CINXE.COM
Perfect number - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Perfect number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"bf8be1bb-d6eb-42e9-8510-41ecd5c7089d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Perfect_number","wgTitle":"Perfect number","wgCurRevisionId":1252474036,"wgRevisionId":1252474036,"wgArticleId":23670,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 German-language sources (de)","CS1 interwiki-linked names","Articles with short description","Short description is different from Wikidata","Articles containing Ancient Greek (to 1453)-language text","Articles containing potentially dated statements from October 2024","All articles containing potentially dated statements","Divisor function","Integer sequences","Unsolved problems in number theory","Mersenne primes","Perfect numbers"], "wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Perfect_number","wgRelevantArticleId":23670,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId": "Q170043","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/1200px-Perfect_number_Cuisenaire_rods_6_exact.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="947"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/800px-Perfect_number_Cuisenaire_rods_6_exact.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="632"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/640px-Perfect_number_Cuisenaire_rods_6_exact.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="505"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Perfect number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Perfect_number"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Perfect_number&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Perfect_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Perfect_number rootpage-Perfect_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Perfect+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Perfect+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Perfect+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Perfect+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Even_perfect_numbers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Even_perfect_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Even perfect numbers</span> </div> </a> <ul id="toc-Even_perfect_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Odd_perfect_numbers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Odd_perfect_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Odd perfect numbers</span> </div> </a> <ul id="toc-Odd_perfect_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Minor_results" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Minor_results"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Minor results</span> </div> </a> <ul id="toc-Minor_results-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_concepts" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_concepts"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Related concepts</span> </div> </a> <ul id="toc-Related_concepts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Perfect number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 64 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-64" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">64 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AA%D8%A7%D9%85" title="عدد تام – Arabic" lang="ar" hreflang="ar" data-title="عدد تام" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A8%E0%A6%BF%E0%A6%96%E0%A7%81%E0%A6%81%E0%A6%A4_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="নিখুঁত সংখ্যা – Bangla" lang="bn" hreflang="bn" data-title="নিখুঁত সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D0%B0%D1%81%D0%BA%D0%B0%D0%BD%D0%B0%D0%BB%D1%8B_%D0%BB%D1%96%D0%BA" title="Дасканалы лік – Belarusian" lang="be" hreflang="be" data-title="Дасканалы лік" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D1%8A%D0%B2%D1%8A%D1%80%D1%88%D0%B5%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Съвършено число – Bulgarian" lang="bg" hreflang="bg" data-title="Съвършено число" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Niver_peurvat" title="Niver peurvat – Breton" lang="br" hreflang="br" data-title="Niver peurvat" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_perfecte" title="Nombre perfecte – Catalan" lang="ca" hreflang="ca" data-title="Nombre perfecte" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Dokonal%C3%A9_%C4%8D%C3%ADslo" title="Dokonalé číslo – Czech" lang="cs" hreflang="cs" data-title="Dokonalé číslo" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Fuldkomne_tal" title="Fuldkomne tal – Danish" lang="da" hreflang="da" data-title="Fuldkomne tal" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Vollkommene_Zahl" title="Vollkommene Zahl – German" lang="de" hreflang="de" data-title="Vollkommene Zahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CE%AD%CE%BB%CE%B5%CE%B9%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Τέλειος αριθμός – Greek" lang="el" hreflang="el" data-title="Τέλειος αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B9mer_perf%C3%A8t" title="Nùmer perfèt – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nùmer perfèt" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_perfecto" title="Número perfecto – Spanish" lang="es" hreflang="es" data-title="Número perfecto" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Perfekta_nombro" title="Perfekta nombro – Esperanto" lang="eo" hreflang="eo" data-title="Perfekta nombro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_perfektu" title="Zenbaki perfektu – Basque" lang="eu" hreflang="eu" data-title="Zenbaki perfektu" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AA%D8%A7%D9%85" title="عدد تام – Persian" lang="fa" hreflang="fa" data-title="عدد تام" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_parfait" title="Nombre parfait – French" lang="fr" hreflang="fr" data-title="Nombre parfait" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Uimhir_fhoirfe" title="Uimhir fhoirfe – Irish" lang="ga" hreflang="ga" data-title="Uimhir fhoirfe" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_perfecto" title="Número perfecto – Galician" lang="gl" hreflang="gl" data-title="Número perfecto" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%99%84%EC%A0%84%EC%88%98" title="완전수 – Korean" lang="ko" hreflang="ko" data-title="완전수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%A1%D5%BF%D5%A1%D6%80%D5%B5%D5%A1%D5%AC_%D5%A9%D5%AB%D5%BE" title="Կատարյալ թիվ – Armenian" lang="hy" hreflang="hy" data-title="Կատարյալ թիվ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_sempurna" title="Bilangan sempurna – Indonesian" lang="id" hreflang="id" data-title="Bilangan sempurna" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_perfecte" title="Numero perfecte – Interlingua" lang="ia" hreflang="ia" data-title="Numero perfecte" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fullkomin_tala" title="Fullkomin tala – Icelandic" lang="is" hreflang="is" data-title="Fullkomin tala" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_perfetto" title="Numero perfetto – Italian" lang="it" hreflang="it" data-title="Numero perfetto" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%9E%D7%A9%D7%95%D7%9B%D7%9C%D7%9C" title="מספר משוכלל – Hebrew" lang="he" hreflang="he" data-title="מספר משוכלל" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Hejmar%C3%AAn_nuwaze" title="Hejmarên nuwaze – Kurdish" lang="ku" hreflang="ku" data-title="Hejmarên nuwaze" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_perfectus" title="Numerus perfectus – Latin" lang="la" hreflang="la" data-title="Numerus perfectus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Tobulasis_skai%C4%8Dius" title="Tobulasis skaičius – Lithuanian" lang="lt" hreflang="lt" data-title="Tobulasis skaičius" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/N%C3%BCmar_parfett" title="Nümar parfett – Lombard" lang="lmo" hreflang="lmo" data-title="Nümar parfett" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/T%C3%B6k%C3%A9letes_sz%C3%A1mok" title="Tökéletes számok – Hungarian" lang="hu" hreflang="hu" data-title="Tökéletes számok" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BE%D0%B2%D1%80%D1%88%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Совршен број – Macedonian" lang="mk" hreflang="mk" data-title="Совршен број" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Perfect_getal" title="Perfect getal – Dutch" lang="nl" hreflang="nl" data-title="Perfect getal" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E6%95%B0" title="完全数 – Japanese" lang="ja" hreflang="ja" data-title="完全数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nap mw-list-item"><a href="https://nap.wikipedia.org/wiki/Nummero_perfetto" title="Nummero perfetto – Neapolitan" lang="nap" hreflang="nap" data-title="Nummero perfetto" data-language-autonym="Napulitano" data-language-local-name="Neapolitan" class="interlanguage-link-target"><span>Napulitano</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Perfekt_tall" title="Perfekt tall – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Perfekt tall" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Fulkomne_tal" title="Fulkomne tal – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Fulkomne tal" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Mukammal_son" title="Mukammal son – Uzbek" lang="uz" hreflang="uz" data-title="Mukammal son" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_p%C3%ABrfet" title="Nùmer përfet – Piedmontese" lang="pms" hreflang="pms" data-title="Nùmer përfet" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_doskona%C5%82e" title="Liczby doskonałe – Polish" lang="pl" hreflang="pl" data-title="Liczby doskonałe" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_perfeito" title="Número perfeito – Portuguese" lang="pt" hreflang="pt" data-title="Número perfeito" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_perfect" title="Număr perfect – Romanian" lang="ro" hreflang="ro" data-title="Număr perfect" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%B2%D0%B5%D1%80%D1%88%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Совершенное число – Russian" lang="ru" hreflang="ru" data-title="Совершенное число" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_e_p%C3%ABrsosur" title="Numrat e përsosur – Albanian" lang="sq" hreflang="sq" data-title="Numrat e përsosur" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_pirfettu" title="Nùmmuru pirfettu – Sicilian" lang="scn" hreflang="scn" data-title="Nùmmuru pirfettu" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Perfect_number" title="Perfect number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Perfect number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Dokonal%C3%A9_%C4%8D%C3%ADslo" title="Dokonalé číslo – Slovak" lang="sk" hreflang="sk" data-title="Dokonalé číslo" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Popolno_%C5%A1tevilo" title="Popolno število – Slovenian" lang="sl" hreflang="sl" data-title="Popolno število" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%DA%A9%D8%A7%D9%85%DA%B5" title="ژمارەی کامڵ – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ژمارەی کامڵ" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%B0%D0%B2%D1%80%D1%88%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Савршен број – Serbian" lang="sr" hreflang="sr" data-title="Савршен број" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/T%C3%A4ydellinen_luku" title="Täydellinen luku – Finnish" lang="fi" hreflang="fi" data-title="Täydellinen luku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Perfekt_tal" title="Perfekt tal – Swedish" lang="sv" hreflang="sv" data-title="Perfekt tal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AE%BF%E0%AE%B1%E0%AF%88%E0%AE%B5%E0%AF%86%E0%AE%A3%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="நிறைவெண் (கணிதம்) – Tamil" lang="ta" hreflang="ta" data-title="நிறைவெண் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AA%E0%B0%B0%E0%B0%BF%E0%B0%AA%E0%B1%82%E0%B0%B0%E0%B1%8D%E0%B0%A3%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF" title="పరిపూర్ణసంఖ్య – Telugu" lang="te" hreflang="te" data-title="పరిపూర్ణసంఖ్య" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B8%AA%E0%B8%A1%E0%B8%9A%E0%B8%B9%E0%B8%A3%E0%B8%93%E0%B9%8C" title="จำนวนสมบูรณ์ – Thai" lang="th" hreflang="th" data-title="จำนวนสมบูรณ์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D0%B8_%D0%BC%D1%83%D0%BA%D0%B0%D0%BC%D0%BC%D0%B0%D0%BB" title="Адади мукаммал – Tajik" lang="tg" hreflang="tg" data-title="Адади мукаммал" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/M%C3%BCkemmel_say%C4%B1" title="Mükemmel sayı – Turkish" lang="tr" hreflang="tr" data-title="Mükemmel sayı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%BE%D1%81%D0%BA%D0%BE%D0%BD%D0%B0%D0%BB%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Досконале число – Ukrainian" lang="uk" hreflang="uk" data-title="Досконале число" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%A9%D8%A7%D9%85%D9%84_%D8%B9%D8%AF%D8%AF" title="کامل عدد – Urdu" lang="ur" hreflang="ur" data-title="کامل عدد" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_ho%C3%A0n_thi%E1%BB%87n" title="Số hoàn thiện – Vietnamese" lang="vi" hreflang="vi" data-title="Số hoàn thiện" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/T%C3%A4vvelidseq_arvoq" title="Tävvelidseq arvoq – Võro" lang="vro" hreflang="vro" data-title="Tävvelidseq arvoq" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E6%95%B8" title="完全數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="完全數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E6%95%B0" title="完全数 – Wu" lang="wuu" hreflang="wuu" data-title="完全数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E6%95%B8" title="完全數 – Cantonese" lang="yue" hreflang="yue" data-title="完全數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E6%95%B0" title="完全数 – Chinese" lang="zh" hreflang="zh" data-title="完全数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q170043#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Perfect_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Perfect_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Perfect_number"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Perfect_number&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Perfect_number&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Perfect_number"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Perfect_number&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Perfect_number&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Perfect_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Perfect_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Perfect_number&oldid=1252474036" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Perfect_number&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Perfect_number&id=1252474036&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPerfect_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPerfect_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Perfect_number&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Perfect_number&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Perfect_number" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q170043" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Integer equal to the sum of its proper divisors</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For the 2012 film, see <a href="/wiki/Perfect_Number_(film)" title="Perfect Number (film)">Perfect Number (film)</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Perfect_number_Cuisenaire_rods_6_exact.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/220px-Perfect_number_Cuisenaire_rods_6_exact.svg.png" decoding="async" width="220" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/330px-Perfect_number_Cuisenaire_rods_6_exact.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/440px-Perfect_number_Cuisenaire_rods_6_exact.svg.png 2x" data-file-width="437" data-file-height="345" /></a><figcaption>Illustration of the perfect number status of the number 6</figcaption></figure> <p>In <a href="/wiki/Number_theory" title="Number theory">number theory</a>, a <b>perfect number</b> is a <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integer</a> that is equal to the sum of its positive proper <a href="/wiki/Divisor" title="Divisor">divisors</a>, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. </p><p>The first four perfect numbers are <a href="/wiki/6_(number)" class="mw-redirect" title="6 (number)">6</a>, <a href="/wiki/28_(number)" title="28 (number)">28</a>, <a href="/wiki/496_(number)" title="496 (number)">496</a> and <a href="/wiki/8128_(number)" class="mw-redirect" title="8128 (number)">8128</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>The sum of proper divisors of a number is called its <a href="/wiki/Aliquot_sum" title="Aliquot sum">aliquot sum</a>, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors; in symbols, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}(n)=2n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}(n)=2n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bce2fc4e5094e627bb338b6ab9479702a8de3e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.241ex; height:2.843ex;" alt="{\displaystyle \sigma _{1}(n)=2n}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa0e56273a1cb32709b442e2421e9f947522b84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.382ex; height:2.009ex;" alt="{\displaystyle \sigma _{1}}"></span> is the <a href="/wiki/Sum-of-divisors_function" class="mw-redirect" title="Sum-of-divisors function">sum-of-divisors function</a>. </p><p>This definition is ancient, appearing as early as <a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements">Euclid's <i>Elements</i></a> (VII.22) where it is called <span title="Ancient Greek (to 1453)-language text"><span lang="grc">τέλειος ἀριθμός</span></span> (<i>perfect</i>, <i>ideal</i>, or <i>complete number</i>). <a href="/wiki/Euclid" title="Euclid">Euclid</a> also proved a formation rule (IX.36) whereby <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(q+1)/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(q+1)/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc47d6473ab19974b4f0c2ce10a3999277a808aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.276ex; height:2.843ex;" alt="{\displaystyle q(q+1)/2}"></span> is an even perfect number whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is a prime <a href="/wiki/Of_the_form" title="Of the form">of the form</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> for positive integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>—what is now called a <a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne prime</a>. Two millennia later, <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> proved that all even perfect numbers are of this form.<sup id="cite_ref-The_Euclid–Euler_theorem_2-0" class="reference"><a href="#cite_note-The_Euclid–Euler_theorem-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> This is known as the <a href="/wiki/Euclid%E2%80%93Euler_theorem" title="Euclid–Euler theorem">Euclid–Euler theorem</a>. </p><p>It is not known whether there are any odd perfect numbers, nor whether infinitely many perfect numbers exist. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In about 300 BC Euclid showed that if 2<sup><i>p</i></sup> − 1 is prime then 2<sup><i>p</i>−1</sup>(2<sup><i>p</i></sup> − 1) is perfect. The first four perfect numbers were the only ones known to early <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematics</a>, and the mathematician <a href="/wiki/Nicomachus" title="Nicomachus">Nicomachus</a> noted 8128 as early as around AD 100.<sup id="cite_ref-Dickinson_LE_(1919)_3-0" class="reference"><a href="#cite_note-Dickinson_LE_(1919)-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> In modern language, Nicomachus states without proof that <em>every</em> perfect number is of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n-1}(2^{n}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n-1}(2^{n}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd65f770559bac921e8eed985ce1e8e2a2afe5b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.675ex; height:3.176ex;" alt="{\displaystyle 2^{n-1}(2^{n}-1)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e4bd4ef2f9549d026cbf643a91c0d12a8c6794" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.384ex; height:2.509ex;" alt="{\displaystyle 2^{n}-1}"></span> is prime.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> He seems to be unaware that <span class="texhtml mvar" style="font-style:italic;">n</span> itself has to be prime. He also says (wrongly) that the perfect numbers end in 6 or 8 alternately. (The first 5 perfect numbers end with digits 6, 8, 6, 8, 6; but the sixth also ends in 6.) <a href="/wiki/Philo_of_Alexandria" class="mw-redirect" title="Philo of Alexandria">Philo of Alexandria</a> in his first-century book "On the creation" mentions perfect numbers, claiming that the world was created in 6 days and the moon orbits in 28 days because 6 and 28 are perfect. Philo is followed by <a href="/wiki/Origen" title="Origen">Origen</a>,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> and by <a href="/wiki/Didymus_the_Blind" title="Didymus the Blind">Didymus the Blind</a>, who adds the observation that there are only four perfect numbers that are less than 10,000. (Commentary on Genesis 1. 14–19).<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> St Augustine defines perfect numbers in <a href="/wiki/City_of_God_(book)" class="mw-redirect" title="City of God (book)">City of God</a> (Book XI, Chapter 30) in the early 5th century AD, repeating the claim that God created the world in 6 days because 6 is the smallest perfect number. The Egyptian mathematician <a href="/wiki/Ibn_Fallus" title="Ibn Fallus">Ismail ibn Fallūs</a> (1194–1252) mentioned the next three perfect numbers (33,550,336; 8,589,869,056; and 137,438,691,328) and listed a few more which are now known to be incorrect.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> The first known European mention of the fifth perfect number is a manuscript written between 1456 and 1461 by an unknown mathematician.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> In 1588, the Italian mathematician <a href="/wiki/Pietro_Cataldi" title="Pietro Cataldi">Pietro Cataldi</a> identified the sixth (8,589,869,056) and the seventh (137,438,691,328) perfect numbers, and also proved that every perfect number obtained from Euclid's rule ends with a 6 or an 8.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Pickover_C_(2001)_11-0" class="reference"><a href="#cite_note-Pickover_C_(2001)-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Peterson_I_(2002)_12-0" class="reference"><a href="#cite_note-Peterson_I_(2002)-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Even_perfect_numbers">Even perfect numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=2" title="Edit section: Even perfect numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Euclid%E2%80%93Euler_theorem" title="Euclid–Euler theorem">Euclid–Euler theorem</a></div> <style data-mw-deduplicate="TemplateStyles:r1233989161">.mw-parser-output .unsolved{margin:0.5em 0 1em 1em;border:#ccc solid;padding:0.35em 0.35em 0.35em 2.2em;background-color:var(--background-color-interactive-subtle);background-image:url("https://upload.wikimedia.org/wikipedia/commons/2/26/Question%2C_Web_Fundamentals.svg");background-position:top 50%left 0.35em;background-size:1.5em;background-repeat:no-repeat}@media(min-width:720px){.mw-parser-output .unsolved{clear:right;float:right;max-width:25%}}.mw-parser-output .unsolved-label{font-weight:bold}.mw-parser-output .unsolved-body{margin:0.35em;font-style:italic}.mw-parser-output .unsolved-more{font-size:smaller}</style> <div role="note" aria-labelledby="unsolved-label-mathematics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-mathematics">Unsolved problem in mathematics</span>:</div> <div class="unsolved-body">Are there infinitely many perfect numbers?</div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">(more unsolved problems in mathematics)</a></div> </div> <p><a href="/wiki/Euclid" title="Euclid">Euclid</a> proved that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b409475a19a12b9e1dd57930701b1aba02cda461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.356ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1)}"></span> is an even perfect number whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> is prime (<i><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements">Elements</a></i>, Prop. IX.36). </p><p>For example, the first four perfect numbers are generated by the formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba4ef84f4b02950a0ae01ba0525444129d732daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.003ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1),}"></span> with <span class="texhtml mvar" style="font-style:italic;">p</span> a <a href="/wiki/Prime_number" title="Prime number">prime number</a>, as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p=2&:\quad 2^{1}(2^{2}-1)=2\times 3=6\\p=3&:\quad 2^{2}(2^{3}-1)=4\times 7=28\\p=5&:\quad 2^{4}(2^{5}-1)=16\times 31=496\\p=7&:\quad 2^{6}(2^{7}-1)=64\times 127=8128.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> <mo>=</mo> <mn>2</mn> </mtd> <mtd> <mi></mi> <mo>:</mo> <mspace width="1em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>3</mn> <mo>=</mo> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo>=</mo> <mn>3</mn> </mtd> <mtd> <mi></mi> <mo>:</mo> <mspace width="1em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mo>×<!-- × --></mo> <mn>7</mn> <mo>=</mo> <mn>28</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo>=</mo> <mn>5</mn> </mtd> <mtd> <mi></mi> <mo>:</mo> <mspace width="1em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>16</mn> <mo>×<!-- × --></mo> <mn>31</mn> <mo>=</mo> <mn>496</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo>=</mo> <mn>7</mn> </mtd> <mtd> <mi></mi> <mo>:</mo> <mspace width="1em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>64</mn> <mo>×<!-- × --></mo> <mn>127</mn> <mo>=</mo> <mn>8128.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p=2&:\quad 2^{1}(2^{2}-1)=2\times 3=6\\p=3&:\quad 2^{2}(2^{3}-1)=4\times 7=28\\p=5&:\quad 2^{4}(2^{5}-1)=16\times 31=496\\p=7&:\quad 2^{6}(2^{7}-1)=64\times 127=8128.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71f246aec6d77787b81d111f7d36ebeba1ad93a1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.757ex; margin-bottom: -0.248ex; width:40.833ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}p=2&:\quad 2^{1}(2^{2}-1)=2\times 3=6\\p=3&:\quad 2^{2}(2^{3}-1)=4\times 7=28\\p=5&:\quad 2^{4}(2^{5}-1)=16\times 31=496\\p=7&:\quad 2^{6}(2^{7}-1)=64\times 127=8128.\end{aligned}}}"></span> </p><p>Prime numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> are known as <a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne primes</a>, after the seventeenth-century monk <a href="/wiki/Marin_Mersenne" title="Marin Mersenne">Marin Mersenne</a>, who studied <a href="/wiki/Number_theory" title="Number theory">number theory</a> and perfect numbers. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> to be prime, it is necessary that <span class="texhtml mvar" style="font-style:italic;">p</span> itself be prime. However, not all numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> with a prime <span class="texhtml mvar" style="font-style:italic;">p</span> are prime; for example, <span class="nowrap">2<sup>11</sup> − 1 = 2047 = 23 × 89</span> is not a prime number.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> In fact, Mersenne primes are very rare: of the primes <span class="texhtml mvar" style="font-style:italic;">p</span> up to 68,874,199, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> is prime for only 48 of them.<sup id="cite_ref-GIMPS_Milestones_14-0" class="reference"><a href="#cite_note-GIMPS_Milestones-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>While <a href="/wiki/Nicomachus" title="Nicomachus">Nicomachus</a> had stated (without proof) that <em>all</em> perfect numbers were of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n-1}(2^{n}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n-1}(2^{n}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd65f770559bac921e8eed985ce1e8e2a2afe5b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.675ex; height:3.176ex;" alt="{\displaystyle 2^{n-1}(2^{n}-1)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e4bd4ef2f9549d026cbf643a91c0d12a8c6794" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.384ex; height:2.509ex;" alt="{\displaystyle 2^{n}-1}"></span> is prime (though he stated this somewhat differently), <a href="/wiki/Ibn_al-Haytham" title="Ibn al-Haytham">Ibn al-Haytham</a> (Alhazen) circa AD 1000 was unwilling to go that far, declaring instead (also without proof) that the formula yielded only every even perfect number.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> It was not until the 18th century that <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> proved that the formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b409475a19a12b9e1dd57930701b1aba02cda461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.356ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1)}"></span> will yield all the even perfect numbers. Thus, there is a <a href="/wiki/Bijection" title="Bijection">one-to-one correspondence</a> between even perfect numbers and Mersenne primes; each Mersenne prime generates one even perfect number, and vice versa. This result is often referred to as the <a href="/wiki/Euclid%E2%80%93Euler_theorem" title="Euclid–Euler theorem">Euclid–Euler theorem</a>. </p><p>An exhaustive search by the <a href="/wiki/GIMPS" class="mw-redirect" title="GIMPS">GIMPS</a> distributed computing project has shown that the first 48 even perfect numbers are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b409475a19a12b9e1dd57930701b1aba02cda461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.356ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1)}"></span> for </p> <dl><dd><span class="texhtml mvar" style="font-style:italic;">p</span> = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609 and 57885161 (sequence <span class="nowrap external"><a href="//oeis.org/A000043" class="extiw" title="oeis:A000043">A000043</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>).<sup id="cite_ref-GIMPS_Milestones_14-1" class="reference"><a href="#cite_note-GIMPS_Milestones-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></dd></dl> <p>Four higher perfect numbers have also been discovered, namely those for which <span class="texhtml mvar" style="font-style:italic;">p</span> = 74207281, 77232917, 82589933 and 136279841. Although it is still possible there may be others within this range, initial but exhaustive tests by GIMPS have revealed no other perfect numbers for <span class="texhtml mvar" style="font-style:italic;">p</span> below 109332539. As of October 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Perfect_number&action=edit">[update]</a></sup>, 52 Mersenne primes are known,<sup id="cite_ref-mersenne_16-0" class="reference"><a href="#cite_note-mersenne-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> and therefore 52 even perfect numbers (the largest of which is <span class="nowrap">2<sup>136279840</sup> × (2<sup>136279841</sup> − 1)</span> with 82,048,640 digits). It is <a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">not known</a> whether there are <a href="/wiki/Infinite_set" title="Infinite set">infinitely many</a> perfect numbers, nor whether there are infinitely many Mersenne primes. </p><p>As well as having the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b409475a19a12b9e1dd57930701b1aba02cda461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.356ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1)}"></span>, each even perfect number is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2^{p}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2^{p}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff5e3ddbb373726b17a26e34126deb55b166ff87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.034ex; height:2.843ex;" alt="{\displaystyle (2^{p}-1)}"></span>-th <a href="/wiki/Triangular_number" title="Triangular number">triangular number</a> (and hence equal to the sum of the integers from 1 to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span>) and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0f9964cc41aaa03afd6c72bafa4ecb2292d33aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.322ex; height:2.676ex;" alt="{\displaystyle 2^{p-1}}"></span>-th <a href="/wiki/Hexagonal_number" title="Hexagonal number">hexagonal number</a>. Furthermore, each even perfect number except for 6 is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2^{p}+1}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2^{p}+1}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a75f4daee04751d7dad4683260f43a6508134bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.594ex; height:4.009ex;" alt="{\displaystyle {\tfrac {2^{p}+1}{3}}}"></span>-th <a href="/wiki/Centered_nonagonal_number" title="Centered nonagonal number">centered nonagonal number</a> and is equal to the sum of the first <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {p-1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {p-1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1807cfbaa58ac3f8b9aaf2ac52140e2eb88a26ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.608ex; height:3.843ex;" alt="{\displaystyle 2^{\frac {p-1}{2}}}"></span> odd cubes (odd cubes up to the cube of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {p+1}{2}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {p+1}{2}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13bb8d6d7a84a89f75a1b3bb6c4a371d07c370b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.61ex; height:4.009ex;" alt="{\displaystyle 2^{\frac {p+1}{2}}-1}"></span>): </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{3}6&=2^{1}(2^{2}-1)&&=1+2+3,\\[8pt]28&=2^{2}(2^{3}-1)&&=1+2+3+4+5+6+7\\&&&=1^{3}+3^{3}\\[8pt]496&=2^{4}(2^{5}-1)&&=1+2+3+\cdots +29+30+31\\&&&=1^{3}+3^{3}+5^{3}+7^{3}\\[8pt]8128&=2^{6}(2^{7}-1)&&=1+2+3+\cdots +125+126+127\\&&&=1^{3}+3^{3}+5^{3}+7^{3}+9^{3}+11^{3}+13^{3}+15^{3}\\[8pt]33550336&=2^{12}(2^{13}-1)&&=1+2+3+\cdots +8189+8190+8191\\&&&=1^{3}+3^{3}+5^{3}+\cdots +123^{3}+125^{3}+127^{3}\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left" rowspacing="1.1em 0.3em 1.1em 0.3em 1.1em 0.3em 1.1em 0.3em 0.3em" columnspacing="0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>28</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mn>5</mn> <mo>+</mo> <mn>6</mn> <mo>+</mo> <mn>7</mn> </mtd> </mtr> <mtr> <mtd /> <mtd /> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn>496</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mn>29</mn> <mo>+</mo> <mn>30</mn> <mo>+</mo> <mn>31</mn> </mtd> </mtr> <mtr> <mtd /> <mtd /> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn>8128</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mn>125</mn> <mo>+</mo> <mn>126</mn> <mo>+</mo> <mn>127</mn> </mtd> </mtr> <mtr> <mtd /> <mtd /> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>13</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>15</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn>33550336</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mn>8189</mn> <mo>+</mo> <mn>8190</mn> <mo>+</mo> <mn>8191</mn> </mtd> </mtr> <mtr> <mtd /> <mtd /> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msup> <mn>123</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>125</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>127</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{3}6&=2^{1}(2^{2}-1)&&=1+2+3,\\[8pt]28&=2^{2}(2^{3}-1)&&=1+2+3+4+5+6+7\\&&&=1^{3}+3^{3}\\[8pt]496&=2^{4}(2^{5}-1)&&=1+2+3+\cdots +29+30+31\\&&&=1^{3}+3^{3}+5^{3}+7^{3}\\[8pt]8128&=2^{6}(2^{7}-1)&&=1+2+3+\cdots +125+126+127\\&&&=1^{3}+3^{3}+5^{3}+7^{3}+9^{3}+11^{3}+13^{3}+15^{3}\\[8pt]33550336&=2^{12}(2^{13}-1)&&=1+2+3+\cdots +8189+8190+8191\\&&&=1^{3}+3^{3}+5^{3}+\cdots +123^{3}+125^{3}+127^{3}\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/745441a19702e99f618b24c0d40a28097d08982f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -17.838ex; width:69.241ex; height:36.843ex;" alt="{\displaystyle {\begin{alignedat}{3}6&=2^{1}(2^{2}-1)&&=1+2+3,\\[8pt]28&=2^{2}(2^{3}-1)&&=1+2+3+4+5+6+7\\&&&=1^{3}+3^{3}\\[8pt]496&=2^{4}(2^{5}-1)&&=1+2+3+\cdots +29+30+31\\&&&=1^{3}+3^{3}+5^{3}+7^{3}\\[8pt]8128&=2^{6}(2^{7}-1)&&=1+2+3+\cdots +125+126+127\\&&&=1^{3}+3^{3}+5^{3}+7^{3}+9^{3}+11^{3}+13^{3}+15^{3}\\[8pt]33550336&=2^{12}(2^{13}-1)&&=1+2+3+\cdots +8189+8190+8191\\&&&=1^{3}+3^{3}+5^{3}+\cdots +123^{3}+125^{3}+127^{3}\end{alignedat}}}"></span> </p><p>Even perfect numbers (except 6) are of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{2^{p}-1}=1+{\frac {(2^{p}-2)\times (2^{p}+1)}{2}}=1+9\times T_{(2^{p}-2)/3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>9</mn> <mo>×<!-- × --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{2^{p}-1}=1+{\frac {(2^{p}-2)\times (2^{p}+1)}{2}}=1+9\times T_{(2^{p}-2)/3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce514c7ad1bf1531d2d9aaa913a6f84321ad37ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.569ex; height:5.676ex;" alt="{\displaystyle T_{2^{p}-1}=1+{\frac {(2^{p}-2)\times (2^{p}+1)}{2}}=1+9\times T_{(2^{p}-2)/3}}"></span> </p><p>with each resulting triangular number <span class="nowrap">T<sub>7</sub> = 28</span>, <span class="nowrap">T<sub>31</sub> = 496</span>, <span class="nowrap">T<sub>127</sub> = 8128</span> (after subtracting 1 from the perfect number and dividing the result by 9) ending in 3 or 5, the sequence starting with <span class="nowrap">T<sub>2</sub> = 3</span>, <span class="nowrap">T<sub>10</sub> = 55</span>, <span class="nowrap">T<sub>42</sub> = 903</span>, <span class="nowrap">T<sub>2730</sub> = 3727815, ...</span><sup id="cite_ref-mathworld_17-0" class="reference"><a href="#cite_note-mathworld-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> It follows that by adding the digits of any even perfect number (except 6), then adding the digits of the resulting number, and repeating this process until a single digit (called the <a href="/wiki/Digital_root" title="Digital root">digital root</a>) is obtained, always produces the number 1. For example, the digital root of 8128 is 1, because <span class="nowrap">8 + 1 + 2 + 8 = 19</span>, <span class="nowrap">1 + 9 = 10</span>, and <span class="nowrap">1 + 0 = 1</span>. This works with all perfect numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b409475a19a12b9e1dd57930701b1aba02cda461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.356ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1)}"></span> with odd prime <span class="texhtml mvar" style="font-style:italic;">p</span> and, in fact, with <em>all</em> numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{m-1}(2^{m}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{m-1}(2^{m}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704433e180d32d5fa62075462eb050aa55bd6fcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.588ex; height:3.176ex;" alt="{\displaystyle 2^{m-1}(2^{m}-1)}"></span> for odd integer (not necessarily prime) <span class="texhtml mvar" style="font-style:italic;">m</span>. </p><p>Owing to their form, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}(2^{p}-1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}(2^{p}-1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba4ef84f4b02950a0ae01ba0525444129d732daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.003ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}(2^{p}-1),}"></span> every even perfect number is represented in binary form as <span class="texhtml mvar" style="font-style:italic;">p</span> ones followed by <span class="texhtml"><i>p</i> − 1</span> zeros; for example: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rcl}6_{10}=&2^{2}+2^{1}&=110_{2}\\28_{10}=&2^{4}+2^{3}+2^{2}&=11100_{2}\\496_{10}=&2^{8}+2^{7}+2^{6}+2^{5}+2^{4}&=111110000_{2}\\8128_{10}=&\!\!2^{12}+2^{11}+2^{10}+2^{9}+2^{8}+2^{7}+2^{6}\!\!&=1111111000000_{2}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>=</mo> </mtd> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mo>=</mo> <msub> <mn>110</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>28</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>=</mo> </mtd> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mo>=</mo> <msub> <mn>11100</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>496</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>=</mo> </mtd> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mtd> <mtd> <mo>=</mo> <msub> <mn>111110000</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>8128</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>=</mo> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mtd> <mtd> <mo>=</mo> <msub> <mn>1111111000000</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{rcl}6_{10}=&2^{2}+2^{1}&=110_{2}\\28_{10}=&2^{4}+2^{3}+2^{2}&=11100_{2}\\496_{10}=&2^{8}+2^{7}+2^{6}+2^{5}+2^{4}&=111110000_{2}\\8128_{10}=&\!\!2^{12}+2^{11}+2^{10}+2^{9}+2^{8}+2^{7}+2^{6}\!\!&=1111111000000_{2}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f0d4ae4cbb2371d4dbc56ee8adab3d7301aa4ee" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:66.472ex; height:13.176ex;" alt="{\displaystyle {\begin{array}{rcl}6_{10}=&2^{2}+2^{1}&=110_{2}\\28_{10}=&2^{4}+2^{3}+2^{2}&=11100_{2}\\496_{10}=&2^{8}+2^{7}+2^{6}+2^{5}+2^{4}&=111110000_{2}\\8128_{10}=&\!\!2^{12}+2^{11}+2^{10}+2^{9}+2^{8}+2^{7}+2^{6}\!\!&=1111111000000_{2}\end{array}}}"></span> </p><p>Thus every even perfect number is a <a href="/wiki/Pernicious_number" title="Pernicious number">pernicious number</a>. </p><p>Every even perfect number is also a <a href="/wiki/Practical_number" title="Practical number">practical number</a> (cf. <a href="#Related_concepts">Related concepts</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Odd_perfect_numbers">Odd perfect numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=3" title="Edit section: Odd perfect numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1233989161"> <div role="note" aria-labelledby="unsolved-label-mathematics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-mathematics">Unsolved problem in mathematics</span>:</div> <div class="unsolved-body">Are there any odd perfect numbers?</div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">(more unsolved problems in mathematics)</a></div> </div> <p>It is unknown whether any odd perfect numbers exist, though various results have been obtained. In 1496, <a href="/wiki/Jacques_Lef%C3%A8vre_d%27%C3%89taples" title="Jacques Lefèvre d'Étaples">Jacques Lefèvre</a> stated that Euclid's rule gives all perfect numbers,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> thus implying that no odd perfect number exists, but Euler himself stated: "Whether ... there are any odd perfect numbers is a most difficult question".<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> More recently, <a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Carl Pomerance</a> has presented a <a href="/wiki/Heuristic_argument" title="Heuristic argument">heuristic argument</a> suggesting that indeed no odd perfect number should exist.<sup id="cite_ref-oddperfect_20-0" class="reference"><a href="#cite_note-oddperfect-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> All perfect numbers are also <a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">harmonic divisor numbers</a>, and it has been conjectured as well that there are no odd harmonic divisor numbers other than 1. Many of the properties proved about odd perfect numbers also apply to <a href="/wiki/Descartes_number" title="Descartes number">Descartes numbers</a>, and Pace Nielsen has suggested that sufficient study of those numbers may lead to a proof that no odd perfect numbers exist.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Any odd perfect number <i>N</i> must satisfy the following conditions: </p> <ul><li><i>N</i> > 10<sup>1500</sup>.<sup id="cite_ref-Ochem_and_Rao_(2012)_22-0" class="reference"><a href="#cite_note-Ochem_and_Rao_(2012)-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li> <li><i>N</i> is not divisible by 105.<sup id="cite_ref-Kühnel_U_23-0" class="reference"><a href="#cite_note-Kühnel_U-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></li> <li><i>N</i> is of the form <i>N</i> ≡ 1 (mod 12) or <i>N</i> ≡ 117 (mod 468) or <i>N</i> ≡ 81 (mod 324).<sup id="cite_ref-Roberts_T_(2008)_24-0" class="reference"><a href="#cite_note-Roberts_T_(2008)-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup></li> <li>The largest prime factor of <i>N</i> is greater than 10<sup>8</sup><sup id="cite_ref-Goto_and_Ohno_(2008)_25-0" class="reference"><a href="#cite_note-Goto_and_Ohno_(2008)-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> and less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{3N}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mn>3</mn> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{3N}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3a6538e804a2716576609825734301136d56b6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.809ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{3N}}.}"></span> <sup id="cite_ref-AK_2012_26-0" class="reference"><a href="#cite_note-AK_2012-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup></li> <li>The second largest prime factor is greater than 10<sup>4</sup>,<sup id="cite_ref-Ianucci_DE_(1999)_27-0" class="reference"><a href="#cite_note-Ianucci_DE_(1999)-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and is less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{5}]{2N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{5}]{2N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5871ef69c5781b0267353a19bfa37d91b90e0c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.162ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{5}]{2N}}}"></span>.<sup id="cite_ref-Zelinsky_2019_28-0" class="reference"><a href="#cite_note-Zelinsky_2019-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></li> <li>The third largest prime factor is greater than 100,<sup id="cite_ref-Ianucci_DE_(2000)_29-0" class="reference"><a href="#cite_note-Ianucci_DE_(2000)-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> and less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{6}]{2N}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{6}]{2N}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a570fdf593bde2781184260ec28f5c917fd3d452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.809ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{6}]{2N}}.}"></span><sup id="cite_ref-Zelinsky_2021a_30-0" class="reference"><a href="#cite_note-Zelinsky_2021a-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></li> <li><i>N</i> has at least 101 prime factors and at least 10 distinct prime factors.<sup id="cite_ref-Ochem_and_Rao_(2012)_22-1" class="reference"><a href="#cite_note-Ochem_and_Rao_(2012)-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Nielsen_Pace_P._(2015)_31-0" class="reference"><a href="#cite_note-Nielsen_Pace_P._(2015)-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> If 3 is not one of the factors of <i>N</i>, then <i>N</i> has at least 12 distinct prime factors.<sup id="cite_ref-Nielsen_Pace_P._(2007)_32-0" class="reference"><a href="#cite_note-Nielsen_Pace_P._(2007)-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></li> <li><i>N</i> is of the form</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=q^{\alpha }p_{1}^{2e_{1}}\cdots p_{k}^{2e_{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=q^{\alpha }p_{1}^{2e_{1}}\cdots p_{k}^{2e_{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98db26132d3d93255a17f6459fdd7d1ee65f5c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.341ex; height:3.509ex;" alt="{\displaystyle N=q^{\alpha }p_{1}^{2e_{1}}\cdots p_{k}^{2e_{k}},}"></span></dd></dl></dd> <dd>where: <ul><li><i>q</i>, <i>p</i><sub>1</sub>, ..., <i>p</i><sub><i>k</i></sub> are distinct odd primes (Euler).</li> <li><i>q</i> ≡ α ≡ 1 (<a href="/wiki/Modular_arithmetic" title="Modular arithmetic">mod</a> 4) (Euler).</li> <li>The smallest prime factor of <i>N</i> is at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {k-1}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {k-1}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5dbfc93b200572b06d94cfee046d68b1ab7e062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.697ex; height:5.343ex;" alt="{\displaystyle {\frac {k-1}{2}}.}"></span><sup id="cite_ref-Zelinsky_2021_33-0" class="reference"><a href="#cite_note-Zelinsky_2021-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></li> <li>At least one of the prime powers dividing <i>N</i> exceeds 10<sup>62</sup>.<sup id="cite_ref-Ochem_and_Rao_(2012)_22-2" class="reference"><a href="#cite_note-Ochem_and_Rao_(2012)-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N<2^{(4^{k+1}-2^{k+1})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo><</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N<2^{(4^{k+1}-2^{k+1})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1058d91f37bc389a35ef129108a75159624d90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.888ex; height:3.009ex;" alt="{\displaystyle N<2^{(4^{k+1}-2^{k+1})}}"></span><sup id="cite_ref-Chen_and_Tang_34-0" class="reference"><a href="#cite_note-Chen_and_Tang-34"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Nielsen_(2003)_35-0" class="reference"><a href="#cite_note-Nielsen_(2003)-35"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha +2e_{1}+2e_{2}+2e_{3}+\cdots +2e_{k}\geq {\frac {99k-224}{37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>+</mo> <mn>2</mn> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mn>2</mn> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>99</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>224</mn> </mrow> <mn>37</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha +2e_{1}+2e_{2}+2e_{3}+\cdots +2e_{k}\geq {\frac {99k-224}{37}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d5a7e3126bffe13c79b0ba6ead683ae3884684d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:45.447ex; height:5.509ex;" alt="{\displaystyle \alpha +2e_{1}+2e_{2}+2e_{3}+\cdots +2e_{k}\geq {\frac {99k-224}{37}}}"></span>.<sup id="cite_ref-Zelinsky_2021_33-1" class="reference"><a href="#cite_note-Zelinsky_2021-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Ochem_and_Rao_(2014)_36-0" class="reference"><a href="#cite_note-Ochem_and_Rao_(2014)-36"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ClayotonHansen_37-0" class="reference"><a href="#cite_note-ClayotonHansen-37"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qp_{1}p_{2}p_{3}\cdots p_{k}<2N^{\frac {17}{26}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo><</mo> <mn>2</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>17</mn> <mn>26</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qp_{1}p_{2}p_{3}\cdots p_{k}<2N^{\frac {17}{26}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27ccd1f9756752a6deb57c68a1f8b16fd2cb3bf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.283ex; height:4.009ex;" alt="{\displaystyle qp_{1}p_{2}p_{3}\cdots p_{k}<2N^{\frac {17}{26}}}"></span>.<sup id="cite_ref-LucaPomerance_38-0" class="reference"><a href="#cite_note-LucaPomerance-38"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{q}}+{\frac {1}{p_{1}}}+{\frac {1}{p_{2}}}+\cdots +{\frac {1}{p_{k}}}<\ln 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo><</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{q}}+{\frac {1}{p_{1}}}+{\frac {1}{p_{2}}}+\cdots +{\frac {1}{p_{k}}}<\ln 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0074b91df692d991a339e5e0155de3a6e76313b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.885ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{q}}+{\frac {1}{p_{1}}}+{\frac {1}{p_{2}}}+\cdots +{\frac {1}{p_{k}}}<\ln 2}"></span>.<sup id="cite_ref-Cohen1978_39-0" class="reference"><a href="#cite_note-Cohen1978-39"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li></ul></dd></dl> <p>Furthermore, several minor results are known about the exponents <i>e</i><sub>1</sub>, ..., <i>e</i><sub><i>k</i></sub>. </p> <ul><li>Not all <i>e</i><sub><i>i</i></sub> ≡ 1 (<a href="/wiki/Modular_arithmetic" title="Modular arithmetic">mod</a> 3).<sup id="cite_ref-McDaniel_(1970)_41-0" class="reference"><a href="#cite_note-McDaniel_(1970)-41"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup></li> <li>Not all <i>e</i><sub><i>i</i></sub> ≡ 2 (<a href="/wiki/Modular_arithmetic" title="Modular arithmetic">mod</a> 5).<sup id="cite_ref-Fletcher,_Nielsen_and_Ochem_(2012)_42-0" class="reference"><a href="#cite_note-Fletcher,_Nielsen_and_Ochem_(2012)-42"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></li> <li>If all <i>e</i><sub><i>i</i></sub> ≡ 1 (<a href="/wiki/Modular_arithmetic" title="Modular arithmetic">mod</a> 3) or 2 (<a href="/wiki/Modular_arithmetic" title="Modular arithmetic">mod</a> 5), then the smallest prime factor of <i>N</i> must lie between 10<sup>8</sup> and 10<sup>1000</sup>.<sup id="cite_ref-Fletcher,_Nielsen_and_Ochem_(2012)_42-1" class="reference"><a href="#cite_note-Fletcher,_Nielsen_and_Ochem_(2012)-42"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></li> <li>More generally, if all 2<i>e</i><sub><i>i</i></sub>+1 have a prime factor in a given finite set <i>S</i>, then the smallest prime factor of <i>N</i> must be smaller than an effectively computable constant depending only on <i>S</i>.<sup id="cite_ref-Fletcher,_Nielsen_and_Ochem_(2012)_42-2" class="reference"><a href="#cite_note-Fletcher,_Nielsen_and_Ochem_(2012)-42"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></li> <li>If (<i>e</i><sub>1</sub>, ..., <i>e</i><sub><i>k</i></sub>) =  (1, ..., 1, 2, ..., 2) with <i>t</i> ones and <i>u</i> twos, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t-1)/4\leq u\leq 2t+{\sqrt {\alpha }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>≤<!-- ≤ --></mo> <mi>u</mi> <mo>≤<!-- ≤ --></mo> <mn>2</mn> <mi>t</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>α<!-- α --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t-1)/4\leq u\leq 2t+{\sqrt {\alpha }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7522f3ae71059388418e962b7b654051198af7ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.769ex; height:3.009ex;" alt="{\displaystyle (t-1)/4\leq u\leq 2t+{\sqrt {\alpha }}}"></span>.<sup id="cite_ref-Cohen_(1987)_43-0" class="reference"><a href="#cite_note-Cohen_(1987)-43"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup></li> <li>(<i>e</i><sub>1</sub>, ..., <i>e</i><sub><i>k</i></sub>) ≠ (1, ..., 1, 3),<sup id="cite_ref-Kanold_(1950)_44-0" class="reference"><a href="#cite_note-Kanold_(1950)-44"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> (1, ..., 1, 5), (1, ..., 1, 6).<sup id="cite_ref-Cohen_and_Williams_(1985)_45-0" class="reference"><a href="#cite_note-Cohen_and_Williams_(1985)-45"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup></li> <li>If <span class="texhtml"><i>e</i><sub>1</sub> = ... = <i>e</i><sub><i>k</i></sub> = <i>e</i></span>, then <ul><li><i>e</i> cannot be 3,<sup id="cite_ref-Hagis_and_McDaniel_(1972)_46-0" class="reference"><a href="#cite_note-Hagis_and_McDaniel_(1972)-46"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> 5, 24,<sup id="cite_ref-McDaniel_and_Hagis_(1975)_47-0" class="reference"><a href="#cite_note-McDaniel_and_Hagis_(1975)-47"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> 6, 8, 11, 14 or 18.<sup id="cite_ref-Cohen_and_Williams_(1985)_45-1" class="reference"><a href="#cite_note-Cohen_and_Williams_(1985)-45"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\leq 2e^{2}+8e+2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>≤<!-- ≤ --></mo> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>8</mn> <mi>e</mi> <mo>+</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\leq 2e^{2}+8e+2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f262dc1f08d926f8e38335a4221432e01110858b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.699ex; height:2.843ex;" alt="{\displaystyle k\leq 2e^{2}+8e+2}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N<2^{4^{2e^{2}+8e+3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo><</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>8</mn> <mi>e</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N<2^{4^{2e^{2}+8e+3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/352c47ec4267fb122ccc355b38e6ee713520ac90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.666ex; height:3.509ex;" alt="{\displaystyle N<2^{4^{2e^{2}+8e+3}}}"></span>.<sup id="cite_ref-Yamada_(2019)_48-0" class="reference"><a href="#cite_note-Yamada_(2019)-48"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup></li></ul></li></ul> <p>In 1888, <a href="/wiki/James_Joseph_Sylvester" title="James Joseph Sylvester">Sylvester</a> stated:<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>... a prolonged meditation on the subject has satisfied me that the existence of any one such [odd perfect number]—its escape, so to say, from the complex web of conditions which hem it in on all sides—would be little short of a miracle.</p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Minor_results">Minor results</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=4" title="Edit section: Minor results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>All even perfect numbers have a very precise form; odd perfect numbers either do not exist or are rare. There are a number of results on perfect numbers that are actually quite easy to prove but nevertheless superficially impressive; some of them also come under <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Richard Guy</a>'s <a href="/wiki/Strong_law_of_small_numbers" title="Strong law of small numbers">strong law of small numbers</a>: </p> <ul><li>The only even perfect number of the form <i>n</i><sup>3</sup> + 1 is 28 (<a href="#CITEREFMakowski1962">Makowski 1962</a>).<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup></li> <li>28 is also the only even perfect number that is a sum of two positive cubes of integers (<a href="#CITEREFGallardo2010">Gallardo 2010</a>).<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocals</a> of the divisors of a perfect number <i>N</i> must add up to 2 (to get this, take the definition of a perfect number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}(n)=2n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}(n)=2n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bce2fc4e5094e627bb338b6ab9479702a8de3e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.241ex; height:2.843ex;" alt="{\displaystyle \sigma _{1}(n)=2n}"></span>, and divide both sides by <i>n</i>): <ul><li>For 6, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{6}}+{\frac {1}{3}}+{\frac {1}{2}}+{\frac {1}{1}}={\frac {1}{6}}+{\frac {2}{6}}+{\frac {3}{6}}+{\frac {6}{6}}={\frac {1+2+3+6}{6}}={\frac {2\cdot 6}{6}}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <mn>6</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>6</mn> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{6}}+{\frac {1}{3}}+{\frac {1}{2}}+{\frac {1}{1}}={\frac {1}{6}}+{\frac {2}{6}}+{\frac {3}{6}}+{\frac {6}{6}}={\frac {1+2+3+6}{6}}={\frac {2\cdot 6}{6}}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77c6607f5fc04ed75cda7b571d20a8f80625e3e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:65.435ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{6}}+{\frac {1}{3}}+{\frac {1}{2}}+{\frac {1}{1}}={\frac {1}{6}}+{\frac {2}{6}}+{\frac {3}{6}}+{\frac {6}{6}}={\frac {1+2+3+6}{6}}={\frac {2\cdot 6}{6}}=2}"></span>;</li> <li>For 28, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/28+1/14+1/7+1/4+1/2+1/1=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>28</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>14</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>7</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>1</mn> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/28+1/14+1/7+1/4+1/2+1/1=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b0bc6752f0147725ac8060fc2ed814c886ecfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.712ex; height:2.843ex;" alt="{\displaystyle 1/28+1/14+1/7+1/4+1/2+1/1=2}"></span>, etc.</li></ul></li> <li>The number of divisors of a perfect number (whether even or odd) must be even, because <i>N</i> cannot be a perfect square.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> <ul><li>From these two results it follows that every perfect number is an <a href="/wiki/Ore%27s_harmonic_number" class="mw-redirect" title="Ore's harmonic number">Ore's harmonic number</a>.</li></ul></li> <li>The even perfect numbers are not <a href="/wiki/Trapezoidal_number" class="mw-redirect" title="Trapezoidal number">trapezoidal numbers</a>; that is, they cannot be represented as the difference of two positive non-consecutive <a href="/wiki/Triangular_number" title="Triangular number">triangular numbers</a>. There are only three types of non-trapezoidal numbers: even perfect numbers, powers of two, and the numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n-1}(2^{n}+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n-1}(2^{n}+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2dae8f8006c527fadce62b6112708e26b95f1e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.675ex; height:3.176ex;" alt="{\displaystyle 2^{n-1}(2^{n}+1)}"></span> formed as the product of a <a href="/wiki/Fermat_prime" class="mw-redirect" title="Fermat prime">Fermat prime</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8e2d6ae605ac99baf648b70d204a3c9803a4d9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.384ex; height:2.509ex;" alt="{\displaystyle 2^{n}+1}"></span> with a power of two in a similar way to the construction of even perfect numbers from Mersenne primes.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup></li> <li>The number of perfect numbers less than <i>n</i> is less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c{\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c{\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7caf562d447fde37daafdb31eb23ce974902db41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.337ex; height:3.009ex;" alt="{\displaystyle c{\sqrt {n}}}"></span>, where <i>c</i> > 0 is a constant.<sup id="cite_ref-Hornfeck_(1955)_54-0" class="reference"><a href="#cite_note-Hornfeck_(1955)-54"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> In fact it is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o({\sqrt {n}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o({\sqrt {n}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a272d88cee10c21a11ba123edf9631edb8632531" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.268ex; height:3.009ex;" alt="{\displaystyle o({\sqrt {n}})}"></span>, using <a href="/wiki/Little-o_notation" class="mw-redirect" title="Little-o notation">little-o notation</a>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup></li> <li>Every even perfect number ends in 6 or 28, base ten; and, with the only exception of 6, ends in 1 in base 9.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> Therefore, in particular the <a href="/wiki/Digital_root" title="Digital root">digital root</a> of every even perfect number other than 6 is 1.</li> <li>The only <a href="/wiki/Square-free_integer" title="Square-free integer">square-free</a> perfect number is 6.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Related_concepts">Related concepts</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=5" title="Edit section: Related concepts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Euler_diagram_numbers_with_many_divisors.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Euler_diagram_numbers_with_many_divisors.svg/220px-Euler_diagram_numbers_with_many_divisors.svg.png" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Euler_diagram_numbers_with_many_divisors.svg/330px-Euler_diagram_numbers_with_many_divisors.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Euler_diagram_numbers_with_many_divisors.svg/440px-Euler_diagram_numbers_with_many_divisors.svg.png 2x" data-file-width="512" data-file-height="410" /></a><figcaption> <a href="/wiki/Euler_diagram" title="Euler diagram">Euler diagram</a> of numbers under 100: <style data-mw-deduplicate="TemplateStyles:r981673959">.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}</style><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid orange;"> </span>  <a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid pink;"> </span>  <a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid lime;"> </span>  <a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid #aaaaaa;"> </span>  <a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a> and <a href="/wiki/Highly_composite_number" title="Highly composite number">highly composite</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid cyan;"> </span>  <a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a> and <a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">superior highly composite</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid #dddddd;"> </span>  <a href="/wiki/Weird_number" title="Weird number">Weird</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:solid #cc02ff;"> </span>  <b>Perfect</b></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:dashed blue 2px;"> </span>  <a href="/wiki/Composite_number" title="Composite number">Composite</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"><div class="legend"><span class="legend-line mw-no-invert" style="display: inline-block; vertical-align: middle; width: 1.67em; height: 0; border-style: none; border-top: 2px dotted black;border-top:dotted red 2px;"> </span>  <a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></div></figcaption></figure> <p>The sum of <a href="/wiki/Proper_divisor" class="mw-redirect" title="Proper divisor">proper divisors</a> gives various other kinds of numbers. Numbers where the sum is less than the number itself are called <a href="/wiki/Deficient_number" title="Deficient number">deficient</a>, and where it is greater than the number, <a href="/wiki/Abundant_number" title="Abundant number">abundant</a>. These terms, together with <i>perfect</i> itself, come from Greek <a href="/wiki/Numerology" title="Numerology">numerology</a>. A pair of numbers which are the sum of each other's proper divisors are called <a href="/wiki/Amicable_number" class="mw-redirect" title="Amicable number">amicable</a>, and larger cycles of numbers are called <a href="/wiki/Sociable_number" title="Sociable number">sociable</a>. A positive integer such that every smaller positive integer is a sum of distinct divisors of it is a <a href="/wiki/Practical_number" title="Practical number">practical number</a>. </p><p>By definition, a perfect number is a <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed point</a> of the <a href="/wiki/Restricted_divisor_function" class="mw-redirect" title="Restricted divisor function">restricted divisor function</a> <span class="nowrap"><i>s</i>(<i>n</i>) = <i>σ</i>(<i>n</i>) − <i>n</i></span>, and the <a href="/wiki/Aliquot_sequence" title="Aliquot sequence">aliquot sequence</a> associated with a perfect number is a constant sequence. All perfect numbers are also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2302a18e269dbecc43c57c0c2aced3bfae15278d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.492ex; height:2.176ex;" alt="{\displaystyle {\mathcal {S}}}"></span>-perfect numbers, or <a href="/wiki/Granville_number" title="Granville number">Granville numbers</a>. </p><p>A <a href="/wiki/Semiperfect_number" title="Semiperfect number">semiperfect number</a> is a natural number that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number. Most abundant numbers are also semiperfect; abundant numbers which are not semiperfect are called <a href="/wiki/Weird_number" title="Weird number">weird numbers</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=6" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect number</a></li> <li><a href="/wiki/Leinster_group" title="Leinster group">Leinster group</a></li> <li><a href="/wiki/List_of_Mersenne_primes_and_perfect_numbers" title="List of Mersenne primes and perfect numbers">List of Mersenne primes and perfect numbers</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect number</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect numbers</a></li> <li><a href="/wiki/Unitary_perfect_number" title="Unitary perfect number">Unitary perfect number</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor number</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=7" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">All factors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> are congruent to <span class="texhtml">1 <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">mod</a> 2<i>p</i></span>. For example, <span class="nowrap">2<sup>11</sup> − 1 = 2047 = 23 × 89</span>, and both 23 and 89 yield a remainder of 1 when divided by 22. Furthermore, whenever <span class="texhtml mvar" style="font-style:italic;">p</span> is a <a href="/wiki/Sophie_Germain_prime" class="mw-redirect" title="Sophie Germain prime">Sophie Germain prime</a>—that is, <span class="texhtml">2<i>p</i> + 1</span> is also prime—and <span class="texhtml">2<i>p</i> + 1</span> is congruent to 1 or 7 mod 8, then <span class="texhtml">2<i>p</i> + 1</span> will be a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00c82eb18c6e08d168b98c4fc05e252bffdda0b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.871ex; height:2.676ex;" alt="{\displaystyle 2^{p}-1,}"></span> which is the case for <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">p</span> = 11, 23, 83, 131, 179, 191, 239, 251, ...</span> <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002515" class="extiw" title="oeis:A002515">A002515</a></span>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://oeis.org/A000396">"A000396 - OEIS"</a>. <i>oeis.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=oeis.org&rft.atitle=A000396+-+OEIS&rft_id=https%3A%2F%2Foeis.org%2FA000396&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-The_Euclid–Euler_theorem-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-The_Euclid–Euler_theorem_2-0">^</a></b></span> <span class="reference-text">Caldwell, Chris, <a rel="nofollow" class="external text" href="https://primes.utm.edu/notes/proofs/EvenPerfect.html">"A proof that all even perfect numbers are a power of two times a Mersenne prime"</a>.</span> </li> <li id="cite_note-Dickinson_LE_(1919)-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dickinson_LE_(1919)_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickson1919" class="citation book cs1"><a href="/wiki/L._E._Dickson" class="mw-redirect" title="L. E. Dickson">Dickson, L. E.</a> (1919). <a rel="nofollow" class="external text" href="https://archive.org/stream/historyoftheoryo01dick#page/4/"><i>History of the Theory of Numbers, Vol. I</i></a>. Washington: Carnegie Institution of Washington. p. 4.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+the+Theory+of+Numbers%2C+Vol.+I&rft.place=Washington&rft.pages=4&rft.pub=Carnegie+Institution+of+Washington&rft.date=1919&rft.aulast=Dickson&rft.aufirst=L.+E.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhistoryoftheoryo01dick%23page%2F4%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Perfect_numbers.html">"Perfect numbers"</a>. <i>www-groups.dcs.st-and.ac.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www-groups.dcs.st-and.ac.uk&rft.atitle=Perfect+numbers&rft_id=http%3A%2F%2Fwww-groups.dcs.st-and.ac.uk%2Fhistory%2FHistTopics%2FPerfect_numbers.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">In <i><a rel="nofollow" class="external text" href="https://archive.org/download/NicomachusIntroToArithmetic/nicomachus_introduction_arithmetic.pdf">Introduction to Arithmetic</a></i>, Chapter 16, he says of perfect numbers, "There is a method of producing them, neat and unfailing, which neither passes by any of the perfect numbers nor fails to differentiate any of those that are not such, which is carried out in the following way." He then goes on to explain a procedure which is equivalent to finding a <a href="/wiki/Triangular_number" title="Triangular number">triangular number</a> based on a Mersenne prime.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Commentary on the Gospel of John 28.1.1–4, with further references in the <a href="/wiki/Sources_Chr%C3%A9tiennes" title="Sources Chrétiennes">Sources Chrétiennes</a> edition: vol. 385, 58–61.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRogers2015" class="citation conference cs1">Rogers, Justin M. (2015). <a rel="nofollow" class="external text" href="http://torreys.org/sblpapers2015/S22-05_philonic_arithmological_exegesis.pdf"><i>The Reception of Philonic Arithmological Exegesis in Didymus the Blind's </i>Commentary on Genesis<i><span></span></i></a> <span class="cs1-format">(PDF)</span>. <i>Society of Biblical Literature National Meeting, Atlanta, Georgia</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=conference&rft.jtitle=Society+of+Biblical+Literature+National+Meeting%2C+Atlanta%2C+Georgia&rft.atitle=The+Reception+of+Philonic+Arithmological+Exegesis+in+Didymus+the+Blind%27s+Commentary+on+Genesis&rft.date=2015&rft.aulast=Rogers&rft.aufirst=Justin+M.&rft_id=http%3A%2F%2Ftorreys.org%2Fsblpapers2015%2FS22-05_philonic_arithmological_exegesis.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Roshdi Rashed, <i>The Development of Arabic Mathematics: Between Arithmetic and Algebra</i> (Dordrecht: Kluwer Academic Publishers, 1994), pp. 328–329.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="/wiki/Bayerische_Staatsbibliothek" class="mw-redirect" title="Bayerische Staatsbibliothek">Bayerische Staatsbibliothek</a>, Clm 14908. See <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Eugene_Smith1925" class="citation book cs1"><a href="/wiki/David_Eugene_Smith" title="David Eugene Smith">David Eugene Smith</a> (1925). <a rel="nofollow" class="external text" href="https://archive.org/stream/historyofmathema031897mbp#page/n35/mode/2up"><i>History of Mathematics: Volume II</i></a>. New York: Dover. p. 21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-20430-8" title="Special:BookSources/0-486-20430-8"><bdi>0-486-20430-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Mathematics%3A+Volume+II&rft.place=New+York&rft.pages=21&rft.pub=Dover&rft.date=1925&rft.isbn=0-486-20430-8&rft.au=David+Eugene+Smith&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhistoryofmathema031897mbp%23page%2Fn35%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickson1919" class="citation book cs1"><a href="/wiki/L._E._Dickson" class="mw-redirect" title="L. E. Dickson">Dickson, L. E.</a> (1919). <a rel="nofollow" class="external text" href="https://archive.org/stream/historyoftheoryo01dick#page/10/"><i>History of the Theory of Numbers, Vol. I</i></a>. Washington: Carnegie Institution of Washington. p. 10.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+the+Theory+of+Numbers%2C+Vol.+I&rft.place=Washington&rft.pages=10&rft.pub=Carnegie+Institution+of+Washington&rft.date=1919&rft.aulast=Dickson&rft.aufirst=L.+E.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhistoryoftheoryo01dick%23page%2F10%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Pickover_C_(2001)-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pickover_C_(2001)_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPickover2001" class="citation book cs1">Pickover, C (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=52N0JJBspM0C&pg=PA360"><i>Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning</i></a>. Oxford: Oxford University Press. p. 360. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-515799-0" title="Special:BookSources/0-19-515799-0"><bdi>0-19-515799-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Wonders+of+Numbers%3A+Adventures+in+Mathematics%2C+Mind%2C+and+Meaning&rft.place=Oxford&rft.pages=360&rft.pub=Oxford+University+Press&rft.date=2001&rft.isbn=0-19-515799-0&rft.aulast=Pickover&rft.aufirst=C&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D52N0JJBspM0C%26pg%3DPA360&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Peterson_I_(2002)-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Peterson_I_(2002)_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeterson2002" class="citation book cs1">Peterson, I (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4gWSAraVhtAC&pg=PA132"><i>Mathematical Treks: From Surreal Numbers to Magic Circles</i></a>. Washington: Mathematical Association of America. p. 132. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/88-8358-537-2" title="Special:BookSources/88-8358-537-2"><bdi>88-8358-537-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Treks%3A+From+Surreal+Numbers+to+Magic+Circles&rft.place=Washington&rft.pages=132&rft.pub=Mathematical+Association+of+America&rft.date=2002&rft.isbn=88-8358-537-2&rft.aulast=Peterson&rft.aufirst=I&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4gWSAraVhtAC%26pg%3DPA132&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-GIMPS_Milestones-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-GIMPS_Milestones_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GIMPS_Milestones_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mersenne.org/report_milestones/">"GIMPS Milestones Report"</a>. <i><a href="/wiki/Great_Internet_Mersenne_Prime_Search" title="Great Internet Mersenne Prime Search">Great Internet Mersenne Prime Search</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">28 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Great+Internet+Mersenne+Prime+Search&rft.atitle=GIMPS+Milestones+Report&rft_id=https%3A%2F%2Fwww.mersenne.org%2Freport_milestones%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Haytham.html">"Abu Ali al-Hasan ibn al-Haytham"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Abu+Ali+al-Hasan+ibn+al-Haytham&rft.btitle=MacTutor+History+of+Mathematics+Archive&rft.pub=University+of+St+Andrews&rft.aulast=O%27Connor&rft.aufirst=John+J.&rft.au=Robertson%2C+Edmund+F.&rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Haytham.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-mersenne-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-mersenne_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mersenne.org/">"GIMPS Home"</a>. Mersenne.org<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-10-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=GIMPS+Home&rft.pub=Mersenne.org&rft_id=http%3A%2F%2Fwww.mersenne.org%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-mathworld-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-mathworld_17-0">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Perfect_Number"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/PerfectNumber.html">"Perfect Number"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Perfect+Number&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FPerfectNumber.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickson1919" class="citation book cs1"><a href="/wiki/L._E._Dickson" class="mw-redirect" title="L. E. Dickson">Dickson, L. E.</a> (1919). <a rel="nofollow" class="external text" href="https://archive.org/stream/historyoftheoryo01dick#page/6/"><i>History of the Theory of Numbers, Vol. I</i></a>. Washington: Carnegie Institution of Washington. p. 6.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+the+Theory+of+Numbers%2C+Vol.+I&rft.place=Washington&rft.pages=6&rft.pub=Carnegie+Institution+of+Washington&rft.date=1919&rft.aulast=Dickson&rft.aufirst=L.+E.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhistoryoftheoryo01dick%23page%2F6%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://people.math.harvard.edu/~knill/seminars/perfect/handout.pdf">"The oldest open problem in mathematics"</a> <span class="cs1-format">(PDF)</span>. <i>Harvard.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">16 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Harvard.edu&rft.atitle=The+oldest+open+problem+in+mathematics&rft_id=https%3A%2F%2Fpeople.math.harvard.edu%2F~knill%2Fseminars%2Fperfect%2Fhandout.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-oddperfect-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-oddperfect_20-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://oddperfect.org/pomerance.html">Oddperfect.org</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20061229094011/http://oddperfect.org/pomerance.html">Archived</a> 2006-12-29 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNadis2020" class="citation news cs1">Nadis, Steve (10 September 2020). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/mathematicians-open-a-new-front-on-an-ancient-number-problem-20200910/">"Mathematicians Open a New Front on an Ancient Number Problem"</a>. <i>Quanta Magazine</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 September</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quanta+Magazine&rft.atitle=Mathematicians+Open+a+New+Front+on+an+Ancient+Number+Problem&rft.date=2020-09-10&rft.aulast=Nadis&rft.aufirst=Steve&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fmathematicians-open-a-new-front-on-an-ancient-number-problem-20200910%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Ochem_and_Rao_(2012)-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ochem_and_Rao_(2012)_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ochem_and_Rao_(2012)_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ochem_and_Rao_(2012)_22-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOchemRao2012" class="citation journal cs1">Ochem, Pascal; Rao, Michaël (2012). <a rel="nofollow" class="external text" href="http://www.lirmm.fr/~ochem/opn/opn.pdf">"Odd perfect numbers are greater than 10<sup>1500</sup>"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>81</b> (279): 1869–1877. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2012-02563-4">10.1090/S0025-5718-2012-02563-4</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5718">0025-5718</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1263.11005">1263.11005</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Odd+perfect+numbers+are+greater+than+10%3Csup%3E1500%3C%2Fsup%3E&rft.volume=81&rft.issue=279&rft.pages=1869-1877&rft.date=2012&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1263.11005%23id-name%3DZbl&rft.issn=0025-5718&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2012-02563-4&rft.aulast=Ochem&rft.aufirst=Pascal&rft.au=Rao%2C+Micha%C3%ABl&rft_id=http%3A%2F%2Fwww.lirmm.fr%2F~ochem%2Fopn%2Fopn.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Kühnel_U-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kühnel_U_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKühnel1950" class="citation journal cs1 cs1-prop-foreign-lang-source">Kühnel, Ullrich (1950). "Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen". <i>Mathematische Zeitschrift</i> (in German). <b>52</b>: 202–211. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02230691">10.1007/BF02230691</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120754476">120754476</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Zeitschrift&rft.atitle=Versch%C3%A4rfung+der+notwendigen+Bedingungen+f%C3%BCr+die+Existenz+von+ungeraden+vollkommenen+Zahlen&rft.volume=52&rft.pages=202-211&rft.date=1950&rft_id=info%3Adoi%2F10.1007%2FBF02230691&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120754476%23id-name%3DS2CID&rft.aulast=K%C3%BChnel&rft.aufirst=Ullrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Roberts_T_(2008)-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roberts_T_(2008)_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoberts2008" class="citation journal cs1">Roberts, T (2008). <a rel="nofollow" class="external text" href="http://www.austms.org.au/Publ/Gazette/2008/Sep08/CommsRoberts.pdf">"On the Form of an Odd Perfect Number"</a> <span class="cs1-format">(PDF)</span>. <i>Australian Mathematical Gazette</i>. <b>35</b> (4): 244.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Australian+Mathematical+Gazette&rft.atitle=On+the+Form+of+an+Odd+Perfect+Number&rft.volume=35&rft.issue=4&rft.pages=244&rft.date=2008&rft.aulast=Roberts&rft.aufirst=T&rft_id=http%3A%2F%2Fwww.austms.org.au%2FPubl%2FGazette%2F2008%2FSep08%2FCommsRoberts.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Goto_and_Ohno_(2008)-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goto_and_Ohno_(2008)_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGotoOhno,_Y2008" class="citation journal cs1">Goto, T; Ohno, Y (2008). <a rel="nofollow" class="external text" href="http://www.ma.noda.tus.ac.jp/u/tg/perfect/perfect.pdf">"Odd perfect numbers have a prime factor exceeding 10<sup>8</sup>"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>77</b> (263): 1859–1868. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008MaCom..77.1859G">2008MaCom..77.1859G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-08-02050-9">10.1090/S0025-5718-08-02050-9</a></span><span class="reference-accessdate">. Retrieved <span class="nowrap">30 March</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Odd+perfect+numbers+have+a+prime+factor+exceeding+10%3Csup%3E8%3C%2Fsup%3E&rft.volume=77&rft.issue=263&rft.pages=1859-1868&rft.date=2008&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-08-02050-9&rft_id=info%3Abibcode%2F2008MaCom..77.1859G&rft.aulast=Goto&rft.aufirst=T&rft.au=Ohno%2C+Y&rft_id=http%3A%2F%2Fwww.ma.noda.tus.ac.jp%2Fu%2Ftg%2Fperfect%2Fperfect.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-AK_2012-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-AK_2012_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKonyaginAcquaah2012" class="citation journal cs1">Konyagin, Sergei; Acquaah, Peter (2012). "On Prime Factors of Odd Perfect Numbers". <i>International Journal of Number Theory</i>. <b>8</b> (6): 1537–1540. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS1793042112500935">10.1142/S1793042112500935</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Number+Theory&rft.atitle=On+Prime+Factors+of+Odd+Perfect+Numbers&rft.volume=8&rft.issue=6&rft.pages=1537-1540&rft.date=2012&rft_id=info%3Adoi%2F10.1142%2FS1793042112500935&rft.aulast=Konyagin&rft.aufirst=Sergei&rft.au=Acquaah%2C+Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Ianucci_DE_(1999)-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ianucci_DE_(1999)_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIannucci1999" class="citation journal cs1">Iannucci, DE (1999). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/1999-68-228/S0025-5718-99-01126-6/S0025-5718-99-01126-6.pdf">"The second largest prime divisor of an odd perfect number exceeds ten thousand"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>68</b> (228): 1749–1760. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999MaCom..68.1749I">1999MaCom..68.1749I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-99-01126-6">10.1090/S0025-5718-99-01126-6</a></span><span class="reference-accessdate">. Retrieved <span class="nowrap">30 March</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=The+second+largest+prime+divisor+of+an+odd+perfect+number+exceeds+ten+thousand&rft.volume=68&rft.issue=228&rft.pages=1749-1760&rft.date=1999&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-99-01126-6&rft_id=info%3Abibcode%2F1999MaCom..68.1749I&rft.aulast=Iannucci&rft.aufirst=DE&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F1999-68-228%2FS0025-5718-99-01126-6%2FS0025-5718-99-01126-6.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Zelinsky_2019-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zelinsky_2019_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZelinsky2019" class="citation journal cs1">Zelinsky, Joshua (July 2019). "Upper bounds on the second largest prime factor of an odd perfect number". <i>International Journal of Number Theory</i>. <b>15</b> (6): 1183–1189. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.11734">1810.11734</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS1793042119500659">10.1142/S1793042119500659</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62885986">62885986</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Number+Theory&rft.atitle=Upper+bounds+on+the+second+largest+prime+factor+of+an+odd+perfect+number&rft.volume=15&rft.issue=6&rft.pages=1183-1189&rft.date=2019-07&rft_id=info%3Aarxiv%2F1810.11734&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62885986%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS1793042119500659&rft.aulast=Zelinsky&rft.aufirst=Joshua&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span>.</span> </li> <li id="cite_note-Ianucci_DE_(2000)-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ianucci_DE_(2000)_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIannucci2000" class="citation journal cs1">Iannucci, DE (2000). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/2000-69-230/S0025-5718-99-01127-8/S0025-5718-99-01127-8.pdf">"The third largest prime divisor of an odd perfect number exceeds one hundred"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>69</b> (230): 867–879. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000MaCom..69..867I">2000MaCom..69..867I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-99-01127-8">10.1090/S0025-5718-99-01127-8</a></span><span class="reference-accessdate">. Retrieved <span class="nowrap">30 March</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=The+third+largest+prime+divisor+of+an+odd+perfect+number+exceeds+one+hundred&rft.volume=69&rft.issue=230&rft.pages=867-879&rft.date=2000&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-99-01127-8&rft_id=info%3Abibcode%2F2000MaCom..69..867I&rft.aulast=Iannucci&rft.aufirst=DE&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F2000-69-230%2FS0025-5718-99-01127-8%2FS0025-5718-99-01127-8.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Zelinsky_2021a-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zelinsky_2021a_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBibbyVynckeZelinsky2021" class="citation journal cs1">Bibby, Sean; Vyncke, Pieter; Zelinsky, Joshua (23 November 2021). <a rel="nofollow" class="external text" href="http://math.colgate.edu/~integers/v115/v115.pdf">"On the Third Largest Prime Divisor of an Odd Perfect Number"</a> <span class="cs1-format">(PDF)</span>. <i>Integers</i>. <b>21</b><span class="reference-accessdate">. Retrieved <span class="nowrap">6 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers&rft.atitle=On+the+Third+Largest+Prime+Divisor+of+an+Odd+Perfect+Number&rft.volume=21&rft.date=2021-11-23&rft.aulast=Bibby&rft.aufirst=Sean&rft.au=Vyncke%2C+Pieter&rft.au=Zelinsky%2C+Joshua&rft_id=http%3A%2F%2Fmath.colgate.edu%2F~integers%2Fv115%2Fv115.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Nielsen_Pace_P._(2015)-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nielsen_Pace_P._(2015)_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen2015" class="citation journal cs1">Nielsen, Pace P. (2015). <a rel="nofollow" class="external text" href="https://math.byu.edu/~pace/BestBound_web.pdf">"Odd perfect numbers, Diophantine equations, and upper bounds"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>84</b> (295): 2549–2567. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2015-02941-X">10.1090/S0025-5718-2015-02941-X</a></span><span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Odd+perfect+numbers%2C+Diophantine+equations%2C+and+upper+bounds&rft.volume=84&rft.issue=295&rft.pages=2549-2567&rft.date=2015&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2015-02941-X&rft.aulast=Nielsen&rft.aufirst=Pace+P.&rft_id=https%3A%2F%2Fmath.byu.edu%2F~pace%2FBestBound_web.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Nielsen_Pace_P._(2007)-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nielsen_Pace_P._(2007)_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen2007" class="citation journal cs1">Nielsen, Pace P. (2007). <a rel="nofollow" class="external text" href="https://math.byu.edu/~pace/NotEight_web.pdf">"Odd perfect numbers have at least nine distinct prime factors"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>76</b> (260): 2109–2126. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0602485">math/0602485</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007MaCom..76.2109N">2007MaCom..76.2109N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-07-01990-4">10.1090/S0025-5718-07-01990-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2767519">2767519</a><span class="reference-accessdate">. Retrieved <span class="nowrap">30 March</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Odd+perfect+numbers+have+at+least+nine+distinct+prime+factors&rft.volume=76&rft.issue=260&rft.pages=2109-2126&rft.date=2007&rft_id=info%3Aarxiv%2Fmath%2F0602485&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2767519%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-07-01990-4&rft_id=info%3Abibcode%2F2007MaCom..76.2109N&rft.aulast=Nielsen&rft.aufirst=Pace+P.&rft_id=https%3A%2F%2Fmath.byu.edu%2F~pace%2FNotEight_web.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Zelinsky_2021-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zelinsky_2021_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zelinsky_2021_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZelinsky2021" class="citation journal cs1">Zelinsky, Joshua (3 August 2021). <a rel="nofollow" class="external text" href="http://math.colgate.edu/~integers/v76/v76.pdf">"On the Total Number of Prime Factors of an Odd Perfect Number"</a> <span class="cs1-format">(PDF)</span>. <i>Integers</i>. <b>21</b><span class="reference-accessdate">. Retrieved <span class="nowrap">7 August</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers&rft.atitle=On+the+Total+Number+of+Prime+Factors+of+an+Odd+Perfect+Number&rft.volume=21&rft.date=2021-08-03&rft.aulast=Zelinsky&rft.aufirst=Joshua&rft_id=http%3A%2F%2Fmath.colgate.edu%2F~integers%2Fv76%2Fv76.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Chen_and_Tang-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chen_and_Tang_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenTang2014" class="citation journal cs1">Chen, Yong-Gao; Tang, Cui-E (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0004972713000488">"Improved upper bounds for odd multiperfect numbers"</a>. <i>Bulletin of the Australian Mathematical Society</i>. <b>89</b> (3): 353–359. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0004972713000488">10.1017/S0004972713000488</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.atitle=Improved+upper+bounds+for+odd+multiperfect+numbers.&rft.volume=89&rft.issue=3&rft.pages=353-359&rft.date=2014&rft_id=info%3Adoi%2F10.1017%2FS0004972713000488&rft.aulast=Chen&rft.aufirst=Yong-Gao&rft.au=Tang%2C+Cui-E&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FS0004972713000488&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Nielsen_(2003)-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nielsen_(2003)_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen2003" class="citation journal cs1">Nielsen, Pace P. (2003). <a rel="nofollow" class="external text" href="http://www.westga.edu/~integers/vol3.html">"An upper bound for odd perfect numbers"</a>. <i>Integers</i>. <b>3</b>: A14–A22<span class="reference-accessdate">. Retrieved <span class="nowrap">23 March</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers&rft.atitle=An+upper+bound+for+odd+perfect+numbers&rft.volume=3&rft.pages=A14-A22&rft.date=2003&rft.aulast=Nielsen&rft.aufirst=Pace+P.&rft_id=http%3A%2F%2Fwww.westga.edu%2F~integers%2Fvol3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Ochem_and_Rao_(2014)-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ochem_and_Rao_(2014)_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOchemRao2014" class="citation journal cs1">Ochem, Pascal; Rao, Michaël (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2013-02776-7">"On the number of prime factors of an odd perfect number"</a>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>83</b> (289): 2435–2439. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2013-02776-7">10.1090/S0025-5718-2013-02776-7</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=On+the+number+of+prime+factors+of+an+odd+perfect+number.&rft.volume=83&rft.issue=289&rft.pages=2435-2439&rft.date=2014&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2013-02776-7&rft.aulast=Ochem&rft.aufirst=Pascal&rft.au=Rao%2C+Micha%C3%ABl&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0025-5718-2013-02776-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-ClayotonHansen-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-ClayotonHansen_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGraeme_Clayton,_Cody_Hansen2023" class="citation journal cs1">Graeme Clayton, Cody Hansen (2023). <a rel="nofollow" class="external text" href="http://math.colgate.edu/~integers/x79/x79.pdf">"On inequalities involving counts of the prime factors of an odd perfect number"</a> <span class="cs1-format">(PDF)</span>. <i>Integers</i>. <b>23</b>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2303.11974">2303.11974</a></span><span class="reference-accessdate">. Retrieved <span class="nowrap">29 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers&rft.atitle=On+inequalities+involving+counts+of+the+prime+factors+of+an+odd+perfect+number&rft.volume=23&rft.date=2023&rft_id=info%3Aarxiv%2F2303.11974&rft.au=Graeme+Clayton%2C+Cody+Hansen&rft_id=http%3A%2F%2Fmath.colgate.edu%2F~integers%2Fx79%2Fx79.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-LucaPomerance-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-LucaPomerance_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPomeranceLuca2010" class="citation journal cs1">Pomerance, Carl; Luca, Florian (2010). <a rel="nofollow" class="external text" href="http://nyjm.albany.edu/j/2010/16-3.html">"On the radical of a perfect number"</a>. <i>New York Journal of Mathematics</i>. <b>16</b>: 23–30<span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+York+Journal+of+Mathematics&rft.atitle=On+the+radical+of+a+perfect+number&rft.volume=16&rft.pages=23-30&rft.date=2010&rft.aulast=Pomerance&rft.aufirst=Carl&rft.au=Luca%2C+Florian&rft_id=http%3A%2F%2Fnyjm.albany.edu%2Fj%2F2010%2F16-3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Cohen1978-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cohen1978_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen1978" class="citation journal cs1">Cohen, Graeme (1978). "On odd perfect numbers". <i>Fibonacci Quarterly</i>. <b>16</b> (6): 523-527. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1978.12430277">10.1080/00150517.1978.12430277</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fibonacci+Quarterly&rft.atitle=On+odd+perfect+numbers&rft.volume=16&rft.issue=6&rft.pages=523-527&rft.date=1978&rft_id=info%3Adoi%2F10.1080%2F00150517.1978.12430277&rft.aulast=Cohen&rft.aufirst=Graeme&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuryanarayana1963" class="citation journal cs1">Suryanarayana, D. (1963). "On Odd Perfect Numbers II". <i>Proceedings of the American Mathematical Society</i>. <b>14</b> (6): 896–904. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1963-0155786-8">10.1090/S0002-9939-1963-0155786-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=On+Odd+Perfect+Numbers+II&rft.volume=14&rft.issue=6&rft.pages=896-904&rft.date=1963&rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1963-0155786-8&rft.aulast=Suryanarayana&rft.aufirst=D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-McDaniel_(1970)-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-McDaniel_(1970)_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcDaniel1970" class="citation journal cs1">McDaniel, Wayne L. (1970). "The non-existence of odd perfect numbers of a certain form". <i>Archiv der Mathematik</i>. <b>21</b> (1): 52–53. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01220877">10.1007/BF01220877</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1420-8938">1420-8938</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0258723">0258723</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121251041">121251041</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Archiv+der+Mathematik&rft.atitle=The+non-existence+of+odd+perfect+numbers+of+a+certain+form&rft.volume=21&rft.issue=1&rft.pages=52-53&rft.date=1970&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121251041%23id-name%3DS2CID&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0258723%23id-name%3DMR&rft.issn=1420-8938&rft_id=info%3Adoi%2F10.1007%2FBF01220877&rft.aulast=McDaniel&rft.aufirst=Wayne+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Fletcher,_Nielsen_and_Ochem_(2012)-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fletcher,_Nielsen_and_Ochem_(2012)_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fletcher,_Nielsen_and_Ochem_(2012)_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fletcher,_Nielsen_and_Ochem_(2012)_42-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFletcherNielsenOchem2012" class="citation journal cs1">Fletcher, S. Adam; Nielsen, Pace P.; Ochem, Pascal (2012). <a rel="nofollow" class="external text" href="http://www.lirmm.fr/~ochem/opn/OPNS_Adam_Pace.pdf">"Sieve methods for odd perfect numbers"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>81</b> (279): 1753?1776. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2011-02576-7">10.1090/S0025-5718-2011-02576-7</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5718">0025-5718</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2904601">2904601</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Sieve+methods+for+odd+perfect+numbers&rft.volume=81&rft.issue=279&rft.pages=1753%3F1776&rft.date=2012&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2904601%23id-name%3DMR&rft.issn=0025-5718&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2011-02576-7&rft.aulast=Fletcher&rft.aufirst=S.+Adam&rft.au=Nielsen%2C+Pace+P.&rft.au=Ochem%2C+Pascal&rft_id=http%3A%2F%2Fwww.lirmm.fr%2F~ochem%2Fopn%2FOPNS_Adam_Pace.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Cohen_(1987)-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cohen_(1987)_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen1987" class="citation journal cs1">Cohen, G. L. (1987). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1446788700028251">"On the largest component of an odd perfect number"</a>. <i>Journal of the Australian Mathematical Society, Series A</i>. <b>42</b> (2): 280–286. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1446788700028251">10.1017/S1446788700028251</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1446-8107">1446-8107</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0869751">0869751</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Australian+Mathematical+Society%2C+Series+A&rft.atitle=On+the+largest+component+of+an+odd+perfect+number&rft.volume=42&rft.issue=2&rft.pages=280-286&rft.date=1987&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0869751%23id-name%3DMR&rft.issn=1446-8107&rft_id=info%3Adoi%2F10.1017%2FS1446788700028251&rft.aulast=Cohen&rft.aufirst=G.+L.&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FS1446788700028251&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Kanold_(1950)-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kanold_(1950)_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanold1950" class="citation journal cs1 cs1-prop-interwiki-linked-name"><a href="https://de.wikipedia.org/wiki/Hans-Joachim_Kanold" class="extiw" title="de:Hans-Joachim Kanold">Kanold, Hans-Joachim</a> <span class="cs1-format">[in German]</span> (1950). "Satze uber Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretisehe Probleme. II". <i><a href="/wiki/Journal_f%C3%BCr_die_reine_und_angewandte_Mathematik" class="mw-redirect" title="Journal für die reine und angewandte Mathematik">Journal für die reine und angewandte Mathematik</a></i>. <b>188</b> (1): 129–146. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fcrll.1950.188.129">10.1515/crll.1950.188.129</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1435-5345">1435-5345</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0044579">0044579</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122452828">122452828</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+reine+und+angewandte+Mathematik&rft.atitle=Satze+uber+Kreisteilungspolynome+und+ihre+Anwendungen+auf+einige+zahlentheoretisehe+Probleme.+II&rft.volume=188&rft.issue=1&rft.pages=129-146&rft.date=1950&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122452828%23id-name%3DS2CID&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0044579%23id-name%3DMR&rft.issn=1435-5345&rft_id=info%3Adoi%2F10.1515%2Fcrll.1950.188.129&rft.aulast=Kanold&rft.aufirst=Hans-Joachim&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Cohen_and_Williams_(1985)-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cohen_and_Williams_(1985)_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cohen_and_Williams_(1985)_45-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohenWilliams1985" class="citation journal cs1">Cohen, G. L.; Williams, R. J. (1985). <a rel="nofollow" class="external text" href="https://www.fq.math.ca/Scanned/23-1/cohen.pdf">"Extensions of some results concerning odd perfect numbers"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fibonacci_Quarterly" title="Fibonacci Quarterly">Fibonacci Quarterly</a></i>. <b>23</b> (1): 70–76. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1985.12429857">10.1080/00150517.1985.12429857</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0015-0517">0015-0517</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0786364">0786364</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fibonacci+Quarterly&rft.atitle=Extensions+of+some+results+concerning+odd+perfect+numbers&rft.volume=23&rft.issue=1&rft.pages=70-76&rft.date=1985&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0786364%23id-name%3DMR&rft.issn=0015-0517&rft_id=info%3Adoi%2F10.1080%2F00150517.1985.12429857&rft.aulast=Cohen&rft.aufirst=G.+L.&rft.au=Williams%2C+R.+J.&rft_id=https%3A%2F%2Fwww.fq.math.ca%2FScanned%2F23-1%2Fcohen.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Hagis_and_McDaniel_(1972)-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hagis_and_McDaniel_(1972)_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHagisMcDaniel1972" class="citation journal cs1">Hagis, Peter Jr.; McDaniel, Wayne L. (1972). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1972-0292740-5">"A new result concerning the structure of odd perfect numbers"</a>. <i>Proceedings of the American Mathematical Society</i>. <b>32</b> (1): 13–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1972-0292740-5">10.1090/S0002-9939-1972-0292740-5</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1088-6826">1088-6826</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0292740">0292740</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=A+new+result+concerning+the+structure+of+odd+perfect+numbers&rft.volume=32&rft.issue=1&rft.pages=13-15&rft.date=1972&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0292740%23id-name%3DMR&rft.issn=1088-6826&rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1972-0292740-5&rft.aulast=Hagis&rft.aufirst=Peter+Jr.&rft.au=McDaniel%2C+Wayne+L.&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9939-1972-0292740-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-McDaniel_and_Hagis_(1975)-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-McDaniel_and_Hagis_(1975)_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcDanielHagis1975" class="citation journal cs1">McDaniel, Wayne L.; Hagis, Peter Jr. (1975). <a rel="nofollow" class="external text" href="https://www.fq.math.ca/Scanned/13-1/mcdaniel.pdf">"Some results concerning the non-existence of odd perfect numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{\alpha }M^{2\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>β<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{\alpha }M^{2\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f8c90a06b90826fac41894d97aee2551761e8a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.038ex; height:3.009ex;" alt="{\displaystyle p^{\alpha }M^{2\beta }}"></span>"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fibonacci_Quarterly" title="Fibonacci Quarterly">Fibonacci Quarterly</a></i>. <b>13</b> (1): 25–28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1975.12430680">10.1080/00150517.1975.12430680</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0015-0517">0015-0517</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0354538">0354538</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fibonacci+Quarterly&rft.atitle=Some+results+concerning+the+non-existence+of+odd+perfect+numbers+of+the+form+MATH+RENDER+ERROR&rft.volume=13&rft.issue=1&rft.pages=25-28&rft.date=1975&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0354538%23id-name%3DMR&rft.issn=0015-0517&rft_id=info%3Adoi%2F10.1080%2F00150517.1975.12430680&rft.aulast=McDaniel&rft.aufirst=Wayne+L.&rft.au=Hagis%2C+Peter+Jr.&rft_id=https%3A%2F%2Fwww.fq.math.ca%2FScanned%2F13-1%2Fmcdaniel.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Yamada_(2019)-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yamada_(2019)_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamada2019" class="citation journal cs1">Yamada, Tomohiro (2019). "A new upper bound for odd perfect numbers of a special form". <i>Colloquium Mathematicum</i>. <b>156</b> (1): 15–21. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1706.09341">1706.09341</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Fcm7339-3-2018">10.4064/cm7339-3-2018</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1730-6302">1730-6302</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119175632">119175632</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Colloquium+Mathematicum&rft.atitle=A+new+upper+bound+for+odd+perfect+numbers+of+a+special+form&rft.volume=156&rft.issue=1&rft.pages=15-21&rft.date=2019&rft_id=info%3Aarxiv%2F1706.09341&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119175632%23id-name%3DS2CID&rft.issn=1730-6302&rft_id=info%3Adoi%2F10.4064%2Fcm7339-3-2018&rft.aulast=Yamada&rft.aufirst=Tomohiro&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">The Collected Mathematical Papers of James Joseph Sylvester p. 590, tr. from "Sur les nombres dits de Hamilton", <i>Compte Rendu de l'Association Française</i> (Toulouse, 1887), pp. 164–168.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMakowski1962" class="citation journal cs1">Makowski, A. (1962). "Remark on perfect numbers". <i><a href="/wiki/Elem._Math." class="mw-redirect" title="Elem. Math.">Elem. Math.</a></i> <b>17</b> (5): 109.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Elem.+Math.&rft.atitle=Remark+on+perfect+numbers&rft.volume=17&rft.issue=5&rft.pages=109&rft.date=1962&rft.aulast=Makowski&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGallardo2010" class="citation journal cs1">Gallardo, Luis H. (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FEM%2F149">"On a remark of Makowski about perfect numbers"</a>. <i><a href="/wiki/Elem._Math." class="mw-redirect" title="Elem. Math.">Elem. Math.</a></i> <b>65</b> (3): 121–126. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FEM%2F149">10.4171/EM/149</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Elem.+Math.&rft.atitle=On+a+remark+of+Makowski+about+perfect+numbers&rft.volume=65&rft.issue=3&rft.pages=121-126&rft.date=2010&rft_id=info%3Adoi%2F10.4171%2FEM%2F149&rft.aulast=Gallardo&rft.aufirst=Luis+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.4171%252FEM%252F149&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span>.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYan2012" class="citation cs2">Yan, Song Y. (2012), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=eLAV586iF-8C&pg=PA30"><i>Computational Number Theory and Modern Cryptography</i></a>, John Wiley & Sons, Section 2.3, Exercise 2(6), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781118188613" title="Special:BookSources/9781118188613"><bdi>9781118188613</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computational+Number+Theory+and+Modern+Cryptography&rft.pages=Section+2.3%2C+Exercise+2%286%29&rft.pub=John+Wiley+%26+Sons&rft.date=2012&rft.isbn=9781118188613&rft.aulast=Yan&rft.aufirst=Song+Y.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeLAV586iF-8C%26pg%3DPA30&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span>.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJonesLord1999" class="citation journal cs1">Jones, Chris; Lord, Nick (1999). "Characterising non-trapezoidal numbers". <i>The Mathematical Gazette</i>. <b>83</b> (497). The Mathematical Association: 262–263. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3619053">10.2307/3619053</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3619053">3619053</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125545112">125545112</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Gazette&rft.atitle=Characterising+non-trapezoidal+numbers&rft.volume=83&rft.issue=497&rft.pages=262-263&rft.date=1999&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125545112%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3619053%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3619053&rft.aulast=Jones&rft.aufirst=Chris&rft.au=Lord%2C+Nick&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-Hornfeck_(1955)-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hornfeck_(1955)_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornfeck1955" class="citation journal cs1">Hornfeck, B (1955). "Zur Dichte der Menge der vollkommenen zahlen". <i>Arch. Math</i>. <b>6</b> (6): 442–443. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01901120">10.1007/BF01901120</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122525522">122525522</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Arch.+Math.&rft.atitle=Zur+Dichte+der+Menge+der+vollkommenen+zahlen&rft.volume=6&rft.issue=6&rft.pages=442-443&rft.date=1955&rft_id=info%3Adoi%2F10.1007%2FBF01901120&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122525522%23id-name%3DS2CID&rft.aulast=Hornfeck&rft.aufirst=B&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanold1956" class="citation journal cs1">Kanold, HJ (1956). "Eine Bemerkung ¨uber die Menge der vollkommenen zahlen". <i>Math. Ann</i>. <b>131</b> (4): 390–392. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01350108">10.1007/BF01350108</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122353640">122353640</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Math.+Ann.&rft.atitle=Eine+Bemerkung+%C2%A8uber+die+Menge+der+vollkommenen+zahlen&rft.volume=131&rft.issue=4&rft.pages=390-392&rft.date=1956&rft_id=info%3Adoi%2F10.1007%2FBF01350108&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122353640%23id-name%3DS2CID&rft.aulast=Kanold&rft.aufirst=HJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">H. Novarese. <i>Note sur les nombres parfaits</i> Texeira J. VIII (1886), 11–16.</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickson1919" class="citation book cs1"><a href="/wiki/L._E._Dickson" class="mw-redirect" title="L. E. Dickson">Dickson, L. E.</a> (1919). <a rel="nofollow" class="external text" href="https://archive.org/stream/historyoftheoryo01dick#page/25/"><i>History of the Theory of Numbers, Vol. I</i></a>. Washington: Carnegie Institution of Washington. p. 25.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+the+Theory+of+Numbers%2C+Vol.+I&rft.place=Washington&rft.pages=25&rft.pub=Carnegie+Institution+of+Washington&rft.date=1919&rft.aulast=Dickson&rft.aufirst=L.+E.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fhistoryoftheoryo01dick%23page%2F25%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRedmond1996" class="citation book cs1">Redmond, Don (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3ffXkusQEC0C&pg=PA428"><i>Number Theory: An Introduction to Pure and Applied Mathematics</i></a>. Chapman & Hall/CRC Pure and Applied Mathematics. Vol. 201. CRC Press. Problem 7.4.11, p. 428. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780824796969" title="Special:BookSources/9780824796969"><bdi>9780824796969</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Number+Theory%3A+An+Introduction+to+Pure+and+Applied+Mathematics&rft.series=Chapman+%26+Hall%2FCRC+Pure+and+Applied+Mathematics&rft.pages=Problem+7.4.11%2C+p.-428&rft.pub=CRC+Press&rft.date=1996&rft.isbn=9780824796969&rft.aulast=Redmond&rft.aufirst=Don&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3ffXkusQEC0C%26pg%3DPA428&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=9" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li>Euclid, <i><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements">Elements</a></i>, Book IX, Proposition 36. See <a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX36.html">D.E. Joyce's website</a> for a translation and discussion of this proposition and its proof.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanold1941" class="citation journal cs1">Kanold, H.-J. (1941). "Untersuchungen über ungerade vollkommene Zahlen". <i>Journal für die Reine und Angewandte Mathematik</i>. <b>1941</b> (183): 98–109. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fcrll.1941.183.98">10.1515/crll.1941.183.98</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115983363">115983363</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+Reine+und+Angewandte+Mathematik&rft.atitle=Untersuchungen+%C3%BCber+ungerade+vollkommene+Zahlen&rft.volume=1941&rft.issue=183&rft.pages=98-109&rft.date=1941&rft_id=info%3Adoi%2F10.1515%2Fcrll.1941.183.98&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115983363%23id-name%3DS2CID&rft.aulast=Kanold&rft.aufirst=H.-J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteuerwald" class="citation journal cs1">Steuerwald, R. "Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl". <i>S.-B. Bayer. Akad. Wiss</i>. <b>1937</b>: 69–72.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=S.-B.+Bayer.+Akad.+Wiss.&rft.atitle=Versch%C3%A4rfung+einer+notwendigen+Bedingung+f%C3%BCr+die+Existenz+einer+ungeraden+vollkommenen+Zahl&rft.volume=1937&rft.pages=69-72&rft.aulast=Steuerwald&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=10" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Nankar, M.L.: "History of perfect numbers," Ganita Bharati 1, no. 1–2 (1979), 7–8.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHagis1973" class="citation journal cs1">Hagis, P. (1973). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2005530">"A Lower Bound for the set of odd Perfect Prime Numbers"</a>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>27</b> (124): 951–953. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2005530">10.2307/2005530</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2005530">2005530</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=A+Lower+Bound+for+the+set+of+odd+Perfect+Prime+Numbers&rft.volume=27&rft.issue=124&rft.pages=951-953&rft.date=1973&rft_id=info%3Adoi%2F10.2307%2F2005530&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2005530%23id-name%3DJSTOR&rft.aulast=Hagis&rft.aufirst=P.&rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F2005530&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></li> <li>Riele, H.J.J. "Perfect Numbers and Aliquot Sequences" in H.W. Lenstra and R. Tijdeman (eds.): <i>Computational Methods in Number Theory</i>, Vol. 154, Amsterdam, 1982, pp. 141–157.</li> <li>Riesel, H. <i>Prime Numbers and Computer Methods for Factorisation</i>, Birkhauser, 1985.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSándorCrstici2004" class="citation book cs1">Sándor, Jozsef; Crstici, Borislav (2004). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/handbooknumberth02sand"><i>Handbook of number theory II</i></a></span>. Dordrecht: Kluwer Academic. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/handbooknumberth02sand/page/n16">15</a>–98. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-4020-2546-7" title="Special:BookSources/1-4020-2546-7"><bdi>1-4020-2546-7</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1079.11001">1079.11001</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+number+theory+II&rft.place=Dordrecht&rft.pages=15-98&rft.pub=Kluwer+Academic&rft.date=2004&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1079.11001%23id-name%3DZbl&rft.isbn=1-4020-2546-7&rft.aulast=S%C3%A1ndor&rft.aufirst=Jozsef&rft.au=Crstici%2C+Borislav&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbooknumberth02sand&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perfect_number&action=edit&section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Perfect_number">"Perfect number"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Perfect+number&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DPerfect_number&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></li> <li>David Moews: <a rel="nofollow" class="external text" href="http://djm.cc/amicable.html">Perfect, amicable and sociable numbers</a></li> <li><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Perfect_numbers/">Perfect numbers – History and Theory</a></li> <li><span class="citation mathworld" id="Reference-Mathworld-Perfect_Number"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/PerfectNumber.html">"Perfect Number"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Perfect+Number&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FPerfectNumber.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></span></li> <li><abbr title="On-Line Encyclopedia of Integer Sequences">OEIS</abbr> <a rel="nofollow" class="external text" href="https://oeis.org/A000396">sequence A000396 (Perfect numbers)</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181106015226/http://oddperfect.org/">OddPerfect.org</a> A projected distributed computing project to search for odd perfect numbers.</li> <li><a rel="nofollow" class="external text" href="https://www.mersenne.org/">Great Internet Mersenne Prime Search</a> (GIMPS)</li> <li><a rel="nofollow" class="external text" href="http://mathforum.org/dr.math/faq/faq.perfect.html">Perfect Numbers</a>, math forum at Drexel.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrimes" class="citation web cs1">Grimes, James. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130531000409/http://numberphile.com/videos/8128.html">"8128: Perfect Numbers"</a>. <i>Numberphile</i>. <a href="/wiki/Brady_Haran" title="Brady Haran">Brady Haran</a>. Archived from <a rel="nofollow" class="external text" href="http://www.numberphile.com/videos/8128.html">the original</a> on 2013-05-31<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-04-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Numberphile&rft.atitle=8128%3A+Perfect+Numbers&rft.aulast=Grimes&rft.aufirst=James&rft_id=http%3A%2F%2Fwww.numberphile.com%2Fvideos%2F8128.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerfect+number" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Divisibility-based_sets_of_integers" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Divisor_classes" title="Template:Divisor classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Divisor_classes" title="Template talk:Divisor classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Divisor_classes" title="Special:EditPage/Template:Divisor classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Divisibility-based_sets_of_integers" style="font-size:114%;margin:0 4em">Divisibility-based sets of integers</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overview</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integer_factorization" title="Integer factorization">Integer factorization</a></li> <li><a href="/wiki/Divisor" title="Divisor">Divisor</a></li> <li><a href="/wiki/Unitary_divisor" title="Unitary divisor">Unitary divisor</a></li> <li><a href="/wiki/Divisor_function" title="Divisor function">Divisor function</a></li> <li><a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">Prime factor</a></li> <li><a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">Fundamental theorem of arithmetic</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="7" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Lattice_of_the_divisibility_of_60.svg" class="mw-file-description" title="Divisibility of 60"><img alt="Divisibility of 60" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/175px-Lattice_of_the_divisibility_of_60.svg.png" decoding="async" width="175" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/263px-Lattice_of_the_divisibility_of_60.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/350px-Lattice_of_the_divisibility_of_60.svg.png 2x" data-file-width="313" data-file-height="250" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Factorization forms</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Prime_number" title="Prime number">Prime</a></li> <li><a href="/wiki/Composite_number" title="Composite number">Composite</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li> <li><a href="/wiki/Pronic_number" title="Pronic number">Pronic</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic</a></li> <li><a href="/wiki/Square-free_integer" title="Square-free integer">Square-free</a></li> <li><a href="/wiki/Powerful_number" title="Powerful number">Powerful</a></li> <li><a href="/wiki/Perfect_power" title="Perfect power">Perfect power</a></li> <li><a href="/wiki/Achilles_number" title="Achilles number">Achilles</a></li> <li><a href="/wiki/Smooth_number" title="Smooth number">Smooth</a></li> <li><a href="/wiki/Regular_number" title="Regular number">Regular</a></li> <li><a href="/wiki/Rough_number" title="Rough number">Rough</a></li> <li><a href="/wiki/Unusual_number" title="Unusual number">Unusual</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constrained divisor sums</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Perfect</a></li> <li><a href="/wiki/Almost_perfect_number" title="Almost perfect number">Almost perfect</a></li> <li><a href="/wiki/Quasiperfect_number" title="Quasiperfect number">Quasiperfect</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect</a></li> <li><a href="/wiki/Hemiperfect_number" title="Hemiperfect number">Hemiperfect</a></li> <li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li> <li><a href="/wiki/Unitary_perfect_number" title="Unitary perfect number">Unitary perfect</a></li> <li><a href="/wiki/Semiperfect_number" title="Semiperfect number">Semiperfect</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Descartes_number" title="Descartes number">Descartes</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Nicolas_number" title="Erdős–Nicolas number">Erdős–Nicolas</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With many divisors</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></li> <li><a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></li> <li><a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></li> <li><a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a></li> <li><a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite</a></li> <li><a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">Superior highly composite</a></li> <li><a href="/wiki/Weird_number" title="Weird number">Weird</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aliquot_sequence" title="Aliquot sequence">Aliquot sequence</a>-related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Untouchable_number" title="Untouchable number">Untouchable</a></li> <li><a href="/wiki/Amicable_numbers" title="Amicable numbers">Amicable</a> (<a href="/wiki/Amicable_triple" title="Amicable triple">Triple</a>)</li> <li><a href="/wiki/Sociable_number" title="Sociable number">Sociable</a></li> <li><a href="/wiki/Betrothed_numbers" title="Betrothed numbers">Betrothed</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Radix" title="Radix">Base</a>-dependent</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidigital_number" title="Equidigital number">Equidigital</a></li> <li><a href="/wiki/Extravagant_number" title="Extravagant number">Extravagant</a></li> <li><a href="/wiki/Frugal_number" title="Frugal number">Frugal</a></li> <li><a href="/wiki/Harshad_number" title="Harshad number">Harshad</a></li> <li><a href="/wiki/Polydivisible_number" title="Polydivisible number">Polydivisible</a></li> <li><a href="/wiki/Smith_number" title="Smith number">Smith</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other sets</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic_number" title="Arithmetic number">Arithmetic</a></li> <li><a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></li> <li><a href="/wiki/Friendly_number" title="Friendly number">Friendly</a></li> <li><a href="/wiki/Friendly_number#Solitary_numbers" title="Friendly number">Solitary</a></li> <li><a href="/wiki/Sublime_number" title="Sublime number">Sublime</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor</a></li> <li><a href="/wiki/Refactorable_number" title="Refactorable number">Refactorable</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Classes_of_natural_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Classes_of_natural_numbers" title="Template:Classes of natural numbers"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Classes_of_natural_numbers" title="Template talk:Classes of natural numbers"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Classes_of_natural_numbers" title="Special:EditPage/Template:Classes of natural numbers"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Classes_of_natural_numbers" style="font-size:114%;margin:0 4em">Classes of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Powers_and_related_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Exponentiation" title="Exponentiation">Powers</a> and related numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Achilles_number" title="Achilles number">Achilles</a></li> <li><a href="/wiki/Power_of_two" title="Power of two">Power of 2</a></li> <li><a href="/wiki/Power_of_three" title="Power of three">Power of 3</a></li> <li><a href="/wiki/Power_of_10" title="Power of 10">Power of 10</a></li> <li><a href="/wiki/Square_number" title="Square number">Square</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cube</a></li> <li><a href="/wiki/Fourth_power" title="Fourth power">Fourth power</a></li> <li><a href="/wiki/Fifth_power_(algebra)" title="Fifth power (algebra)">Fifth power</a></li> <li><a href="/wiki/Sixth_power" title="Sixth power">Sixth power</a></li> <li><a href="/wiki/Seventh_power" title="Seventh power">Seventh power</a></li> <li><a href="/wiki/Eighth_power" title="Eighth power">Eighth power</a></li> <li><a href="/wiki/Perfect_power" title="Perfect power">Perfect power</a></li> <li><a href="/wiki/Powerful_number" title="Powerful number">Powerful</a></li> <li><a href="/wiki/Prime_power" title="Prime power">Prime power</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Of_the_form_a_×_2b_±_1" style="font-size:114%;margin:0 4em">Of the form <i>a</i> × 2<sup><i>b</i></sup> ± 1</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cullen_number" title="Cullen number">Cullen</a></li> <li><a href="/wiki/Double_Mersenne_number" title="Double Mersenne number">Double Mersenne</a></li> <li><a href="/wiki/Fermat_number" title="Fermat number">Fermat</a></li> <li><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne</a></li> <li><a href="/wiki/Proth_number" class="mw-redirect" title="Proth number">Proth</a></li> <li><a href="/wiki/Thabit_number" title="Thabit number">Thabit</a></li> <li><a href="/wiki/Woodall_number" title="Woodall number">Woodall</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Other_polynomial_numbers" style="font-size:114%;margin:0 4em">Other polynomial numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hilbert_number" title="Hilbert number">Hilbert</a></li> <li><a href="/wiki/Idoneal_number" title="Idoneal number">Idoneal</a></li> <li><a href="/wiki/Leyland_number" title="Leyland number">Leyland</a></li> <li><a href="/wiki/Loeschian_number" class="mw-redirect" title="Loeschian number">Loeschian</a></li> <li><a href="/wiki/Lucky_numbers_of_Euler" title="Lucky numbers of Euler">Lucky numbers of Euler</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Recursively_defined_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Recursion" title="Recursion">Recursively</a> defined numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci</a></li> <li><a href="/wiki/Jacobsthal_number" title="Jacobsthal number">Jacobsthal</a></li> <li><a href="/wiki/Leonardo_number" title="Leonardo number">Leonardo</a></li> <li><a href="/wiki/Lucas_number" title="Lucas number">Lucas</a></li> <li><a href="/wiki/Supergolden_ratio#Narayana_sequence" title="Supergolden ratio">Narayana</a></li> <li><a href="/wiki/Padovan_sequence" title="Padovan sequence">Padovan</a></li> <li><a href="/wiki/Pell_number" title="Pell number">Pell</a></li> <li><a href="/wiki/Perrin_number" title="Perrin number">Perrin</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Possessing_a_specific_set_of_other_numbers" style="font-size:114%;margin:0 4em">Possessing a specific set of other numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amenable_number" title="Amenable number">Amenable</a></li> <li><a href="/wiki/Congruent_number" title="Congruent number">Congruent</a></li> <li><a href="/wiki/Kn%C3%B6del_number" title="Knödel number">Knödel</a></li> <li><a href="/wiki/Riesel_number" title="Riesel number">Riesel</a></li> <li><a href="/wiki/Sierpi%C5%84ski_number" title="Sierpiński number">Sierpiński</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Expressible_via_specific_sums" style="font-size:114%;margin:0 4em">Expressible via specific sums</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonhypotenuse_number" title="Nonhypotenuse number">Nonhypotenuse</a></li> <li><a href="/wiki/Polite_number" title="Polite number">Polite</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Primary_pseudoperfect_number" title="Primary pseudoperfect number">Primary pseudoperfect</a></li> <li><a href="/wiki/Ulam_number" title="Ulam number">Ulam</a></li> <li><a href="/wiki/Wolstenholme_number" title="Wolstenholme number">Wolstenholme</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Figurate_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Figurate_number" title="Figurate number">Figurate numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">2-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Centered_polygonal_number" title="Centered polygonal number">centered</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centered_triangular_number" title="Centered triangular number">Centered triangular</a></li> <li><a href="/wiki/Centered_square_number" title="Centered square number">Centered square</a></li> <li><a href="/wiki/Centered_pentagonal_number" title="Centered pentagonal number">Centered pentagonal</a></li> <li><a href="/wiki/Centered_hexagonal_number" title="Centered hexagonal number">Centered hexagonal</a></li> <li><a href="/wiki/Centered_heptagonal_number" title="Centered heptagonal number">Centered heptagonal</a></li> <li><a href="/wiki/Centered_octagonal_number" title="Centered octagonal number">Centered octagonal</a></li> <li><a href="/wiki/Centered_nonagonal_number" title="Centered nonagonal number">Centered nonagonal</a></li> <li><a href="/wiki/Centered_decagonal_number" title="Centered decagonal number">Centered decagonal</a></li> <li><a href="/wiki/Star_number" title="Star number">Star</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polygonal_number" title="Polygonal number">non-centered</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Triangular_number" title="Triangular number">Triangular</a></li> <li><a href="/wiki/Square_number" title="Square number">Square</a></li> <li><a href="/wiki/Square_triangular_number" title="Square triangular number">Square triangular</a></li> <li><a href="/wiki/Pentagonal_number" title="Pentagonal number">Pentagonal</a></li> <li><a href="/wiki/Hexagonal_number" title="Hexagonal number">Hexagonal</a></li> <li><a href="/wiki/Heptagonal_number" title="Heptagonal number">Heptagonal</a></li> <li><a href="/wiki/Octagonal_number" title="Octagonal number">Octagonal</a></li> <li><a href="/wiki/Nonagonal_number" title="Nonagonal number">Nonagonal</a></li> <li><a href="/wiki/Decagonal_number" title="Decagonal number">Decagonal</a></li> <li><a href="/wiki/Dodecagonal_number" title="Dodecagonal number">Dodecagonal</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Three-dimensional_space" title="Three-dimensional space">3-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Centered_polyhedral_number" title="Centered polyhedral number">centered</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centered_tetrahedral_number" title="Centered tetrahedral number">Centered tetrahedral</a></li> <li><a href="/wiki/Centered_cube_number" title="Centered cube number">Centered cube</a></li> <li><a href="/wiki/Centered_octahedral_number" title="Centered octahedral number">Centered octahedral</a></li> <li><a href="/wiki/Centered_dodecahedral_number" title="Centered dodecahedral number">Centered dodecahedral</a></li> <li><a href="/wiki/Centered_icosahedral_number" title="Centered icosahedral number">Centered icosahedral</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polyhedral_number" class="mw-redirect" title="Polyhedral number">non-centered</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tetrahedral_number" title="Tetrahedral number">Tetrahedral</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cubic</a></li> <li><a href="/wiki/Octahedral_number" title="Octahedral number">Octahedral</a></li> <li><a href="/wiki/Dodecahedral_number" title="Dodecahedral number">Dodecahedral</a></li> <li><a href="/wiki/Icosahedral_number" title="Icosahedral number">Icosahedral</a></li> <li><a href="/wiki/Stella_octangula_number" title="Stella octangula number">Stella octangula</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Pyramidal_number" title="Pyramidal number">pyramidal</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Square_pyramidal_number" title="Square pyramidal number">Square pyramidal</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Four-dimensional_space" title="Four-dimensional space">4-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">non-centered</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pentatope_number" title="Pentatope number">Pentatope</a></li> <li><a href="/wiki/Squared_triangular_number" title="Squared triangular number">Squared triangular</a></li> <li><a href="/wiki/Fourth_power" title="Fourth power">Tesseractic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Combinatorial_numbers" style="font-size:114%;margin:0 4em">Combinatorial numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_number" title="Bell number">Bell</a></li> <li><a href="/wiki/Cake_number" title="Cake number">Cake</a></li> <li><a href="/wiki/Catalan_number" title="Catalan number">Catalan</a></li> <li><a href="/wiki/Dedekind_number" title="Dedekind number">Dedekind</a></li> <li><a href="/wiki/Delannoy_number" title="Delannoy number">Delannoy</a></li> <li><a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler</a></li> <li><a href="/wiki/Eulerian_number" title="Eulerian number">Eulerian</a></li> <li><a href="/wiki/Fuss%E2%80%93Catalan_number" title="Fuss–Catalan number">Fuss–Catalan</a></li> <li><a href="/wiki/Lah_number" title="Lah number">Lah</a></li> <li><a href="/wiki/Lazy_caterer%27s_sequence" title="Lazy caterer's sequence">Lazy caterer's sequence</a></li> <li><a href="/wiki/Lobb_number" title="Lobb number">Lobb</a></li> <li><a href="/wiki/Motzkin_number" title="Motzkin number">Motzkin</a></li> <li><a href="/wiki/Narayana_number" title="Narayana number">Narayana</a></li> <li><a href="/wiki/Ordered_Bell_number" title="Ordered Bell number">Ordered Bell</a></li> <li><a href="/wiki/Schr%C3%B6der_number" title="Schröder number">Schröder</a></li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Hipparchus_number" title="Schröder–Hipparchus number">Schröder–Hipparchus</a></li> <li><a href="/wiki/Stirling_numbers_of_the_first_kind" title="Stirling numbers of the first kind">Stirling first</a></li> <li><a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling second</a></li> <li><a href="/wiki/Telephone_number_(mathematics)" title="Telephone number (mathematics)">Telephone number</a></li> <li><a href="/wiki/Wedderburn%E2%80%93Etherington_number" title="Wedderburn–Etherington number">Wedderburn–Etherington</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Primes" style="font-size:114%;margin:0 4em"><a href="/wiki/Prime_number" title="Prime number">Primes</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wieferich_prime#Wieferich_numbers" title="Wieferich prime">Wieferich</a></li> <li><a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun</a></li> <li><a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme prime</a></li> <li><a href="/wiki/Wilson_prime#Wilson_numbers" title="Wilson prime">Wilson</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Pseudoprimes" style="font-size:114%;margin:0 4em"><a href="/wiki/Pseudoprime" title="Pseudoprime">Pseudoprimes</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carmichael_number" title="Carmichael number">Carmichael number</a></li> <li><a href="/wiki/Catalan_pseudoprime" title="Catalan pseudoprime">Catalan pseudoprime</a></li> <li><a href="/wiki/Elliptic_pseudoprime" title="Elliptic pseudoprime">Elliptic pseudoprime</a></li> <li><a href="/wiki/Euler_pseudoprime" title="Euler pseudoprime">Euler pseudoprime</a></li> <li><a href="/wiki/Euler%E2%80%93Jacobi_pseudoprime" title="Euler–Jacobi pseudoprime">Euler–Jacobi pseudoprime</a></li> <li><a href="/wiki/Fermat_pseudoprime" title="Fermat pseudoprime">Fermat pseudoprime</a></li> <li><a href="/wiki/Frobenius_pseudoprime" title="Frobenius pseudoprime">Frobenius pseudoprime</a></li> <li><a href="/wiki/Lucas_pseudoprime" title="Lucas pseudoprime">Lucas pseudoprime</a></li> <li><a href="/wiki/Lucas%E2%80%93Carmichael_number" title="Lucas–Carmichael number">Lucas–Carmichael number</a></li> <li><a href="/wiki/Perrin_number#Perrin_primality_test" title="Perrin number">Perrin pseudoprime</a></li> <li><a href="/wiki/Somer%E2%80%93Lucas_pseudoprime" title="Somer–Lucas pseudoprime">Somer–Lucas pseudoprime</a></li> <li><a href="/wiki/Strong_pseudoprime" title="Strong pseudoprime">Strong pseudoprime</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Arithmetic_functions_and_dynamics" style="font-size:114%;margin:0 4em"><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a> and <a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">dynamics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Divisor_function" title="Divisor function">Divisor functions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></li> <li><a href="/wiki/Almost_perfect_number" title="Almost perfect number">Almost perfect</a></li> <li><a href="/wiki/Arithmetic_number" title="Arithmetic number">Arithmetic</a></li> <li><a href="/wiki/Betrothed_numbers" title="Betrothed numbers">Betrothed</a></li> <li><a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a></li> <li><a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></li> <li><a href="/wiki/Descartes_number" title="Descartes number">Descartes</a></li> <li><a href="/wiki/Hemiperfect_number" title="Hemiperfect number">Hemiperfect</a></li> <li><a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite</a></li> <li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect</a></li> <li><a class="mw-selflink selflink">Perfect</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></li> <li><a href="/wiki/Quasiperfect_number" title="Quasiperfect number">Quasiperfect</a></li> <li><a href="/wiki/Refactorable_number" title="Refactorable number">Refactorable</a></li> <li><a href="/wiki/Semiperfect_number" title="Semiperfect number">Semiperfect</a></li> <li><a href="/wiki/Sublime_number" title="Sublime number">Sublime</a></li> <li><a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a></li> <li><a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">Superior highly composite</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Prime_omega_function" title="Prime omega function">Prime omega functions</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_prime" title="Almost prime">Almost prime</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Euler%27s_totient_function" title="Euler's totient function">Euler's totient function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Highly_cototient_number" title="Highly cototient number">Highly cototient</a></li> <li><a href="/wiki/Highly_totient_number" title="Highly totient number">Highly totient</a></li> <li><a href="/wiki/Noncototient" title="Noncototient">Noncototient</a></li> <li><a href="/wiki/Nontotient" title="Nontotient">Nontotient</a></li> <li><a href="/wiki/Perfect_totient_number" title="Perfect totient number">Perfect totient</a></li> <li><a href="/wiki/Sparsely_totient_number" title="Sparsely totient number">Sparsely totient</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aliquot_sequence" title="Aliquot sequence">Aliquot sequences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amicable_numbers" title="Amicable numbers">Amicable</a></li> <li><a class="mw-selflink selflink">Perfect</a></li> <li><a href="/wiki/Sociable_numbers" class="mw-redirect" title="Sociable numbers">Sociable</a></li> <li><a href="/wiki/Untouchable_number" title="Untouchable number">Untouchable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Primorial" title="Primorial">Primorial</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euclid_number" title="Euclid number">Euclid</a></li> <li><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Other_prime_factor_or_divisor_related_numbers" style="font-size:114%;margin:0 4em">Other <a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">prime factor</a> or <a href="/wiki/Divisor" title="Divisor">divisor</a> related numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blum_integer" title="Blum integer">Blum</a></li> <li><a href="/wiki/Cyclic_number_(group_theory)" title="Cyclic number (group theory)">Cyclic</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Nicolas_number" title="Erdős–Nicolas number">Erdős–Nicolas</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Woods_number" title="Erdős–Woods number">Erdős–Woods</a></li> <li><a href="/wiki/Friendly_number" title="Friendly number">Friendly</a></li> <li><a href="/wiki/Giuga_number" title="Giuga number">Giuga</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor</a></li> <li><a href="/wiki/Jordan%E2%80%93P%C3%B3lya_number" title="Jordan–Pólya number">Jordan–Pólya</a></li> <li><a href="/wiki/Lucas%E2%80%93Carmichael_number" title="Lucas–Carmichael number">Lucas–Carmichael</a></li> <li><a href="/wiki/Pronic_number" title="Pronic number">Pronic</a></li> <li><a href="/wiki/Regular_number" title="Regular number">Regular</a></li> <li><a href="/wiki/Rough_number" title="Rough number">Rough</a></li> <li><a href="/wiki/Smooth_number" title="Smooth number">Smooth</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic</a></li> <li><a href="/wiki/St%C3%B8rmer_number" title="Størmer number">Størmer</a></li> <li><a href="/wiki/Super-Poulet_number" title="Super-Poulet number">Super-Poulet</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Numeral_system-dependent_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Numeral_system" title="Numeral system">Numeral system</a>-dependent numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a> <br />and <a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">dynamics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Persistence_of_a_number" title="Persistence of a number">Persistence</a> <ul><li><a href="/wiki/Additive_persistence" class="mw-redirect" title="Additive persistence">Additive</a></li> <li><a href="/wiki/Multiplicative_persistence" class="mw-redirect" title="Multiplicative persistence">Multiplicative</a></li></ul></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Digit_sum" title="Digit sum">Digit sum</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Digit_sum" title="Digit sum">Digit sum</a></li> <li><a href="/wiki/Digital_root" title="Digital root">Digital root</a></li> <li><a href="/wiki/Self_number" title="Self number">Self</a></li> <li><a href="/wiki/Sum-product_number" title="Sum-product number">Sum-product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Digit product</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Multiplicative_digital_root" title="Multiplicative digital root">Multiplicative digital root</a></li> <li><a href="/wiki/Sum-product_number" title="Sum-product number">Sum-product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Coding-related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Meertens_number" title="Meertens number">Meertens</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dudeney_number" title="Dudeney number">Dudeney</a></li> <li><a href="/wiki/Factorion" title="Factorion">Factorion</a></li> <li><a href="/wiki/Kaprekar_number" title="Kaprekar number">Kaprekar</a></li> <li><a href="/wiki/Kaprekar%27s_routine" title="Kaprekar's routine">Kaprekar's constant</a></li> <li><a href="/wiki/Keith_number" title="Keith number">Keith</a></li> <li><a href="/wiki/Lychrel_number" title="Lychrel number">Lychrel</a></li> <li><a href="/wiki/Narcissistic_number" title="Narcissistic number">Narcissistic</a></li> <li><a href="/wiki/Perfect_digit-to-digit_invariant" title="Perfect digit-to-digit invariant">Perfect digit-to-digit invariant</a></li> <li><a href="/wiki/Perfect_digital_invariant" title="Perfect digital invariant">Perfect digital invariant</a> <ul><li><a href="/wiki/Happy_number" title="Happy number">Happy</a></li></ul></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers">P-adic numbers</a>-related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automorphic_number" title="Automorphic number">Automorphic</a> <ul><li><a href="/wiki/Trimorphic_number" class="mw-redirect" title="Trimorphic number">Trimorphic</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_digit" title="Numerical digit">Digit</a>-composition related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Palindromic_number" title="Palindromic number">Palindromic</a></li> <li><a href="/wiki/Pandigital_number" title="Pandigital number">Pandigital</a></li> <li><a href="/wiki/Repdigit" title="Repdigit">Repdigit</a></li> <li><a href="/wiki/Repunit" title="Repunit">Repunit</a></li> <li><a href="/wiki/Self-descriptive_number" title="Self-descriptive number">Self-descriptive</a></li> <li><a href="/wiki/Smarandache%E2%80%93Wellin_number" title="Smarandache–Wellin number">Smarandache–Wellin</a></li> <li><a href="/wiki/Undulating_number" title="Undulating number">Undulating</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Digit-<a href="/wiki/Permutation" title="Permutation">permutation</a> related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cyclic_number" title="Cyclic number">Cyclic</a></li> <li><a href="/wiki/Digit-reassembly_number" title="Digit-reassembly number">Digit-reassembly</a></li> <li><a href="/wiki/Parasitic_number" title="Parasitic number">Parasitic</a></li> <li><a href="/wiki/Primeval_number" title="Primeval number">Primeval</a></li> <li><a href="/wiki/Transposable_integer" title="Transposable integer">Transposable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisor-related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidigital_number" title="Equidigital number">Equidigital</a></li> <li><a href="/wiki/Extravagant_number" title="Extravagant number">Extravagant</a></li> <li><a href="/wiki/Frugal_number" title="Frugal number">Frugal</a></li> <li><a href="/wiki/Harshad_number" title="Harshad number">Harshad</a></li> <li><a href="/wiki/Polydivisible_number" title="Polydivisible number">Polydivisible</a></li> <li><a href="/wiki/Smith_number" title="Smith number">Smith</a></li> <li><a href="/wiki/Vampire_number" title="Vampire number">Vampire</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Friedman_number" title="Friedman number">Friedman</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Binary_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Binary_number" title="Binary number">Binary numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Evil_number" title="Evil number">Evil</a></li> <li><a href="/wiki/Odious_number" title="Odious number">Odious</a></li> <li><a href="/wiki/Pernicious_number" title="Pernicious number">Pernicious</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Generated_via_a_sieve" style="font-size:114%;margin:0 4em">Generated via a <a href="/wiki/Sieve_theory" title="Sieve theory">sieve</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lucky_number" title="Lucky number">Lucky</a></li> <li><a href="/wiki/Generation_of_primes" title="Generation of primes">Prime</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Sorting_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Sorting_algorithm" title="Sorting algorithm">Sorting</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pancake_sorting" title="Pancake sorting">Pancake number</a></li> <li><a href="/wiki/Sorting_number" title="Sorting number">Sorting number</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Natural_language_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Natural_language" title="Natural language">Natural language</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aronson%27s_sequence" title="Aronson's sequence">Aronson's sequence</a></li> <li><a href="/wiki/Ban_number" title="Ban number">Ban</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Graphemics_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Graphemics" title="Graphemics">Graphemics</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Strobogrammatic_number" title="Strobogrammatic number">Strobogrammatic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2" style="font-weight:bold;"><div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q170043#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/7683309-4">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐fb7ms Cached time: 20241124160852 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.956 seconds Real time usage: 1.213 seconds Preprocessor visited node count: 5675/1000000 Post‐expand include size: 249750/2097152 bytes Template argument size: 4752/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 236899/5000000 bytes Lua time usage: 0.555/10.000 seconds Lua memory usage: 21153264/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 934.921 1 -total 38.52% 360.124 2 Template:Reflist 17.19% 160.745 35 Template:Cite_journal 10.01% 93.602 6 Template:Cite_web 9.96% 93.091 1 Template:Lang 9.40% 87.927 8 Template:Navbox 8.14% 76.067 1 Template:Divisor_classes 7.82% 73.098 1 Template:Short_description 5.11% 47.749 2 Template:Pagetype 5.01% 46.818 2 Template:Harv --> <!-- Saved in parser cache with key enwiki:pcache:idhash:23670-0!canonical and timestamp 20241124160852 and revision id 1252474036. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Perfect_number&oldid=1252474036">https://en.wikipedia.org/w/index.php?title=Perfect_number&oldid=1252474036</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Divisor_function" title="Category:Divisor function">Divisor function</a></li><li><a href="/wiki/Category:Integer_sequences" title="Category:Integer sequences">Integer sequences</a></li><li><a href="/wiki/Category:Unsolved_problems_in_number_theory" title="Category:Unsolved problems in number theory">Unsolved problems in number theory</a></li><li><a href="/wiki/Category:Mersenne_primes" title="Category:Mersenne primes">Mersenne primes</a></li><li><a href="/wiki/Category:Perfect_numbers" title="Category:Perfect numbers">Perfect numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_interwiki-linked_names" title="Category:CS1 interwiki-linked names">CS1 interwiki-linked names</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_Ancient_Greek_(to_1453)-language_text" title="Category:Articles containing Ancient Greek (to 1453)-language text">Articles containing Ancient Greek (to 1453)-language text</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_October_2024" title="Category:Articles containing potentially dated statements from October 2024">Articles containing potentially dated statements from October 2024</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 October 2024, at 14:36<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Perfect_number&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-68pwz","wgBackendResponseTime":189,"wgPageParseReport":{"limitreport":{"cputime":"0.956","walltime":"1.213","ppvisitednodes":{"value":5675,"limit":1000000},"postexpandincludesize":{"value":249750,"limit":2097152},"templateargumentsize":{"value":4752,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":236899,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 934.921 1 -total"," 38.52% 360.124 2 Template:Reflist"," 17.19% 160.745 35 Template:Cite_journal"," 10.01% 93.602 6 Template:Cite_web"," 9.96% 93.091 1 Template:Lang"," 9.40% 87.927 8 Template:Navbox"," 8.14% 76.067 1 Template:Divisor_classes"," 7.82% 73.098 1 Template:Short_description"," 5.11% 47.749 2 Template:Pagetype"," 5.01% 46.818 2 Template:Harv"]},"scribunto":{"limitreport-timeusage":{"value":"0.555","limit":"10.000"},"limitreport-memusage":{"value":21153264,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBibbyVynckeZelinsky2021\"] = 1,\n [\"CITEREFChenTang2014\"] = 1,\n [\"CITEREFCohen1978\"] = 1,\n [\"CITEREFCohen1987\"] = 1,\n [\"CITEREFCohenWilliams1985\"] = 1,\n [\"CITEREFDavid_Eugene_Smith1925\"] = 1,\n [\"CITEREFDickson1919\"] = 4,\n [\"CITEREFFletcherNielsenOchem2012\"] = 1,\n [\"CITEREFGallardo2010\"] = 1,\n [\"CITEREFGotoOhno,_Y2008\"] = 1,\n [\"CITEREFGraeme_Clayton,_Cody_Hansen2023\"] = 1,\n [\"CITEREFGrimes\"] = 1,\n [\"CITEREFHagis1973\"] = 1,\n [\"CITEREFHagisMcDaniel1972\"] = 1,\n [\"CITEREFHornfeck1955\"] = 1,\n [\"CITEREFIannucci1999\"] = 1,\n [\"CITEREFIannucci2000\"] = 1,\n [\"CITEREFJonesLord1999\"] = 1,\n [\"CITEREFKanold1941\"] = 1,\n [\"CITEREFKanold1950\"] = 1,\n [\"CITEREFKanold1956\"] = 1,\n [\"CITEREFKonyaginAcquaah2012\"] = 1,\n [\"CITEREFKühnel1950\"] = 1,\n [\"CITEREFMakowski1962\"] = 1,\n [\"CITEREFMcDaniel1970\"] = 1,\n [\"CITEREFMcDanielHagis1975\"] = 1,\n [\"CITEREFNadis2020\"] = 1,\n [\"CITEREFNielsen2003\"] = 1,\n [\"CITEREFNielsen2007\"] = 1,\n [\"CITEREFNielsen2015\"] = 1,\n [\"CITEREFOchemRao2012\"] = 1,\n [\"CITEREFOchemRao2014\"] = 1,\n [\"CITEREFPeterson2002\"] = 1,\n [\"CITEREFPickover2001\"] = 1,\n [\"CITEREFPomeranceLuca2010\"] = 1,\n [\"CITEREFRedmond1996\"] = 1,\n [\"CITEREFRoberts2008\"] = 1,\n [\"CITEREFRogers2015\"] = 1,\n [\"CITEREFSteuerwald\"] = 1,\n [\"CITEREFSuryanarayana1963\"] = 1,\n [\"CITEREFSándorCrstici2004\"] = 1,\n [\"CITEREFYamada2019\"] = 1,\n [\"CITEREFYan2012\"] = 1,\n [\"CITEREFZelinsky2019\"] = 1,\n [\"CITEREFZelinsky2021\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 5,\n [\"About\"] = 1,\n [\"As of\"] = 1,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 1,\n [\"Citation\"] = 1,\n [\"Cite book\"] = 9,\n [\"Cite conference\"] = 1,\n [\"Cite journal\"] = 35,\n [\"Cite news\"] = 1,\n [\"Cite web\"] = 6,\n [\"Classes of natural numbers\"] = 1,\n [\"DEFAULTSORT:Perfect Number\"] = 1,\n [\"Divisor classes\"] = 1,\n [\"Efn\"] = 1,\n [\"Em\"] = 3,\n [\"Euler_diagram_numbers_with_many_divisors.svg\"] = 1,\n [\"Harv\"] = 2,\n [\"Lang\"] = 1,\n [\"MacTutor Biography\"] = 1,\n [\"Math\"] = 6,\n [\"Mathworld\"] = 2,\n [\"Mvar\"] = 13,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 15,\n [\"OEIS\"] = 1,\n [\"OEIS el\"] = 1,\n [\"Oeis\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 1,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Sub\"] = 1,\n [\"Sup\"] = 2,\n [\"Unsolved\"] = 2,\n [\"Webarchive\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-fb7ms","timestamp":"20241124160852","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Perfect number","url":"https:\/\/en.wikipedia.org\/wiki\/Perfect_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q170043","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q170043","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-08-07T18:39:26Z","dateModified":"2024-10-21T14:36:33Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/db\/Perfect_number_Cuisenaire_rods_6_exact.svg","headline":"positive integer which equals the sum of all its divisors"}</script> </body> </html>