CINXE.COM
Search results for: core-shell catalysts
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: core-shell catalysts</title> <meta name="description" content="Search results for: core-shell catalysts"> <meta name="keywords" content="core-shell catalysts"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="core-shell catalysts" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="core-shell catalysts"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 482</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: core-shell catalysts</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> The Preparation of High Surface Area Ni/MgAl2O4 Catalysts for Syngas Methanation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingyu%20Zhou">Jingyu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High surface area MgAl2O4 supported Nickel catalysts with PVA loadings varying from 0% to 15% were prepared by precipitation and impregnation method. The catalysts were characterized by low temperature N2 adsorption/desorption, X-ray diffraction and H2 temperature programmed reduction. Compared with Ni/γ-Al2O3 catalyst, Ni/MgAl2O4 catalysts exhibited higher activity and selectivity in high temperature. Among the catalysts, Ni/MgAl2O4-5P with 5 wt% PVA showed the best performance, and achieved 95% CO conversion and 96% CH4 selectivity at 600°C, 2.0 MPa, and a WHSV of 12,000 mL·g⁻¹.h⁻¹. It also maintained good stability in 50h life test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methanation" title="methanation">methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=MgAl2O4%20support" title=" MgAl2O4 support"> MgAl2O4 support</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20surface%20area" title=" high surface area"> high surface area</a> </p> <a href="https://publications.waset.org/abstracts/60130/the-preparation-of-high-surface-area-nimgal2o4-catalysts-for-syngas-methanation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20A.%20Aboutaleb">Wael A. Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20A.%20El%20Naggar"> Ahmed M. A. El Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara"> Heba M. Gobara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy "> clean energy </a> </p> <a href="https://publications.waset.org/abstracts/82416/photocatalytic-conversion-of-watermethanol-mixture-into-hydrogen-using-ceriumiron-oxides-based-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Photocatalytic Glucose Electrooxidation Applications of Titanium Dioxide Supported CD and CdTe Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20%20Kivrak">Hilal Kivrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aykut%20%C3%87a%C4%9FLar"> Aykut ÇağLar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahit%20Akta%C5%9F"> Nahit Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Solak"> Ali Osman Solak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, Cd/TiO₂ and CdTe/TiO₂ catalysts are prepared via sodium borohydride (NaBH4) reduction method. These catalysts are characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These Cd/TiO₂ and CdTe/TiO₂ are employed as catalysts for the photocatalytic oxidation of glucose. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements are used to investigate their glucose electrooxidation activities of catalysts at long and under UV illumination (ʎ=354 nm). CdTe/TiO₂ catalyst is showed the best photocatalytic glucose electrooxidation activity compared to Cd/TiO₂ catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=NaBH4%20reduction%20method" title=" NaBH4 reduction method"> NaBH4 reduction method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation" title=" photocatalytic glucose electrooxidation"> photocatalytic glucose electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tellerium" title=" Tellerium"> Tellerium</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/124317/photocatalytic-glucose-electrooxidation-applications-of-titanium-dioxide-supported-cd-and-cdte-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Pipitthapan">Kritsada Pipitthapan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20sites" title="acid sites">acid sites</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20metal" title=" alkali metal"> alkali metal</a>, <a href="https://publications.waset.org/abstracts/search?q=isomerization" title=" isomerization"> isomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=metathesis" title=" metathesis "> metathesis </a> </p> <a href="https://publications.waset.org/abstracts/25493/the-different-roles-between-sodium-and-potassium-ions-in-ion-exchange-of-wo3sio2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohamad%20Rasool%20Mirkarimi">Seyed Mohamad Rasool Mirkarimi</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Chiaramonti"> David Chiaramonti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Bensaid"> Samir Bensaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20methane%20decomposition" title=" catalytic methane decomposition"> catalytic methane decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20biochar" title=" activated biochar"> activated biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon-based%20catalyts" title=" carbon-based catalyts"> carbon-based catalyts</a> </p> <a href="https://publications.waset.org/abstracts/171244/hydrogen-production-through-thermocatalytic-decomposition-of-methane-over-biochar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Catalytic Combustion of Methane over Co/Mo and Co/Mn Catalysts at Low Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20I.%20Osman">Ahmed I. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehad%20K.%20Abu-Dahrieh"> Jehad K. Abu-Dahrieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jillian%20M.%20Thompson"> Jillian M. Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20W.%20Rooney"> David W. Rooney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas (the main constituent is Methane 95%) is considered as an alternative to petroleum for the production of synthetics fuels. Nowadays, methane combustion at low temperature has received much attention however; it is the most difficult hydrocarbon to be combusted. Co/Mo and (4:1 wt/wt) catalysts were prepared from a range of different precursors and used for the low temperature total methane oxidation (TMO). The catalysts were characterized by, XRD, BET and H2-TPR and tested under reaction temperatures of 250-400 °C with a GHSV= 36,000 mL g-1 h-1. It was found that the combustion temperature was dependent on the type of the precursor, and that those containing chloride led to catalysts with lower activity. The optimum catalyst was Co/Mo (4:1wt/wt) where greater than 20% methane conversion was observed at 250 °C. This catalyst showed a high degree of stability for TMO, showing no deactivation during 50 hours of time on stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20low%20temperature%20total%20oxidation" title="methane low temperature total oxidation">methane low temperature total oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20carrier" title=" oxygen carrier"> oxygen carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%2FMo" title=" Co/Mo"> Co/Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%2FMn" title=" Co/Mn"> Co/Mn</a> </p> <a href="https://publications.waset.org/abstracts/23021/catalytic-combustion-of-methane-over-como-and-comn-catalysts-at-low-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Maruyama">T. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saida"> T. Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Naritsuka"> S. Naritsuka</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iijima"> S. Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium" title=" rhodium"> rhodium</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a> </p> <a href="https://publications.waset.org/abstracts/90219/single-walled-carbon-nanotube-synthesis-by-chemical-vapor-deposition-using-platinum-group-metal-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Low Temperature Synthesis of Styrene via Catalytic Dehydrogenation of Ethylbenzene Using Vanadia Support SnO₂ Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Said">S. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20M.%20Abdel-Azim"> Samira M. Abdel-Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aya%20M.%20Matloob"> Aya M. Matloob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, one of the most important industries is how to prepare a starting material like (styrene) which is used for the preparation of many petrochemical products in simple and inexpensive ways. Oxidative dehydrogenation of ethylbenzene (using CO2 as a soft oxidant) can solve this issue when using highly effective catalysts like SnO₂ and its nanocomposites (V₂Ox/SnO₂.) This study shows the effect of different synthesis methods of SnO₂ either by ethylene glycol or MOF then, uses the impregnation method for the preparation of its nanocomposite catalysts (V₂Ox/SnO₂.). The prepared catalysts were characterized by using different analytical techniques like XRD, BET, FTIR, TGA, XPS, and H₂-TPR. Oxidative dehydrogenation experimental results demonstrated that the composite V loading of 1 and 5 wt.% V₂Ox/SnO₂ (MOF &EG) catalyst exhibited extraordinarily high catalytic performance with selectivity toward styrene formation > 90% at 500oC, which can be attributed to the superior surface, textural, and structural properties of nanocomposites catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82" title="SnO₂">SnO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium%20oxide" title=" vanadium oxide"> vanadium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylbenzene%20dehydrogenation" title=" ethylbenzene dehydrogenation"> ethylbenzene dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene" title=" styrene"> styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a> </p> <a href="https://publications.waset.org/abstracts/190961/low-temperature-synthesis-of-styrene-via-catalytic-dehydrogenation-of-ethylbenzene-using-vanadia-support-sno2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Reuse of Spent Lithium Battery for the Production of Environmental Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Shiang%20You"> Chih-Shiang You</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie-Shian%20Cheng"> Jie-Shian Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-cobalt%20battery" title=" lithium-cobalt battery"> lithium-cobalt battery</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-iron%20battery" title=" lithium-iron battery"> lithium-iron battery</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle%20and%20reuse" title=" recycle and reuse"> recycle and reuse</a> </p> <a href="https://publications.waset.org/abstracts/52788/reuse-of-spent-lithium-battery-for-the-production-of-environmental-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassira%20Ouslimani">Nassira Ouslimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic" title="catalytic">catalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=coprecipitation" title=" coprecipitation"> coprecipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a> </p> <a href="https://publications.waset.org/abstracts/156522/synthesis-and-characterization-of-mass-catalysts-based-on-cobalt-and-molybdenum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> Effect of N2 Pretreatment on the Properties of Tungsten Based Catalysts in Metathesis of Ethylene and 2-Butene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriangkrai%20Aranyarat">Kriangkrai Aranyarat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of N2 pretreatment on the catalytic activity of tungsten-based catalysts was investigated in the metathesis of ethylene and trans-2-butene at 450oC and atmospheric pressure. The presence of tungsten active species was confirmed by UV-Vis and Raman spectroscopy. Compared to the WO3-based catalysts treated in air, higher amount of WO42- tetrahedral species and lower amount of WO3 crystalline species were observed on the N2-treated ones. These contribute to the higher conversion of 2-butene and propylene selectivity during 10 h time-on-stream. Moreover, N2 treatment led to lower amount of coke formation as revealed by TPO of the spent catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metathesis" title="metathesis">metathesis</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten"> tungsten</a> </p> <a href="https://publications.waset.org/abstracts/25492/effect-of-n2-pretreatment-on-the-properties-of-tungsten-based-catalysts-in-metathesis-of-ethylene-and-2-butene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katya%20Milenova">Katya Milenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Penko%20Nikolov"> Penko Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Stambolova"> Irina Stambolova</a>, <a href="https://publications.waset.org/abstracts/search?q=Plamen%20Nikolov"> Plamen Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Blaskov"> Vladimir Blaskov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent article, a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes-in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20decomposition" title=" ozone decomposition"> ozone decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2 "> TiO2 </a> </p> <a href="https://publications.waset.org/abstracts/19265/carbon-supported-cu-and-tio2-catalysts-applied-for-ozone-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Adsorbed Probe Molecules on Surface for Analyzing the Properties of Cu/SnO2 Supported Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Thakur">Neha Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20S.%20More"> Pravin S. More</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of CO, H2 and LPG with Cu-dosed SnO2 catalysts was studied by means of Fourier transform infrared spectroscopy (FTIR). With increasing Cu loading, pronounced and progressive red shifts of the C–O stretching frequency associated with molecular CO adsorbed on the Cu/SnO2 component were observed. This decrease in n(CO) correlates with enhancement of CO dissociation at higher temperatures on Cu promoted SnO2 catalysts under conditions, where clean Cu is almost ineffective. In the conclusion, the capability of our technique is discussed, and a technique for enhancing the sensitivity in our technique is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FTIR" title="FTIR">FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopic" title=" spectroscopic"> spectroscopic</a>, <a href="https://publications.waset.org/abstracts/search?q=dissociation" title=" dissociation"> dissociation</a>, <a href="https://publications.waset.org/abstracts/search?q=n%28CO%29" title=" n(CO)"> n(CO)</a> </p> <a href="https://publications.waset.org/abstracts/79787/adsorbed-probe-molecules-on-surface-for-analyzing-the-properties-of-cusno2-supported-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Microkinetic Modelling of NO Reduction on Pt Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20S.%20Prasad">Vishnu S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam"> Preeti Aghalayam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N<sub>2</sub>O is detected in some ranges of operating conditions, whereas the effect of inlet O<sub>2</sub>% causes a number of changes in the feasible regimes of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microkinetic%20modelling" title="microkinetic modelling">microkinetic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20on%20alumina%20catalysts" title=" platinum on alumina catalysts"> platinum on alumina catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a> </p> <a href="https://publications.waset.org/abstracts/53965/microkinetic-modelling-of-no-reduction-on-pt-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Removal of Phenol from Aqueous Solutions by Ferrite Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Alqasem">Bayan Alqasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20Othman"> Israa Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abu%20Haija"> Mohammad Abu Haija</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzi%20Banat"> Fawzi Banat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20degradation" title="phenol degradation">phenol degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20catalysts" title=" ferrite catalysts"> ferrite catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20composites" title=" ferrite composites"> ferrite composites</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/89080/removal-of-phenol-from-aqueous-solutions-by-ferrite-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov">Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20copper-manganese%20catalysts" title="supported copper-manganese catalysts">supported copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20of%20exhaust%20gases" title=" combustion of exhaust gases"> combustion of exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/23639/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-catalysts-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova">Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Cv.%20Petrova"> Petya Cv. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20D.%20Nihtianova"> Diana D. Nihtianova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al<sub>2</sub>O<sub>3 </sub>supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH<sub>3</sub>OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La<sub>2</sub>O<sub>3</sub>, MnO<sub>2</sub> and Cu<sub>1.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-La%20oxide%20catalysts" title="Cu-Mn-La oxide catalysts">Cu-Mn-La oxide catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20oxide" title=" carbon oxide"> carbon oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20oxidation" title=" deep oxidation"> deep oxidation</a> </p> <a href="https://publications.waset.org/abstracts/52487/alumina-supported-cu-mn-la-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silviya%20Todorova">Silviya Todorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Naydenov"> Anton Naydenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralitsa%20Velinova"> Ralitsa Velinova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Larin"> Alexander Larin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20combustion" title="methane combustion">methane combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a>, <a href="https://publications.waset.org/abstracts/search?q=Co-Ce" title=" Co-Ce"> Co-Ce</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-Ce" title=" Ni-Ce"> Ni-Ce</a> </p> <a href="https://publications.waset.org/abstracts/110568/catalytic-combustion-of-methane-over-pd-meox-ceo2al2o3-me-co-or-ni-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Low-Temperature Catalytic Incineration of Acetone over MnCeOx Catalysts Supported on Mesoporous Aluminosilicate: The Mn-Ce Bimetallic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang-Yi%20Lin">Liang-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsunling%20Bai"> Hsunling Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, transition metal (metal= Co, Fe, Ni, Cu, and Mn) modified cerium oxide catalysts supported on mesoporous aluminosilicate particles (Ce/Al-MSPs) were prepared using waste silicate as the precursors through aerosol-assisted flow process, and their catalytic performances were investigated for acetone incineration. Tests on the bimetallic Ce/Al-MSPs and Mn/Al-MSPs and trimetallic Mn-Ce, Fe-Ce, Co-Ce, Ni-Ce, and Cu-Ce/Al-MSPs in the temperature range of 100-300 oC demonstrated that Ce was the main active metal while Mn acted as a suitable promoter in acetone incineration reactions. Among tested catalysts, Mn-Ce/Al-MSPs with a Mn/Ce molar ratio of 2/1 exhibited the highest acetone catalytic activity. Moreover, the synergetic effect was observed for trimetallic Mn-Ce/Al-MSPs on the acetone removal as compared to the bimetallic Ce/Al-MSPs or Mn/Al-MSPs catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20oxidation" title=" catalytic oxidation"> catalytic oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title=" cerium oxide"> cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a> </p> <a href="https://publications.waset.org/abstracts/20097/low-temperature-catalytic-incineration-of-acetone-over-mnceox-catalysts-supported-on-mesoporous-aluminosilicate-the-mn-ce-bimetallic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper-manganese%20catalysts" title="copper-manganese catalysts">copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gases" title=" exhaust gases"> exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/22828/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-effect-of-preparation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> CO2 Methanation over Ru-Ni/CeO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Elia">Nathalie Elia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Aouad"> Samer Aouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Estephane"> Jane Estephane</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Poupin"> Christophe Poupin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Nsouli"> Bilal Nsouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmond%20Abi%20Aad"> Edmond Abi Aad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide is one of the main contributors to greenhouse effect and hence to climate change. As a result, the methanation reaction CO2(g) + 4H2(g) →CH4(g) + 2H2O (ΔH°298 = -165 kJ/mol), also known as Sabatier reaction, has received great interest as a process for the valorization of the greenhouse gas CO2 into methane which is a hydrogen-carrier gas. The methanation of CO2 is an exothermic reaction favored at low temperature and high pressure. However, this reaction requires a high energy input to activate the very stable CO2 molecule, and exhibits serious kinetic limitations. Consequently, the development of active and stable catalysts is essential to overcome these difficulties. Catalytic methanation of CO2 has been studied using catalysts containing Rh, Pd, Ru, Co and Ni on various supports. Among them, the Ni-based catalysts have been extensively investigated under various conditions for their comparable methanation activity with highly improved cost-efficiency. The addition of promoters are common strategies to increase the performance and stability of Ni catalysts. In this work, a small amount of Ru was used as a promoter for Ni catalysts supported on ceria and tested in the CO2 methanation reaction. The nickel loading was 5 wt. % and ruthenium loading is 0.5wt. %. The catalysts were prepared by successive impregnation method using Ni(NO3)2.6H2O and Ru(NO)(NO3)3 as precursors. The calcined support was impregnated with Ni(NO3)2.6H2O, dried, calcined at 600°C for 4h, and afterward, was impregnated with Ru(NO)(NO3)3. The resulting solid was dried and calcined at 600°C for 4 h. Supported monometallic catalysts were prepared likewise. The prepared solids Ru(0.5%)/CeO2, Ni(5%)/CeO2 and Ru(0.5%)-Ni(5%)/CeO2 were then reduced prior to the catalytic test under a flow of 50% H2/Ar (50 ml/min) for 4h at 500°C. Finally, their catalytic performances were evaluated in the CO2 methanation reaction, in the temperature range of 100–350°C by using a gaseous mixture of CO2 (10%) and H2 (40%) in Ar balanced at a total flow rate of 100 mL/min. The effect of pressure on the CO2 methanation was studied by varying the pressure between 1 and 10 bar. The various catalysts showed negligible CO2 conversion at temperatures lower than 250°C. The conversion of CO2 increases with increasing reaction temperature. The addition of Ru as promoter to Ni/CeO2 improved the CO2 methanation. It was shown that the CO2 conversion increases from 15 to 70% at 350°C and 1 bar. The effect of pressure on CO2 conversion was also studied. Increasing the pressure from 1 to 5 bar increases the CO2 conversion from 70% to 87%, while increasing the pressure from 5 to 10 bar increases the CO2 conversion from 87% to 91%. Ru–Ni catalysts showed excellent catalytic performance in the methanation of carbon dioxide with respect to Ni catalysts. Therefore the addition of Ru onto Ni catalysts improved remarkably the catalytic activity of Ni catalysts. It was also found that the pressure plays an important role in improving the CO2 methanation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2" title="CO2">CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=methanation" title=" methanation"> methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a> </p> <a href="https://publications.waset.org/abstracts/78120/co2-methanation-over-ru-niceo2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Effect of the Nature of the Precursor on the Performance of Cu-Mn Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova">Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The catalytic oxidation of methanol to formaldehyde is an important industrial process in which the waste gas in addition to CO contains methanol and dimethyl ether (DME). Evaluation of the possibility of removing the harmful components from the exhaust gasses needs a more complex investigation. Our previous work indicates that supported Cu-Mn oxide catalysts are promising for effective deep oxidation of these compounds. This work relates to the catalyst, comprising copper-manganese spinel, coated on carrier γ-Al₂O₃. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. Different organometallic compounds on the base of four natural amino acids (Glycine, Alanine, Valine, Leucine) as precursors were used for the preparation of catalysts with Cu/Mn molar ratio 1:5. X-Ray and TEM analysis were performed on the catalyst’s bulk, and surface composition and the specific surface area was determined by BET method. The results obtained show that the activity of the catalysts increase up to 40% although there are some specific features, depending on the nature of the amino acid and the oxidized compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn%2F%CE%B3-Al%E2%82%82O%E2%82%83" title="Cu-Mn/γ-Al₂O₃">Cu-Mn/γ-Al₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%20and%20VOCs%20oxidation" title=" CO and VOCs oxidation"> CO and VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a> </p> <a href="https://publications.waset.org/abstracts/68203/effect-of-the-nature-of-the-precursor-on-the-performance-of-cu-mn-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Structure and Activity Research of Hydrocarbons Refining Catalysts Based on Wastes of Ferroalloy Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanat%20Shomanova">Zhanat Shomanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruslan%20Safarov"> Ruslan Safarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Nosenko"> Yuri Nosenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheneta%20Tashmuchambetova"> Zheneta Tashmuchambetova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alima%20Zharmagambetova"> Alima Zharmagambetova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective way of utilization of ferroalloy production wastes is preparing hydrocarbon refining catalysts from them. It is possible due to accordable transition metals containing in the wastes. In the work, we are presenting the results on elemental analysis of sludge samples from Aksu ferroalloy plant (Aksu, Kazakhstan), method of catalysts preparing, results of physical-chemical analysis of obtained catalysts (X-ray analysis, electron microscopy, the BET method etc.), results of using the catalysts in some hydrocarbons refining processes such as hydrocracking of rubber waste, cracking of gasoil, oxidation of cyclohexane. The main results of catalytic activity research are: a) In hydrocracking of rubber waste 64.9% of liquid products were fuel fractions; b) In cracking of gasoil conversion was 51% and selectivity by liquid products was 99%; c) In oxidation of cyclohexane the maximal product yield 87.9% and selectivity by cyclohexanol 93.0% were achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclohexane%20oxidation" title=" cyclohexane oxidation"> cyclohexane oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroalloy%20production%20waste" title=" ferroalloy production waste"> ferroalloy production waste</a>, <a href="https://publications.waset.org/abstracts/search?q=gasoil%20cracking" title=" gasoil cracking"> gasoil cracking</a> </p> <a href="https://publications.waset.org/abstracts/55908/structure-and-activity-research-of-hydrocarbons-refining-catalysts-based-on-wastes-of-ferroalloy-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjie%20Xie">Hanjie Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Semiat"> Raphael Semiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziyi%20Zhong"> Ziyi Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxygen%20vacancy" title="oxygen vacancy">oxygen vacancy</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20oxidation" title=" catalytic oxidation"> catalytic oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20transition%20oxide" title=" binary transition oxide"> binary transition oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde" title=" formaldehyde"> formaldehyde</a> </p> <a href="https://publications.waset.org/abstracts/146315/binary-metal-oxide-catalysts-for-low-temperature-catalytic-oxidation-of-hcho-in-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mithil%20Pandey">Mithil Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragunathan%20Bala%20Subramanian"> Ragunathan Bala Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysts" title="catalysts">catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title=" fluid catalytic cracking"> fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20processes" title=" industrial processes"> industrial processes</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/63403/fluid-catalytic-cracking-zeolite-catalyzed-chemical-industry-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeem%20Ur%20Rehman">Azeem Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Tayyaba"> Asma Tayyaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CeO2" title="CeO2">CeO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ordered%20mesoporous%20carbon%20%28OMC%29" title=" ordered mesoporous carbon (OMC)"> ordered mesoporous carbon (OMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20catalyst" title=" electro catalyst"> electro catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=formic%20acid%20fuel%20cell" title=" formic acid fuel cell "> formic acid fuel cell </a> </p> <a href="https://publications.waset.org/abstracts/20196/enhanced-modification-effect-of-ceo2-on-pt-pd-binary-catalysts-for-formic-acid-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Optimization of Catalyst Parameters to Get Chlorine Free Bimetallic Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noreen%20Sajjad%20Ghulam%20Hussain">Noreen Sajjad Ghulam Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalysts are prepared by simple physical mixing and thermal treatment of support and metal acetate precursors.The effect of metal ratio and metal loading to produce highly active catalyst for the oxidation of benzyl alcohol are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=acetates" title=" acetates"> acetates</a>, <a href="https://publications.waset.org/abstracts/search?q=benzyl%20alcohols" title=" benzyl alcohols "> benzyl alcohols </a> </p> <a href="https://publications.waset.org/abstracts/1867/optimization-of-catalyst-parameters-to-get-chlorine-free-bimetallic-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Zeng">Yan Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20catalysts" title="nickel catalysts">nickel catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas%20methanation" title=" syngas methanation"> syngas methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20combustion%20method" title=" solution combustion method "> solution combustion method </a> </p> <a href="https://publications.waset.org/abstracts/9499/na-promoted-nigh-al2o3-catalysts-prepared-by-solution-combustion-method-for-syngas-methanation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Chennani">Ahlam Chennani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Anter"> Nadia Anter</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahed%20M%C3%A9daghri%20Alaoui"> Abdelouahed Médaghri Alaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Hannioui"> Abdellah Hannioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrosilylation" title=" hydrosilylation"> hydrosilylation</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=non-precious%20metal" title=" non-precious metal"> non-precious metal</a> </p> <a href="https://publications.waset.org/abstracts/188400/efficient-hydrosilylation-of-functionalized-alkenes-via-heterogeneous-zinc-oxide-nanoparticle-catalysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> NiFe-Type Catalysts for Anion Exchange Membrane (AEM) Electrolyzers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boldin%20Roman">Boldin Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Anal%C3%ADa%20Diaz"> Liliana Analía Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the hydrogen economy continues to expand, reducing energy consumption and emissions while stimulating economic growth, the development of efficient and cost-effective hydrogen production technologies is critical. Among various methods, anion exchange membrane (AEM) water electrolysis stands out due to its potential for using non-noble metal catalysts. The exploration and enhancement of non-noble metal catalysts, such as NiFe-type catalysts, are pivotal for the advancement of AEM technology, ensuring its commercial viability and environmental sustainability. NiFe-type catalysts were synthesized through electrodeposition and characterized both electrochemically and physico-chemically. Various supports, including Ni foam and Ni mesh, were used as porous transport layers (PTLs) to evaluate the effective catalyst thickness and the influence of the PTL in a 5 cm² AEM electrolyzer. This methodological approach allows for a detailed assessment of catalyst performance under operational conditions typical of industrial hydrogen production. The study revealed that electrodeposited non-noble multi-metallic catalysts maintain stable performance as anodes in AEM water electrolysis. NiFe-type catalysts demonstrated superior activity, with the NiFeCoP alloy outperforming others by delivering the lowest overpotential and the highest current density. Furthermore, the use of different PTLs showed significant effects on the electrochemical behavior of the catalysts, indicating that PTL selection is crucial for optimizing performance and efficiency in AEM electrolyzers. Conclusion: The research underscores the potential of non-noble metal catalysts in enhancing efficiency and reducing the costs of AEM electrolysers. The findings highlight the importance of catalyst and PTL optimization in developing scalable and economically viable hydrogen production technologies. Continued innovation in this area is essential for supporting the growth of the hydrogen economy and achieving sustainable energy solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AEMWE" title="AEMWE">AEMWE</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20electrolysis." title=" water electrolysis."> water electrolysis.</a> </p> <a href="https://publications.waset.org/abstracts/189262/nife-type-catalysts-for-anion-exchange-membrane-aem-electrolyzers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core-shell%20catalysts&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>