CINXE.COM

Search results for: intensity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: intensity</title> <meta name="description" content="Search results for: intensity"> <meta name="keywords" content="intensity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="intensity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="intensity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1802</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: intensity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1802</span> Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divvela%20Vishnu%20Sai%20Kumar">Divvela Vishnu Sai Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Arora"> Deepak Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheenu%20Rizvi"> Sheenu Rizvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimating%20cyclone%20intensity" title="estimating cyclone intensity">estimating cyclone intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution%20neural%20network" title=" convolution neural network"> convolution neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20models" title=" prediction models"> prediction models</a> </p> <a href="https://publications.waset.org/abstracts/163095/estimating-cyclone-intensity-using-insat-3d-ir-images-based-on-convolution-neural-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1801</span> Comparative Study of Sound Intensity in Individuals Diagnosed with Antisocial Personality Disorder and Normal People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Warmilee">Nadia Warmilee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is s descriptive-analytical research and it aims at studying sound intensity in individuals with antisocial personality disorder and ordinary persons. Data were collected from experimental and control groups by interviews and a field research. Population was all male Iranian with antisocial personality disorder that three of them (a murderer and two individuals with antisocial personality disorder (APD) who have not committed any crimes yet) were selected purposefully. They were compared to three non-affected people. PRAAT software has been used to analyze the data. Results of this study show that there is a significant relationship between dysthymia and sound intensity values. Antisocial personality disorder also affects sound intensity fluctuations. The values of sound intensity are higher in non-affected people than affected one whilst these values are more monotonous. T-test was used to study significance or in significance of sound intensity difference in producing vowels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acoustics" title="Acoustics">Acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=Sound%20Intensity" title=" Sound Intensity"> Sound Intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=Antisocial%20Personality%20Disorder" title=" Antisocial Personality Disorder"> Antisocial Personality Disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=Psycholinguistics" title=" Psycholinguistics"> Psycholinguistics</a> </p> <a href="https://publications.waset.org/abstracts/166358/comparative-study-of-sound-intensity-in-individuals-diagnosed-with-antisocial-personality-disorder-and-normal-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1800</span> Simplified Linearized Layering Method for Stress Intensity Factor Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeries%20J.%20Abou-Hanna">Jeries J. Abou-Hanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20Storm"> Bradley Storm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20linearization" title=" stress linearization"> stress linearization</a> </p> <a href="https://publications.waset.org/abstracts/146820/simplified-linearized-layering-method-for-stress-intensity-factor-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1799</span> Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Makuteniene">D. Makuteniene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants%20of%20intensity" title=" determinants of intensity"> determinants of intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a> </p> <a href="https://publications.waset.org/abstracts/97199/determinants-of-intensity-of-greenhouse-gas-emission-in-lithuanian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1798</span> Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Arkoazi">Ahmed Arkoazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Znad"> Hussein Znad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjeet%20Utikar"> Ranjeet Utikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synergistic impact and optimization of gas flow rate, concentration of CO<sub>2</sub>, and light intensity on CO<sub>2</sub> biofixation rate were investigated using wastewater as a medium to cultivate <em>Chlorella vulgaris</em> under different conditions (gas flow rate 1-8 L/min), CO<sub>2</sub> concentration (0.03-7%), and light intensity (150-400 &micro;mol/m<sup>2</sup>.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO<sub>2</sub> concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO<sub>2</sub>, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 &micro;mol/m<sup>2</sup>.s, and 0.904, respectively. The highest amount of biomass produced and CO<sub>2</sub> biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL<sup>-1</sup>d<sup>-1</sup>, respectively. The synergistic effect between gas flow rate and concentration of CO<sub>2</sub>, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO<sub>2</sub> concentration and light intensity was less significant on CO<sub>2</sub> biofixation rate. The results of this study could be highly helpful when using microalgae for CO<sub>2</sub> biofixation in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column%20reactor" title="bubble column reactor">bubble column reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20holdup" title=" gas holdup"> gas holdup</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sparger" title=" sparger"> sparger</a> </p> <a href="https://publications.waset.org/abstracts/112244/synergistic-impacts-and-optimization-of-gas-flow-rate-concentration-of-co2-and-light-intensity-on-co2-biofixation-in-wastewater-medium-by-chlorella-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1797</span> Effect of Freight Transport Intensity on Firm Performance: Mediating Role of Operational Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bonaventure%20Naab%20Dery">Bonaventure Naab Dery</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Muntaka%20Samad"> Abdul Muntaka Samad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past two decades, huge population growth has been recorded in developing countries. Thisled to an increase in the demand for transport services for human and merchandises. The study sought to examine the effect of freight transport intensity on firm performance. Among others, this study sought to examine the link between freight transport intensity and firm performance; the link between operational capability and firm performance, and the mediating role of operational capability on the relationship between freight transport intensity and firm performance. The study used a descriptive research design and a quantitative research approach. Questionnaireswereusedfor the data collection through snowball sampling and purposive sampling. SPSS and Mplus are being used to analyze the data. It is anticipated that, when the data is analyzed, it would validate the hypotheses that have been proposed by the researchers. Base on the findings, relevant recommendations would be made for managerial implications and future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20transport%20intensity" title="freight transport intensity">freight transport intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20economy%20transport%20intensity" title=" freight economy transport intensity"> freight economy transport intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20efficiency%20transport%20intensity" title=" freight efficiency transport intensity"> freight efficiency transport intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20capability" title=" operational capability"> operational capability</a>, <a href="https://publications.waset.org/abstracts/search?q=firm%20performance" title=" firm performance"> firm performance</a> </p> <a href="https://publications.waset.org/abstracts/155103/effect-of-freight-transport-intensity-on-firm-performance-mediating-role-of-operational-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1796</span> Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Takhchi">Jamal Takhchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20intensity" title="structural intensity">structural intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=NVH" title=" NVH"> NVH</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20in%20white" title=" body in white"> body in white</a>, <a href="https://publications.waset.org/abstracts/search?q=irrotatational%20intensity" title=" irrotatational intensity"> irrotatational intensity</a> </p> <a href="https://publications.waset.org/abstracts/142155/vibration-propagation-in-body-in-white-structures-through-structural-intensity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1795</span> Estimation of Stress Intensity Factors from near Crack Tip Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20He">Zhuang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title=" stress intensity factors"> stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20effects" title=" three-dimensional effects"> three-dimensional effects</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20displacement" title=" transverse displacement"> transverse displacement</a> </p> <a href="https://publications.waset.org/abstracts/32294/estimation-of-stress-intensity-factors-from-near-crack-tip-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1794</span> Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bekbaev">A. Bekbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dzhamanbaev"> M. Dzhamanbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Abitaeva"> R. Abitaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Karbozova"> A. Karbozova</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nabyeva"> G. Nabyeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20lines" title="power lines">power lines</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20wire%20dancing" title=" line wire dancing"> line wire dancing</a>, <a href="https://publications.waset.org/abstracts/search?q=dancing%20intensity" title=" dancing intensity"> dancing intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20equation" title=" regression equation"> regression equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dancing%20area%20intensity" title=" dancing area intensity"> dancing area intensity</a> </p> <a href="https://publications.waset.org/abstracts/41088/estimate-of-maximum-expected-intensity-of-one-half-wave-lines-dancing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1793</span> Trajectories of Physical Activity Intensity and Associated Factors in Men and Women from Elsa-Brasil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Luis%20Messias%20Dos%20Santos%20Duque">André Luis Messias Dos Santos Duque</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Polessa%20Paula"> Daniela Polessa Paula</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosane%20Harter%20Griep"> Rosane Harter Griep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensity of physical activity (PA) over time is essential for health promotion. However, there are few studies that have analyzed the practice of different intensities of PA longitudinally. The objective was to identify PA intensity trajectories in men and women from a Brazilian multicentric cohort and their associated factors. Data from 10,367 participants (5,777 women and 4,590 men) aged 35 to 74 years from the baseline and two follow-up visits (2012-2014 and 2017-2019) of the Longitudinal Study of Adult Health (ELSA-Brasil) were analyzed. PA intensity (low, moderate, or high) was assessed using the leisure-time PA module of the International Physical Activity Questionnaire (IPAQ), and sociodemographic, behavioral, and clinical variables were included. Chi-square and T-student tests were used, considering a significant level of 5%. Four intensity trajectories were identified: low, moderate, high, and no pattern. Most participants (82.5% of women and 75.7% of men) had low PA intensity trajectories, and only 2% of women and 4.8% of men had high PA intensity trajectories. For both sexes, a significant difference (p<0.05) was found for age group, education level, income, smoking, type 2 diabetes, obesity, hypertriglyceridemia, and hypertension. Actions that promote the practice of high-intensity PA over time and consider sociodemographic, clinical, and behavioral factors are necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifestyle" title="lifestyle">lifestyle</a>, <a href="https://publications.waset.org/abstracts/search?q=longterm%20effects" title=" longterm effects"> longterm effects</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=socioeconomic%20factors" title=" socioeconomic factors"> socioeconomic factors</a> </p> <a href="https://publications.waset.org/abstracts/192370/trajectories-of-physical-activity-intensity-and-associated-factors-in-men-and-women-from-elsa-brasil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1792</span> Vibration Propagation in Structures Through Structural Intensity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takhchi%20Jamal">Takhchi Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouisse%20Morvan"> Ouisse Morvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadoulet-Reboul%20Emeline"> Sadoulet-Reboul Emeline</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhaddi%20Noureddine"> Bouhaddi Noureddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagliardini%20Laurent"> Gagliardini Laurent</a>, <a href="https://publications.waset.org/abstracts/search?q=Bornet%20Frederic"> Bornet Frederic</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakrad%20Faouzi"> Lakrad Faouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20intensity" title="structural intensity">structural intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20flow" title=" power flow"> power flow</a>, <a href="https://publications.waset.org/abstracts/search?q=helmholt%20decomposition" title=" helmholt decomposition"> helmholt decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=irrotational%20intensity" title=" irrotational intensity"> irrotational intensity</a> </p> <a href="https://publications.waset.org/abstracts/143536/vibration-propagation-in-structures-through-structural-intensity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1791</span> Cardiometabolic Risk Factors Responses to Supplemental High Intensity Exercise in Middle School Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Chandler">R. M. Chandler</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Stringer"> A. J. Stringer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In adults, short bursts of high-intensity exercise (intensities between 80-95% of maximum heart rates) increase cardiovascular and metabolic function without the time investment of traditional aerobic training. Similar improvements in various health indices are also becoming increasingly evident in children in countries other than the United States. In the United States, physical education programs have become shorter in length and fewer in frequency. With this in the background, it is imperative that health and physical educators delivered well-organized and focused fitness programs that can be tolerated across many different somatotypes. Perhaps the least effective lag-time in a US physical education (PE) class is the first 10 minutes, a time during which children warm up. Replacing a traditional PE warmup with a 10 min high-intensity excise protocol is a time-efficient method to impact health, leaving as much time for other PE material such as skill development, motor behavior development as possible. This supplemented 10 min high-intensity exercise increases cardiovascular function as well as induces favorable body composition changes in as little as six weeks with further enhancement throughout a semester of activity. The supplemental high-intensity exercise did not detract from the PE lesson outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20fitness" title="cardiovascular fitness">cardiovascular fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20intensity%20interval%20training" title=" high intensity interval training"> high intensity interval training</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20intensity%20exercise" title=" high intensity exercise"> high intensity exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric" title=" pediatric"> pediatric</a> </p> <a href="https://publications.waset.org/abstracts/95508/cardiometabolic-risk-factors-responses-to-supplemental-high-intensity-exercise-in-middle-school-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1790</span> Assessment of Acute Cardiovascular Responses to Moderate and Vigorous Intensity Aerobic Exercises in Sedentary Adults and Amateur Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caner%20Yilmaz">Caner Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuhal%20Didem%20Takinaci"> Zuhal Didem Takinaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Today, our knowledge about the effects of physical activity performed at the different intensity of the cardiovascular system are still not clear. Therefore, to contribute to the literature, in our study, sedentary individuals and amateur athletes were assessed in a single session with the aim of evaluating the cardiovascular effects of the moderate and severe exercise. Methods: 80 participants (40 amateur athletes and 40 sedentary, young adults) participated in our study. Participants were divided into two groups: amateur athletes (mean age: 25.0 ± 3.6 yrs) and sedentary in group II (mean age: 23.8 ± 3.7 yrs). Participants in both groups were assessed twice, namely, firstly, at moderate intensity (5km/h 30 min. walking) and secondly at the vigorous intensity (8km/h 20 min. jogging). Participants’ SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), HR (Heart Rate), SpO₂ (Oxygen Saturation), BT (Body Temperature) and RR (Respiratory Rate) were measured. Results: In our study, the findings showed that after moderate-intensity aerobic exercise, change in SBP, DBP, and SpO₂ were significantly higher in Group II (p < 0.05). After the severe intensity aerobic exercises, change in SBP, SpO₂, HR, and RR was significantly higher in Group II (p < 0.05). The BORG score of Group II was significantly higher after both moderate and severe intensity aerobic exercise (p < 0.05). Conclusion: The cardiovascular responses of amateur athletes were closer to initial values, and the differences between the two groups were increased in direct proportion to the intensity of the exercise. Both exercise intensities could be adequate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic" title="aerobic">aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=sedantary" title=" sedantary"> sedantary</a>, <a href="https://publications.waset.org/abstracts/search?q=cardi%CC%87ovascular" title=" cardi̇ovascular"> cardi̇ovascular</a> </p> <a href="https://publications.waset.org/abstracts/87153/assessment-of-acute-cardiovascular-responses-to-moderate-and-vigorous-intensity-aerobic-exercises-in-sedentary-adults-and-amateur-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1789</span> The Analysis of New Town Hillside Development Pattern Guided by Low-Intensity Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Zhou">Shan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenju%20Li"> Wenju Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehui%20Chai"> Kehui Chai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with economic globalization, marketization and regional development, strengthen planning and construction of the New Town, which is always the main way to optimize the structure and function of metropolitan spatial configuration. But, the new town is often of high-intensity development, bringing a series of natural, ecological and environmental issues, so it is difficult to achieve sustainable development. In this paper, taking the administrative center of Jiangping in Dongxing as an example. It is analyzed from the following three aspects:Vertical design of road traffic,Space layout of mountain buildings,and the design of landscape. The purpose is to elaborate the hillside design methods guided by low-intensity damage, and explore the guiding significance of sustainable development of the hillside construction in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-intensity%20damage" title="low-intensity damage">low-intensity damage</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20town%20construction%EF%BC%8Chillside%EF%BC%8Csustainable%20development" title=" new town construction,hillside,sustainable development"> new town construction,hillside,sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a> </p> <a href="https://publications.waset.org/abstracts/30503/the-analysis-of-new-town-hillside-development-pattern-guided-by-low-intensity-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1788</span> Systolic Blood Pressure Responses to Aerobic Exercise among HIV Positive Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ka%27abu%20Mu%27azu">Ka&#039;abu Mu&#039;azu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examines the effect of varied intensities of aerobic exercise on Systolic Blood Pressure (SBP) among HIV/AIDS positive patients. Participants of mean age of 20.4 years were randomized into four groups. High Intensity Group (HIG), Moderate Intensity Group (MIG), Low Intensity Group (LIG) and Control Group (COG). SBP was measured at baseline (pre-exercise) and post-exercise (8 weeks). Analysis of variance (ANOVA) indicates a significant training effect on resting values of SBP (F [3, 15] = 8.9, P < 0.05). Sheffe post hoc analysis indicated that both HIG and MIG significantly differ from control (P < 0.05). Dependent t- test indicates difference in HIG (t [7] = 6.5, P < 0.05) and slightly in MIG (t [7] = 5.4, P < 0.05). The study concluded that aerobic exercise is effective in reducing resting values of SBP particularly the activities that are high intensity in nature. The study recommends that high and moderate intensity aerobic exercise should be used for improving health condition of HIV/AIDS patients as regard to decrease in resting value of SBP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=systolic%20blood%20pressure" title="systolic blood pressure">systolic blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobic%20exercise" title=" aerobic exercise"> aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV%20patients" title=" HIV patients"> HIV patients</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20sciences" title=" health sciences"> health sciences</a> </p> <a href="https://publications.waset.org/abstracts/4269/systolic-blood-pressure-responses-to-aerobic-exercise-among-hiv-positive-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1787</span> High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Song">Jiahui Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20P.%20Joshi"> Ravindra P. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action%20potential" title="action potential">action potential</a>, <a href="https://publications.waset.org/abstracts/search?q=electroporation" title=" electroporation"> electroporation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-intensity" title=" high-intensity"> high-intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=short-duration" title=" short-duration"> short-duration</a> </p> <a href="https://publications.waset.org/abstracts/89607/high-intensity-short-duration-electric-pulses-induced-action-potential-in-animal-nerves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1786</span> Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edgardo%20V.%20Gubatanga%20Jr.">Edgardo V. Gubatanga Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Joshua%20Salvacion"> Mark Joshua Salvacion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20LiDAR" title="aerial LiDAR">aerial LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=colorization" title=" colorization"> colorization</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity%20images" title=" intensity images"> intensity images</a> </p> <a href="https://publications.waset.org/abstracts/94116/application-of-deep-learning-in-colorization-of-lidar-derived-intensity-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1785</span> Computation of Stress Intensity Factor Using Extended Finite Element Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoudi%20Noureddine">Mahmoudi Noureddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouregba%20Rachid"> Bouregba Rachid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the stress intensity factors of a slant-cracked plate of AISI 304 stainless steel, have been calculated using extended finite element method and finite element method (FEM) in ABAQUS software, the results were compared with theoretical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title="stress intensity factors">stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20finite%20element%20method" title=" extended finite element method"> extended finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus" title=" abaqus"> abaqus</a> </p> <a href="https://publications.waset.org/abstracts/22230/computation-of-stress-intensity-factor-using-extended-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1784</span> Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Tavangari">A. Tavangari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Salehzadeh"> N. Salehzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny-Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=penny-shaped%20crack" title="penny-shaped crack">penny-shaped crack</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritz%20method" title=" Ritz method"> Ritz method</a> </p> <a href="https://publications.waset.org/abstracts/9300/obtain-the-stress-intensity-factor-sif-in-a-medium-containing-a-penny-shaped-crack-by-the-ritz-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1783</span> A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Tohidi">Yasaman Tohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ebadi%20Tavallaee"> Saeed Ebadi Tavallaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Vakilipoor%20Takaloo"> Shahin Vakilipoor Takaloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Amiri"> Hossein Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical modeling is performed to study the effects of N<sub>2</sub> addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-&epsilon; model is employed to model the flame characteristics.&nbsp; The results indicate that the presence of N<sub>2</sub> in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N<sub>2</sub> dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20diffusion%20flame" title="swirl diffusion flame">swirl diffusion flame</a>, <a href="https://publications.waset.org/abstracts/search?q=N2%20dilution" title=" N2 dilution"> N2 dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20intensity" title=" swirl intensity"> swirl intensity</a> </p> <a href="https://publications.waset.org/abstracts/105300/a-numerical-study-on-the-effects-of-n2-dilution-on-the-flame-structure-and-temperature-distribution-of-swirl-diffusion-flames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1782</span> Low Volume High Intensity Interval Training Effect on Liver Enzymes in Chronic Hepatitis C Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Gamal%20Khattab">Aya Gamal Khattab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic infection with the hepatitis C virus (HCV) is now the leading cause of liver-related morbidity and mortality; Currently, alanine aminotransferase ALT measurement is not only widely used in detecting the incidence, development, and prognosis of liver disease with obvious clinical symptoms, but also provides reference on screening the overall health status during health check-ups. Exercise is a low-cost, reliable and sustainable therapy for many chronic diseases. Low-volume high intensity interval training HIT is time efficient while also having wider application to different populations including people at risk for chronic inflammatory diseases. Purpose of this study was to investigate the effect of low volume high intensity interval training on ALT, AST in HCV patients. All practical work was done in outpatient physiotherapy clinic of Suez Canal Authority Hospitals. Forty patients both gender (27 male, 13 female), age ranged (40-60) years old submitted to low volume high intensity interval training on treadmill for two months three sessions per week. Each session consisting of five min warming up, two bouts for 10 min each bout consisting of 30 sec - 1 min of high intensity (75%-85%) HRmax then two to four min active recovery at intensity (40%-60%) HRmax, so the sum of high intensity intervals was one to two min for each session and four to eight min active recovery, and ends with five min cooling down. ALT and AST were measured before starting exercise session and 2 months later after finishing the total exercise sessions through blood samples. Results showed significant decrease in ALT, AST with improvement percentage (18.85%), (23.87%) in the study, so the study concluded that low volume high intensity interval training had a significant effect in lowering the level of circulating liver enzymes (ALT, AST) which means protection of hepatic cells and restoration of its function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alanine%20aminotransferase%20%28ALT%29" title="alanine aminotransferase (ALT)">alanine aminotransferase (ALT)</a>, <a href="https://publications.waset.org/abstracts/search?q=aspartate%20aminotransferase%20%28AST%29" title=" aspartate aminotransferase (AST)"> aspartate aminotransferase (AST)</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20%28HCV%29" title=" hepatitis C (HCV)"> hepatitis C (HCV)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20volume%20high%20intensity%20interval%20training" title=" low volume high intensity interval training"> low volume high intensity interval training</a> </p> <a href="https://publications.waset.org/abstracts/42393/low-volume-high-intensity-interval-training-effect-on-liver-enzymes-in-chronic-hepatitis-c-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1781</span> Determinants of Profitability in Indian Pharmaceutical Firms in the New Intellectual Property Rights Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpi%20Tyagi">Shilpi Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Nauriyal"> D. K. Nauriyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the firm level determinants of profitability of Indian drug and pharmaceutical industry. The study uses inflation adjusted panel data for a period 2000-2013 and applies OLS regression model with Driscoll-Kraay standard errors. It has been found that export intensity, A&M intensity, firm’s market power and stronger patent regime dummy have exercised positive influence on profitability. The negative and statistically significant influence of R&D intensity and raw material import intensity points to the need for firms to adopt suitable investment strategies. The study suggests that firms are required to pay far more attention to optimize their operating expenditures, advertisement and marketing expenditures and improve their export orientation, as part of the long term strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indian%20pharmaceutical%20industry" title="Indian pharmaceutical industry">Indian pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=profits" title=" profits"> profits</a>, <a href="https://publications.waset.org/abstracts/search?q=TRIPS" title=" TRIPS"> TRIPS</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/49100/determinants-of-profitability-in-indian-pharmaceutical-firms-in-the-new-intellectual-property-rights-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1780</span> Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsu-Wang%20Shen">Tsu-Wang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shan-Chun%20Chang"> Shan-Chun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Hsien%20Wang"> Chih-Hsien Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Te-Chao%20Fang"> Te-Chao Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-intensity%20heart%20rate" title="high-intensity heart rate">high-intensity heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20resistant" title=" heart rate resistant"> heart rate resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20human%20identification" title=" ECG human identification"> ECG human identification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20based%20artificial%20neural%20network" title=" decision based artificial neural network"> decision based artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/53603/heart-rate-resistance-electrocardiogram-identification-based-on-slope-oriented-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1779</span> Characteristics of the Labor Intensity of Secondary School Teachers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meruyert%20Burumbayeva">Meruyert Burumbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mussina"> Aiman Mussina</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulshat%20Yerdenova"> Gulshat Yerdenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakyt%20Ilyassova"> Bakyt Ilyassova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiymtory%20Abildaeva"> Aiymtory Abildaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnoza%20Aldabekova"> Gulnoza Aldabekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, there were analyzed the intensity of teachers of secondary schools of Astana. The analysis is based on the account of the whole complex of factors of production, creating the preconditions for the emergence of adverse neuro-emotional states (surge). All the factors of the labor process in the qualitative or quantitative terms were grouped into types of loads: intellectual, sensory, emotional, monotone, regime. The results showed that teachers' work activity is more intense in terms of sensory, intellectual, emotional work schedule loads and characterized class working conditions for tensions as '1st degree of harmful stressful work' and by a combined indicator refers to the category of high labor intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intensity%20of%20teachers" title="intensity of teachers">intensity of teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-emotional%20states" title=" neuro-emotional states"> neuro-emotional states</a>, <a href="https://publications.waset.org/abstracts/search?q=labor%20process" title=" labor process"> labor process</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20stress" title=" occupational stress"> occupational stress</a> </p> <a href="https://publications.waset.org/abstracts/67366/characteristics-of-the-labor-intensity-of-secondary-school-teachers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1778</span> Response of Insulin Resistance Indicators to Aerobic Exercise at Different Intensities in Obese College Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Long-Shan%20Wu">Long-Shan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chen%20Ko"> Ming-Chen Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chang%20Ho"> Chien-Chang Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Fu%20Lee"> Po-Fu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Yun%20Chen"> Li-Yun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yu%20Tseng"> Ching-Yu Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to determine whether progressive aerobic exercise intensity effects the changes in insulin resistance indicators among obese college students in Taiwan. Forty-eight obese subjects [body mass index (BMI) ≧ 27 kg/m2, aged 18-26 years old] were randomized into four equal groups (n = 12): light-intensity training group (LITG): 40-50% of their heart rate reserve (HRR); middle-intensity training group (MITG): 50-70% of their HRR; high-intensity training group (HITG): 70-80% of their HRR, and control group (CG). The aerobic exercise training program was performed 60 minutes per day on a treadmill three days/week in a training period of 12 weeks. All subjects’ anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, all insulin resistance indicators did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG had significantly more changes in insulin level than the MITG, LITG, and CG. Our findings suggested that a short-term aerobic exercise program can play an important role in improving insulin resistance indicators; either middle-intensity training significantly increases the insulin level, but the high-intensity exercise training program effectively improves obese college students’ insulin resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20training" title="aerobic training">aerobic training</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise%20intensity" title=" exercise intensity"> exercise intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/71374/response-of-insulin-resistance-indicators-to-aerobic-exercise-at-different-intensities-in-obese-college-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1777</span> Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seongryong%20Kang">Seongryong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Woonjin%20Kim"> Woonjin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoo%20Lee"> Sungjoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20technology%20acquisition" title=" international technology acquisition"> international technology acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a> </p> <a href="https://publications.waset.org/abstracts/71199/diversity-and-intensity-of-international-technology-transfer-and-their-impacts-on-organizational-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1776</span> Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Artamonov">D. Artamonov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tsibulnikova"> A. Tsibulnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Samusev"> I. Samusev</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bryukhanov"> V. Bryukhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kozhevnikov"> A. Kozhevnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lasers" title="lasers">lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion%20photonics" title=" upconversion photonics"> upconversion photonics</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a> </p> <a href="https://publications.waset.org/abstracts/167659/optically-active-material-based-on-bi2o3-at-yb3-nd3-with-high-intensity-of-upconversion-luminescence-in-red-and-green-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1775</span> Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb">S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil"> A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hamad"> N. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor%20%28SIF%29" title="stress intensity factor (SIF)">stress intensity factor (SIF)</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20orientation" title=" crack orientation"> crack orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%2Fepoxy" title=" glass/epoxy"> glass/epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=X-FEM" title=" X-FEM"> X-FEM</a> </p> <a href="https://publications.waset.org/abstracts/5631/stress-intensity-factor-for-dynamic-cracking-of-composite-material-by-x-fem-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1774</span> Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Navid%20Ghoreishi"> Seyed Mohammad Navid Ghoreishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-elliptical%20crack" title=" semi-elliptical crack"> semi-elliptical crack</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title=" finite element analysis (FEA)"> finite element analysis (FEA)</a> </p> <a href="https://publications.waset.org/abstracts/47599/calculation-of-stress-intensity-factors-in-rotating-disks-containing-3d-semi-elliptical-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1773</span> Resistance Training Contribution to the Aerobic Component of the International Physical Activity Guidelines in Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bharti">Neha Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20S%C3%A9n%C3%A9chal"> Martin Sénéchal</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20R.%20Bouchard"> Danielle R. Bouchard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mostly attributed to lack of time, only 15% of adults currently reach the International Physical Activity Guidelines, which state that every adult should achieve minimum of 150 minutes of aerobic exercise per week at moderate to vigorous intensity in minimum bouts of 10 minutes each, in addition to two days of resistance training. Recent studies have suggested that any bout of aerobic exercise reaching moderate intensity has potential to improve health. If one could reach moderate intensity while doing resistance training, this could reduce the total weekly time involvement to reach the International Physical Activity Guidelines. Objectives: 1) To determine whether overweight and older adults can reach a minimum of moderate intensity while doing resistance training compared with young non-overweight adults, 2) To identify if the proportion of time spent at moderate to vigorous intensity is different in overweight adults and older adults when compared with young non-overweight adults when lifting 70% or 80% of maximal load, 3) To determine variables associated with proportion of time spent at moderate to vigorous intensity while doing resistance training. Methods: Sixty participants already doing resistance training were recruited (20 young non-overweight adults, 20 overweight adults, and 20 older adults). Participants visited fitness facility three times, separated by at least 48 hours, and performed eight resistance exercises each time. First visit was to collect baseline measurements and to measure maximal load for each of the eight exercises. Second and third visits were performed wearing a heart rate monitor to record heart rate and to measure exercise intensity. The two exercise sessions were performed at 70% and 80% of maximal capacity. Moderate intensity was defined as 40% of heart rate reserve. Results: The proportion of time spent at moderate to vigorous intensity ranged from 51% to 93% among the three groups. No difference was observed between the young group and the overweight adults group in the proportion of time spent at moderate to vigorous intensity, 82.6% (69.2-94.6) vs 92.5% (73.3-99.1). However, older adults spent lower proportion of time at moderate to vigorous intensity for both sessions 51.5% (22.0-86.6); P < .01. When doing resistance training at 70% and 80% of maximal capacity, the proportion of time spent at moderate to vigorous intensity was 82.3% (56.1-94.7) and 82.0% (59.2-98.0) with no significant difference (P=.83). Conclusion: This study suggests that overweight adults and older adults can reach moderate intensity for at least 51% of the time spent doing resistance training. However, time spent at moderate to vigorous intensity was lower for older adults compared to young non-overweight adults. For adults aged 60 or less, three resistance training sessions of 60 minutes weekly could be enough to reach both aerobic and resistance training components of the International Physical Activity Guidelines. Further research is needed to test if resistance training at moderate to vigorous intensity can have the same health benefits compared with adults completing the International Physical Activity Guidelines as currently suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20exercise" title="aerobic exercise">aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20physical%20activity%20guidelines" title=" international physical activity guidelines"> international physical activity guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20to%20vigorous%20intensity" title=" moderate to vigorous intensity"> moderate to vigorous intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title=" resistance training "> resistance training </a> </p> <a href="https://publications.waset.org/abstracts/25702/resistance-training-contribution-to-the-aerobic-component-of-the-international-physical-activity-guidelines-in-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intensity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10