disappearance of fine-grained Atg-1, and (iv) often shows the development of a granular texture similar to that of the granular Chl-harzburgite (see below). Opx-1 is either granular-anhedral and associated with granular-anhedral olivine (Ol-2/Ol-3, Fig. 3e), or Opx-1 forms radial aggregates of thin laths. Olivine is granular, colourless (Ol-2), and may have subordinate brown rims (Ol-3). Rarely, brown olivine grains (Ol-3) can also be observed, and colourless rims (Ol-4) on brown Ol-3 may also 8 occur. Unoriented Chl-3 flakes not overgrown by antigorite are distributed throughout the rock, while the Chl-3-Atg-2 intergrowths have a higher chlorite to antigorite ratio compared to those of the Chlserpentinite. Few, randomly oriented antigorite blades (\u003c1.25 mm) grow over chlorite, olivine and orthopyroxene. Atg-2 and Opx-1 grain boundaries against talc are irregular. Chlorite harzburgite: Chl-harzburgite occurs as a granular or a spinifex-textured rock (Schönbächler, 1999; Trommsdorff et al., 1998; Padrón-Navarta et al., 2011). Both share an identical mineralogy with only slightly variable modal abundances (Table 1). Their spatial occurrence relative to the contact with Atg-serpentinite is not systematic except that granular rocks are more abundant near the contact to Atg-serpentinites. In fact, granular Chl-harzburgite is texturally very similar to the transitional Atg-Chl-Opx-Ol rock. Transitions between granular and spinifex-textured Chl-harzburgites can be as short as a few centimetres. Rock-forming minerals are randomly oriented. Brown elongated olivine (up to 10 cm long) predominates in the spinifex-textured Chl-harzburgite, while granular olivine in the granular Chl-harzburgite is exclusively colourless. Opx-1, Chl-3, and magnetite fill the interstices between these olivine crystals. Olivine in variable modal abundances occurs in three growth stages. Clear Ol-2 sometimes form cores of brown Ol-3 (Fig. 3f) that itself may be overgrown by a clear Ol-4 rim. Clear small isometric Ol-4 crystals showing equilibrium texture may also occur in the matrix (Fig. 3f). Clinopyroxene is absent, and Ti-clinohumite is very rare in our samples. Rare tremolite displays equilibrium textures with Chl-3 (Fig. 3h) or overgrows brown Ol-3 or Opx-1. Inclusions of orthopyroxene and olivine in euhedral tremolite were confirmed by RAMAN spectroscopy. Retrograde talc variably replaces orthopyroxene (e.g. Fig. 3g). Magnetite occurrence and contents: Magnetite modes are higher for Atg-serpentinites (2.8 vol%) than for Chl-harzburgites (1.4 vol%); however, variations within a given rock type are prominent (Atgserpentinites: 2-4 vol%; Chl-harzburgites: 0.4-2 vol%). Modes of opaque minerals determined by point counting (Table 1) thereby reflect mostly magnetite for Atg-serpentinites, while the fraction of sulphides in the opaque part can amount to some 30% in Chl-harzburgites. Texturally, magnetite is overgrown by Atg-1 and Ol-1 in Atg-serpentinites (Fig. 4a), testifying to its crystallisation upon ocean floor hydration (Fig. 2). Granular magnetite in Chl-harzburgite (Fig. 4b) commonly displays sharp and even grain boundaries and is also included in Chl-3 and Ol-3 (and Opx-1; not illustrated) resulting from the antigorite breakdown reaction. This equilibrium texture suggests that ocean floor magnetite 9 may have partially equilibrated upon antigorite breakdown, possibly in association with Fe-sulphide crystallisation. Traces of other oxides (not further investigated) were also observed (compare Debret et al., 2015). Variations in magnetite modes between Atg-serpentinites and Chl-harzburgites at Almirez were also recognized by other studies (Debret et al., 2015; Marchesi et al., 2013; Padrón-Navarta et al., 2011). 3.2. Bulk rock major element concentrations Major element data acquired for 15 bulk rock samples that cover all lithotypes across the antigoriteout reaction are reported in Supplementary Table 1, employing the methods explained in the Supplementary Material 1. Measured loss on ignition (LOI) values determine bulk rock water contents (subordinate carbonate cannot be excluded), which decrease across the antigorite-out reaction from 11.3 wt% H 2 O in Atg-serpentinites typical for complete hydration down to 4.1 wt% H 2 O in Chlharzburgites. Bulk rock major element systematics reveal the combined effects of (i) magmatic mantle history, (ii) oceanic metasomatism, and (iii) partial metamorphic dehydration, of which the magmatic mantle history exerts a dominant control. The mantle rocks are variably refractory and narrowly range in Mg# from 87.7 to 90.9 (all Fe as FeO), typical for upper mantle rocks. In a plot of Al 2 O 3 /SiO 2 vs. MgO/SiO 2 (Fig. 5a), the samples follow the trend of residual mantle rocks following melt extraction. Some of the samples possess variably low MgO/SiO 2 for their given Al 2 O 3 /SiO 2 (compare Marchesi et al., 2013) that is typical for abyssal serpentinized peridotites, indicating either addition of SiO 2 or removal of Mg (and Fe) that may have balanced antigorite growth at the expense of chrysotile (e.g., Kodolányi and Pettke, 2011). Alternatively, this may reflect MgO loss during low temperature seafloor alteration (e.g., Niu, 2004). Al 2 O 3 /SiO 2 ratios are considered to remain unmodified during serpentinization (e.g., Niu, 2004). Alumina concentrations tend to be low, resulting in Al 2 O 3 /SiO 2 ratios that are typical for abyssal peridotites (0.01 \u003c Al 2 O 3 /SiO 2 \u003c 0.07; Niu, 2004) but higher than most mantle wedge serpentinites (Al 2 O 3 /SiO 2 \u003c 0.03; Deschamps et al., 2013). Despite significant amounts of retrograde talc present in partial to complete antigorite breakdown product rocks, bulk rock SiO 2 concentrations do not show an absolute enrichment relative to the peridotite melting residue trend. Al 2 O 3 and SiO 2 show a positive trend across the lithotypes from Atg-serpentinites to Chl-harzburgites, both Al 2 O 3 and SiO 2 being higher in Chl-harzburgites compared to all other lithologies. FeO tot","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":98175393},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215028/The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction","translated_internal_url":"","created_at":"2023-02-03T00:07:57.087-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175393,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175393/thumbnails/1.jpg","file_name":"212383948.pdf","download_url":"https://www.academia.edu/attachments/98175393/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_influence_of_oceanic_oxidation_on_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175393/212383948-libre.pdf?1675414754=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_oceanic_oxidation_on_se.pdf\u0026Expires=1732441830\u0026Signature=DBRTnA3aGVwwti65-IQc3ii7spL1Rp4mZGWaeHWzKAd23IpKRszf9PaH-4QSFYYL30lFsnrvvX~iOOI8rZLOkuPDoS0~x0NqFXikce1Yfvzgn7vhjk3XeXn3LyIeFp0WRiIrxCfx4b0hIrGcIw77zwx9TBtc~WFJuuzs~NA5fRwaB~2iuJrNlPpJaZdHXAqUu3pIgGm3lMDADHqlpeVs~UIIKy7bOxIhJZbElVZGABPIRA15YGRTDL3MrGZudSLT4KvyRXtibNyFr529RFhilnq3j5pyPONjaOrF6-6-GWScoOg6RWEbNGKNsXdVQJ3wEotdHxzc76kQ-UAS47tL4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction","translated_slug":"","page_count":77,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175393,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175393/thumbnails/1.jpg","file_name":"212383948.pdf","download_url":"https://www.academia.edu/attachments/98175393/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_influence_of_oceanic_oxidation_on_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175393/212383948-libre.pdf?1675414754=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_oceanic_oxidation_on_se.pdf\u0026Expires=1732441830\u0026Signature=DBRTnA3aGVwwti65-IQc3ii7spL1Rp4mZGWaeHWzKAd23IpKRszf9PaH-4QSFYYL30lFsnrvvX~iOOI8rZLOkuPDoS0~x0NqFXikce1Yfvzgn7vhjk3XeXn3LyIeFp0WRiIrxCfx4b0hIrGcIw77zwx9TBtc~WFJuuzs~NA5fRwaB~2iuJrNlPpJaZdHXAqUu3pIgGm3lMDADHqlpeVs~UIIKy7bOxIhJZbElVZGABPIRA15YGRTDL3MrGZudSLT4KvyRXtibNyFr529RFhilnq3j5pyPONjaOrF6-6-GWScoOg6RWEbNGKNsXdVQJ3wEotdHxzc76kQ-UAS47tL4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":28644387,"url":"https://api.elsevier.com/content/article/PII:S0012821X18304230?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4112923" id="papers"><div class="js-work-strip profile--work_container" data-work-id="113389397"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389397/Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3"><img alt="Research paper thumbnail of Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3" class="work-thumbnail" src="https://attachments.academia-assets.com/110360049/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389397/Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3">Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="283b895d7912abe12a560c7179bcb5d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110360049,"asset_id":113389397,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110360049/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389397"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389397]").text(description); $(".js-view-count[data-work-id=113389397]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389397']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389397, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "283b895d7912abe12a560c7179bcb5d8" } } $('.js-work-strip[data-work-id=113389397]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389397,"title":"Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3","translated_title":"","metadata":{"grobid_abstract":"Pb \u003c 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at $3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.","grobid_abstract_attachment_id":110360049},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389397/Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3","translated_internal_url":"","created_at":"2024-01-12T06:53:00.768-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110360049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360049/thumbnails/1.jpg","file_name":"Pettke_et_al_Paleoceanography_2002.pdf","download_url":"https://www.academia.edu/attachments/110360049/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_evolution_of_Asian_climate_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360049/Pettke_et_al_Paleoceanography_2002-libre.pdf?1705078468=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_evolution_of_Asian_climate_and.pdf\u0026Expires=1732361393\u0026Signature=WANjqtmYAeuhCtIqnyj6sZ9SCZ3lsqxyHuNk3zLAMY0zvySPbNgiUkyZ5yRKHP1-dv6he01D-M9rfOUf3mXK7pxYbHBdk4rfD4Pq4c3A1CrJMO7j~iuy3lqPFaMAon5T3t2Bi3Dl7E8H6G-HUj7Hq71gv4mQVJpqOpj1udCUQEuyYk-xCqMNnSt25XJrw6EnplfyPrCmSA-bENdrn4nQRCRFPRt6qMFseYRchjuFuffA7fcr6k-ebwY8loUym1CmGbdB2FKBDdkbZiCHq9t4kS4jKH4rU~Aa32MbPrUAE4yEUZ0qiJvBTDIC6nsiVdnpUx5eZOj5yCuCr-nN4QmVLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110360049,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360049/thumbnails/1.jpg","file_name":"Pettke_et_al_Paleoceanography_2002.pdf","download_url":"https://www.academia.edu/attachments/110360049/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_evolution_of_Asian_climate_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360049/Pettke_et_al_Paleoceanography_2002-libre.pdf?1705078468=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_evolution_of_Asian_climate_and.pdf\u0026Expires=1732361393\u0026Signature=WANjqtmYAeuhCtIqnyj6sZ9SCZ3lsqxyHuNk3zLAMY0zvySPbNgiUkyZ5yRKHP1-dv6he01D-M9rfOUf3mXK7pxYbHBdk4rfD4Pq4c3A1CrJMO7j~iuy3lqPFaMAon5T3t2Bi3Dl7E8H6G-HUj7Hq71gv4mQVJpqOpj1udCUQEuyYk-xCqMNnSt25XJrw6EnplfyPrCmSA-bENdrn4nQRCRFPRt6qMFseYRchjuFuffA7fcr6k-ebwY8loUym1CmGbdB2FKBDdkbZiCHq9t4kS4jKH4rU~Aa32MbPrUAE4yEUZ0qiJvBTDIC6nsiVdnpUx5eZOj5yCuCr-nN4QmVLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389282"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389282/The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions"><img alt="Research paper thumbnail of The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions" class="work-thumbnail" src="https://attachments.academia-assets.com/110360027/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389282/The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions">The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ed718012869a18dde78a046fdf820f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110360027,"asset_id":113389282,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110360027/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389282"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389282"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389282; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389282]").text(description); $(".js-view-count[data-work-id=113389282]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389282; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389282']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389282, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ed718012869a18dde78a046fdf820f0" } } $('.js-work-strip[data-work-id=113389282]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389282,"title":"The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions","translated_title":"","metadata":{"grobid_abstract":"The global supply of Mo and much of Cu and Au comes from porphyry-type ore deposits associated with hydrous magmas of broadly calc-alkaline composition, thought to be generated by contemporaneous subduction zone processes. Molybdenum is generally considered to be derived from the continental crust while Cu and Au are sourced in the mantle wedge above subducting slabs. Here we show that neither contemporaneous subduction nor derivation of Mo from crustal sources is required to explain the genesis of porphyry-Cu-Mo-Au deposits on Proterozoic lithosphere in the eastern Rocky Mountains. Uniform Pb isotope ratios measured by LA-MC-ICP-MS in individual fluid inclusions from distinct Cu-Au and later Mo ore-forming stages at Bingham Canyon, USA, demonstrate a common metal source. Uranogenic Pb isotope ratios are particularly non-radiogenic (17.494 b 206 Pb/ 204 Pb b 17.534; 15.553 b 207 Pb/ 204 Pb b 15.588) and plot to the left of the geochron and above the mantle Pb evolution line. In 207 Pb/ 206 Pb vs. 208 Pb/ 206 Pb space, the fluid Pb isotope data cluster at the non-radiogenic end of a mixing line described by N 80 feldspar data from igneous rocks intimately associated with magmatic-hydrothermal ore formation, which extends to modern depleted mantle or upper crust. Forward Monte Carlo simulations require three events for the U-Th-Pb isotope evolution of the fluid: (1) Late Archean formation of enriched crust is followed by (2) preferential extraction of Pb from this aged crust into a subduction fluid characterized by drastically reduced U/Pb that metasomatized lithospheric mantle at ∼ 1.8 Ga. This mantle reservoir then evolved to produce the retarded uranogenic Pb isotope signatures of the Bingham Canyon Cu-Mo-Au deposit in the Cenozoic (3). Similarly retarded uranogenic Pb isotope data characterize the giant porphyry-Mo and Climax-type Mo deposits of Henderson, Questa, Butte, and SE Arizona that occur in Proterozoic sutures of the central and eastern Rocky Mountains. We propose that Cenozoic melting of subcontinental lithospheric mantle metasomatized by subduction fluids during early Proterozoic amalgamation of terranes to the Wyoming Craton provides the metal endowment and subduction flavour to the giant magmatic-hydrothermal Cu-Mo-Au ore deposits in western North America, which together constitute the world's major molybdenum ore province.","grobid_abstract_attachment_id":110360027},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389282/The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions","translated_internal_url":"","created_at":"2024-01-12T06:51:08.307-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110360027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360027/thumbnails/1.jpg","file_name":"Pettke_et_al_EPSL_2010_inkl_SOM.pdf","download_url":"https://www.academia.edu/attachments/110360027/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_magma_and_metal_source_of_giant_porp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360027/Pettke_et_al_EPSL_2010_inkl_SOM-libre.pdf?1705078475=\u0026response-content-disposition=attachment%3B+filename%3DThe_magma_and_metal_source_of_giant_porp.pdf\u0026Expires=1732361393\u0026Signature=fOUgRu8XlPHOALJFK6G4ZhUocv4EpRQ-Ute4V-cpS6EYVSZolNycQ32wHKS~UhwsDxri~kzr~tg1iTU1jKxlq2LsTOeQgDrYvBIX-ZU1GxCAMHFH3LGBJYFhfPUIcqZyS5jkUmp1W~rjrQxgcYjJ5G6-K6~W6iTYCPUz0DDbkYrBrmcdB6fKaK0nTAHo8D3pCDFqcAqAYMe2iZSVydUMr4rOsOtbI6peIqsJSfmv~sx7Mq0BlARNMj4EdY5IG0xEwtAAk2w7bsBGvTkgWrhRShW3CmCoyuqgbdH4IHAxqhZMMLdfVuJgkKLIReXAPHDVOWDVKg-n4qbJpp4cMSm6GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_magma_and_metal_source_of_giant_porphyry_type_ore_deposits_based_on_lead_isotope_microanalysis_of_individual_fluid_inclusions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110360027,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110360027/thumbnails/1.jpg","file_name":"Pettke_et_al_EPSL_2010_inkl_SOM.pdf","download_url":"https://www.academia.edu/attachments/110360027/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_magma_and_metal_source_of_giant_porp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110360027/Pettke_et_al_EPSL_2010_inkl_SOM-libre.pdf?1705078475=\u0026response-content-disposition=attachment%3B+filename%3DThe_magma_and_metal_source_of_giant_porp.pdf\u0026Expires=1732361393\u0026Signature=fOUgRu8XlPHOALJFK6G4ZhUocv4EpRQ-Ute4V-cpS6EYVSZolNycQ32wHKS~UhwsDxri~kzr~tg1iTU1jKxlq2LsTOeQgDrYvBIX-ZU1GxCAMHFH3LGBJYFhfPUIcqZyS5jkUmp1W~rjrQxgcYjJ5G6-K6~W6iTYCPUz0DDbkYrBrmcdB6fKaK0nTAHo8D3pCDFqcAqAYMe2iZSVydUMr4rOsOtbI6peIqsJSfmv~sx7Mq0BlARNMj4EdY5IG0xEwtAAk2w7bsBGvTkgWrhRShW3CmCoyuqgbdH4IHAxqhZMMLdfVuJgkKLIReXAPHDVOWDVKg-n4qbJpp4cMSm6GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389136"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389136/Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS"><img alt="Research paper thumbnail of Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS" class="work-thumbnail" src="https://attachments.academia-assets.com/110359944/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389136/Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS">Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc5eb9856c454f2f58ce430eb70a1fb6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359944,"asset_id":113389136,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359944/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389136"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389136"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389136; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389136]").text(description); $(".js-view-count[data-work-id=113389136]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389136; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389136']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389136, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc5eb9856c454f2f58ce430eb70a1fb6" } } $('.js-work-strip[data-work-id=113389136]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389136,"title":"Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389136/Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS","translated_internal_url":"","created_at":"2024-01-12T06:48:28.639-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359944/thumbnails/1.jpg","file_name":"Pettke_et_al_Ore_Geol_Rev_2012.pdf","download_url":"https://www.academia.edu/attachments/110359944/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recent_developments_in_element_concentra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359944/Pettke_et_al_Ore_Geol_Rev_2012-libre.pdf?1705071016=\u0026response-content-disposition=attachment%3B+filename%3DRecent_developments_in_element_concentra.pdf\u0026Expires=1732045359\u0026Signature=XdMkFqeCk~E5Bq~AkcRw1fbu9JmjZNFVqlnS9vPrVoq2pysA~l7iJAoVI-J~2FmkgwSjQGYDdzAGQaJdf8ZUMQ1BTLvMMX0L150Qj6e8CxN1ZtoFxE4-7RVNw-9fngwNVlt0XQKVMJdJiYMEl7Bxh2pQxlEJj8R~~jS7WVVnzuDADBkb3EsAp9tTR-rfvSkcalcLkmonhpnTNoJeJ1xzR22dcA05s-~2sww-nsI37VWYF-5S5bDjQY7plX3k6BDOMtw1XZev9lFBeoTy81gY0iQ5t2zcO5idPnX-jb0xZI53sg7jxNNsDjw3kIoBRk-5F1qshj6BZDuRz681JLpAqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Recent_developments_in_element_concentration_and_isotope_ratio_analysis_of_individual_fluid_inclusions_by_laser_ablation_single_and_multiple_collector_ICP_MS","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359944/thumbnails/1.jpg","file_name":"Pettke_et_al_Ore_Geol_Rev_2012.pdf","download_url":"https://www.academia.edu/attachments/110359944/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Recent_developments_in_element_concentra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359944/Pettke_et_al_Ore_Geol_Rev_2012-libre.pdf?1705071016=\u0026response-content-disposition=attachment%3B+filename%3DRecent_developments_in_element_concentra.pdf\u0026Expires=1732045359\u0026Signature=XdMkFqeCk~E5Bq~AkcRw1fbu9JmjZNFVqlnS9vPrVoq2pysA~l7iJAoVI-J~2FmkgwSjQGYDdzAGQaJdf8ZUMQ1BTLvMMX0L150Qj6e8CxN1ZtoFxE4-7RVNw-9fngwNVlt0XQKVMJdJiYMEl7Bxh2pQxlEJj8R~~jS7WVVnzuDADBkb3EsAp9tTR-rfvSkcalcLkmonhpnTNoJeJ1xzR22dcA05s-~2sww-nsI37VWYF-5S5bDjQY7plX3k6BDOMtw1XZev9lFBeoTy81gY0iQ5t2zcO5idPnX-jb0xZI53sg7jxNNsDjw3kIoBRk-5F1qshj6BZDuRz681JLpAqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389120"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389120/From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle"><img alt="Research paper thumbnail of From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle" class="work-thumbnail" src="https://attachments.academia-assets.com/110359931/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389120/From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle">From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="586145c09ecd4cb31bfff58f022d33a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359931,"asset_id":113389120,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359931/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389120"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389120"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389120; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389120]").text(description); $(".js-view-count[data-work-id=113389120]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389120; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389120']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389120, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "586145c09ecd4cb31bfff58f022d33a2" } } $('.js-work-strip[data-work-id=113389120]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389120,"title":"From ocean to mantle: new evidence for U-cycling with implications for the HIMU source and the secular Pb isotope evolution of Earth's mantle","translated_title":"","metadata":{"grobid_abstract":"Of the isotopically distinctive mantle domains, the so-called HIMU (\"high-μ\"; μ = 238 U/ 204 Pb) source is the most extreme, and its genesis continues to be debated. We report very strong U enrichment at unchanged Th concentrations in Cretaceous oceanic serpentinites with exceptionally high 206 Pb/ 204 Pb (reaching 56) but unchanged 208 Pb/ 204 Pb. Similar, but less extreme, features are found in 1.9 billion years old altered oceanic crust (AOC). Forward modelling demonstrates that mantle, if metasomatised by supercritical liquids derived from AOC and serpentinites, evolves to the HIMU Pb isotope signatures, while satisfying experimental and empirical constraints on subduction zone element processing. By contrast, no model solutions for the conventional proposal of the HIMU source representing residual igneous altered oceanic crust can be reconciled with 208 Pb/ 204 Pb, strengthening the need for a paradigm shift regarding HIMU OIB genesis. Over time, the net U addition to the convecting mantle via deeply subducted serpentinite has expressed itself as the so-called second terrestrial Pb isotope paradox, or kappa conundrum.","grobid_abstract_attachment_id":110359931},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389120/From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle","translated_internal_url":"","created_at":"2024-01-12T06:48:05.718-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359931/thumbnails/1.jpg","file_name":"Pettke_et_al_Lithos_2018.pdf","download_url":"https://www.academia.edu/attachments/110359931/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_ocean_to_mantle_new_evidence_for_U.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359931/Pettke_et_al_Lithos_2018-libre.pdf?1705071315=\u0026response-content-disposition=attachment%3B+filename%3DFrom_ocean_to_mantle_new_evidence_for_U.pdf\u0026Expires=1732361393\u0026Signature=L2v7uGbzm9Mv7FXOpHtwpNYmJhDpsIyi8zmtepcwiBF4Lfp2kKUx5~~KGoRTd6-oqjJGB4xDUA3Iokh7v~jVB7wrNUS5XeDSptEf1W03bZnqPonclGOp~09ay1HpLHhwKsbKVuLtvGw~53NTV2V4VPgbfe9-ombJ3CjsG4BHLGi2aiEr8sBz-oFMPtcmd6bjOak3BZggFALtyMVmTAWnYt6DvjRUwHYJcqt3kYwfQh5Pk9uERdzXawjGZw9XHp-i9jbvGQCP6T1VyxTMPG~MzaUpT-kLAXnasHVHzWvCpc29khg2o4UcQXbUGdcogTYhVMJuDbgKF3W4LG4LPQZycA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_ocean_to_mantle_new_evidence_for_U_cycling_with_implications_for_the_HIMU_source_and_the_secular_Pb_isotope_evolution_of_Earths_mantle","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359931/thumbnails/1.jpg","file_name":"Pettke_et_al_Lithos_2018.pdf","download_url":"https://www.academia.edu/attachments/110359931/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"From_ocean_to_mantle_new_evidence_for_U.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359931/Pettke_et_al_Lithos_2018-libre.pdf?1705071315=\u0026response-content-disposition=attachment%3B+filename%3DFrom_ocean_to_mantle_new_evidence_for_U.pdf\u0026Expires=1732361393\u0026Signature=L2v7uGbzm9Mv7FXOpHtwpNYmJhDpsIyi8zmtepcwiBF4Lfp2kKUx5~~KGoRTd6-oqjJGB4xDUA3Iokh7v~jVB7wrNUS5XeDSptEf1W03bZnqPonclGOp~09ay1HpLHhwKsbKVuLtvGw~53NTV2V4VPgbfe9-ombJ3CjsG4BHLGi2aiEr8sBz-oFMPtcmd6bjOak3BZggFALtyMVmTAWnYt6DvjRUwHYJcqt3kYwfQh5Pk9uERdzXawjGZw9XHp-i9jbvGQCP6T1VyxTMPG~MzaUpT-kLAXnasHVHzWvCpc29khg2o4UcQXbUGdcogTYhVMJuDbgKF3W4LG4LPQZycA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113389058"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113389058/Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland"><img alt="Research paper thumbnail of Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland" class="work-thumbnail" src="https://attachments.academia-assets.com/110359897/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113389058/Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland">Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc390e6b920132692669cb00cbe50bbd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359897,"asset_id":113389058,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359897/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113389058"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113389058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113389058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113389058]").text(description); $(".js-view-count[data-work-id=113389058]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113389058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113389058']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113389058, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc390e6b920132692669cb00cbe50bbd" } } $('.js-work-strip[data-work-id=113389058]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113389058,"title":"Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland","translated_title":"","metadata":{"grobid_abstract":"Oxide minerals contained in ultramafic rocks are useful tools to assess the redox conditions of the rock and fluids liberated upon progressive serpentinite dehydration during subduction, as these minerals contain a relevant redox-sensitive element, iron. Previous studies have revealed that magnetite predominates across the antigorite-out reaction. However, the fate of magnetite and other oxides at higher pressure and temperature conditions has remained underexplored. We present a comprehensive petrological and geochemical study of oxide-sulfide-silicate mineral assemblages in metaperidotites beyond antigorite-and chlorite-out reactions (T = 650-850 °C and P = 1-3 GPa). Several ultramafic lenses, covering different bulk rock compositions and extents of oxidation upon oceanic serpentinization, were investigated from the Central Alps, Switzerland. Results point to two endmember scenarios: (i) Most frequently, metaperidotites have olivine with a Mg# of 89-91 (defined as molar Mg/(Mg + Fe tot) × 100) and contain low oxide modes (0.06-1.41 vol.%), hematite is absent, and redox conditions are weakly oxidized and buffered by orthopyroxene-olivine-magnetite. (ii) Rare occurrence, high olivine Mg# \u003e 94.5 metaperidotites display coexisting hematite and magnetite, high oxide modes (up to 4 vol.%), and redox conditions are hematite-magnetite (HM) buffered (Δlog 10 fO 2 , QFM of + 3 to + 4). Spinel displays evolving compositions from magnetite over chromite to Al-Cr-spinel, roughly correlating with increasing temperature. Most of the samples buffered by the olivineorthopyroxene-magnetite assemblage contain coexisting pentlandite ± pyrrhotite, thus identifying stable sulfides beyond antigorite dehydration for these weakly oxidized samples (Δlog 10 fO 2 , QFM \u003c 2.5). No sulfides were recognized in the highly oxidized sample. The transition of magnetite to chromite at around 700 °C goes along with a shift in fO 2 to lower values. At the prevailing oxygen fugacity in the weakly oxidized metaperidotites sulfur in a coexisting fluid is always present in its reduced form. However, oxidized sulfur can be stable in the dehydration fluids released from highly oxidized serpentinites.","grobid_abstract_attachment_id":110359897},"translated_abstract":null,"internal_url":"https://www.academia.edu/113389058/Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland","translated_internal_url":"","created_at":"2024-01-12T06:46:27.527-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359897,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359897/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_CMP_2023.pdf","download_url":"https://www.academia.edu/attachments/110359897/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Oxide_silicate_petrology_and_geochemistr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359897/Vieira_Duarte_et_al_CMP_2023-libre.pdf?1705071027=\u0026response-content-disposition=attachment%3B+filename%3DOxide_silicate_petrology_and_geochemistr.pdf\u0026Expires=1732361393\u0026Signature=LgV7jPpW9dW-H68SB2vL3JEPevD2ErShpZ-LN8jcwsLNm9cLyNn19tIpM-ig0I6kY2vBh58YSy5xbA1t5kh2b8cM1-0eiEuSKKF8sPls5S7~AKDCfuSFXzHn4varTfI9ey-fjP~5bB9QqY9HlY-d7CdPmXb3WrlXO4daThhQK08ipw0HzAoy9NPCd6Rxhqi0d10v7oupMLWUwuu-pnQx0i650z0Vy1cU3BnL1DWxLs3gL~OePfZ2oRPZoOfc9DBuqJmDysk80r16MCtTzMNXGC5SAuaVmB4-YazLMrOeuGJ~5neXMNCWVT1GR1JRxr1Gm3z~rFI-YrhHwrWMOvwyDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oxide_silicate_petrology_and_geochemistry_of_subducted_hydrous_ultramafic_rocks_beyond_antigorite_dehydration_Central_Alps_Switzerland","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359897,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359897/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_CMP_2023.pdf","download_url":"https://www.academia.edu/attachments/110359897/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Oxide_silicate_petrology_and_geochemistr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359897/Vieira_Duarte_et_al_CMP_2023-libre.pdf?1705071027=\u0026response-content-disposition=attachment%3B+filename%3DOxide_silicate_petrology_and_geochemistr.pdf\u0026Expires=1732361393\u0026Signature=LgV7jPpW9dW-H68SB2vL3JEPevD2ErShpZ-LN8jcwsLNm9cLyNn19tIpM-ig0I6kY2vBh58YSy5xbA1t5kh2b8cM1-0eiEuSKKF8sPls5S7~AKDCfuSFXzHn4varTfI9ey-fjP~5bB9QqY9HlY-d7CdPmXb3WrlXO4daThhQK08ipw0HzAoy9NPCd6Rxhqi0d10v7oupMLWUwuu-pnQx0i650z0Vy1cU3BnL1DWxLs3gL~OePfZ2oRPZoOfc9DBuqJmDysk80r16MCtTzMNXGC5SAuaVmB4-YazLMrOeuGJ~5neXMNCWVT1GR1JRxr1Gm3z~rFI-YrhHwrWMOvwyDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113388999"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113388999/Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction"><img alt="Research paper thumbnail of Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction" class="work-thumbnail" src="https://attachments.academia-assets.com/110359842/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113388999/Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction">Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db9723d8d9b7f468d75b691ffa5e3cd1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359842,"asset_id":113388999,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359842/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113388999"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113388999"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113388999; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113388999]").text(description); $(".js-view-count[data-work-id=113388999]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113388999; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113388999']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113388999, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db9723d8d9b7f468d75b691ffa5e3cd1" } } $('.js-work-strip[data-work-id=113388999]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113388999,"title":"Textural and Geochemical Evidence for Magnetite Production upon Antigorite Breakdown During Subduction","translated_title":"","metadata":{"grobid_abstract":"Magnetite stability in ultramafic systems undergoing subduction plays a major role in controlling redox states of the fluids liberated upon dehydration reactions, as well as of residual rocks. Despite their relevance for the evaluation of the redox conditions, the systematics and geochemistry of oxide minerals have remained poorly constrained in subducted ultramafic rocks. Here, we present a detailed petrological and geochemical study of magnetite in hydrous ultramafic rocks from Cerro del Almirez (Spain). Our results indicate that prograde to peak magnetite, ilmenite-hematite solid solution minerals, and sulfides coexist in both antigorite-serpentinite and chlorite-harzburgite at c. 670 C and 1Á6 GPa, displaying successive crystallization stages, each characterized by specific mineral compositions. In antigorite-serpentinite, magnetite inherited from seafloor hydration and recrystallized during subduction has moderate Cr (Cr 2 O 3 \u003c 10 wt%) and low Al and V concentrations. In chlorite-harzburgite, polygonal magnetite is in textural equilibrium with olivine, orthopyroxene, chlorite, pentlandite, and ilmenite-hematite solid solution minerals. The Cr 2 O 3 contents of this magnetite are up to 19 wt%, higher than any magnetite data obtained for antigoriteserpentinite, along with higher Al and V, derived from antigorite breakdown, and lower Mn concentrations. This polygonal magnetite displays conspicuous core to rim zoning as recognized on elemental maps. Cr-V-Al-Fe 3þ mass-balance calculations, assuming conservative behavior of total Fe 3þ and Al, were employed to model magnetite compositions and modes in the partially dehydrated product chlorite-harzburgite starting from antigorite-serpentinite, as well as in the serpentinite protolith starting from the chlorite-harzburgite. The model results disagree with measured Cr and V compositions in magnetite from antigorite-serpentinites and chlorite-harzburgites. This indicates that these two rock types had different initial bulk compositions and thus cannot be directly compared. Our mass-balance analysis also reveals that new magnetite formation is required across the antigorite-breakdown reaction to account for the mass conservation of fluid-immobile elements such as Cr-V-Al-Fe 3þ. Complete recrystallization and formation of new magnetite in equilibrium with peak olivine (Mg# 89-91), chlorite (Mg# $95), orthopyroxene (Mg# 90-91), and pentlandite buffer the released fluid to redox conditions of $1 log unit above the quartz-fayalite-magnetite buffer. This is consistent with the observation that the Fe-Ti solid solution minerals (hemo-ilmenite and ilmeno-hematite) crystallized as homogeneous phases and exsolved upon exhumation and cooling. We conclude that antigorite-dehydration reaction fluids carry only a moderate redox budget and therefore may not be the only reason why the magmas are comparatively oxidized.","grobid_abstract_attachment_id":110359842},"translated_abstract":null,"internal_url":"https://www.academia.edu/113388999/Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction","translated_internal_url":"","created_at":"2024-01-12T06:45:46.055-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359842,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359842/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_JPet_2021_complete.pdf","download_url":"https://www.academia.edu/attachments/110359842/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Textural_and_Geochemical_Evidence_for_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359842/Vieira_Duarte_et_al_JPet_2021_complete-libre.pdf?1705071053=\u0026response-content-disposition=attachment%3B+filename%3DTextural_and_Geochemical_Evidence_for_Ma.pdf\u0026Expires=1732361393\u0026Signature=AEOMw34kmx1BZFcBdTV6e-LU~u1kdHrRpVw2~CXmAbsUycivcGF-qqre1Vo-bAs0L5wA9rLeiILqv-Ea40hi28trz8bIbl4KvFOtMcFDwMJr2yqRduiyzTz6qgHG1sp74oTm7PnoF2BXXs0k73UpXHp-5YCNCVPlXFcTL7Yg30pJ85tejdyL2WboHDSTnMBxmSWUlhrU-K68soKg249nXRbD~LGWWjzUav7vdEfIptbLjvJxds1WObsMCz2waGHYdGeN14sYrTfZaKv0knIESjmK0TH4xOGxOac9egxEhRqZoqs2vpmlgiT6~vfmtrmDs3r7hSW1SIc3To0Wmqnpog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Textural_and_Geochemical_Evidence_for_Magnetite_Production_upon_Antigorite_Breakdown_During_Subduction","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359842,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359842/thumbnails/1.jpg","file_name":"Vieira_Duarte_et_al_JPet_2021_complete.pdf","download_url":"https://www.academia.edu/attachments/110359842/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Textural_and_Geochemical_Evidence_for_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359842/Vieira_Duarte_et_al_JPet_2021_complete-libre.pdf?1705071053=\u0026response-content-disposition=attachment%3B+filename%3DTextural_and_Geochemical_Evidence_for_Ma.pdf\u0026Expires=1732361393\u0026Signature=AEOMw34kmx1BZFcBdTV6e-LU~u1kdHrRpVw2~CXmAbsUycivcGF-qqre1Vo-bAs0L5wA9rLeiILqv-Ea40hi28trz8bIbl4KvFOtMcFDwMJr2yqRduiyzTz6qgHG1sp74oTm7PnoF2BXXs0k73UpXHp-5YCNCVPlXFcTL7Yg30pJ85tejdyL2WboHDSTnMBxmSWUlhrU-K68soKg249nXRbD~LGWWjzUav7vdEfIptbLjvJxds1WObsMCz2waGHYdGeN14sYrTfZaKv0knIESjmK0TH4xOGxOac9egxEhRqZoqs2vpmlgiT6~vfmtrmDs3r7hSW1SIc3To0Wmqnpog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113388841"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113388841/Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective"><img alt="Research paper thumbnail of Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective" class="work-thumbnail" src="https://attachments.academia-assets.com/110359735/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113388841/Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective">Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9fe973d07ba8d27faa43700637cae408" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110359735,"asset_id":113388841,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110359735/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113388841"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113388841"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113388841; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113388841]").text(description); $(".js-view-count[data-work-id=113388841]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113388841; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113388841']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113388841, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9fe973d07ba8d27faa43700637cae408" } } $('.js-work-strip[data-work-id=113388841]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113388841,"title":"Fluid-mediated element cycling in subducted oceanic lithosphere: The orogenic serpentinite perspective","translated_title":"","metadata":{"grobid_abstract":"Serpentinites are central to water (re)cycling in subduction zones and thus effect fluid-mediated element transfer between the hydrosphere and the Earth's mantle and back into continental crust via calcalkaline magmatism. Diverse and often controversial models exist on the relevance of various source contributions to the budget of fluid mobile elements of hydrous peridotites and how these evolve during the subduction cycle. This work offers novel constraints on ongoing debates. We present a comprehensive bulk rock and silicate mineral major to trace element study covering the antigorite dehydration reaction based on Cerro del Almirez antigorite-serpentinites and chlorite-harzburgites, including the systematics of As, Sb, B, W, Li, In, Tl, Bi, Cd, and Sn-so far unavailable for Almirez, and there exist only few such data for orogenic serpentinites in general. We integrate these with reviewed literature data and develop a general model for the geochemical systematics of subducting hydrous slab mantle covering magmatic peridotite conditioning, element enrichment upon oceanic hydration, compositional evolution with progressive subduction to peak temperature antigorite dehydration, and retrograde metasomatism upon exhumation. Pre-hydration magmatic processes produce strong compositional variations on centimetre to metre to kilometre scales. Serpentinisation via seawater and sediment-equilibrated pore fluids produces highly variable fluidmobile element (FME) bulk rock enrichments in B, As, Sb, W, Cs, ±Li, ±Bi, ±Pb, ±U exceeding primitive mantle concentrations. Hydration enrichment numbers represent a novel concept introduced in this work to refine the extent of hydration-mediated FME enrichment. They represent the measured ratio of fluid-mobile element over a fluid-immobile element of closely comparable magmatic compatibility normalised to its corresponding primitive mantle abundance ratio. Hydration enrichment numbers are highest for Sb and As (up to 650) and lowest for Ba and Rb (down to 0.06) for Almirez data, quantifying fractions of minimal enrichment (values \u003e1) and minimal prograde subduction loss (values \u003c1). FME enrichment occurred primarily in ocean floor to trench to shallow forearc settings where sediment-equilibrated pore fluids are relevant, while addition from deeper sediment metamorphic dehydration fluids with progressive subduction is subordinate at best. Prominent fractions of As,","grobid_abstract_attachment_id":110359735},"translated_abstract":null,"internal_url":"https://www.academia.edu/113388841/Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective","translated_internal_url":"","created_at":"2024-01-12T06:43:29.550-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110359735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359735/thumbnails/1.jpg","file_name":"Pettke_Bretscher_Earth_Sci_Rev_2022_all.pdf","download_url":"https://www.academia.edu/attachments/110359735/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_mediated_element_cycling_in_subduc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359735/Pettke_Bretscher_Earth_Sci_Rev_2022_all-libre.pdf?1705071415=\u0026response-content-disposition=attachment%3B+filename%3DFluid_mediated_element_cycling_in_subduc.pdf\u0026Expires=1732361393\u0026Signature=anJQON5q9y2-yqUbkw9Pybrn~BXl~ULhBq8TSKC4avUQeOfz3Be3ows8k3C4X1eWjX0MZbhv9dkvYx5AMaoE5osPvWI5bD6leAos1oC3W~eMxUOIf9ESCB0u0jLZ0d8xNfC~URLu0hm8tdKpWVDziPIElSYf3F~ntQQoII9ibgxV~oG5enRz6Rfy6W4CU1nyupzSb1AB9Tqmi2ZJC8n~tFKgVeTmMS2yg0DQDe-93oCA~Cc8vYHX3e76Tg3FGbGhiYKYHy-x3JG950sjMqKJMe8ev-q4w-1YbEHJRNCRCGjFcakwbufHtyyV9z3ZpFyiMFQjlzL2p6wP7naDRCHy5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_mediated_element_cycling_in_subducted_oceanic_lithosphere_The_orogenic_serpentinite_perspective","translated_slug":"","page_count":37,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":110359735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110359735/thumbnails/1.jpg","file_name":"Pettke_Bretscher_Earth_Sci_Rev_2022_all.pdf","download_url":"https://www.academia.edu/attachments/110359735/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_mediated_element_cycling_in_subduc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110359735/Pettke_Bretscher_Earth_Sci_Rev_2022_all-libre.pdf?1705071415=\u0026response-content-disposition=attachment%3B+filename%3DFluid_mediated_element_cycling_in_subduc.pdf\u0026Expires=1732361393\u0026Signature=anJQON5q9y2-yqUbkw9Pybrn~BXl~ULhBq8TSKC4avUQeOfz3Be3ows8k3C4X1eWjX0MZbhv9dkvYx5AMaoE5osPvWI5bD6leAos1oC3W~eMxUOIf9ESCB0u0jLZ0d8xNfC~URLu0hm8tdKpWVDziPIElSYf3F~ntQQoII9ibgxV~oG5enRz6Rfy6W4CU1nyupzSb1AB9Tqmi2ZJC8n~tFKgVeTmMS2yg0DQDe-93oCA~Cc8vYHX3e76Tg3FGbGhiYKYHy-x3JG950sjMqKJMe8ev-q4w-1YbEHJRNCRCGjFcakwbufHtyyV9z3ZpFyiMFQjlzL2p6wP7naDRCHy5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100257851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100257851/Interesting_Papers_in_Other_Journals"><img alt="Research paper thumbnail of Interesting Papers in Other Journals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100257851/Interesting_Papers_in_Other_Journals">Interesting Papers in Other Journals</a></div><div class="wp-workCard_item"><span>Economic Geology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel, Christelle Marlin, Laurent Dever, Jean-Luc Morel ... 12, 2002 Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO 2 surveysAnthony Finizola ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100257851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100257851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100257851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100257851]").text(description); $(".js-view-count[data-work-id=100257851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100257851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100257851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100257851, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100257851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100257851,"title":"Interesting Papers in Other Journals","translated_title":"","metadata":{"abstract":"... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel, Christelle Marlin, Laurent Dever, Jean-Luc Morel ... 12, 2002 Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO 2 surveysAnthony Finizola ...","publisher":"Society of Economic Geologists","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Economic Geology"},"translated_abstract":"... Recharge altitude estimation of thermal springs using stable isotopes in MoroccoAnne Winckel, Christelle Marlin, Laurent Dever, Jean-Luc Morel ... 12, 2002 Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO 2 surveysAnthony Finizola ...","internal_url":"https://www.academia.edu/100257851/Interesting_Papers_in_Other_Journals","translated_internal_url":"","created_at":"2023-04-16T03:18:14.180-07:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interesting_Papers_in_Other_Journals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":2406,"name":"Economic Geology","url":"https://www.academia.edu/Documents/in/Economic_Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215039/Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens"><img alt="Research paper thumbnail of Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens" class="work-thumbnail" src="https://attachments.academia-assets.com/98175404/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215039/Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens">Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens</a></div><div class="wp-workCard_item"><span>Geochimica et Cosmochimica Acta</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55fe6b53b69c16758404ad56604236e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175404,"asset_id":96215039,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175404/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215039]").text(description); $(".js-view-count[data-work-id=96215039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215039, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55fe6b53b69c16758404ad56604236e4" } } $('.js-work-strip[data-work-id=96215039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215039,"title":"Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The processes of carbon mobilisation at convergent plate boundaries are hotly debated. Recent findings suggest that carbon release along subduction geothermal gradients may well be more relevant than previously thought; however, it has remained difficult to achieve steady state atmospheric CO 2 conditions over geological time scales based on current volatile cycle models. Here, we report on meta-ophicarbonate rocks in the contact metamorphic aureole of the Bergell intrusion, Val Malenco, European Alps, that reached T-P conditions of at least 650°C at 0.35 GPa. We demonstrate by combined field evidence, geochemistry, and closed-system thermodynamic modelling that over 50% of the rock carbonate has been mobilised locally in response to reactive fluid flow upon progressive isobaric heating from 350 to \u003e650°C. Despite complete mineral transformation at the antigorite + calcite devolatilisation reaction, the resulting tremolite-ophicarbonate preserves the original ophicarbonate texture by olivine-chlorite clasts, representing the former antigorite-serpentinite fraction, embedded in a monomineralic tremolite matrix formed from the calcite fraction that often exceeded 50 vol%. Closed system thermodynamic modelling based on an ophicarbonate composition of 80 wt% serpentinite +20 wt% calcite reveals that rock-buffered fluid X CO2 values evolve from \u003c0.09 to as high as $0.16, and the total H 2 O-CO 2 fluid fraction released may be as high as 14 wt%; values that are highly sensitive to bulk ophicarbonate composition. Major to trace element geochemistry reveals a history of peridotite melt depletion followed by ocean floor hydration and ophicarbonate formation, consistent with the ocean continent transition (OCT) setting of the mantle rocks in the Mesozoic. This is demonstrated by positive anomalies in B, U, As, Sb, Bi, and W, and by bulk rock and notably carbonate primitive mantle normalised REE patterns that are basically identical to that of calcite precipitated from Jurassic seawater except for its negative Eu anomaly. Prograde metamorphic tremolite and diopside possess enrichments notably in Sr and REE inherited from reactant calcite, as is also supported by a good match between measured and modelled silicate mineral compositions. Specific geochemical characteristics of the prograde meta-ophicarbonate rocks imply fluid mediated, open system processes. Antigorite dehydration fluid ingress, likely produced in neighbouring antigorite-serpentinites, may have shifted bulk tremolite ophicarbonate rock compositions towards higher SiO 2 /MgO ratios along with an increase in B contents and depletion in fluid mobile elements such as As, Sb, and Sr. The massive, contact metamorphic CO 2 mobilisation documented here occurred at P-T conditions that are similar to those that can be achieved in collisional orogenic settings, whose clockwise P-T-t paths are often characterised by further heating upon initial decompression. They thus evolve at large angle to devolatilisation reactions and silicate-carbonate rock-buffered fluid X CO2 isopleths, thus fostering carbon mobilisation towards metamorphic peak temperatures at moderate to low pressures (in the region of between \u003e700°C-1.0 GPa and \u003e600°C-0.3 GPa). Barrovian metamorphism, too, can reach T-P conditions of 800°C-1 GPa. Amagmatic CO 2 mobilised this way will eventually reach the atmosphere via dispersion in the groundwater","publication_name":"Geochimica et Cosmochimica Acta","grobid_abstract_attachment_id":98175404},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215039/Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens","translated_internal_url":"","created_at":"2023-02-03T00:07:58.944-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175404/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175404/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Antigorite_dehydration_fluids_boost_carb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175404/main-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3DAntigorite_dehydration_fluids_boost_carb.pdf\u0026Expires=1732441830\u0026Signature=DIjtwe6fzTpstTWw~NxcUzj~hYMxRD~mazGnt-BbPJbNoHgw3MAW8dKagXKtzo0t3IaC3qrMSuJbx3IZeIQldPH-1xgmvHnk-nOMKSz3tl4PjyaHClpW9t1QrOa1TxYA0ad7SdEGU2BPF3mS1BVLnROHtGZUoiYuTwI~uer-HvHwYMda4HoXSKXaPjpdKt175Q~V6EE8bZy4DMEVZa6FzhnbRQlQSeZqrpmTfq1O~T0QXw0XMUXtRq~gzDTdmllhIMe3XKmrVOFX~Hj4KnIM5EsLoIMCtgkEHX6uoRs0~ULqzRHHxAl2DOFupQ4gvEdEzbfEi01Cn4VQEqPUVoa7YQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Antigorite_dehydration_fluids_boost_carbonate_mobilisation_and_crustal_CO2_outgassing_in_collisional_orogens","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175404/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175404/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Antigorite_dehydration_fluids_boost_carb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175404/main-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3DAntigorite_dehydration_fluids_boost_carb.pdf\u0026Expires=1732441830\u0026Signature=DIjtwe6fzTpstTWw~NxcUzj~hYMxRD~mazGnt-BbPJbNoHgw3MAW8dKagXKtzo0t3IaC3qrMSuJbx3IZeIQldPH-1xgmvHnk-nOMKSz3tl4PjyaHClpW9t1QrOa1TxYA0ad7SdEGU2BPF3mS1BVLnROHtGZUoiYuTwI~uer-HvHwYMda4HoXSKXaPjpdKt175Q~V6EE8bZy4DMEVZa6FzhnbRQlQSeZqrpmTfq1O~T0QXw0XMUXtRq~gzDTdmllhIMe3XKmrVOFX~Hj4KnIM5EsLoIMCtgkEHX6uoRs0~ULqzRHHxAl2DOFupQ4gvEdEzbfEi01Cn4VQEqPUVoa7YQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"},{"id":346274,"name":"Dehydration","url":"https://www.academia.edu/Documents/in/Dehydration"},{"id":1870658,"name":"Outgassing","url":"https://www.academia.edu/Documents/in/Outgassing"}],"urls":[{"id":28644394,"url":"https://api.elsevier.com/content/article/PII:S0016703721001277?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215038/Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_M%C3%BCnchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions"><img alt="Research paper thumbnail of Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/98175407/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215038/Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_M%C3%BCnchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions">Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bba1c11a43a240de423b43478eb7804d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175407,"asset_id":96215038,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175407/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215038]").text(description); $(".js-view-count[data-work-id=96215038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215038, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bba1c11a43a240de423b43478eb7804d" } } $('.js-work-strip[data-work-id=96215038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215038,"title":"Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Eclogites, metagabbros, and paragneisses from the Variscan Münchberg Massif record a complex succession of igneous, hydrothermal and metamorphic processes. The geodynamic setting related to the protolith formation and the impact of different types of fluid-rock interactions have been uncertain up to now. We use major and trace element chemistry as well as oxygen isotopes to disentangle the geochemical signatures related to the different stages of the rocks' history. In the Münchberg Massif, dark eclogites (kyanite-free; Fe-Ti-MORB signature) are distinguished from light eclogites (kyanite-bearing; higher Mg#, Al 2 O 3 , and Cr; lower incompatible element contents; positive Eu anomalies; MORB to arc basalt signature). The δ 18 O values for both types (+5.0 to +10.8‰) are equal to, or higher than those of MORB. Amphibolite facies metagabbros have a more enriched, almost OIB-like trace element signature and high δ 18 O values (+9.4 to +10.3‰). Good linear correlations between fluid-immobile elements throughout the eclogite types confirm their derivation from a common, N-MORB to E-MORB-like parental magma. We interpret the light eclogites as former plagioclase-rich cumulates and the dark eclogites as their complementary differentiates. This relationship is partly obscured by variable degrees of magma contamination by sediments, which also affected the metagabbros. However, the metagabbros originated from a more enriched mantle source than the eclogites. Following intrusion, the eclogites were subjected to hydrothermal alteration under the influence of seawater, as indicated by positive correlations between Li, B, Sb, and δ 18 O. Metamorphic fluid-rock interactions appear to be mostly of limited extent, probably due to the lack of lawsonite dehydration as a fluid source. Nevertheless, the contents at least of some fluid-mobile elements, such as LILE, Li, and Pb, were probably modified during the subductionexhumation cycle of the eclogites. The crustal contamination of the protolith magmas argues against derivation of the eclogites and metagabbros from typical oceanic crust. Instead, a rift-drift transition setting related to the opening of the Rheic or Saxothuringian Ocean seems most likely. The eclogites and metagabbros, alongside with similar rocks in the Mariánské Lázně complex and other resembling high-pressure massifs, may record different stages of this rift-drift transition.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Chemical Geology","grobid_abstract_attachment_id":98175407},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215038/Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_M%C3%BCnchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions","translated_internal_url":"","created_at":"2023-02-03T00:07:58.784-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175407,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175407/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175407/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trace_element_and_oxygen_isotope_study_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175407/main-libre.pdf?1675414780=\u0026response-content-disposition=attachment%3B+filename%3DTrace_element_and_oxygen_isotope_study_o.pdf\u0026Expires=1732441830\u0026Signature=Zqzf0RkrUc5JrJv7A~nLfSxiBlEZQROgwZaOR1icBWVDWXXoM~TpXWG9bANhTWK9TVI15ZKKflpf6TyFRraVIa7NlVGJeUHfbzj6qNPsYNCiRRFeNLyM7g-NEC3xksCGeGLCdlCOYW-DuB44ZQsgO5LTVZKR7z-FZfSq-VVkneuvMLTCVHTdizjfW0eD7l0ZMyonZcphMFqu2u8KOvosjvfGn64jcLuTSr0KaPfHYPKrKcVJZKllLPwptVVrOdYJOd35u2eedop30F78A4v0RLtMJLVafxgiLpR9QXK9vESV4lBHVQMMJ28SEbTb80j3IsLvN~lo1O4Pz525PEDIMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trace_element_and_oxygen_isotope_study_of_eclogites_and_associated_rocks_from_the_Münchberg_Massif_Germany_with_implications_on_the_protolith_origin_and_fluid_rock_interactions","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175407,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175407/thumbnails/1.jpg","file_name":"main.pdf","download_url":"https://www.academia.edu/attachments/98175407/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trace_element_and_oxygen_isotope_study_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175407/main-libre.pdf?1675414780=\u0026response-content-disposition=attachment%3B+filename%3DTrace_element_and_oxygen_isotope_study_o.pdf\u0026Expires=1732441830\u0026Signature=Zqzf0RkrUc5JrJv7A~nLfSxiBlEZQROgwZaOR1icBWVDWXXoM~TpXWG9bANhTWK9TVI15ZKKflpf6TyFRraVIa7NlVGJeUHfbzj6qNPsYNCiRRFeNLyM7g-NEC3xksCGeGLCdlCOYW-DuB44ZQsgO5LTVZKR7z-FZfSq-VVkneuvMLTCVHTdizjfW0eD7l0ZMyonZcphMFqu2u8KOvosjvfGn64jcLuTSr0KaPfHYPKrKcVJZKllLPwptVVrOdYJOd35u2eedop30F78A4v0RLtMJLVafxgiLpR9QXK9vESV4lBHVQMMJ28SEbTb80j3IsLvN~lo1O4Pz525PEDIMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":1749179,"name":"Eclogite","url":"https://www.academia.edu/Documents/in/Eclogite"},{"id":3265172,"name":"kyanite","url":"https://www.academia.edu/Documents/in/kyanite"}],"urls":[{"id":28644393,"url":"https://api.elsevier.com/content/article/PII:S0009254121002965?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215037"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215037/Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends"><img alt="Research paper thumbnail of Magma genesis and Cu-Au ore formation (Apuseni Mountains, Romania) in light of Pb, Sr and Nd isotopic and chemical trends" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215037/Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends">Magma genesis and Cu-Au ore formation (Apuseni Mountains, Romania) in light of Pb, Sr and Nd isotopic and chemical trends</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215037"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215037"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215037; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215037]").text(description); $(".js-view-count[data-work-id=96215037]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215037; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215037']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215037, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96215037]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215037,"title":"Magma genesis and Cu-Au ore formation (Apuseni Mountains, Romania) in light of Pb, Sr and Nd isotopic and chemical trends","translated_title":"","metadata":{"publisher":"ETH Zurich","publication_date":{"day":1,"month":5,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215037/Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends","translated_internal_url":"","created_at":"2023-02-03T00:07:58.664-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Magma_genesis_and_Cu_Au_ore_formation_Apuseni_Mountains_Romania_in_light_of_Pb_Sr_and_Nd_isotopic_and_chemical_trends","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":197592,"name":"Magma","url":"https://www.academia.edu/Documents/in/Magma"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215036/Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031"><img alt="Research paper thumbnail of Geochemistry of eolian dust from sediment core LL44-GPC-3, supplement to: Pettke, Thomas; Halliday, Alex N; Rea, David K (2002): Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3), 1031" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215036/Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031">Geochemistry of eolian dust from sediment core LL44-GPC-3, supplement to: Pettke, Thomas; Halliday, Alex N; Rea, David K (2002): Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3), 1031</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 &gt; epsilon-Nd(t) &gt; ~10.81) and Pb (18.625 &lt; 206/4Pb &lt; 18.879; 15.624 &lt; 207/4Pb &lt; 15.666; 38.611 &lt; 208/4Pb &lt; 38.960; 0.8294 &lt; 207/6Pb &lt; 0.8389; 2.0539 &lt; 208/6Pb &lt; 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215036]").text(description); $(".js-view-count[data-work-id=96215036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215036, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96215036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215036,"title":"Geochemistry of eolian dust from sediment core LL44-GPC-3, supplement to: Pettke, Thomas; Halliday, Alex N; Rea, David K (2002): Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3), 1031","translated_title":"","metadata":{"abstract":"The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 \u0026gt; epsilon-Nd(t) \u0026gt; ~10.81) and Pb (18.625 \u0026lt; 206/4Pb \u0026lt; 18.879; 15.624 \u0026lt; 207/4Pb \u0026lt; 15.666; 38.611 \u0026lt; 208/4Pb \u0026lt; 38.960; 0.8294 \u0026lt; 207/6Pb \u0026lt; 0.8389; 2.0539 \u0026lt; 208/6Pb \u0026lt; 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the c...","publisher":"PANGAEA - Data Publisher for Earth \u0026 Environmental Science","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 \u0026gt; epsilon-Nd(t) \u0026gt; ~10.81) and Pb (18.625 \u0026lt; 206/4Pb \u0026lt; 18.879; 15.624 \u0026lt; 207/4Pb \u0026lt; 15.666; 38.611 \u0026lt; 208/4Pb \u0026lt; 38.960; 0.8294 \u0026lt; 207/6Pb \u0026lt; 0.8389; 2.0539 \u0026lt; 208/6Pb \u0026lt; 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the c...","internal_url":"https://www.academia.edu/96215036/Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031","translated_internal_url":"","created_at":"2023-02-03T00:07:58.519-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Geochemistry_of_eolian_dust_from_sediment_core_LL44_GPC_3_supplement_to_Pettke_Thomas_Halliday_Alex_N_Rea_David_K_2002_Cenozoic_evolution_of_Asian_climate_and_sources_of_Pacific_seawater_Pb_and_Nd_derived_from_eolian_dust_of_sediment_core_LL44_GPC3_Paleoceanography_17_3_1031","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":284182,"name":"Sediment Core","url":"https://www.academia.edu/Documents/in/Sediment_Core"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215035/The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study"><img alt="Research paper thumbnail of The relation between 2 Li ↔ Na substitution and hydrogen bonding in five-periodic 3 single-chain silicates nambulite and marsturite: A single crystal X-ray study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215035/The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study">The relation between 2 Li ↔ Na substitution and hydrogen bonding in five-periodic 3 single-chain silicates nambulite and marsturite: A single crystal X-ray study</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215035]").text(description); $(".js-view-count[data-work-id=96215035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215035, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=96215035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215035,"title":"The relation between 2 Li ↔ Na substitution and hydrogen bonding in five-periodic 3 single-chain silicates nambulite and marsturite: A single crystal X-ray study","translated_title":"","metadata":{"publisher":"Mineralogical Society of America","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215035/The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study","translated_internal_url":"","created_at":"2023-02-03T00:07:58.402-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_relation_between_2_Li_Na_substitution_and_hydrogen_bonding_in_five_periodic_3_single_chain_silicates_nambulite_and_marsturite_A_single_crystal_X_ray_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215034/Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3"><img alt="Research paper thumbnail of Revision 1 1 Magnetic anisotropy in natural amphibole crystals 2 3" class="work-thumbnail" src="https://attachments.academia-assets.com/98175357/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215034/Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3">Revision 1 1 Magnetic anisotropy in natural amphibole crystals 2 3</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 deformed rocks. In order to do so quantitatively, it is necessary to quantify the intrinsic 17 magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in 18 mafic igneous and metamorphic rocks and often define rock texture due to their general 19 prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to 20 felsic igneous rocks and in some metamorphic rock types, because they have a high Fe 21 concentration and they can develop a strong crystallographic preferred orientation. In this 22 study, the AMS is characterized in 28 single crystals and one crystal aggregate of 23 compositionally diverse clinoand ortho-amphiboles. High-field methods were used to isolate 24 the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic 25 inclusions that often occur in amphibole crystals. Laue imaging, laser ablati...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e14d2f7d75c80dfc8d9feaa884f12b2b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175357,"asset_id":96215034,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175357/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215034]").text(description); $(".js-view-count[data-work-id=96215034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215034, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e14d2f7d75c80dfc8d9feaa884f12b2b" } } $('.js-work-strip[data-work-id=96215034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215034,"title":"Revision 1 1 Magnetic anisotropy in natural amphibole crystals 2 3","translated_title":"","metadata":{"abstract":"15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 deformed rocks. In order to do so quantitatively, it is necessary to quantify the intrinsic 17 magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in 18 mafic igneous and metamorphic rocks and often define rock texture due to their general 19 prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to 20 felsic igneous rocks and in some metamorphic rock types, because they have a high Fe 21 concentration and they can develop a strong crystallographic preferred orientation. In this 22 study, the AMS is characterized in 28 single crystals and one crystal aggregate of 23 compositionally diverse clinoand ortho-amphiboles. High-field methods were used to isolate 24 the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic 25 inclusions that often occur in amphibole crystals. Laue imaging, laser ablati...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"15 Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in 16 deformed rocks. In order to do so quantitatively, it is necessary to quantify the intrinsic 17 magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in 18 mafic igneous and metamorphic rocks and often define rock texture due to their general 19 prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to 20 felsic igneous rocks and in some metamorphic rock types, because they have a high Fe 21 concentration and they can develop a strong crystallographic preferred orientation. In this 22 study, the AMS is characterized in 28 single crystals and one crystal aggregate of 23 compositionally diverse clinoand ortho-amphiboles. High-field methods were used to isolate 24 the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic 25 inclusions that often occur in amphibole crystals. Laue imaging, laser ablati...","internal_url":"https://www.academia.edu/96215034/Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3","translated_internal_url":"","created_at":"2023-02-03T00:07:58.261-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175357/thumbnails/1.jpg","file_name":"AM100P1940.pdf","download_url":"https://www.academia.edu/attachments/98175357/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Revision_1_1_Magnetic_anisotropy_in_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175357/AM100P1940-libre.pdf?1675414767=\u0026response-content-disposition=attachment%3B+filename%3DRevision_1_1_Magnetic_anisotropy_in_natu.pdf\u0026Expires=1732045359\u0026Signature=f0ew7XVlhZwyGdtrHYdqSJ4Kq3lTfGzkRWc6hvPbaOAa7Iq2mME5idcZxLyf5Mj782Jo78oJsBJQcZSodOvSxvY0XP5juMfdXG9UGILP7t7cSNM8H6Jr~qmnFs7kYF71JaD0bYl0KMgcCEHzQ9saqsCODIbO7ZdmWskYfwiY~cOnipiEs76oWzqCTKuM0wjDnRcBZ7YZxjo8QLMXvcXS58ISiZWqFIxso~cWwGaJ-g3JMnce6W7REfBH7xojPCgWEjMZj3dhgnOP0S6TpDT3fxoFRWUY8Py7Rr41fl~rAjZgw3f37EIRk-14XiGPe1gCEkUoMmfpafjJJEomxQxQ5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Revision_1_1_Magnetic_anisotropy_in_natural_amphibole_crystals_2_3","translated_slug":"","page_count":42,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175357/thumbnails/1.jpg","file_name":"AM100P1940.pdf","download_url":"https://www.academia.edu/attachments/98175357/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Revision_1_1_Magnetic_anisotropy_in_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175357/AM100P1940-libre.pdf?1675414767=\u0026response-content-disposition=attachment%3B+filename%3DRevision_1_1_Magnetic_anisotropy_in_natu.pdf\u0026Expires=1732045359\u0026Signature=f0ew7XVlhZwyGdtrHYdqSJ4Kq3lTfGzkRWc6hvPbaOAa7Iq2mME5idcZxLyf5Mj782Jo78oJsBJQcZSodOvSxvY0XP5juMfdXG9UGILP7t7cSNM8H6Jr~qmnFs7kYF71JaD0bYl0KMgcCEHzQ9saqsCODIbO7ZdmWskYfwiY~cOnipiEs76oWzqCTKuM0wjDnRcBZ7YZxjo8QLMXvcXS58ISiZWqFIxso~cWwGaJ-g3JMnce6W7REfBH7xojPCgWEjMZj3dhgnOP0S6TpDT3fxoFRWUY8Py7Rr41fl~rAjZgw3f37EIRk-14XiGPe1gCEkUoMmfpafjJJEomxQxQ5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28644392,"url":"http://www.minsocam.org/MSA/AmMin/Public_Access/2015_public/AM100P1940.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215033/Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth"><img alt="Research paper thumbnail of Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth" class="work-thumbnail" src="https://attachments.academia-assets.com/98175359/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215033/Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth">Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests that serpentinisation of oceanic lithospheric mantle occurred along bend faults or as detached slices in the shallow forearc by fluids equilibrated within the accretionary prism 2 Initial heterogeneities will govern the spatial extent of serpentinisation and FME enrichment, ultimately amplifying heterogeneities 2 FME enrichments from serpentinisation are largely retained and reincorporated into the convecting mantle, providing potential fractionation mechanisms for U-Th systematics (HIMU) and enriched mantle (EM) sources 2 FMEs such as As, Sb, W and Bi, which are rarely quantified, can provide essential information to further discriminate between serpentinisation environments</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8378be99462394f58b89c7789faa5037" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175359,"asset_id":96215033,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175359/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215033]").text(description); $(".js-view-count[data-work-id=96215033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215033, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8378be99462394f58b89c7789faa5037" } } $('.js-work-strip[data-work-id=96215033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215033,"title":"Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth","translated_title":"","metadata":{"abstract":"Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests that serpentinisation of oceanic lithospheric mantle occurred along bend faults or as detached slices in the shallow forearc by fluids equilibrated within the accretionary prism 2 Initial heterogeneities will govern the spatial extent of serpentinisation and FME enrichment, ultimately amplifying heterogeneities 2 FME enrichments from serpentinisation are largely retained and reincorporated into the convecting mantle, providing potential fractionation mechanisms for U-Th systematics (HIMU) and enriched mantle (EM) sources 2 FMEs such as As, Sb, W and Bi, which are rarely quantified, can provide essential information to further discriminate between serpentinisation environments","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"Selected Conclusions 2 Combining the results with halogen [2] and noble gas data [3] suggests that serpentinisation of oceanic lithospheric mantle occurred along bend faults or as detached slices in the shallow forearc by fluids equilibrated within the accretionary prism 2 Initial heterogeneities will govern the spatial extent of serpentinisation and FME enrichment, ultimately amplifying heterogeneities 2 FME enrichments from serpentinisation are largely retained and reincorporated into the convecting mantle, providing potential fractionation mechanisms for U-Th systematics (HIMU) and enriched mantle (EM) sources 2 FMEs such as As, Sb, W and Bi, which are rarely quantified, can provide essential information to further discriminate between serpentinisation environments","internal_url":"https://www.academia.edu/96215033/Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth","translated_internal_url":"","created_at":"2023-02-03T00:07:58.077-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175359/thumbnails/1.jpg","file_name":"AGU_Conference_Poster_2016.pdf","download_url":"https://www.academia.edu/attachments/98175359/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_rock_Interactions_recorded_in_Serp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175359/AGU_Conference_Poster_2016-libre.pdf?1675414817=\u0026response-content-disposition=attachment%3B+filename%3DFluid_rock_Interactions_recorded_in_Serp.pdf\u0026Expires=1731456474\u0026Signature=BTpVGeMV0-i-XbUPAzCbSEPCgKsEiGzC-Rbd3szcW65Q~wcTmI~O~zXE1gm78mUalCgOrMaSUjzN9DDVgY25CpUoLqjmx1TFYUevN4yh-siDQPUbxu-pIpuU6oPTwLbOoumftEDsqGlMZ8Yus3xZRVgMwBDXOmXyAvKNoRcRY7RW-jlXOUWFpJkNoPOoC~2Tu3ReDm6kw-D1YEDFkBvyNoZV1l6nJncpZOtraMVW6O~8yQdFH-ZDBSKfOJY4r09i0npXD60Z--3hsyMr4zoUpl0hM2uV9oVsf-U6yIXAhD7UKJ2X8bvYqoS7Drzw20XHZpurx81b-lNU1~v3I13I0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_rock_Interactions_recorded_in_Serpentinites_subducted_to_60_80_km_Depth","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175359/thumbnails/1.jpg","file_name":"AGU_Conference_Poster_2016.pdf","download_url":"https://www.academia.edu/attachments/98175359/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_rock_Interactions_recorded_in_Serp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175359/AGU_Conference_Poster_2016-libre.pdf?1675414817=\u0026response-content-disposition=attachment%3B+filename%3DFluid_rock_Interactions_recorded_in_Serp.pdf\u0026Expires=1731456474\u0026Signature=BTpVGeMV0-i-XbUPAzCbSEPCgKsEiGzC-Rbd3szcW65Q~wcTmI~O~zXE1gm78mUalCgOrMaSUjzN9DDVgY25CpUoLqjmx1TFYUevN4yh-siDQPUbxu-pIpuU6oPTwLbOoumftEDsqGlMZ8Yus3xZRVgMwBDXOmXyAvKNoRcRY7RW-jlXOUWFpJkNoPOoC~2Tu3ReDm6kw-D1YEDFkBvyNoZV1l6nJncpZOtraMVW6O~8yQdFH-ZDBSKfOJY4r09i0npXD60Z--3hsyMr4zoUpl0hM2uV9oVsf-U6yIXAhD7UKJ2X8bvYqoS7Drzw20XHZpurx81b-lNU1~v3I13I0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":98175358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175358/thumbnails/1.jpg","file_name":"AGU_Conference_Poster_2016.pdf","download_url":"https://www.academia.edu/attachments/98175358/download_file","bulk_download_file_name":"Fluid_rock_Interactions_recorded_in_Serp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175358/AGU_Conference_Poster_2016-libre.pdf?1675414833=\u0026response-content-disposition=attachment%3B+filename%3DFluid_rock_Interactions_recorded_in_Serp.pdf\u0026Expires=1731456474\u0026Signature=AsVbBZqstsW1dgkFQPPfMI1q4xoqtHsIqaU2f3WYSZX74uyWvOIyof1InXUt8cBtkacdc1ioZSNlpUmY1W1rWH4EVwKrulvEfv9A~wS4W7h9-JJ9DErgawtQFZozPQh-Nimfl6ep8brAMPQhCCOpW48hFoKm3MBfaXG9QDp87wujZXeHMUNK8trJ6ruAj7iMFFf6SrWNcfZJlMbiSh8mJsnr7WpfYac3fFiX9Nl-AcDevB-H2y0fH9hd1X22bkJqTYUALxmDBWOrP4OAVHZyPQiK3P3CBQFTW3eQ98Zx3CZYovQnPIRlB4GvWLHwpiZ5nsAWreW6MedjCE-p-h5fbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":28644391,"url":"http://zip-itn.eu/wp-content/uploads/2014/02/AGU_Conference_Poster_2016.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215032"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215032/Die_Welt_unter_den_Vulkanen"><img alt="Research paper thumbnail of Die "Welt" unter den Vulkanen" class="work-thumbnail" src="https://attachments.academia-assets.com/98175397/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215032/Die_Welt_unter_den_Vulkanen">Die "Welt" unter den Vulkanen</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fd3e551e4a40b6d2f07fbb9e7b4521f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175397,"asset_id":96215032,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175397/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215032"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215032"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215032; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215032]").text(description); $(".js-view-count[data-work-id=96215032]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215032; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215032']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215032, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fd3e551e4a40b6d2f07fbb9e7b4521f" } } $('.js-work-strip[data-work-id=96215032]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215032,"title":"Die \"Welt\" unter den Vulkanen","translated_title":"","metadata":{"grobid_abstract":"Vielleicht haben Sie gerade Licht eingeschaltet, um diesen Artikel zu lesen. Vielleicht geistern die letzten Nachrichten betreffend des steigenden Ölpreises noch in ihrem Hinterkopf umher. Nicht unerschöpflich ist die Quelle fossiler Brennstoffe; erneuerbar ist nur die Wasserkraft, predigt die hiesige Energielobby. Seit dem Altertum basieren verblüffend viele menschliche Errungenschaften auf metallischen Rohstoffen: Eine Aufgabe der Geologen ist es, die zukünftige Versorgung unserer Gesellschaft mit essenziellen Metallen zu sichern.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"grobid_abstract_attachment_id":98175397},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215032/Die_Welt_unter_den_Vulkanen","translated_internal_url":"","created_at":"2023-02-03T00:07:57.963-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175397/thumbnails/1.jpg","file_name":"die_20welt_20unter_20den_20vulkanen.pdf","download_url":"https://www.academia.edu/attachments/98175397/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Die_Welt_unter_den_Vulkanen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175397/die_20welt_20unter_20den_20vulkanen-libre.pdf?1675414731=\u0026response-content-disposition=attachment%3B+filename%3DDie_Welt_unter_den_Vulkanen.pdf\u0026Expires=1732441830\u0026Signature=AH2QGkBtkw7zFXstC7A9sTONFdlBRuQw6DGxSrUdnJsVCIzYEv7f2aITjG-ZlB77gdpFEQTl50CVro6A-IqoY11CV7r8Y5F94UTQcZIVeNxcottJW28HwGdS9Er41otoJaW63aXPI9LgopfGgje5uY9HtBWA5GzKyEEiN4YS0OGlV~NuhBrduL2V9H~Ul2EtKOjqlhbNCNI7S2i~ZmswH71GdzZeBKg8Y1n7svIOTnrdU1Old2wDPl34OwWfLU9~hjCdcnvTEuf9U1rpAuAviowWwx7rgagmeGbWYk~paPUnmn9IZWGV7CSun1PU7XHkq0IUKbkU0Be3YNzSZhob7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Die_Welt_unter_den_Vulkanen","translated_slug":"","page_count":4,"language":"de","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175397/thumbnails/1.jpg","file_name":"die_20welt_20unter_20den_20vulkanen.pdf","download_url":"https://www.academia.edu/attachments/98175397/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Die_Welt_unter_den_Vulkanen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175397/die_20welt_20unter_20den_20vulkanen-libre.pdf?1675414731=\u0026response-content-disposition=attachment%3B+filename%3DDie_Welt_unter_den_Vulkanen.pdf\u0026Expires=1732441830\u0026Signature=AH2QGkBtkw7zFXstC7A9sTONFdlBRuQw6DGxSrUdnJsVCIzYEv7f2aITjG-ZlB77gdpFEQTl50CVro6A-IqoY11CV7r8Y5F94UTQcZIVeNxcottJW28HwGdS9Er41otoJaW63aXPI9LgopfGgje5uY9HtBWA5GzKyEEiN4YS0OGlV~NuhBrduL2V9H~Ul2EtKOjqlhbNCNI7S2i~ZmswH71GdzZeBKg8Y1n7svIOTnrdU1Old2wDPl34OwWfLU9~hjCdcnvTEuf9U1rpAuAviowWwx7rgagmeGbWYk~paPUnmn9IZWGV7CSun1PU7XHkq0IUKbkU0Be3YNzSZhob7w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215031"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215031/Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS"><img alt="Research paper thumbnail of Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS" class="work-thumbnail" src="https://attachments.academia-assets.com/98175356/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215031/Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS">Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g−1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="72e1b26039153e727a1d48a55db436b4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175356,"asset_id":96215031,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175356/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215031"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215031"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215031; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215031]").text(description); $(".js-view-count[data-work-id=96215031]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215031; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215031']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215031, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "72e1b26039153e727a1d48a55db436b4" } } $('.js-work-strip[data-work-id=96215031]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215031,"title":"Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS","translated_title":"","metadata":{"abstract":"An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g−1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, ...","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g−1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, ...","internal_url":"https://www.academia.edu/96215031/Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS","translated_internal_url":"","created_at":"2023-02-03T00:07:57.818-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175356,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175356/thumbnails/1.jpg","file_name":"EGU2016-7219.pdf","download_url":"https://www.academia.edu/attachments/98175356/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Major_to_ultra_trace_element_bulk_rock_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175356/EGU2016-7219-libre.pdf?1675414733=\u0026response-content-disposition=attachment%3B+filename%3DMajor_to_ultra_trace_element_bulk_rock_a.pdf\u0026Expires=1731456474\u0026Signature=UE~2KudGio3VRm4TqJkPz83GII2c4ZkZzqKVxpoxgo8VCTg6tLFn~uTitLz7HxL1FzFZbjQkq9uf2x~zAHP0TGC1Ackp3k65UXnBnABhRgL2q4kpdh2RedSsPRzaS5~MD5ns4Vda70b~wGBpBQ1uDqaZrhpBYYnf7UqcfIDj8B631L5jdLpatIDoBxVF6jNWwwVyK~OGqfimUcwaVsqf1ohO6Y6hmnHT5aSDWCdlvk8yvGOZS7bY8m-Tikdc9UbpHeOlLYF1T0~y4x-xoiFQCGOZhUl3VdD7SZvC48g4KDyJsuV21aFEqcdKJcKPrDvxr1-2thHKs6~KIamS3KfwJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Major_to_ultra_trace_element_bulk_rock_analysis_of_nanoparticulate_pressed_powder_pellets_by_LA_ICP_MS","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175356,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175356/thumbnails/1.jpg","file_name":"EGU2016-7219.pdf","download_url":"https://www.academia.edu/attachments/98175356/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Major_to_ultra_trace_element_bulk_rock_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175356/EGU2016-7219-libre.pdf?1675414733=\u0026response-content-disposition=attachment%3B+filename%3DMajor_to_ultra_trace_element_bulk_rock_a.pdf\u0026Expires=1731456474\u0026Signature=UE~2KudGio3VRm4TqJkPz83GII2c4ZkZzqKVxpoxgo8VCTg6tLFn~uTitLz7HxL1FzFZbjQkq9uf2x~zAHP0TGC1Ackp3k65UXnBnABhRgL2q4kpdh2RedSsPRzaS5~MD5ns4Vda70b~wGBpBQ1uDqaZrhpBYYnf7UqcfIDj8B631L5jdLpatIDoBxVF6jNWwwVyK~OGqfimUcwaVsqf1ohO6Y6hmnHT5aSDWCdlvk8yvGOZS7bY8m-Tikdc9UbpHeOlLYF1T0~y4x-xoiFQCGOZhUl3VdD7SZvC48g4KDyJsuV21aFEqcdKJcKPrDvxr1-2thHKs6~KIamS3KfwJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":119199,"name":"Pellets","url":"https://www.academia.edu/Documents/in/Pellets"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"}],"urls":[{"id":28644390,"url":"http://www.meetingorganizer.copernicus.org/EGU2016/EGU2016-7219.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215030/189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS"><img alt="Research paper thumbnail of 189 Chapter 12: Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by La–(Mc–)Icp–MS" class="work-thumbnail" src="https://attachments.academia-assets.com/98175354/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215030/189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS">189 Chapter 12: Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by La–(Mc–)Icp–MS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="29c08531ab3b97538844cd2ad81f016b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175354,"asset_id":96215030,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175354/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215030]").text(description); $(".js-view-count[data-work-id=96215030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215030, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "29c08531ab3b97538844cd2ad81f016b" } } $('.js-work-strip[data-work-id=96215030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215030,"title":"189 Chapter 12: Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by La–(Mc–)Icp–MS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215030/189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS","translated_internal_url":"","created_at":"2023-02-03T00:07:57.653-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175354,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175354/thumbnails/1.jpg","file_name":"Pettke_MAC40_2008.pdf","download_url":"https://www.academia.edu/attachments/98175354/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"189_Chapter_12_Analytical_Protocols_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175354/Pettke_MAC40_2008-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3D189_Chapter_12_Analytical_Protocols_for.pdf\u0026Expires=1732243506\u0026Signature=TQBjLvy-XkEJdP2tG6vPmB0M8TUAHxh-QdLJLJsvqG8Gr3pPejQjImfRXYkHgg8JYsKpwxGBKTjJyitIaOCmcRJb80EL7STMssXeHcmjMX~44uBThY78IuNMigKX9K4l97VMuYq~LP6LddXsZcxPSomeYFEcJWeQPpGFI6QnmRwanWQf0TAuoA105c6lgzMmfFej4UC6dm35QIocJuyyhtQ1rBa4MFCniA2Eo759zbJWeuam9EZd9iRv-Ve2yQVsfsAjSeTKBCw6iE6abM22h73lowZF-XzYjtalNz~YaCvvsClsFY9S3buqhXxQs9UL0J9HFNPiKqeASqeEdZy1Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"189_Chapter_12_Analytical_Protocols_for_Element_Concentration_and_Isotope_Ratio_Measurements_in_Fluid_Inclusions_by_La_Mc_Icp_MS","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175354,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175354/thumbnails/1.jpg","file_name":"Pettke_MAC40_2008.pdf","download_url":"https://www.academia.edu/attachments/98175354/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"189_Chapter_12_Analytical_Protocols_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175354/Pettke_MAC40_2008-libre.pdf?1675414752=\u0026response-content-disposition=attachment%3B+filename%3D189_Chapter_12_Analytical_Protocols_for.pdf\u0026Expires=1732243506\u0026Signature=TQBjLvy-XkEJdP2tG6vPmB0M8TUAHxh-QdLJLJsvqG8Gr3pPejQjImfRXYkHgg8JYsKpwxGBKTjJyitIaOCmcRJb80EL7STMssXeHcmjMX~44uBThY78IuNMigKX9K4l97VMuYq~LP6LddXsZcxPSomeYFEcJWeQPpGFI6QnmRwanWQf0TAuoA105c6lgzMmfFej4UC6dm35QIocJuyyhtQ1rBa4MFCniA2Eo759zbJWeuam9EZd9iRv-Ve2yQVsfsAjSeTKBCw6iE6abM22h73lowZF-XzYjtalNz~YaCvvsClsFY9S3buqhXxQs9UL0J9HFNPiKqeASqeEdZy1Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":98175355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175355/thumbnails/1.jpg","file_name":"Pettke_MAC40_2008.pdf","download_url":"https://www.academia.edu/attachments/98175355/download_file","bulk_download_file_name":"189_Chapter_12_Analytical_Protocols_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175355/Pettke_MAC40_2008-libre.pdf?1675414754=\u0026response-content-disposition=attachment%3B+filename%3D189_Chapter_12_Analytical_Protocols_for.pdf\u0026Expires=1732243506\u0026Signature=buj4a9R9WPFsHwCaG8GrWPRdzItTQjyD9HymOy330ynpKGwErLm3Nk9ztfJ1SmXTLeolvaG8e-nuAZp5xRhanphKHi1gZgRbYecPlR8oaGAdSAgMrXN~rtewT~ETk8iNFj8kYUqPFFeZYK59VZnauUce~RBCkWB2tIWR6ybxq4cYhU0uFsDXcH0jnxK5icpngttdfk0ZjYkH3VUzDDXh~rRnu0Nwr7NqAsiiOy94CIvnxzHTFC9WkyJXH0zNkCCauXd5HR3~jTXTv2Acw7fFleu1ODrNpEpOMJyOQQQza1n3u77plCI~wmo9NugpX34rHGTHv0WHPjU9qDr6CttX8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":28644389,"url":"https://mineral.cuso.ch/fileadmin/mineral/Pettke_MAC40_2008.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215029/Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions"><img alt="Research paper thumbnail of Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/98175399/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215029/Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions">Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9921dc6dbbbac7608b73d7f5bdd1ff26" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175399,"asset_id":96215029,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175399/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215029]").text(description); $(".js-view-count[data-work-id=96215029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215029, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9921dc6dbbbac7608b73d7f5bdd1ff26" } } $('.js-work-strip[data-work-id=96215029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215029,"title":"Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Chemical Geology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215029/Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions","translated_internal_url":"","created_at":"2023-02-03T00:07:57.240-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175399,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175399/thumbnails/1.jpg","file_name":"Kaufmann_ChemGeo_2021.pdf","download_url":"https://www.academia.edu/attachments/98175399/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molybdenum_isotope_fractionation_at_uppe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175399/Kaufmann_ChemGeo_2021-libre.pdf?1675414786=\u0026response-content-disposition=attachment%3B+filename%3DMolybdenum_isotope_fractionation_at_uppe.pdf\u0026Expires=1732045359\u0026Signature=CJawJ8mqENNjUzoXjmSyE-~itMdDGcNe0IetvRStzvBTHuY8PfQlc1ph21kOEcoUPYUqBjVIJmINWymrayae~eC6HeBAtRoXgtJI4yIagISoXcPLoBqDf~jJvCFuhAuCWj-yfC0zMWebTAx4xphxqAfCh8~0f21eW3vGioZZqwXzzAvGdDhT-l2CnJwRomZjmwmEacz1b0BYPaaY6NKClDJxwTvGgQ7vW8nf-oNUPmpsjgKzjp2oocBZB0Uwg2B7vaHewZhQjYQS1jjM~-VfITPH6u3KdUqeti3JjwU6-PTQTi9kUZgH3XinzctTBV8e9raPNU8Q3Pbf1PJJjtc88w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molybdenum_isotope_fractionation_at_upper_crustal_magmatic_hydrothermal_conditions","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175399,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175399/thumbnails/1.jpg","file_name":"Kaufmann_ChemGeo_2021.pdf","download_url":"https://www.academia.edu/attachments/98175399/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molybdenum_isotope_fractionation_at_uppe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175399/Kaufmann_ChemGeo_2021-libre.pdf?1675414786=\u0026response-content-disposition=attachment%3B+filename%3DMolybdenum_isotope_fractionation_at_uppe.pdf\u0026Expires=1732045359\u0026Signature=CJawJ8mqENNjUzoXjmSyE-~itMdDGcNe0IetvRStzvBTHuY8PfQlc1ph21kOEcoUPYUqBjVIJmINWymrayae~eC6HeBAtRoXgtJI4yIagISoXcPLoBqDf~jJvCFuhAuCWj-yfC0zMWebTAx4xphxqAfCh8~0f21eW3vGioZZqwXzzAvGdDhT-l2CnJwRomZjmwmEacz1b0BYPaaY6NKClDJxwTvGgQ7vW8nf-oNUPmpsjgKzjp2oocBZB0Uwg2B7vaHewZhQjYQS1jjM~-VfITPH6u3KdUqeti3JjwU6-PTQTi9kUZgH3XinzctTBV8e9raPNU8Q3Pbf1PJJjtc88w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":74607,"name":"Quartz","url":"https://www.academia.edu/Documents/in/Quartz"},{"id":82911,"name":"fluid Inclusions","url":"https://www.academia.edu/Documents/in/fluid_Inclusions"},{"id":159300,"name":"Molybdenum","url":"https://www.academia.edu/Documents/in/Molybdenum"},{"id":640682,"name":"Isotope fractionation","url":"https://www.academia.edu/Documents/in/Isotope_fractionation"}],"urls":[{"id":28644388,"url":"https://api.elsevier.com/content/article/PII:S0009254121002631?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="96215028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96215028/The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction"><img alt="Research paper thumbnail of The influence of oceanic oxidation on serpentinite dehydration during subduction" class="work-thumbnail" src="https://attachments.academia-assets.com/98175393/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96215028/The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction">The influence of oceanic oxidation on serpentinite dehydration during subduction</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c9985dbfb957957b8a771bd188307191" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":98175393,"asset_id":96215028,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/98175393/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96215028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96215028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96215028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96215028]").text(description); $(".js-view-count[data-work-id=96215028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96215028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96215028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96215028, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c9985dbfb957957b8a771bd188307191" } } $('.js-work-strip[data-work-id=96215028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96215028,"title":"The influence of oceanic oxidation on serpentinite dehydration during subduction","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Serpentinites are central to carry water and fluid-mobile elements down subduction zones. The breakdown of antigorite represents the most prominent aqueous fluid release, boosting fluid-mediated element cycling from the slab to the mantle wedge. At Cerro del Almirez, Spain, an antigorite dehydration reaction front is preserved in subducted serpentinites. Bulk rock and mineral major formed from the reaction of brucite with antigorite (Ol-1a) or from the reaction of diopside and antigorite (Ol-1b; Fig. 2). Atg-1 forms the variably foliated rock matrix, and larger antigorite blades are less well oriented and may grow over inclusion-rich olivine or clinopyroxene but not tremolite. Dusty Cpx-1 (Fig. 3a) is the only relic mantle mineral, showing occasional magnetite lamellae. Prograde Cpx-2 forms clear rims on Cpx-1 or isolated clear neoblasts. Euhedral Tr-1 may overgrow clinopyroxene (Fig. 3b) or is rarely present as up to 700 µm sized rhombohedral, unoriented crystals that may grow over Ol-1 and the Atg-1 matrix. Chlorite occurs either as a fine-grained felt associated with magnetite (Chl-1, \u003c0.5 vol%) or as inclusions in recrystallized relic clinopyroxene (Chl-2). Ti-chu-1 forms small grains dispersed throughout the matrix. Opaque phases include Cr-rich magnetite (up to 500 µm), subordinate Fe-Ni sulphide, and a Fe-Ti-oxide. Orthopyroxene crystals (Padrón-Navarta et al., 2011) were not observed in our Atg-serpentinite samples. Chlorite serpentinite and Atg-Chl-Opx-Ol rock: These lithologies characterise the cm to m thick, irregular reaction front between Atg-serpentinites and Chl-harzburgites and document the progressive replacement of antigorite from Atg-serpentinite by antigorite + chlorite, followed by growth of orthopyroxene and olivine until complete antigorite exhaustion. Contacts to the neighbouring rocks are gradational at cm to dm scale and oblique to the regional foliation. Chl-serpentinite represents the recrystallisation product of foliated Atg-1 from Atg-serpentinite into coarser grained and randomly oriented Atg-2 and Chl-3. The most conspicuous features are (i) euhedral Chl-3 flakes of up to 1 mm, topotactically overgrown by Atg-2 (Fig. 3c and d), and (ii) the absence of clinopyroxene. Tr-1 occurs either as euhedral crystals containing microscopic inclusions of olivine, or interstitially between Chl-3-Atg-2 intergrowths. Ol-2 forms mm-sized aggregates of individual, clear crystals. Atg-2 grain boundaries against talc are irregular. Atg-Chl-Opx-Ol rock (i) represents the appearance of orthopyroxene (Opx-1), (ii) has abundant flaky Chl-3 not overgrown by antigorite, (iii) is characterised by reduction in Atg-content to below 10 vol% along with disappearance of fine-grained Atg-1, and (iv) often shows the development of a granular texture similar to that of the granular Chl-harzburgite (see below). Opx-1 is either granular-anhedral and associated with granular-anhedral olivine (Ol-2/Ol-3, Fig. 3e), or Opx-1 forms radial aggregates of thin laths. Olivine is granular, colourless (Ol-2), and may have subordinate brown rims (Ol-3). Rarely, brown olivine grains (Ol-3) can also be observed, and colourless rims (Ol-4) on brown Ol-3 may also 8 occur. Unoriented Chl-3 flakes not overgrown by antigorite are distributed throughout the rock, while the Chl-3-Atg-2 intergrowths have a higher chlorite to antigorite ratio compared to those of the Chlserpentinite. Few, randomly oriented antigorite blades (\u003c1.25 mm) grow over chlorite, olivine and orthopyroxene. Atg-2 and Opx-1 grain boundaries against talc are irregular. Chlorite harzburgite: Chl-harzburgite occurs as a granular or a spinifex-textured rock (Schönbächler, 1999; Trommsdorff et al., 1998; Padrón-Navarta et al., 2011). Both share an identical mineralogy with only slightly variable modal abundances (Table 1). Their spatial occurrence relative to the contact with Atg-serpentinite is not systematic except that granular rocks are more abundant near the contact to Atg-serpentinites. In fact, granular Chl-harzburgite is texturally very similar to the transitional Atg-Chl-Opx-Ol rock. Transitions between granular and spinifex-textured Chl-harzburgites can be as short as a few centimetres. Rock-forming minerals are randomly oriented. Brown elongated olivine (up to 10 cm long) predominates in the spinifex-textured Chl-harzburgite, while granular olivine in the granular Chl-harzburgite is exclusively colourless. Opx-1, Chl-3, and magnetite fill the interstices between these olivine crystals. Olivine in variable modal abundances occurs in three growth stages. Clear Ol-2 sometimes form cores of brown Ol-3 (Fig. 3f) that itself may be overgrown by a clear Ol-4 rim. Clear small isometric Ol-4 crystals showing equilibrium texture may also occur in the matrix (Fig. 3f). Clinopyroxene is absent, and Ti-clinohumite is very rare in our samples. Rare tremolite displays equilibrium textures with Chl-3 (Fig. 3h) or overgrows brown Ol-3 or Opx-1. Inclusions of orthopyroxene and olivine in euhedral tremolite were confirmed by RAMAN spectroscopy. Retrograde talc variably replaces orthopyroxene (e.g. Fig. 3g). Magnetite occurrence and contents: Magnetite modes are higher for Atg-serpentinites (2.8 vol%) than for Chl-harzburgites (1.4 vol%); however, variations within a given rock type are prominent (Atgserpentinites: 2-4 vol%; Chl-harzburgites: 0.4-2 vol%). Modes of opaque minerals determined by point counting (Table 1) thereby reflect mostly magnetite for Atg-serpentinites, while the fraction of sulphides in the opaque part can amount to some 30% in Chl-harzburgites. Texturally, magnetite is overgrown by Atg-1 and Ol-1 in Atg-serpentinites (Fig. 4a), testifying to its crystallisation upon ocean floor hydration (Fig. 2). Granular magnetite in Chl-harzburgite (Fig. 4b) commonly displays sharp and even grain boundaries and is also included in Chl-3 and Ol-3 (and Opx-1; not illustrated) resulting from the antigorite breakdown reaction. This equilibrium texture suggests that ocean floor magnetite 9 may have partially equilibrated upon antigorite breakdown, possibly in association with Fe-sulphide crystallisation. Traces of other oxides (not further investigated) were also observed (compare Debret et al., 2015). Variations in magnetite modes between Atg-serpentinites and Chl-harzburgites at Almirez were also recognized by other studies (Debret et al., 2015; Marchesi et al., 2013; Padrón-Navarta et al., 2011). 3.2. Bulk rock major element concentrations Major element data acquired for 15 bulk rock samples that cover all lithotypes across the antigoriteout reaction are reported in Supplementary Table 1, employing the methods explained in the Supplementary Material 1. Measured loss on ignition (LOI) values determine bulk rock water contents (subordinate carbonate cannot be excluded), which decrease across the antigorite-out reaction from 11.3 wt% H 2 O in Atg-serpentinites typical for complete hydration down to 4.1 wt% H 2 O in Chlharzburgites. Bulk rock major element systematics reveal the combined effects of (i) magmatic mantle history, (ii) oceanic metasomatism, and (iii) partial metamorphic dehydration, of which the magmatic mantle history exerts a dominant control. The mantle rocks are variably refractory and narrowly range in Mg# from 87.7 to 90.9 (all Fe as FeO), typical for upper mantle rocks. In a plot of Al 2 O 3 /SiO 2 vs. MgO/SiO 2 (Fig. 5a), the samples follow the trend of residual mantle rocks following melt extraction. Some of the samples possess variably low MgO/SiO 2 for their given Al 2 O 3 /SiO 2 (compare Marchesi et al., 2013) that is typical for abyssal serpentinized peridotites, indicating either addition of SiO 2 or removal of Mg (and Fe) that may have balanced antigorite growth at the expense of chrysotile (e.g., Kodolányi and Pettke, 2011). Alternatively, this may reflect MgO loss during low temperature seafloor alteration (e.g., Niu, 2004). Al 2 O 3 /SiO 2 ratios are considered to remain unmodified during serpentinization (e.g., Niu, 2004). Alumina concentrations tend to be low, resulting in Al 2 O 3 /SiO 2 ratios that are typical for abyssal peridotites (0.01 \u003c Al 2 O 3 /SiO 2 \u003c 0.07; Niu, 2004) but higher than most mantle wedge serpentinites (Al 2 O 3 /SiO 2 \u003c 0.03; Deschamps et al., 2013). Despite significant amounts of retrograde talc present in partial to complete antigorite breakdown product rocks, bulk rock SiO 2 concentrations do not show an absolute enrichment relative to the peridotite melting residue trend. Al 2 O 3 and SiO 2 show a positive trend across the lithotypes from Atg-serpentinites to Chl-harzburgites, both Al 2 O 3 and SiO 2 being higher in Chl-harzburgites compared to all other lithologies. FeO tot","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":98175393},"translated_abstract":null,"internal_url":"https://www.academia.edu/96215028/The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction","translated_internal_url":"","created_at":"2023-02-03T00:07:57.087-08:00","preview_url":null,"current_user_can_edit":false,"current_user_is_owner":null,"owner_id":38936760,"coauthors_can_edit":false,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98175393,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175393/thumbnails/1.jpg","file_name":"212383948.pdf","download_url":"https://www.academia.edu/attachments/98175393/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_influence_of_oceanic_oxidation_on_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175393/212383948-libre.pdf?1675414754=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_oceanic_oxidation_on_se.pdf\u0026Expires=1732441830\u0026Signature=DBRTnA3aGVwwti65-IQc3ii7spL1Rp4mZGWaeHWzKAd23IpKRszf9PaH-4QSFYYL30lFsnrvvX~iOOI8rZLOkuPDoS0~x0NqFXikce1Yfvzgn7vhjk3XeXn3LyIeFp0WRiIrxCfx4b0hIrGcIw77zwx9TBtc~WFJuuzs~NA5fRwaB~2iuJrNlPpJaZdHXAqUu3pIgGm3lMDADHqlpeVs~UIIKy7bOxIhJZbElVZGABPIRA15YGRTDL3MrGZudSLT4KvyRXtibNyFr529RFhilnq3j5pyPONjaOrF6-6-GWScoOg6RWEbNGKNsXdVQJ3wEotdHxzc76kQ-UAS47tL4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_influence_of_oceanic_oxidation_on_serpentinite_dehydration_during_subduction","translated_slug":"","page_count":77,"language":"en","content_type":"Work","owner":{"id":38936760,"first_name":"Thomas","middle_initials":null,"last_name":"Pettke","page_name":"ThomasPettke","domain_name":"unibe-ch2","created_at":"2015-11-22T22:52:40.478-08:00","display_name":"Thomas Pettke","url":"https://unibe-ch2.academia.edu/ThomasPettke"},"attachments":[{"id":98175393,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98175393/thumbnails/1.jpg","file_name":"212383948.pdf","download_url":"https://www.academia.edu/attachments/98175393/download_file?st=MTczMjQ2NDEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_influence_of_oceanic_oxidation_on_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98175393/212383948-libre.pdf?1675414754=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_oceanic_oxidation_on_se.pdf\u0026Expires=1732441830\u0026Signature=DBRTnA3aGVwwti65-IQc3ii7spL1Rp4mZGWaeHWzKAd23IpKRszf9PaH-4QSFYYL30lFsnrvvX~iOOI8rZLOkuPDoS0~x0NqFXikce1Yfvzgn7vhjk3XeXn3LyIeFp0WRiIrxCfx4b0hIrGcIw77zwx9TBtc~WFJuuzs~NA5fRwaB~2iuJrNlPpJaZdHXAqUu3pIgGm3lMDADHqlpeVs~UIIKy7bOxIhJZbElVZGABPIRA15YGRTDL3MrGZudSLT4KvyRXtibNyFr529RFhilnq3j5pyPONjaOrF6-6-GWScoOg6RWEbNGKNsXdVQJ3wEotdHxzc76kQ-UAS47tL4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":28644387,"url":"https://api.elsevier.com/content/article/PII:S0012821X18304230?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f676ed4b4c541a208121ca4ca2c1cbb7e180ef732da4e54d7931ee301e187101", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="WCSNb5l1ZJgaEruPheXH7CtdguS67cEzYN9GC0Dji9dTxz581CLS1TiH4l7p+D31l593gbCzXxd6VuXeo6GM1w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://unibe-ch2.academia.edu/ThomasPettke" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="mUmJpr51IE9gy2gfoVBY5X2ZlMAhZbBShHoEjs26LYmSqjq18yKWAkJeMc7NTaL8wVthpSs7Lnae86dbLvgqiQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>