CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,423 results for author: <span class="mathjax">Song, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Song%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Song, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Song%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Song, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18180">arXiv:2411.18180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18180">pdf</a>, <a href="https://arxiv.org/format/2411.18180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DistinctAD: Distinctive Audio Description Generation in Contexts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fang%2C+B">Bo Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+W">Wenhao Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Q">Qiangqiang Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuxin Song</a>, <a href="/search/cs?searchtype=author&amp;query=Chan%2C+A+B">Antoni B. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18180v1-abstract-short" style="display: inline;"> Audio Descriptions (ADs) aim to provide a narration of a movie in text form, describing non-dialogue-related narratives, such as characters, actions, or scene establishment. Automatic generation of ADs remains challenging due to: i) the domain gap between movie-AD data and existing data used to train vision-language models, and ii) the issue of contextual redundancy arising from highly similar nei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18180v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18180v1-abstract-full" style="display: none;"> Audio Descriptions (ADs) aim to provide a narration of a movie in text form, describing non-dialogue-related narratives, such as characters, actions, or scene establishment. Automatic generation of ADs remains challenging due to: i) the domain gap between movie-AD data and existing data used to train vision-language models, and ii) the issue of contextual redundancy arising from highly similar neighboring visual clips in a long movie. In this work, we propose DistinctAD, a novel two-stage framework for generating ADs that emphasize distinctiveness to produce better narratives. To address the domain gap, we introduce a CLIP-AD adaptation strategy that does not require additional AD corpora, enabling more effective alignment between movie and AD modalities at both global and fine-grained levels. In Stage-II, DistinctAD incorporates two key innovations: (i) a Contextual Expectation-Maximization Attention (EMA) module that reduces redundancy by extracting common bases from consecutive video clips, and (ii) an explicit distinctive word prediction loss that filters out repeated words in the context, ensuring the prediction of unique terms specific to the current AD. Comprehensive evaluations on MAD-Eval, CMD-AD, and TV-AD benchmarks demonstrate the superiority of DistinctAD, with the model consistently outperforming baselines, particularly in Recall@k/N, highlighting its effectiveness in producing high-quality, distinctive ADs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18180v1-abstract-full').style.display = 'none'; document.getElementById('2411.18180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18049">arXiv:2411.18049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18049">pdf</a>, <a href="https://arxiv.org/format/2411.18049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Understanding the Impact of Spatial Immersion in Web Data Stories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kim%2C+S+G">Seon Gyeom Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Park%2C+J">Juhyeong Park</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yutaek Song</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+D">Donggun Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+Y">Yubin Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Rossi%2C+R">Ryan Rossi</a>, <a href="/search/cs?searchtype=author&amp;query=Hoffswell%2C+J">Jane Hoffswell</a>, <a href="/search/cs?searchtype=author&amp;query=Koh%2C+E">Eunyee Koh</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+T+Y">Tak Yeon Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18049v1-abstract-short" style="display: inline;"> An increasing number of web articles engage the reader with the feeling of being immersed in the data space. However, the exact characteristics of spatial immersion in the context of visual storytelling remain vague. For example, what are the common design patterns of data stories with spatial immersion? How do they affect the reader&#39;s experience? To gain a deeper understanding of the subject, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18049v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18049v1-abstract-full" style="display: none;"> An increasing number of web articles engage the reader with the feeling of being immersed in the data space. However, the exact characteristics of spatial immersion in the context of visual storytelling remain vague. For example, what are the common design patterns of data stories with spatial immersion? How do they affect the reader&#39;s experience? To gain a deeper understanding of the subject, we collected 23 distinct data stories with spatial immersion, and identified six design patterns, such as cinematic camera shots and transitions, intuitive data representations, realism, naturally moving elements, direct manipulation of camera or visualization, and dynamic dimension. Subsequently, we designed four data stories and conducted a crowdsourced user study comparing three design variations (static, animated, and immersive). Our results suggest that data stories with the design patterns for spatial immersion are more interesting and persuasive than static or animated ones, but no single condition was deemed more understandable or trustworthy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18049v1-abstract-full').style.display = 'none'; document.getElementById('2411.18049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17555">arXiv:2411.17555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17555">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Multiscale spatiotemporal heterogeneity analysis of bike-sharing system&#39;s self-loop phenomenon: Evidence from Shanghai </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yichen Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qing Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yancun Song</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+Q">Quan Yuan</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+C">Chengcheng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17555v1-abstract-short" style="display: inline;"> Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17555v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17555v1-abstract-full" style="display: none;"> Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial location&#39;s impact on the self-loop phenomenon at metro stations and street scales. The results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale and is positively associated with residential land use. Marginal treatment effects of residential land use is higher on streets with middle-aged residents, high fixed employment, and low car ownership. The multimodal public transit condition reveals significant positive marginal treatment effects at both scales. To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage, alongside implementing adaptable redistribution strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17555v1-abstract-full').style.display = 'none'; document.getElementById('2411.17555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17451">arXiv:2411.17451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17451">pdf</a>, <a href="https://arxiv.org/format/2411.17451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+Y">Yuancheng Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+Z">Zhihui Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xuqing Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yifan Song</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+P">Peiyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=An%2C+C">Chenxin An</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+T">Tianyu Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+S">Sujian Li</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+B+Y">Bill Yuchen Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Kong%2C+L">Lingpeng Kong</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17451v1-abstract-short" style="display: inline;"> Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17451v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17451v1-abstract-full" style="display: none;"> Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline combining sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe model limitations. Comprehensive evaluation across 16 leading large vision-language models, demonstrates VL-RewardBench&#39;s effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson&#39;s r &gt; 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17451v1-abstract-full').style.display = 'none'; document.getElementById('2411.17451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: https://vl-rewardbench.github.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16055">arXiv:2411.16055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16055">pdf</a>, <a href="https://arxiv.org/format/2411.16055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICRA48891.2023.10160404">10.1109/ICRA48891.2023.10160404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Picking by Tilting: In-Hand Manipulation for Object Picking using Effector with Curved Form </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yanshu Song</a>, <a href="/search/cs?searchtype=author&amp;query=Nazir%2C+A">Abdullah Nazir</a>, <a href="/search/cs?searchtype=author&amp;query=Lau%2C+D">Darwin Lau</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y+H">Yun Hui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16055v1-abstract-short" style="display: inline;"> This paper presents a robotic in-hand manipulation technique that can be applied to pick an object too large to grasp in a prehensile manner, by taking advantage of its contact interactions with a curved, passive end-effector, and two flat support surfaces. First, the object is tilted up while being held between the end-effector and the supports. Then, the end-effector is tucked into the gap under&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16055v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16055v1-abstract-full" style="display: none;"> This paper presents a robotic in-hand manipulation technique that can be applied to pick an object too large to grasp in a prehensile manner, by taking advantage of its contact interactions with a curved, passive end-effector, and two flat support surfaces. First, the object is tilted up while being held between the end-effector and the supports. Then, the end-effector is tucked into the gap underneath the object, which is formed by tilting, in order to obtain a grasp against gravity. In this paper, we first examine the mechanics of tilting to understand the different ways in which the object can be initially tilted. We then present a strategy to tilt up the object in a secure manner. Finally, we demonstrate successful picking of objects of various size and geometry using our technique through a set of experiments performed with a custom-made robotic device and a conventional robot arm. Our experiment results show that object picking can be performed reliably with our method using simple hardware and control, and when possible, with appropriate fixture design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16055v1-abstract-full').style.display = 'none'; document.getElementById('2411.16055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15720">arXiv:2411.15720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15720">pdf</a>, <a href="https://arxiv.org/format/2411.15720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Chain of Attack: On the Robustness of Vision-Language Models Against Transfer-Based Adversarial Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xie%2C+P">Peng Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Bie%2C+Y">Yequan Bie</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+J">Jianda Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yangqiu Song</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+K">Kani Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15720v1-abstract-short" style="display: inline;"> Pre-trained vision-language models (VLMs) have showcased remarkable performance in image and natural language understanding, such as image captioning and response generation. As the practical applications of vision-language models become increasingly widespread, their potential safety and robustness issues raise concerns that adversaries may evade the system and cause these models to generate toxi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15720v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15720v1-abstract-full" style="display: none;"> Pre-trained vision-language models (VLMs) have showcased remarkable performance in image and natural language understanding, such as image captioning and response generation. As the practical applications of vision-language models become increasingly widespread, their potential safety and robustness issues raise concerns that adversaries may evade the system and cause these models to generate toxic content through malicious attacks. Therefore, evaluating the robustness of open-source VLMs against adversarial attacks has garnered growing attention, with transfer-based attacks as a representative black-box attacking strategy. However, most existing transfer-based attacks neglect the importance of the semantic correlations between vision and text modalities, leading to sub-optimal adversarial example generation and attack performance. To address this issue, we present Chain of Attack (CoA), which iteratively enhances the generation of adversarial examples based on the multi-modal semantic update using a series of intermediate attacking steps, achieving superior adversarial transferability and efficiency. A unified attack success rate computing method is further proposed for automatic evasion evaluation. Extensive experiments conducted under the most realistic and high-stakes scenario, demonstrate that our attacking strategy can effectively mislead models to generate targeted responses using only black-box attacks without any knowledge of the victim models. The comprehensive robustness evaluation in our paper provides insight into the vulnerabilities of VLMs and offers a reference for the safety considerations of future model developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15720v1-abstract-full').style.display = 'none'; document.getElementById('2411.15720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15332">arXiv:2411.15332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15332">pdf</a>, <a href="https://arxiv.org/format/2411.15332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Mera: Memory Reduction and Acceleration for Quantum Circuit Simulation via Redundancy Exploration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuhong Song</a>, <a href="/search/cs?searchtype=author&amp;query=Sha%2C+E+H">Edwin Hsing-Mean Sha</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+L">Longshan Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhuge%2C+Q">Qingfeng Zhuge</a>, <a href="/search/cs?searchtype=author&amp;query=Shao%2C+Z">Zili Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15332v1-abstract-short" style="display: inline;"> With the development of quantum computing, quantum processor demonstrates the potential supremacy in specific applications, such as Grovers database search and popular quantum neural networks (QNNs). For better calibrating the quantum algorithms and machines, quantum circuit simulation on classical computers becomes crucial. However, as the number of quantum bits (qubits) increases, the memory req&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15332v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15332v1-abstract-full" style="display: none;"> With the development of quantum computing, quantum processor demonstrates the potential supremacy in specific applications, such as Grovers database search and popular quantum neural networks (QNNs). For better calibrating the quantum algorithms and machines, quantum circuit simulation on classical computers becomes crucial. However, as the number of quantum bits (qubits) increases, the memory requirement grows exponentially. In order to reduce memory usage and accelerate simulation, we propose a multi-level optimization, namely Mera, by exploring memory and computation redundancy. First, for a large number of sparse quantum gates, we propose two compressed structures for low-level full-state simulation. The corresponding gate operations are designed for practical implementations, which are relieved from the longtime compression and decompression. Second, for the dense Hadamard gate, which is definitely used to construct the superposition, we design a customized structure for significant memory saving as a regularity-oriented simulation. Meanwhile, an ondemand amplitude updating process is optimized for execution acceleration. Experiments show that our compressed structures increase the number of qubits from 17 to 35, and achieve up to 6.9 times acceleration for QNN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15332v1-abstract-full').style.display = 'none'; document.getElementById('2411.15332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by 2024 42nd IEEE International Conference on Computer Design (ICCD)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15131">arXiv:2411.15131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15131">pdf</a>, <a href="https://arxiv.org/format/2411.15131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> WildLMa: Long Horizon Loco-Manipulation in the Wild </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qiu%2C+R">Ri-Zhao Qiu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuchen Song</a>, <a href="/search/cs?searchtype=author&amp;query=Peng%2C+X">Xuanbin Peng</a>, <a href="/search/cs?searchtype=author&amp;query=Suryadevara%2C+S+A">Sai Aneesh Suryadevara</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+G">Ge Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+M">Minghuan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Ji%2C+M">Mazeyu Ji</a>, <a href="/search/cs?searchtype=author&amp;query=Jia%2C+C">Chengzhe Jia</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+R">Ruihan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zou%2C+X">Xueyan Zou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xiaolong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15131v1-abstract-short" style="display: inline;"> `In-the-wild&#39; mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enablin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15131v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15131v1-abstract-full" style="display: none;"> `In-the-wild&#39; mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15131v1-abstract-full').style.display = 'none'; document.getElementById('2411.15131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Website: https://wildlma.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14833">arXiv:2411.14833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14833">pdf</a>, <a href="https://arxiv.org/format/2411.14833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Cell as Point: One-Stage Framework for Efficient Cell Tracking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yaxuan Song</a>, <a href="/search/cs?searchtype=author&amp;query=Fan%2C+J">Jianan Fan</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+H">Heng Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+M">Mei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Cai%2C+W">Weidong Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14833v1-abstract-short" style="display: inline;"> Cellular activities are dynamic and intricate, playing a crucial role in advancing diagnostic and therapeutic techniques, yet they often require substantial resources for accurate tracking. Despite recent progress, the conventional multi-stage cell tracking approaches not only heavily rely on detection or segmentation results as a prerequisite for the tracking stage, demanding plenty of refined se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14833v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14833v1-abstract-full" style="display: none;"> Cellular activities are dynamic and intricate, playing a crucial role in advancing diagnostic and therapeutic techniques, yet they often require substantial resources for accurate tracking. Despite recent progress, the conventional multi-stage cell tracking approaches not only heavily rely on detection or segmentation results as a prerequisite for the tracking stage, demanding plenty of refined segmentation masks, but are also deteriorated by imbalanced and long sequence data, leading to under-learning in training and missing cells in inference procedures. To alleviate the above issues, this paper proposes the novel end-to-end CAP framework, which leverages the idea of regarding Cell as Point to achieve efficient and stable cell tracking in one stage. CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly, thus reducing the label demand and complexity of the pipeline. With cell point trajectory and visibility to represent cell locations and lineage relationships, CAP leverages the key innovations of adaptive event-guided (AEG) sampling for addressing data imbalance in cell division events and the rolling-as-window (RAW) inference method to ensure continuous tracking of new cells in the long term. Eliminating the need for a prerequisite detection or segmentation stage, CAP demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods. The code and models will be released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14833v1-abstract-full').style.display = 'none'; document.getElementById('2411.14833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, 8 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14811">arXiv:2411.14811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14811">pdf</a>, <a href="https://arxiv.org/format/2411.14811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuhang Song</a>, <a href="/search/cs?searchtype=author&amp;query=Gianni%2C+M">Mario Gianni</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+C">Chenguang Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+K">Kunyang Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Chiu%2C+T">Te-Chuan Chiu</a>, <a href="/search/cs?searchtype=author&amp;query=Nguyen%2C+A">Anh Nguyen</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+C">Chun-Yi Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14811v1-abstract-short" style="display: inline;"> This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14811v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14811v1-abstract-full" style="display: none;"> This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our source code and trained models are available at: https://anonymous.4open.science/r/FGVLN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14811v1-abstract-full').style.display = 'none'; document.getElementById('2411.14811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13280">arXiv:2411.13280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13280">pdf</a>, <a href="https://arxiv.org/format/2411.13280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Structure-Based Molecule Optimization via Gradient-Guided Bayesian Update </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qiu%2C+K">Keyue Qiu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuxuan Song</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jie Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+H">Hongbo Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Z">Ziyao Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhilong Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Y">Yushuai Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+M">Mingyue Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+W">Wei-Ying Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13280v2-abstract-short" style="display: inline;"> Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and diffe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13280v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13280v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13280v2-abstract-full" style="display: none;"> Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the first gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. Our proposed MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3% , Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x &#34;Me-Better&#34; Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility and potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13280v2-abstract-full').style.display = 'none'; document.getElementById('2411.13280v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12454">arXiv:2411.12454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12454">pdf</a>, <a href="https://arxiv.org/format/2411.12454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> StrTune: Data Dependence-based Code Slicing for Binary Similarity Detection with Fine-tuned Representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=He%2C+K">Kaiyan He</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+Y">Yikun Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xuehui Li</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yunhao Song</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Y">Yubo Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+D">Dawu Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12454v1-abstract-short" style="display: inline;"> Binary Code Similarity Detection (BCSD) is significant for software security as it can address binary tasks such as malicious code snippets identification and binary patch analysis by comparing code patterns. Recently, there has been a growing focus on artificial intelligence-based approaches in BCSD due to their scalability and generalization. Because binaries are compiled with different compilat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12454v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12454v1-abstract-full" style="display: none;"> Binary Code Similarity Detection (BCSD) is significant for software security as it can address binary tasks such as malicious code snippets identification and binary patch analysis by comparing code patterns. Recently, there has been a growing focus on artificial intelligence-based approaches in BCSD due to their scalability and generalization. Because binaries are compiled with different compilation configurations, existing approaches still face notable limitations when comparing binary similarity. First, BCSD requires analysis on code behavior, and existing work claims to extract semantic, but actually still makes analysis in terms of syntax. Second, directly extracting features from assembly sequences, existing work cannot address the issues of instruction reordering and different syntax expressions caused by various compilation configurations. In this paper, we propose StrTune, which slices binary code based on data dependence and perform slice-level fine-tuning. To address the first limitation, StrTune performs backward slicing based on data dependence to capture how a value is computed along the execution. Each slice reflects the collecting semantics of the code, which is stable across different compilation configurations. StrTune introduces flow types to emphasize the independence of computations between slices, forming a graph representation. To overcome the second limitation, based on slices corresponding to the same value computation but having different syntax representation, StrTune utilizes a Siamese Network to fine-tune such pairs, making their representations closer in the feature space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12454v1-abstract-full').style.display = 'none'; document.getElementById('2411.12454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12248">arXiv:2411.12248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12248">pdf</a>, <a href="https://arxiv.org/format/2411.12248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Neuro-3D: Towards 3D Visual Decoding from EEG Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z">Zhanqiang Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+J">Jiamin Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yonghao Song</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiahui Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Mai%2C+W">Weijian Mai</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qihao Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Ouyang%2C+W">Wanli Ouyang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+C">Chunfeng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12248v2-abstract-short" style="display: inline;"> Human&#39;s perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12248v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12248v2-abstract-full" style="display: none;"> Human&#39;s perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of neural dynamics enriched with complex visual cues. To provide the essential benchmark, we first present EEG-3D, a pioneering dataset featuring multimodal analysis data and extensive EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images. Furthermore, we propose Neuro-3D, a 3D visual decoding framework based on EEG signals. This framework adaptively integrates EEG features derived from static and dynamic stimuli to learn complementary and robust neural representations, which are subsequently utilized to recover both the shape and color of 3D objects through the proposed diffusion-based colored point cloud decoder. To the best of our knowledge, we are the first to explore EEG-based 3D visual decoding. Experiments indicate that Neuro-3D not only reconstructs colored 3D objects with high fidelity, but also learns effective neural representations that enable insightful brain region analysis. The dataset and associated code will be made publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12248v2-abstract-full').style.display = 'none'; document.getElementById('2411.12248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10818">arXiv:2411.10818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10818">pdf</a>, <a href="https://arxiv.org/format/2411.10818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bandyopadhyay%2C+H">Hmrishav Bandyopadhyay</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yi-Zhe Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10818v1-abstract-short" style="display: inline;"> Sketch animations offer a powerful medium for visual storytelling, from simple flip-book doodles to professional studio productions. While traditional animation requires teams of skilled artists to draw key frames and in-between frames, existing automation attempts still demand significant artistic effort through precise motion paths or keyframe specification. We present FlipSketch, a system that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10818v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10818v1-abstract-full" style="display: none;"> Sketch animations offer a powerful medium for visual storytelling, from simple flip-book doodles to professional studio productions. While traditional animation requires teams of skilled artists to draw key frames and in-between frames, existing automation attempts still demand significant artistic effort through precise motion paths or keyframe specification. We present FlipSketch, a system that brings back the magic of flip-book animation -- just draw your idea and describe how you want it to move! Our approach harnesses motion priors from text-to-video diffusion models, adapting them to generate sketch animations through three key innovations: (i) fine-tuning for sketch-style frame generation, (ii) a reference frame mechanism that preserves visual integrity of input sketch through noise refinement, and (iii) a dual-attention composition that enables fluid motion without losing visual consistency. Unlike constrained vector animations, our raster frames support dynamic sketch transformations, capturing the expressive freedom of traditional animation. The result is an intuitive system that makes sketch animation as simple as doodling and describing, while maintaining the artistic essence of hand-drawn animation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10818v1-abstract-full').style.display = 'none'; document.getElementById('2411.10818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code: https://github.com/hmrishavbandy/FlipSketch</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10440">arXiv:2411.10440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10440">pdf</a>, <a href="https://arxiv.org/format/2411.10440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> LLaVA-CoT: Let Vision Language Models Reason Step-by-Step </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xu%2C+G">Guowei Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+P">Peng Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yibing Song</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+L">Lichao Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+L">Li Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10440v2-abstract-short" style="display: inline;"> Large language models have demonstrated substantial advancements in reasoning capabilities, particularly through inference-time scaling, as illustrated by models such as OpenAI&#39;s o1. However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question-answering tasks. In this work, we introduce LLaVA-CoT, a n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10440v2-abstract-full').style.display = 'inline'; document.getElementById('2411.10440v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10440v2-abstract-full" style="display: none;"> Large language models have demonstrated substantial advancements in reasoning capabilities, particularly through inference-time scaling, as illustrated by models such as OpenAI&#39;s o1. However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question-answering tasks. In this work, we introduce LLaVA-CoT, a novel VLM designed to conduct autonomous multistage reasoning. Unlike chain-of-thought prompting, LLaVA-CoT independently engages in sequential stages of summarization, visual interpretation, logical reasoning, and conclusion generation. This structured approach enables LLaVA-CoT to achieve marked improvements in precision on reasoning-intensive tasks. To accomplish this, we compile the LLaVA-CoT-100k dataset, integrating samples from various visual question answering sources and providing structured reasoning annotations. Besides, we propose an inference-time stage-level beam search method, which enables effective inference-time scaling. Remarkably, with only 100k training samples and a simple yet effective inference time scaling method, LLaVA-CoT not only outperforms its base model by 8.9% on a wide range of multimodal reasoning benchmarks, but also surpasses the performance of larger and even closed-source models, such as Gemini-1.5-pro, GPT-4o-mini, and Llama-3.2-90B-Vision-Instruct. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10440v2-abstract-full').style.display = 'none'; document.getElementById('2411.10440v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07654">arXiv:2411.07654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07654">pdf</a>, <a href="https://arxiv.org/format/2411.07654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Spike Talk in Power Electronic Grids -- Leveraging Post Moore&#39;s Computing Laws </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yubo Song</a>, <a href="/search/cs?searchtype=author&amp;query=Sahoo%2C+S">Subham Sahoo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07654v1-abstract-short" style="display: inline;"> Emerging distributed generation demands highly reliable and resilient coordinating control in microgrids. To improve on these aspects, spiking neural network is leveraged, as a grid-edge intelligence tool to establish a talkative infrastructure, Spike Talk, expediting coordination in next-generation microgrids without the need of communication at all. This paper unravels the physics behind Spike T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07654v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07654v1-abstract-full" style="display: none;"> Emerging distributed generation demands highly reliable and resilient coordinating control in microgrids. To improve on these aspects, spiking neural network is leveraged, as a grid-edge intelligence tool to establish a talkative infrastructure, Spike Talk, expediting coordination in next-generation microgrids without the need of communication at all. This paper unravels the physics behind Spike Talk from the perspective of its distributed infrastructure, which aims to address the Von Neumann Bottleneck. Relying on inferring information via power flows in tie lines, Spike Talk allows adaptive and flexible control and coordination itself, and features in synaptic plasticity facilitating online and local training functionality. Preliminary case studies are demonstrated with results, while more extensive validations are to be included as future scopes of work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07654v1-abstract-full').style.display = 'none'; document.getElementById('2411.07654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript has been accepted for publication in the Proceedings of 2024 IEEE Design Methodologies for Power Electronics Conference (DMC2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07611">arXiv:2411.07611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07611">pdf</a>, <a href="https://arxiv.org/format/2411.07611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Multimodal Clinical Reasoning through Knowledge-augmented Rationale Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Niu%2C+S">Shuai Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+J">Jing Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Bai%2C+L">Liang Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhihua Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yida Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yunya Song</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07611v1-abstract-short" style="display: inline;"> Clinical rationales play a pivotal role in accurate disease diagnosis; however, many models predominantly use discriminative methods and overlook the importance of generating supportive rationales. Rationale distillation is a process that transfers knowledge from large language models (LLMs) to smaller language models (SLMs), thereby enhancing the latter&#39;s ability to break down complex tasks. Desp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07611v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07611v1-abstract-full" style="display: none;"> Clinical rationales play a pivotal role in accurate disease diagnosis; however, many models predominantly use discriminative methods and overlook the importance of generating supportive rationales. Rationale distillation is a process that transfers knowledge from large language models (LLMs) to smaller language models (SLMs), thereby enhancing the latter&#39;s ability to break down complex tasks. Despite its benefits, rationale distillation alone is inadequate for addressing domain knowledge limitations in tasks requiring specialized expertise, such as disease diagnosis. Effectively embedding domain knowledge in SLMs poses a significant challenge. While current LLMs are primarily geared toward processing textual data, multimodal LLMs that incorporate time series data, especially electronic health records (EHRs), are still evolving. To tackle these limitations, we introduce ClinRaGen, an SLM optimized for multimodal rationale generation in disease diagnosis. ClinRaGen incorporates a unique knowledge-augmented attention mechanism to merge domain knowledge with time series EHR data, utilizing a stepwise rationale distillation strategy to produce both textual and time series-based clinical rationales. Our evaluations show that ClinRaGen markedly improves the SLM&#39;s capability to interpret multimodal EHR data and generate accurate clinical rationales, supporting more reliable disease diagnosis, advancing LLM applications in healthcare, and narrowing the performance divide between LLMs and SLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07611v1-abstract-full').style.display = 'none'; document.getElementById('2411.07611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages. 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06067">arXiv:2411.06067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06067">pdf</a>, <a href="https://arxiv.org/format/2411.06067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> AI-Driven Stylization of 3D Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yuanbo Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+Y">Yixiao Kang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yukun Song</a>, <a href="/search/cs?searchtype=author&amp;query=Vachha%2C+C">Cyrus Vachha</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+S">Sining Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06067v1-abstract-short" style="display: inline;"> In this system, we discuss methods to stylize a scene of 3D primitive objects into a higher fidelity 3D scene using novel 3D representations like NeRFs and 3D Gaussian Splatting. Our approach leverages existing image stylization systems and image-to-3D generative models to create a pipeline that iteratively stylizes and composites 3D objects into scenes. We show our results on adding generated obj&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06067v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06067v1-abstract-full" style="display: none;"> In this system, we discuss methods to stylize a scene of 3D primitive objects into a higher fidelity 3D scene using novel 3D representations like NeRFs and 3D Gaussian Splatting. Our approach leverages existing image stylization systems and image-to-3D generative models to create a pipeline that iteratively stylizes and composites 3D objects into scenes. We show our results on adding generated objects into a scene and discuss limitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06067v1-abstract-full').style.display = 'none'; document.getElementById('2411.06067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04413">arXiv:2411.04413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04413">pdf</a>, <a href="https://arxiv.org/format/2411.04413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Seeing Through Pixel Motion: Learning Obstacle Avoidance from Optical Flow with One Camera </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hu%2C+Y">Yu Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yuang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yunlong Song</a>, <a href="/search/cs?searchtype=author&amp;query=Deng%2C+Y">Yang Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+F">Feng Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Linzuo Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+W">Weiyao Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Zou%2C+D">Danping Zou</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+W">Wenxian Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04413v1-abstract-short" style="display: inline;"> Optical flow captures the motion of pixels in an image sequence over time, providing information about movement, depth, and environmental structure. Flying insects utilize this information to navigate and avoid obstacles, allowing them to execute highly agile maneuvers even in complex environments. Despite its potential, autonomous flying robots have yet to fully leverage this motion information t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04413v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04413v1-abstract-full" style="display: none;"> Optical flow captures the motion of pixels in an image sequence over time, providing information about movement, depth, and environmental structure. Flying insects utilize this information to navigate and avoid obstacles, allowing them to execute highly agile maneuvers even in complex environments. Despite its potential, autonomous flying robots have yet to fully leverage this motion information to achieve comparable levels of agility and robustness. Challenges of control from optical flow include extracting accurate optical flow at high speeds, handling noisy estimation, and ensuring robust performance in complex environments. To address these challenges, we propose a novel end-to-end system for quadrotor obstacle avoidance using monocular optical flow. We develop an efficient differentiable simulator coupled with a simplified quadrotor model, allowing our policy to be trained directly through first-order gradient optimization. Additionally, we introduce a central flow attention mechanism and an action-guided active sensing strategy that enhances the policy&#39;s focus on task-relevant optical flow observations to enable more responsive decision-making during flight. Our system is validated both in simulation and the real world using an FPV racing drone. Despite being trained in a simple environment in simulation, our system is validated both in simulation and the real world using an FPV racing drone. Despite being trained in a simple environment in simulation, our system demonstrates agile and robust flight in various unknown, cluttered environments in the real world at speeds of up to 6m/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04413v1-abstract-full').style.display = 'none'; document.getElementById('2411.04413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03964">arXiv:2411.03964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03964">pdf</a>, <a href="https://arxiv.org/format/2411.03964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> What Really is Commonsense Knowledge? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Do%2C+Q+V">Quyet V. Do</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Junze Li</a>, <a href="/search/cs?searchtype=author&amp;query=Vuong%2C+T">Tung-Duong Vuong</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhaowei Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yangqiu Song</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+X">Xiaojuan Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03964v1-abstract-short" style="display: inline;"> Commonsense datasets have been well developed in Natural Language Processing, mainly through crowdsource human annotation. However, there are debates on the genuineness of commonsense reasoning benchmarks. In specific, a significant portion of instances in some commonsense benchmarks do not concern commonsense knowledge. That problem would undermine the measurement of the true commonsense reasonin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03964v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03964v1-abstract-full" style="display: none;"> Commonsense datasets have been well developed in Natural Language Processing, mainly through crowdsource human annotation. However, there are debates on the genuineness of commonsense reasoning benchmarks. In specific, a significant portion of instances in some commonsense benchmarks do not concern commonsense knowledge. That problem would undermine the measurement of the true commonsense reasoning ability of evaluated models. It is also suggested that the problem originated from a blurry concept of commonsense knowledge, as distinguished from other types of knowledge. To demystify all of the above claims, in this study, we survey existing definitions of commonsense knowledge, ground into the three frameworks for defining concepts, and consolidate them into a multi-framework unified definition of commonsense knowledge (so-called consolidated definition). We then use the consolidated definition for annotations and experiments on the CommonsenseQA and CommonsenseQA 2.0 datasets to examine the above claims. Our study shows that there exists a large portion of non-commonsense-knowledge instances in the two datasets, and a large performance gap on these two subsets where Large Language Models (LLMs) perform worse on commonsense-knowledge instances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03964v1-abstract-full').style.display = 'none'; document.getElementById('2411.03964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code and data will be released together with the next version of the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02544">arXiv:2411.02544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02544">pdf</a>, <a href="https://arxiv.org/format/2411.02544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Pretrained transformer efficiently learns low-dimensional target functions in-context </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Oko%2C+K">Kazusato Oko</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yujin Song</a>, <a href="/search/cs?searchtype=author&amp;query=Suzuki%2C+T">Taiji Suzuki</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+D">Denny Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02544v1-abstract-short" style="display: inline;"> Transformers can efficiently learn in-context from example demonstrations. Most existing theoretical analyses studied the in-context learning (ICL) ability of transformers for linear function classes, where it is typically shown that the minimizer of the pretraining loss implements one gradient descent step on the least squares objective. However, this simplified linear setting arguably does not d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02544v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02544v1-abstract-full" style="display: none;"> Transformers can efficiently learn in-context from example demonstrations. Most existing theoretical analyses studied the in-context learning (ICL) ability of transformers for linear function classes, where it is typically shown that the minimizer of the pretraining loss implements one gradient descent step on the least squares objective. However, this simplified linear setting arguably does not demonstrate the statistical efficiency of ICL, since the pretrained transformer does not outperform directly solving linear regression on the test prompt. In this paper, we study ICL of a nonlinear function class via transformer with nonlinear MLP layer: given a class of \textit{single-index} target functions $f_*(\boldsymbol{x}) = 蟽_*(\langle\boldsymbol{x},\boldsymbol尾\rangle)$, where the index features $\boldsymbol尾\in\mathbb{R}^d$ are drawn from a $r$-dimensional subspace, we show that a nonlinear transformer optimized by gradient descent (with a pretraining sample complexity that depends on the \textit{information exponent} of the link functions $蟽_*$) learns $f_*$ in-context with a prompt length that only depends on the dimension of the distribution of target functions $r$; in contrast, any algorithm that directly learns $f_*$ on test prompt yields a statistical complexity that scales with the ambient dimension $d$. Our result highlights the adaptivity of the pretrained transformer to low-dimensional structures of the function class, which enables sample-efficient ICL that outperforms estimators that only have access to the in-context data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02544v1-abstract-full').style.display = 'none'; document.getElementById('2411.02544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01792">arXiv:2411.01792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01792">pdf</a>, <a href="https://arxiv.org/format/2411.01792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Fast Semi-supervised Learning on Large Graphs: An Improved Green-function Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nie%2C+F">Feiping Nie</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yitao Song</a>, <a href="/search/cs?searchtype=author&amp;query=Chang%2C+W">Wei Chang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+R">Rong Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xuelong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01792v1-abstract-short" style="display: inline;"> In the graph-based semi-supervised learning, the Green-function method is a classical method that works by computing the Green&#39;s function in the graph space. However, when applied to large graphs, especially those sparse ones, this method performs unstably and unsatisfactorily. We make a detailed analysis on it and propose a novel method from the perspective of optimization. On fully connected gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01792v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01792v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01792v1-abstract-full" style="display: none;"> In the graph-based semi-supervised learning, the Green-function method is a classical method that works by computing the Green&#39;s function in the graph space. However, when applied to large graphs, especially those sparse ones, this method performs unstably and unsatisfactorily. We make a detailed analysis on it and propose a novel method from the perspective of optimization. On fully connected graphs, the method is equivalent to the Green-function method and can be seen as another interpretation with physical meanings, while on non-fully connected graphs, it helps to explain why the Green-function method causes a mess on large sparse graphs. To solve this dilemma, we propose a workable approach to improve our proposed method. Unlike the original method, our improved method can also apply two accelerating techniques, Gaussian Elimination, and Anchored Graphs to become more efficient on large graphs. Finally, the extensive experiments prove our conclusions and the efficiency, accuracy, and stability of our improved Green&#39;s function method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01792v1-abstract-full').style.display = 'none'; document.getElementById('2411.01792v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01780">arXiv:2411.01780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01780">pdf</a>, <a href="https://arxiv.org/format/2411.01780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Clustering Based on Density Propagation and Subcluster Merging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nie%2C+F">Feiping Nie</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yitao Song</a>, <a href="/search/cs?searchtype=author&amp;query=Xue%2C+J">Jingjing Xue</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+R">Rong Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xuelong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01780v1-abstract-short" style="display: inline;"> We propose the DPSM method, a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space. Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process, thereby making it suitable for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01780v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01780v1-abstract-full" style="display: none;"> We propose the DPSM method, a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space. Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process, thereby making it suitable for a graph space. In DPSM, nodes are partitioned into small clusters based on propagated density. The partitioning technique has been proved to be sound and complete. We then extend the concept of spectral clustering from individual nodes to these small clusters, while introducing the CluCut measure to guide cluster merging. This measure is modified in various ways to account for cluster properties, thus provides guidance on when to terminate the merging process. Various experiments have validated the effectiveness of DOSM and the accuracy of these conclusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01780v1-abstract-full').style.display = 'none'; document.getElementById('2411.01780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01178">arXiv:2411.01178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01178">pdf</a>, <a href="https://arxiv.org/format/2411.01178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> LLM4PR: Improving Post-Ranking in Search Engine with Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yan%2C+Y">Yang Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yihao Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Hou%2C+W">Wenyuan Hou</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+K">Kang Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+X">Xingkai Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Z">Zelun Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhai%2C+Z">Zhixin Zhai</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+E">Enyun Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Ou%2C+W">Wenwu Ou</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yang Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01178v1-abstract-short" style="display: inline;"> Alongside the rapid development of Large Language Models (LLMs), there has been a notable increase in efforts to integrate LLM techniques in information retrieval (IR) and search engines (SE). Recently, an additional post-ranking stage is suggested in SE to enhance user satisfaction in practical applications. Nevertheless, research dedicated to enhancing the post-ranking stage through LLMs remains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01178v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01178v1-abstract-full" style="display: none;"> Alongside the rapid development of Large Language Models (LLMs), there has been a notable increase in efforts to integrate LLM techniques in information retrieval (IR) and search engines (SE). Recently, an additional post-ranking stage is suggested in SE to enhance user satisfaction in practical applications. Nevertheless, research dedicated to enhancing the post-ranking stage through LLMs remains largely unexplored. In this study, we introduce a novel paradigm named Large Language Models for Post-Ranking in search engine (LLM4PR), which leverages the capabilities of LLMs to accomplish the post-ranking task in SE. Concretely, a Query-Instructed Adapter (QIA) module is designed to derive the user/item representation vectors by incorporating their heterogeneous features. A feature adaptation step is further introduced to align the semantics of user/item representations with the LLM. Finally, the LLM4PR integrates a learning to post-rank step, leveraging both a main task and an auxiliary task to fine-tune the model to adapt the post-ranking task. Experiment studies demonstrate that the proposed framework leads to significant improvements and exhibits state-of-the-art performance compared with other alternatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01178v1-abstract-full').style.display = 'none'; document.getElementById('2411.01178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00660">arXiv:2411.00660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00660">pdf</a>, <a href="https://arxiv.org/format/2411.00660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Physics in Next-token Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=An%2C+H">Hongjun An</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yiliang Song</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xuelong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00660v2-abstract-short" style="display: inline;"> We discovered the underlying physics in Next-token Prediction (NTP). We identified the law of information conservation within NTP and proposed the First Law of Information Capacity (IC-1), demonstrating that the essence of intelligence emergence in auto-regressive models is fundamentally a process of information transfer. We also introduced Landauer&#39;s Principle into NTP, formulating the Second Law&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00660v2-abstract-full').style.display = 'inline'; document.getElementById('2411.00660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00660v2-abstract-full" style="display: none;"> We discovered the underlying physics in Next-token Prediction (NTP). We identified the law of information conservation within NTP and proposed the First Law of Information Capacity (IC-1), demonstrating that the essence of intelligence emergence in auto-regressive models is fundamentally a process of information transfer. We also introduced Landauer&#39;s Principle into NTP, formulating the Second Law of Information Capacity (IC-2), which establishes the relationship between auto-regressive model training and energy consumption. Additionally, we presented several corollaries, which hold practical significance for production practices. Finally, we demonstrate the consistency between the Law of Information Capacity and the Scaling Law for Neural Language Models, the Knowledge Capacity Scaling Laws, and the Scaling Laws for Precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00660v2-abstract-full').style.display = 'none'; document.getElementById('2411.00660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Second Submit</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00473">arXiv:2411.00473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00473">pdf</a>, <a href="https://arxiv.org/format/2411.00473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Synergistic Interplay of Large Language Model and Digital Twin for Autonomous Optical Networks: Field Demonstrations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuchen Song</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+A">Anni Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+Y">Yan Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+S">Shikui Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+X">Xiongyan Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jin Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+D">Danshi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00473v1-abstract-short" style="display: inline;"> The development of large language models (LLM) has revolutionized various fields and is anticipated to drive the advancement of autonomous systems. In the context of autonomous optical networks, creating a high-level cognitive agent in the control layer remains a challenge. However, LLM is primarily developed for natural language processing tasks, rendering them less effective in predicting the ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00473v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00473v1-abstract-full" style="display: none;"> The development of large language models (LLM) has revolutionized various fields and is anticipated to drive the advancement of autonomous systems. In the context of autonomous optical networks, creating a high-level cognitive agent in the control layer remains a challenge. However, LLM is primarily developed for natural language processing tasks, rendering them less effective in predicting the physical dynamics of optical communications. Moreover, optical networks demand rigorous stability, where direct deployment of strategies generated from LLM poses safety concerns. In this paper, a digital twin (DT)-enhanced LLM scheme is proposed to facilitate autonomous optical networks. By leveraging monitoring data and advanced models, the DT of optical networks can accurately characterize their physical dynamics, furnishing LLMs with dynamic-updated information for reliable decision-making. Prior to deployment, the generated strategies from LLM can be pre-verified in the DT platform, which also provides feedback to the LLM for further refinement of strategies. The synergistic interplay between DT and LLM for autonomous optical networks is demonstrated through three scenarios: performance optimization under dynamic loadings in an experimental C+L-band long-haul transmission link, protection switching for device upgrading in a field-deployed six-node mesh network, and performance recovery after fiber cuts in a field-deployed C+L-band transmission link. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00473v1-abstract-full').style.display = 'none'; document.getElementById('2411.00473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,6 figures; Accepted by IEEE Communications Magazine, Open call</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00459">arXiv:2411.00459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00459">pdf</a>, <a href="https://arxiv.org/format/2411.00459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Defense Against Prompt Injection Attack by Leveraging Attack Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+H">Haoran Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Z">Zihao Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yangqiu Song</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+D">Dekai Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Hooi%2C+B">Bryan Hooi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00459v1-abstract-short" style="display: inline;"> With the advancement of technology, large language models (LLMs) have achieved remarkable performance across various natural language processing (NLP) tasks, powering LLM-integrated applications like Microsoft Copilot. However, as LLMs continue to evolve, new vulnerabilities, especially prompt injection attacks arise. These attacks trick LLMs into deviating from the original input instructions and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00459v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00459v1-abstract-full" style="display: none;"> With the advancement of technology, large language models (LLMs) have achieved remarkable performance across various natural language processing (NLP) tasks, powering LLM-integrated applications like Microsoft Copilot. However, as LLMs continue to evolve, new vulnerabilities, especially prompt injection attacks arise. These attacks trick LLMs into deviating from the original input instructions and executing the attacker&#39;s instructions injected in data content, such as retrieved results. Recent attack methods leverage LLMs&#39; instruction-following abilities and their inabilities to distinguish instructions injected in the data content, and achieve a high attack success rate (ASR). When comparing the attack and defense methods, we interestingly find that they share similar design goals, of inducing the model to ignore unwanted instructions and instead to execute wanted instructions. Therefore, we raise an intuitive question: Could these attack techniques be utilized for defensive purposes? In this paper, we invert the intention of prompt injection methods to develop novel defense methods based on previous training-free attack methods, by repeating the attack process but with the original input instruction rather than the injected instruction. Our comprehensive experiments demonstrate that our defense techniques outperform existing training-free defense approaches, achieving state-of-the-art results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00459v1-abstract-full').style.display = 'none'; document.getElementById('2411.00459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23274">arXiv:2410.23274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23274">pdf</a>, <a href="https://arxiv.org/format/2410.23274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Multi-student Diffusion Distillation for Better One-step Generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yanke Song</a>, <a href="/search/cs?searchtype=author&amp;query=Lorraine%2C+J">Jonathan Lorraine</a>, <a href="/search/cs?searchtype=author&amp;query=Nie%2C+W">Weili Nie</a>, <a href="/search/cs?searchtype=author&amp;query=Kreis%2C+K">Karsten Kreis</a>, <a href="/search/cs?searchtype=author&amp;query=Lucas%2C+J">James Lucas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23274v1-abstract-short" style="display: inline;"> Diffusion models achieve high-quality sample generation at the cost of a lengthy multistep inference procedure. To overcome this, diffusion distillation techniques produce student generators capable of matching or surpassing the teacher in a single step. However, the student model&#39;s inference speed is limited by the size of the teacher architecture, preventing real-time generation for computationa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23274v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23274v1-abstract-full" style="display: none;"> Diffusion models achieve high-quality sample generation at the cost of a lengthy multistep inference procedure. To overcome this, diffusion distillation techniques produce student generators capable of matching or surpassing the teacher in a single step. However, the student model&#39;s inference speed is limited by the size of the teacher architecture, preventing real-time generation for computationally heavy applications. In this work, we introduce Multi-Student Distillation (MSD), a framework to distill a conditional teacher diffusion model into multiple single-step generators. Each student generator is responsible for a subset of the conditioning data, thereby obtaining higher generation quality for the same capacity. MSD trains multiple distilled students, allowing smaller sizes and, therefore, faster inference. Also, MSD offers a lightweight quality boost over single-student distillation with the same architecture. We demonstrate MSD is effective by training multiple same-sized or smaller students on single-step distillation using distribution matching and adversarial distillation techniques. With smaller students, MSD gets competitive results with faster inference for single-step generation. Using 4 same-sized students, MSD sets a new state-of-the-art for one-step image generation: FID 1.20 on ImageNet-64x64 and 8.20 on zero-shot COCO2014. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23274v1-abstract-full').style.display = 'none'; document.getElementById('2410.23274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: https://research.nvidia.com/labs/toronto-ai/MSD/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23230">arXiv:2410.23230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23230">pdf</a>, <a href="https://arxiv.org/format/2410.23230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Aligning Audio-Visual Joint Representations with an Agentic Workflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mo%2C+S">Shentong Mo</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yibing Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23230v2-abstract-short" style="display: inline;"> Visual content and accompanied audio signals naturally formulate a joint representation to improve audio-visual (AV) related applications. While studies develop various AV representation learning frameworks, the importance of AV data alignment is usually undermined for achieving high-quality representation. We observe that an audio signal may contain background noise interference. Also, non-synchr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23230v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23230v2-abstract-full" style="display: none;"> Visual content and accompanied audio signals naturally formulate a joint representation to improve audio-visual (AV) related applications. While studies develop various AV representation learning frameworks, the importance of AV data alignment is usually undermined for achieving high-quality representation. We observe that an audio signal may contain background noise interference. Also, non-synchronization may appear between audio and video streams. These non-strict data alignment limits representation quality and downgrade application performance. In this paper, we propose to improve AV joint representations from a data-centric perspective by aligning audio signals to visual data. Our alignment is conducted in an agentic workflow controlled by an LLM-based assistant named AVAgent. For each input AV data pair, our AVAgent uses a multi-modal LLM to convert audio and visual data into language descriptions separately (i.e., tool use). Then, AVAgent reasons whether this paired data is aligned well and plans to edit the audio signal if needed (i.e., planning). The audio editing is executed by predefined actions that filter noise or augment data. Moreover, we use a VLM to evaluate how modified audio signals match the visual content and provide feedback to AVAgent (i.e., reflection). The tool use, planning, and reflection steps operate cyclically to become an agentic workflow where audio signals are gradually aligned to visual content. To this end, existing methods can directly leverage the aligned AV data via our agentic workflow to improve AV joint representations. The experimental results comprehensively demonstrate the state-of-the-art performance of the proposed approach against previous baselines in diverse downstream tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23230v2-abstract-full').style.display = 'none'; document.getElementById('2410.23230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21662">arXiv:2410.21662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21662">pdf</a>, <a href="https://arxiv.org/format/2410.21662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Han%2C+J">Jiaqi Han</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+M">Mingjian Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuxuan Song</a>, <a href="/search/cs?searchtype=author&amp;query=Leskovec%2C+J">Jure Leskovec</a>, <a href="/search/cs?searchtype=author&amp;query=Ermon%2C+S">Stefano Ermon</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+M">Minkai Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21662v1-abstract-short" style="display: inline;"> Preference optimization has made significant progress recently, with numerous methods developed to align language models with human preferences. This paper introduces $f$-divergence Preference Optimization ($f$-PO), a novel framework that generalizes and extends existing approaches. $f$-PO minimizes $f$-divergences between the optimized policy and the optimal policy, encompassing a broad family of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21662v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21662v1-abstract-full" style="display: none;"> Preference optimization has made significant progress recently, with numerous methods developed to align language models with human preferences. This paper introduces $f$-divergence Preference Optimization ($f$-PO), a novel framework that generalizes and extends existing approaches. $f$-PO minimizes $f$-divergences between the optimized policy and the optimal policy, encompassing a broad family of alignment methods using various divergences. Our approach unifies previous algorithms like DPO and EXO, while offering new variants through different choices of $f$-divergences. We provide theoretical analysis of $f$-PO&#39;s properties and conduct extensive experiments on state-of-the-art language models using benchmark datasets. Results demonstrate $f$-PO&#39;s effectiveness across various tasks, achieving superior performance compared to existing methods on popular benchmarks such as AlpacaEval 2, Arena-Hard, and MT-Bench. Additionally, we present ablation studies exploring the impact of different $f$-divergences, offering insights into the trade-offs between regularization and performance in offline preference optimization. Our work contributes both practical algorithms and theoretical understanding to the field of language model alignment. Code is available at https://github.com/MinkaiXu/fPO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21662v1-abstract-full').style.display = 'none'; document.getElementById('2410.21662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21119">arXiv:2410.21119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21119">pdf</a>, <a href="https://arxiv.org/format/2410.21119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bai%2C+J">Jun Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yiliao Song</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Sajjanhar%2C+A">Atul Sajjanhar</a>, <a href="/search/cs?searchtype=author&amp;query=Xiang%2C+Y">Yong Xiang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+W">Wei Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Tao%2C+X">Xiaohui Tao</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21119v1-abstract-short" style="display: inline;"> One-shot federated learning (FL) limits the communication between the server and clients to a single round, which largely decreases the privacy leakage risks in traditional FLs requiring multiple communications. However, we find existing one-shot FL frameworks are vulnerable to distributional heterogeneity due to their insufficient focus on data heterogeneity while concentrating predominantly on m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21119v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21119v1-abstract-full" style="display: none;"> One-shot federated learning (FL) limits the communication between the server and clients to a single round, which largely decreases the privacy leakage risks in traditional FLs requiring multiple communications. However, we find existing one-shot FL frameworks are vulnerable to distributional heterogeneity due to their insufficient focus on data heterogeneity while concentrating predominantly on model heterogeneity. Filling this gap, we propose a unified, data-free, one-shot federated learning framework (FedHydra) that can effectively address both model and data heterogeneity. Rather than applying existing value-only learning mechanisms, a structure-value learning mechanism is proposed in FedHydra. Specifically, a new stratified learning structure is proposed to cover data heterogeneity, and the value of each item during computation reflects model heterogeneity. By this design, the data and model heterogeneity issues are simultaneously monitored from different aspects during learning. Consequently, FedHydra can effectively mitigate both issues by minimizing their inherent conflicts. We compared FedHydra with three SOTA baselines on four benchmark datasets. Experimental results show that our method outperforms the previous one-shot FL methods in both homogeneous and heterogeneous settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21119v1-abstract-full').style.display = 'none'; document.getElementById('2410.21119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20868">arXiv:2410.20868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20868">pdf</a>, <a href="https://arxiv.org/format/2410.20868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> RecFlow: An Industrial Full Flow Recommendation Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+K">Kai Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+R">Rui Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wuchao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Cai%2C+K">Kuo Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Chai%2C+Y">Yuan Chai</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+Y">Yanan Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Hui%2C+Y">Yiqun Hui</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+B">Bing Han</a>, <a href="/search/cs?searchtype=author&amp;query=Mou%2C+N">Na Mou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Hongning Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bao%2C+W">Wentian Bao</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Y">Yunen Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+G">Guorui Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yang Song</a>, <a href="/search/cs?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/cs?searchtype=author&amp;query=Gai%2C+K">Kun Gai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20868v1-abstract-short" style="display: inline;"> Industrial recommendation systems (RS) rely on the multi-stage pipeline to balance effectiveness and efficiency when delivering items from a vast corpus to users. Existing RS benchmark datasets primarily focus on the exposure space, where novel RS algorithms are trained and evaluated. However, when these algorithms transition to real world industrial RS, they face a critical challenge of handling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20868v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20868v1-abstract-full" style="display: none;"> Industrial recommendation systems (RS) rely on the multi-stage pipeline to balance effectiveness and efficiency when delivering items from a vast corpus to users. Existing RS benchmark datasets primarily focus on the exposure space, where novel RS algorithms are trained and evaluated. However, when these algorithms transition to real world industrial RS, they face a critical challenge of handling unexposed items which are a significantly larger space than the exposed one. This discrepancy profoundly impacts their practical performance. Additionally, these algorithms often overlook the intricate interplay between multiple RS stages, resulting in suboptimal overall system performance. To address this issue, we introduce RecFlow, an industrial full flow recommendation dataset designed to bridge the gap between offline RS benchmarks and the real online environment. Unlike existing datasets, RecFlow includes samples not only from the exposure space but also unexposed items filtered at each stage of the RS funnel. Our dataset comprises 38M interactions from 42K users across nearly 9M items with additional 1.9B stage samples collected from 9.3M online requests over 37 days and spanning 6 stages. Leveraging the RecFlow dataset, we conduct courageous exploration experiments, showcasing its potential in designing new algorithms to enhance effectiveness by incorporating stage-specific samples. Some of these algorithms have already been deployed online, consistently yielding significant gains. We propose RecFlow as the first comprehensive benchmark dataset for the RS community, supporting research on designing algorithms at any stage, study of selection bias, debiased algorithms, multi-stage consistency and optimality, multi-task recommendation, and user behavior modeling. The RecFlow dataset, along with the corresponding source code, is available at https://github.com/RecFlow-ICLR/RecFlow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20868v1-abstract-full').style.display = 'none'; document.getElementById('2410.20868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20180">arXiv:2410.20180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20180">pdf</a>, <a href="https://arxiv.org/format/2410.20180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Copyright-Aware Incentive Scheme for Generative Art Models Using Hierarchical Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shi%2C+Z">Zhuan Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yifei Song</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+X">Xiaoli Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Lyu%2C+L">Lingjuan Lyu</a>, <a href="/search/cs?searchtype=author&amp;query=Faltings%2C+B">Boi Faltings</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20180v2-abstract-short" style="display: inline;"> Generative art using Diffusion models has achieved remarkable performance in image generation and text-to-image tasks. However, the increasing demand for training data in generative art raises significant concerns about copyright infringement, as models can produce images highly similar to copyrighted works. Existing solutions attempt to mitigate this by perturbing Diffusion models to reduce the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20180v2-abstract-full').style.display = 'inline'; document.getElementById('2410.20180v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20180v2-abstract-full" style="display: none;"> Generative art using Diffusion models has achieved remarkable performance in image generation and text-to-image tasks. However, the increasing demand for training data in generative art raises significant concerns about copyright infringement, as models can produce images highly similar to copyrighted works. Existing solutions attempt to mitigate this by perturbing Diffusion models to reduce the likelihood of generating such images, but this often compromises model performance. Another approach focuses on economically compensating data holders for their contributions, yet it fails to address copyright loss adequately. Our approach begin with the introduction of a novel copyright metric grounded in copyright law and court precedents on infringement. We then employ the TRAK method to estimate the contribution of data holders. To accommodate the continuous data collection process, we divide the training into multiple rounds. Finally, We designed a hierarchical budget allocation method based on reinforcement learning to determine the budget for each round and the remuneration of the data holder based on the data holder&#39;s contribution and copyright loss in each round. Extensive experiments across three datasets show that our method outperforms all eight benchmarks, demonstrating its effectiveness in optimizing budget distribution in a copyright-aware manner. To the best of our knowledge, this is the first technical work that introduces to incentive contributors and protect their copyrights by compensating them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20180v2-abstract-full').style.display = 'none'; document.getElementById('2410.20180v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19558">arXiv:2410.19558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> SODA: a Soft Origami Dynamic utensil for Assisted feeding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y+R">Yuxin Ray Song</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shufan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19558v1-abstract-short" style="display: inline;"> SODA aims to revolutionize assistive feeding systems by designing a multi-purpose utensil using origami-inspired artificial muscles. Traditional utensils, such as forks and spoons,are hard and stiff, causing discomfort and fear among users, especially when operated by autonomous robotic arms. Additionally, these systems require frequent utensil changes to handle different food types. Our innovativ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19558v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19558v1-abstract-full" style="display: none;"> SODA aims to revolutionize assistive feeding systems by designing a multi-purpose utensil using origami-inspired artificial muscles. Traditional utensils, such as forks and spoons,are hard and stiff, causing discomfort and fear among users, especially when operated by autonomous robotic arms. Additionally, these systems require frequent utensil changes to handle different food types. Our innovative utensil design addresses these issues by offering a versatile, adaptive solution that can seamlessly transition between gripping and scooping various foods without the need for manual intervention. Utilizing the flexibility and strength of origami-inspired artificial muscles, the utensil ensures safe and comfortable interactions, enhancing user experience and efficiency. This approach not only simplifies the feeding process but also promotes greater independence for individuals with limited mobility, contributing to the advancement of soft robotics in healthcare applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19558v1-abstract-full').style.display = 'none'; document.getElementById('2410.19558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 Pages, 4 Figures, RO-MAN 2024 Robot Design Competition</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18652">arXiv:2410.18652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18652">pdf</a>, <a href="https://arxiv.org/format/2410.18652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> $C^2$: Scalable Auto-Feedback for LLM-based Chart Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Koh%2C+W">Woosung Koh</a>, <a href="/search/cs?searchtype=author&amp;query=Yoon%2C+J+H">Jang Han Yoon</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+M">MinHyung Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Youngjin Song</a>, <a href="/search/cs?searchtype=author&amp;query=Cho%2C+J">Jaegwan Cho</a>, <a href="/search/cs?searchtype=author&amp;query=Kang%2C+J">Jaehyun Kang</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+T">Taehyeon Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Yun%2C+S">Se-young Yun</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Y">Youngjae Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+B">Bongshin Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18652v2-abstract-short" style="display: inline;"> Generating high-quality charts with Large Language Models presents significant challenges due to limited data and the high cost of scaling through human curation. Instruction, data, and code triplets are scarce and expensive to manually curate as their creation demands technical expertise. To address this scalability issue, we introduce a reference-free automatic feedback generator, which eliminat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18652v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18652v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18652v2-abstract-full" style="display: none;"> Generating high-quality charts with Large Language Models presents significant challenges due to limited data and the high cost of scaling through human curation. Instruction, data, and code triplets are scarce and expensive to manually curate as their creation demands technical expertise. To address this scalability issue, we introduce a reference-free automatic feedback generator, which eliminates the need for costly human intervention. Our novel framework, $C^2$, consists of (1) an automatic feedback provider (ChartAF) and (2) a diverse, reference-free dataset (ChartUIE-8K). Quantitative results are compelling: in our first experiment, 74% of respondents strongly preferred, and 10% preferred, the results after feedback. The second post-feedback experiment demonstrates that ChartAF outperforms nine baselines. Moreover, ChartUIE-8K significantly improves data diversity by increasing queries, datasets, and chart types by 5982%, 1936%, and 91%, respectively, over benchmarks. Finally, an LLM user study revealed that 94% of participants preferred ChartUIE-8K&#39;s queries, with 93% deeming them aligned with real-world use cases. Core contributions are available as open-source at an anonymized project site, with ample qualitative examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18652v2-abstract-full').style.display = 'none'; document.getElementById('2410.18652v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17020">arXiv:2410.17020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17020">pdf</a>, <a href="https://arxiv.org/format/2410.17020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> LFME: A Simple Framework for Learning from Multiple Experts in Domain Generalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yibing Song</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+Z">Zhiqiang Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+L">Lingqiao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17020v2-abstract-short" style="display: inline;"> Domain generalization (DG) methods aim to maintain good performance in an unseen target domain by using training data from multiple source domains. While success on certain occasions are observed, enhancing the baseline across most scenarios remains challenging. This work introduces a simple yet effective framework, dubbed learning from multiple experts (LFME), that aims to make the target model a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17020v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17020v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17020v2-abstract-full" style="display: none;"> Domain generalization (DG) methods aim to maintain good performance in an unseen target domain by using training data from multiple source domains. While success on certain occasions are observed, enhancing the baseline across most scenarios remains challenging. This work introduces a simple yet effective framework, dubbed learning from multiple experts (LFME), that aims to make the target model an expert in all source domains to improve DG. Specifically, besides learning the target model used in inference, LFME will also train multiple experts specialized in different domains, whose output probabilities provide professional guidance by simply regularizing the logit of the target model. Delving deep into the framework, we reveal that the introduced logit regularization term implicitly provides effects of enabling the target model to harness more information, and mining hard samples from the experts during training. Extensive experiments on benchmarks from different DG tasks demonstrate that LFME is consistently beneficial to the baseline and can achieve comparable performance to existing arts. Code is available at~\url{https://github.com/liangchen527/LFME}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17020v2-abstract-full').style.display = 'none'; document.getElementById('2410.17020v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16464">arXiv:2410.16464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16464">pdf</a>, <a href="https://arxiv.org/format/2410.16464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> Beyond Browsing: API-Based Web Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yueqi Song</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+F">Frank Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Shuyan Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16464v1-abstract-short" style="display: inline;"> Web browsers are a portal to the internet, where much of human activity is undertaken. Thus, there has been significant research work in AI agents that interact with the internet through web browsing. However, there is also another interface designed specifically for machine interaction with online content: application programming interfaces (APIs). In this paper we ask -- what if we were to take&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16464v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16464v1-abstract-full" style="display: none;"> Web browsers are a portal to the internet, where much of human activity is undertaken. Thus, there has been significant research work in AI agents that interact with the internet through web browsing. However, there is also another interface designed specifically for machine interaction with online content: application programming interfaces (APIs). In this paper we ask -- what if we were to take tasks traditionally tackled by browsing agents, and give AI agents access to APIs? To do so, we propose two varieties of agents: (1) an API-calling agent that attempts to perform online tasks through APIs only, similar to traditional coding agents, and (2) a Hybrid Agent that can interact with online data through both web browsing and APIs. In experiments on WebArena, a widely-used and realistic benchmark for web navigation tasks, we find that API-based agents outperform web browsing agents. Hybrid Agents out-perform both others nearly uniformly across tasks, resulting in a more than 20.0% absolute improvement over web browsing alone, achieving a success rate of 35.8%, achiving the SOTA performance among task-agnostic agents. These results strongly suggest that when APIs are available, they present an attractive alternative to relying on web browsing alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16464v1-abstract-full').style.display = 'none'; document.getElementById('2410.16464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16153">arXiv:2410.16153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16153">pdf</a>, <a href="https://arxiv.org/format/2410.16153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yue%2C+X">Xiang Yue</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yueqi Song</a>, <a href="/search/cs?searchtype=author&amp;query=Asai%2C+A">Akari Asai</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+S">Seungone Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Nyandwi%2C+J+d+D">Jean de Dieu Nyandwi</a>, <a href="/search/cs?searchtype=author&amp;query=Khanuja%2C+S">Simran Khanuja</a>, <a href="/search/cs?searchtype=author&amp;query=Kantharuban%2C+A">Anjali Kantharuban</a>, <a href="/search/cs?searchtype=author&amp;query=Sutawika%2C+L">Lintang Sutawika</a>, <a href="/search/cs?searchtype=author&amp;query=Ramamoorthy%2C+S">Sathyanarayanan Ramamoorthy</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16153v1-abstract-short" style="display: inline;"> Despite recent advances in multimodal large language models (MLLMs), their development has predominantly focused on English- and western-centric datasets and tasks, leaving most of the world&#39;s languages and diverse cultural contexts underrepresented. This paper introduces Pangea, a multilingual multimodal LLM trained on PangeaIns, a diverse 6M instruction dataset spanning 39 languages. PangeaIns f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16153v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16153v1-abstract-full" style="display: none;"> Despite recent advances in multimodal large language models (MLLMs), their development has predominantly focused on English- and western-centric datasets and tasks, leaving most of the world&#39;s languages and diverse cultural contexts underrepresented. This paper introduces Pangea, a multilingual multimodal LLM trained on PangeaIns, a diverse 6M instruction dataset spanning 39 languages. PangeaIns features: 1) high-quality English instructions, 2) carefully machine-translated instructions, and 3) culturally relevant multimodal tasks to ensure cross-cultural coverage. To rigorously assess models&#39; capabilities, we introduce PangeaBench, a holistic evaluation suite encompassing 14 datasets covering 47 languages. Results show that Pangea significantly outperforms existing open-source models in multilingual settings and diverse cultural contexts. Ablation studies further reveal the importance of English data proportions, language popularity, and the number of multimodal training samples on overall performance. We fully open-source our data, code, and trained checkpoints, to facilitate the development of inclusive and robust multilingual MLLMs, promoting equity and accessibility across a broader linguistic and cultural spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16153v1-abstract-full').style.display = 'none'; document.getElementById('2410.16153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 27 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16140">arXiv:2410.16140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16140">pdf</a>, <a href="https://arxiv.org/format/2410.16140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Cooperative Multistatic Target Detection in Cell-Free Communication Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+S">Shuangyang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yi Song</a>, <a href="/search/cs?searchtype=author&amp;query=Zhi%2C+K">Kangda Zhi</a>, <a href="/search/cs?searchtype=author&amp;query=Caire%2C+G">Giuseppe Caire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16140v1-abstract-short" style="display: inline;"> In this work, we consider the target detection problem in a multistatic integrated sensing and communication (ISAC) scenario characterized by the cell-free MIMO communication network deployment, where multiple radio units (RUs) in the network cooperate with each other for the sensing task. By exploiting the angle resolution from multiple arrays deployed in the network and the delay resolution from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16140v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16140v1-abstract-full" style="display: none;"> In this work, we consider the target detection problem in a multistatic integrated sensing and communication (ISAC) scenario characterized by the cell-free MIMO communication network deployment, where multiple radio units (RUs) in the network cooperate with each other for the sensing task. By exploiting the angle resolution from multiple arrays deployed in the network and the delay resolution from the communication signals, i.e., orthogonal frequency division multiplexing (OFDM) signals, we formulate a cooperative sensing problem with coherent data fusion of multiple RUs&#39; observations and propose a sparse Bayesian learning (SBL)-based method, where the global coordinates of target locations are directly detected. Intensive numerical results indicate promising target detection performance of the proposed SBL-based method. Additionally, a theoretical analysis of the considered cooperative multistatic sensing task is provided using the pairwise error probability (PEP) analysis, which can be used to provide design insights, e.g., illumination and beam patterns, for the considered problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16140v1-abstract-full').style.display = 'none'; document.getElementById('2410.16140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to WCNC 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15979">arXiv:2410.15979</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15979">pdf</a>, <a href="https://arxiv.org/format/2410.15979">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Learning Quadrotor Control From Visual Features Using Differentiable Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Heeg%2C+J">Johannes Heeg</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yunlong Song</a>, <a href="/search/cs?searchtype=author&amp;query=Scaramuzza%2C+D">Davide Scaramuzza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15979v1-abstract-short" style="display: inline;"> The sample inefficiency of reinforcement learning (RL) remains a significant challenge in robotics. RL requires large-scale simulation and, still, can cause long training times, slowing down research and innovation. This issue is particularly pronounced in vision-based control tasks where reliable state estimates are not accessible. Differentiable simulation offers an alternative by enabling gradi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15979v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15979v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15979v1-abstract-full" style="display: none;"> The sample inefficiency of reinforcement learning (RL) remains a significant challenge in robotics. RL requires large-scale simulation and, still, can cause long training times, slowing down research and innovation. This issue is particularly pronounced in vision-based control tasks where reliable state estimates are not accessible. Differentiable simulation offers an alternative by enabling gradient back-propagation through the dynamics model, providing low-variance analytical policy gradients and, hence, higher sample efficiency. However, its usage for real-world robotic tasks has yet been limited. This work demonstrates the great potential of differentiable simulation for learning quadrotor control. We show that training in differentiable simulation significantly outperforms model-free RL in terms of both sample efficiency and training time, allowing a policy to learn to recover a quadrotor in seconds when providing vehicle state and in minutes when relying solely on visual features. The key to our success is two-fold. First, the use of a simple surrogate model for gradient computation greatly accelerates training without sacrificing control performance. Second, combining state representation learning with policy learning enhances convergence speed in tasks where only visual features are observable. These findings highlight the potential of differentiable simulation for real-world robotics and offer a compelling alternative to conventional RL approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15979v1-abstract-full').style.display = 'none'; document.getElementById('2410.15979v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under Submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15581">arXiv:2410.15581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15581">pdf</a>, <a href="https://arxiv.org/format/2410.15581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Multimodal Learning for Embryo Viability Prediction in Clinical IVF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kim%2C+J">Junsik Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+Z">Zhiyi Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Jeong%2C+D">Davin Jeong</a>, <a href="/search/cs?searchtype=author&amp;query=Knittel%2C+J">Johannes Knittel</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+H+Y">Helen Y. Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yonghyun Song</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wanhua Li</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yicong Li</a>, <a href="/search/cs?searchtype=author&amp;query=Ben-Yosef%2C+D">Dalit Ben-Yosef</a>, <a href="/search/cs?searchtype=author&amp;query=Needleman%2C+D">Daniel Needleman</a>, <a href="/search/cs?searchtype=author&amp;query=Pfister%2C+H">Hanspeter Pfister</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15581v1-abstract-short" style="display: inline;"> In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos&#39; static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15581v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15581v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15581v1-abstract-full" style="display: none;"> In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos&#39; static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15581v1-abstract-full').style.display = 'none'; document.getElementById('2410.15581v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MICCAI 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15342">arXiv:2410.15342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15342">pdf</a>, <a href="https://arxiv.org/format/2410.15342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> ConSinger: Efficient High-Fidelity Singing Voice Generation with Minimal Steps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yulin Song</a>, <a href="/search/cs?searchtype=author&amp;query=Sang%2C+G">Guorui Sang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jing Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+C">Chuangbai Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15342v1-abstract-short" style="display: inline;"> Singing voice synthesis (SVS) system is expected to generate high-fidelity singing voice from given music scores (lyrics, duration and pitch). Recently, diffusion models have performed well in this field. However, sacrificing inference speed to exchange with high-quality sample generation limits its application scenarios. In order to obtain high quality synthetic singing voice more efficiently, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15342v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15342v1-abstract-full" style="display: none;"> Singing voice synthesis (SVS) system is expected to generate high-fidelity singing voice from given music scores (lyrics, duration and pitch). Recently, diffusion models have performed well in this field. However, sacrificing inference speed to exchange with high-quality sample generation limits its application scenarios. In order to obtain high quality synthetic singing voice more efficiently, we propose a singing voice synthesis method based on the consistency model, ConSinger, to achieve high-fidelity singing voice synthesis with minimal steps. The model is trained by applying consistency constraint and the generation quality is greatly improved at the expense of a small amount of inference speed. Our experiments show that ConSinger is highly competitive with the baseline model in terms of generation speed and quality. Audio samples are available at https://keylxiao.github.io/consinger. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15342v1-abstract-full').style.display = 'none'; document.getElementById('2410.15342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Singing voice synthesis, Consistency models, diffusion models</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14276">arXiv:2410.14276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14276">pdf</a>, <a href="https://arxiv.org/format/2410.14276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> EcomEdit: An Automated E-commerce Knowledge Editing Framework for Enhanced Product and Purchase Intention Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lau%2C+C+M+S">Ching Ming Samuel Lau</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Weiqi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+H">Haochen Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+B">Baixuan Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Bai%2C+J">Jiaxin Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yangqiu Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14276v1-abstract-short" style="display: inline;"> Knowledge Editing (KE) aims to correct and update factual information in Large Language Models (LLMs) to ensure accuracy and relevance without computationally expensive fine-tuning. Though it has been proven effective in several domains, limited work has focused on its application within the e-commerce sector. However, there are naturally occurring scenarios that make KE necessary in this domain,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14276v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14276v1-abstract-full" style="display: none;"> Knowledge Editing (KE) aims to correct and update factual information in Large Language Models (LLMs) to ensure accuracy and relevance without computationally expensive fine-tuning. Though it has been proven effective in several domains, limited work has focused on its application within the e-commerce sector. However, there are naturally occurring scenarios that make KE necessary in this domain, such as the timely updating of product features and trending purchase intentions by customers, which necessitate further exploration. In this paper, we pioneer the application of KE in the e-commerce domain by presenting ECOMEDIT, an automated e-commerce knowledge editing framework tailored for e-commerce-related knowledge and tasks. Our framework leverages more powerful LLMs as judges to enable automatic knowledge conflict detection and incorporates conceptualization to enhance the semantic coverage of the knowledge to be edited. Through extensive experiments, we demonstrate the effectiveness of ECOMEDIT in improving LLMs&#39; understanding of product descriptions and purchase intentions. We also show that LLMs, after our editing, can achieve stronger performance on downstream e-commerce tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14276v1-abstract-full').style.display = 'none'; document.getElementById('2410.14276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13824">arXiv:2410.13824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13824">pdf</a>, <a href="https://arxiv.org/format/2410.13824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Harnessing Webpage UIs for Text-Rich Visual Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Junpeng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Ou%2C+T">Tianyue Ou</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yifan Song</a>, <a href="/search/cs?searchtype=author&amp;query=Qu%2C+Y">Yuxiao Qu</a>, <a href="/search/cs?searchtype=author&amp;query=Lam%2C+W">Wai Lam</a>, <a href="/search/cs?searchtype=author&amp;query=Xiong%2C+C">Chenyan Xiong</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a>, <a href="/search/cs?searchtype=author&amp;query=Yue%2C+X">Xiang Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13824v3-abstract-short" style="display: inline;"> Text-rich visual understanding-the ability to process environments where dense textual content is integrated with visuals-is crucial for multimodal large language models (MLLMs) to interact effectively with structured environments. To enhance this capability, we propose synthesizing general multimodal instructions from webpage UIs using text-based large language models (LLMs). Despite lacking dire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13824v3-abstract-full').style.display = 'inline'; document.getElementById('2410.13824v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13824v3-abstract-full" style="display: none;"> Text-rich visual understanding-the ability to process environments where dense textual content is integrated with visuals-is crucial for multimodal large language models (MLLMs) to interact effectively with structured environments. To enhance this capability, we propose synthesizing general multimodal instructions from webpage UIs using text-based large language models (LLMs). Despite lacking direct visual input, text-based LLMs are able to process structured text representations from webpage accessibility trees. These instructions are then paired with UI screenshots to train multimodal models. We introduce MultiUI, a dataset containing 7.3 million samples from 1 million websites, covering diverse multimodal tasks and UI layouts. Models trained on MultiUI not only excel in web UI tasks-achieving up to a 48% improvement on VisualWebBench and a 19.1% boost in element accuracy on a web agent dataset Mind2Web-but also generalize surprisingly well to non-web UI tasks and even to non-UI domains, such as document understanding, OCR, and chart interpretation. These results highlight the broad applicability of web UI data for advancing text-rich visual understanding across various scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13824v3-abstract-full').style.display = 'none'; document.getElementById('2410.13824v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13754">arXiv:2410.13754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13754">pdf</a>, <a href="https://arxiv.org/format/2410.13754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ni%2C+J">Jinjie Ni</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yifan Song</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosal%2C+D">Deepanway Ghosal</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+D+J">David Junhao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Yue%2C+X">Xiang Yue</a>, <a href="/search/cs?searchtype=author&amp;query=Xue%2C+F">Fuzhao Xue</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Z">Zian Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kaichen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Shah%2C+M">Mahir Shah</a>, <a href="/search/cs?searchtype=author&amp;query=Jain%2C+K">Kabir Jain</a>, <a href="/search/cs?searchtype=author&amp;query=You%2C+Y">Yang You</a>, <a href="/search/cs?searchtype=author&amp;query=Shieh%2C+M">Michael Shieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13754v2-abstract-short" style="display: inline;"> Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13754v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13754v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13754v2-abstract-full" style="display: none;"> Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any, real-world benchmark designed to optimize and standardize evaluations across diverse input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions. Meanwhile, MixEval-X&#39;s model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98) while being much more efficient. We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13754v2-abstract-full').style.display = 'none'; document.getElementById('2410.13754v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13592">arXiv:2410.13592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13592">pdf</a>, <a href="https://arxiv.org/format/2410.13592">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> OAH-Net: A Deep Neural Network for Hologram Reconstruction of Off-axis Digital Holographic Microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Delikoyun%2C+K">Kerem Delikoyun</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Q">Qianyu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yildiz%2C+A">Alperen Yildiz</a>, <a href="/search/cs?searchtype=author&amp;query=Myo%2C+S+K">Si Ko Myo</a>, <a href="/search/cs?searchtype=author&amp;query=Kuan%2C+W+S">Win Sen Kuan</a>, <a href="/search/cs?searchtype=author&amp;query=Soong%2C+J+T+Y">John Tshon Yit Soong</a>, <a href="/search/cs?searchtype=author&amp;query=Cove%2C+M+E">Matthew Edward Cove</a>, <a href="/search/cs?searchtype=author&amp;query=Hayden%2C+O">Oliver Hayden</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+H">Hweekuan Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13592v1-abstract-short" style="display: inline;"> Off-axis digital holographic microscopy is a high-throughput, label-free imaging technology that provides three-dimensional, high-resolution information about samples, particularly useful in large-scale cellular imaging. However, the hologram reconstruction process poses a significant bottleneck for timely data analysis. To address this challenge, we propose a novel reconstruction approach that in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13592v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13592v1-abstract-full" style="display: none;"> Off-axis digital holographic microscopy is a high-throughput, label-free imaging technology that provides three-dimensional, high-resolution information about samples, particularly useful in large-scale cellular imaging. However, the hologram reconstruction process poses a significant bottleneck for timely data analysis. To address this challenge, we propose a novel reconstruction approach that integrates deep learning with the physical principles of off-axis holography. We initialized part of the network weights based on the physical principle and then fine-tuned them via weakly supersized learning. Our off-axis hologram network (OAH-Net) retrieves phase and amplitude images with errors that fall within the measurement error range attributable to hardware, and its reconstruction speed significantly surpasses the microscope&#39;s acquisition rate. Crucially, OAH-Net demonstrates remarkable external generalization capabilities on unseen samples with distinct patterns and can be seamlessly integrated with other models for downstream tasks to achieve end-to-end real-time hologram analysis. This capability further expands off-axis holography&#39;s applications in both biological and medical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13592v1-abstract-full').style.display = 'none'; document.getElementById('2410.13592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12444">arXiv:2410.12444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12444">pdf</a>, <a href="https://arxiv.org/format/2410.12444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Expanding Chatbot Knowledge in Customer Service: Context-Aware Similar Question Generation Using Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hong%2C+M">Mengze Hong</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yuanfeng Song</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+D">Di Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Lu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z">Zichang Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C+J">Chen Jason Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12444v1-abstract-short" style="display: inline;"> Reliable responses of service chatbots are often achieved by employing retrieval-based methods that restrict answers to a knowledge base comprising predefined question-answer pairs (QA pairs). To accommodate potential variations in how a customer&#39;s query may be expressed, it emerges as the favored solution to augment these QA pairs with similar questions that are possibly diverse while remaining s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12444v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12444v1-abstract-full" style="display: none;"> Reliable responses of service chatbots are often achieved by employing retrieval-based methods that restrict answers to a knowledge base comprising predefined question-answer pairs (QA pairs). To accommodate potential variations in how a customer&#39;s query may be expressed, it emerges as the favored solution to augment these QA pairs with similar questions that are possibly diverse while remaining semantic consistency. This augmentation task is known as Similar Question Generation (SQG). Traditional methods that heavily rely on human efforts or rule-based techniques suffer from limited diversity or significant semantic deviation from the source question, only capable of producing a finite number of useful questions. To address these limitations, we propose an SQG approach based on Large Language Models (LLMs), capable of producing a substantial number of diverse questions while maintaining semantic consistency to the source QA pair. This is achieved by leveraging LLMs&#39; natural language understanding capability through fine-tuning with specially designed prompts. The experiments conducted on a real customer-service dataset demonstrate that our method surpasses baseline methods by a significant margin in terms of semantic diversity. Human evaluation further confirms that integrating the answer that reflects the customer&#39;s intention is crucial for increasing the number of generated questions that meet business requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12444v1-abstract-full').style.display = 'none'; document.getElementById('2410.12444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12040">arXiv:2410.12040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12040">pdf</a>, <a href="https://arxiv.org/format/2410.12040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Concept-Reversed Winograd Schema Challenge: Evaluating and Improving Robust Reasoning in Large Language Models via Abstraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Han%2C+K">Kaiqiao Han</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+T">Tianqing Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhaowei Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yangqiu Song</a>, <a href="/search/cs?searchtype=author&amp;query=Steedman%2C+M">Mark Steedman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12040v1-abstract-short" style="display: inline;"> While Large Language Models (LLMs) have showcased remarkable proficiency in reasoning, there is still a concern about hallucinations and unreliable reasoning issues due to semantic associations and superficial logical chains. To evaluate the extent to which LLMs perform robust reasoning instead of relying on superficial logical chains, we propose a new evaluation dataset, the Concept-Reversed Wino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12040v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12040v1-abstract-full" style="display: none;"> While Large Language Models (LLMs) have showcased remarkable proficiency in reasoning, there is still a concern about hallucinations and unreliable reasoning issues due to semantic associations and superficial logical chains. To evaluate the extent to which LLMs perform robust reasoning instead of relying on superficial logical chains, we propose a new evaluation dataset, the Concept-Reversed Winograd Schema Challenge (CR-WSC), based on the famous Winograd Schema Challenge (WSC) dataset. By simply reversing the concepts to those that are more associated with the wrong answer, we find that the performance of LLMs drops significantly despite the rationale of reasoning remaining the same. Furthermore, we propose Abstraction-of-Thought (AoT), a novel prompt method for recovering adversarial cases to normal cases using conceptual abstraction to improve LLMs&#39; robustness and consistency in reasoning, as demonstrated by experiments on CR-WSC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12040v1-abstract-full').style.display = 'none'; document.getElementById('2410.12040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11650">arXiv:2410.11650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11650">pdf</a>, <a href="https://arxiv.org/format/2410.11650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+X">Xiang Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yijun Song</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xia Li</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Y">Yifei Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Lan%2C+H">Huiying Lan</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zemin Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+L">Linshan Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jialin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11650v1-abstract-short" style="display: inline;"> Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge dev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11650v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11650v1-abstract-full" style="display: none;"> Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11650v1-abstract-full').style.display = 'none'; document.getElementById('2410.11650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11414">arXiv:2410.11414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11414">pdf</a>, <a href="https://arxiv.org/format/2410.11414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Interpretability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Z">Zhongxiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zang%2C+X">Xiaoxue Zang</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+K">Kai Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yang Song</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+J">Jun Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xiao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+W">Weijie Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yang Song</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+H">Han Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11414v1-abstract-short" style="display: inline;"> Retrieval-Augmented Generation (RAG) models are designed to incorporate external knowledge, reducing hallucinations caused by insufficient parametric (internal) knowledge. However, even with accurate and relevant retrieved content, RAG models can still produce hallucinations by generating outputs that conflict with the retrieved information. Detecting such hallucinations requires disentangling how&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11414v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11414v1-abstract-full" style="display: none;"> Retrieval-Augmented Generation (RAG) models are designed to incorporate external knowledge, reducing hallucinations caused by insufficient parametric (internal) knowledge. However, even with accurate and relevant retrieved content, RAG models can still produce hallucinations by generating outputs that conflict with the retrieved information. Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge. Current detection methods often focus on one of these mechanisms or without decoupling their intertwined effects, making accurate detection difficult. In this paper, we investigate the internal mechanisms behind hallucinations in RAG scenarios. We discover hallucinations occur when the Knowledge FFNs in LLMs overemphasize parametric knowledge in the residual stream, while Copying Heads fail to effectively retain or integrate external knowledge from retrieved content. Based on these findings, we propose ReDeEP, a novel method that detects hallucinations by decoupling LLM&#39;s utilization of external context and parametric knowledge. Our experiments show that ReDeEP significantly improves RAG hallucination detection accuracy. Additionally, we introduce AARF, which mitigates hallucinations by modulating the contributions of Knowledge FFNs and Copying Heads. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11414v1-abstract-full').style.display = 'none'; document.getElementById('2410.11414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23pages</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10