CINXE.COM
Search results for: pipeline
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pipeline</title> <meta name="description" content="Search results for: pipeline"> <meta name="keywords" content="pipeline"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pipeline" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pipeline"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 296</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pipeline</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuodong%20Liang">Zuodong Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Jeng"> Dong-Sheng Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20wave%20model" title=" 3D wave model"> 3D wave model</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20liquefaction" title=" seabed liquefaction"> seabed liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/76992/3-d-numerical-model-for-wave-induced-seabed-response-around-an-offshore-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadok%20Aboubakr">Sadok Aboubakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%27s%20ratio" title=" Poisson's ratio"> Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Shear%20modulus" title=" Shear modulus"> Shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Longueur%20du%20pipeline" title=" Longueur du pipeline"> Longueur du pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20angle%20of%20crack" title=" the angle of crack"> the angle of crack</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20length" title=" crack length"> crack length</a> </p> <a href="https://publications.waset.org/abstracts/17734/behavioral-study-circumferential-and-longitudinal-cracks-in-a-steel-pipeline-x65-and-repair-patch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Sassi">Osama Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Eltorki"> Manal Eltorki</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad"> Iftikhar Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20mitigation%20on%20gas%20transmission%20pipelines" title="corrosion mitigation on gas transmission pipelines">corrosion mitigation on gas transmission pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20integrity%20management" title=" pipeline integrity management"> pipeline integrity management</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20management%20of%20gas%20pipelines" title=" corrosion management of gas pipelines"> corrosion management of gas pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention%20and%20inspection%20of%20corrosion" title=" prevention and inspection of corrosion"> prevention and inspection of corrosion</a> </p> <a href="https://publications.waset.org/abstracts/178928/gas-transmission-pipeline-integrity-management-system-through-corrosion-mitigation-and-inspection-strategy-a-case-study-of-natural-gas-transmission-pipeline-from-wafa-field-to-mellitah-gas-plant-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gholami">H. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour"> M. Jalali Azizpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20crack" title="stress corrosion crack">stress corrosion crack</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20assessment" title=" direct assessment"> direct assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disbondment" title=" disbondment"> disbondment</a>, <a href="https://publications.waset.org/abstracts/search?q=transgranular%20SCC" title=" transgranular SCC"> transgranular SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20station" title=" compressor station"> compressor station</a> </p> <a href="https://publications.waset.org/abstracts/20469/stress-corrosion-crack-identification-with-direct-assessment-method-in-pipeline-downstream-from-a-compressor-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Prison Pipeline or College Pathways: Transforming the Urban Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcia%20J.%20Watson">Marcia J. Watson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The “school-to-prison pipeline” is a widely known phenomenon within education. Although data surrounding this epidemic is daunting, we coin the term “school-to-postsecondary pipeline” to explore proactive strategies that are currently working in K-12 education for African American students. The assumption that high school graduation, postsecondary matriculation, and social success are not the assumed norms for African American youth, positions the term “school-to-postsecondary pipeline” as the newly casted advocacy term for African American educational success. Using secondary data from the Children’s Defense Fund and the U.S. Department of Education’s Office of Civil Rights, we examine current conditions of educational accessibility and attainment for African American students, and provide effective strategies for classroom teachers, administrators, and parents to use for the immediate implementation in schools. These strategies include: (a) engaging instruction, (b) relevant curriculum, and (c) utilizing useful enrichment and community resources. By providing proactive steps towards the school-to-postsecondary pipeline, we hope to counter the docility of the school-to-prison pipeline as the assumed reality for African American youth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20access" title="college access">college access</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=school-to-prison%20pipeline" title=" school-to-prison pipeline"> school-to-prison pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20education%20reform" title=" urban education reform"> urban education reform</a> </p> <a href="https://publications.waset.org/abstracts/20516/prison-pipeline-or-college-pathways-transforming-the-urban-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ki%C5%A1">R. Kiš</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malcho"> M. Malcho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Janovcov%C3%A1"> M. Janovcová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orifice%20plate" title="orifice plate">orifice plate</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20pipeline" title=" high-pressure pipeline"> high-pressure pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/6081/a-cfd-analysis-of-flow-through-a-high-pressure-natural-gas-pipeline-with-an-undeformed-and-deformed-orifice-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Rheological and Computational Analysis of Crude Oil Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar"> Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jashanpreet%20Singh"> Jashanpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactant" title="surfactant">surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57573/rheological-and-computational-analysis-of-crude-oil-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Studying Roughness Effects on Flow Regimes in Offshore Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadegh%20Narges">Mohammad Sadegh Narges</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghadampour"> Zahra Ghadampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20roughness" title="absolute roughness">absolute roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flow" title=" multi-phase flow"> multi-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20pipelines" title=" offshore pipelines"> offshore pipelines</a> </p> <a href="https://publications.waset.org/abstracts/63642/studying-roughness-effects-on-flow-regimes-in-offshore-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenan%20Morani">Kenan Morani</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Kaya%20Ayana"> Esra Kaya Ayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20extraction" title=" lung extraction"> lung extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20F1%20score" title=" macro F1 score"> macro F1 score</a>, <a href="https://publications.waset.org/abstracts/search?q=UNet%20segmentation" title=" UNet segmentation"> UNet segmentation</a> </p> <a href="https://publications.waset.org/abstracts/169737/covid-19-detection-from-computed-tomography-images-using-unet-segmentation-region-extraction-and-classification-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> A Resilience Process Model of Natural Gas Pipeline Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoming%20Yang">Zhaoming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Xiang"> Qi Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20He"> Qian He</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Havbro%20Faber"> Michael Havbro Faber</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Zio"> Enrico Zio</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai%20Su"> Huai Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinjun%20Zhang"> Jinjun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipeline%20system" title="natural gas pipeline system">natural gas pipeline system</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20modeling" title=" process modeling"> process modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20disturbance" title=" deterministic disturbance"> deterministic disturbance</a> </p> <a href="https://publications.waset.org/abstracts/162218/a-resilience-process-model-of-natural-gas-pipeline-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Mog%20Choi">Won Mog Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Kyeong%20Hong"> Seong Kyeong Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Young%20Jeong"> Seok Young Jeong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus%20of%20soil" title=" elastic modulus of soil"> elastic modulus of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/44795/estimation-of-elastic-modulus-of-soil-surrounding-buried-pipeline-using-multi-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Third Super-Harmonic Resonance in Vortex-Induced Vibration of a Pipeline Close to the Seabed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiming%20Jin">Yiming Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Dong"> Ping Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The third super-harmonic resonance of a pipeline close to the seabed is investigated in this paper. To analyse the vortex-induced vibration (VIV) of the pipeline close to the seabed, the classic Van der Pol equation is extended with a nonlinear item. Then, on the base of the multi-scale method, the frequency-response curves of the pipeline with regard to the third super-harmonic resonance are studied with a series of parameters, such as the mass ratio, frequency, damp ratio and gap ratio. On the whole, the numerical results show that the characters of third super-harmonic resonance are quite from that of primary resonance, though with the same trend that the larger is the mass ratio, the smaller impact the gap ratio has on the frequency-response curves of the third super-harmonic resonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20third%20super-harmonic%20resonance" title="the third super-harmonic resonance">the third super-harmonic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20ratio" title=" gap ratio"> gap ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibration" title=" vortex-induced vibration"> vortex-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20method" title=" multi-scale method"> multi-scale method</a> </p> <a href="https://publications.waset.org/abstracts/42056/third-super-harmonic-resonance-in-vortex-induced-vibration-of-a-pipeline-close-to-the-seabed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/23052/study-of-electro-magnetic-acoustic-transducer-to-detect-flaw-in-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiming%20Jin">Yiming Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanhao%20Gao"> Yuanhao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibrations" title="vortex-induced vibrations">vortex-induced vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20pipeline" title=" marine pipeline"> marine pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed" title=" seabed"> seabed</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-harmonic%20resonance" title=" sub-harmonic resonance"> sub-harmonic resonance</a> </p> <a href="https://publications.waset.org/abstracts/50829/second-sub-harmonic-resonance-in-vortex-induced-vibrations-of-a-marine-pipeline-close-to-the-seabed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabel%20Usunobun%20Olanipekun">Mabel Usunobun Olanipekun</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Ogbemudia%20Omoregbee"> Henry Ogbemudia Omoregbee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leakage%20detection" title="leakage detection">leakage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20signals" title=" acoustic signals"> acoustic signals</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20network" title=" pipeline network"> pipeline network</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks%20%28WSNs%29" title=" wireless sensor networks (WSNs)"> wireless sensor networks (WSNs)</a> </p> <a href="https://publications.waset.org/abstracts/172959/the-use-of-correlation-difference-for-the-prediction-of-leakage-in-pipeline-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Digheche">K. Digheche</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saadi"> K. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Boumerzoug"> Z. Boumerzoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatments" title="heat treatments">heat treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a> </p> <a href="https://publications.waset.org/abstracts/18352/effect-of-heat-treatment-on-the-microstructural-evolution-in-weld-region-of-x70-pipeline-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Design and Implementation of Wave-Pipelined Circuit Using Reconfigurable Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adhinarayanan%20Venkatasubramanian">Adhinarayanan Venkatasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For design of high speed digital circuit wave pipeline is the best approach this can be operated at higher operating frequencies by adjusting clock periods and skews so as latch the o/p of combinational logic circuit at the stable period. In this paper, there are two methods are proposed in automation task one is BIST (Built in self test) and second method is Reconfigurable technique. For the above two approaches dedicated AND gate (multiplier) by applying wave pipeline technique. BIST approach is implemented by Xilinx Spartan-II device. In reconfigurable technique done by ASIC. From the results, wave pipeline circuits are faster than nonpipeline circuit and area, power dissipation are reduced by reconfigurable technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOC" title="SOC">SOC</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-pipelining" title=" wave-pipelining"> wave-pipelining</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=self-testing" title=" self-testing"> self-testing</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=ASIC" title=" ASIC"> ASIC</a> </p> <a href="https://publications.waset.org/abstracts/15244/design-and-implementation-of-wave-pipelined-circuit-using-reconfigurable-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ejah%20Umraeni%20Salam">A. Ejah Umraeni Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tola"> M. Tola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selintung"> M. Selintung</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Maricar"> F. Maricar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title="radial basis function neural network">radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20pipeline" title=" leakage pipeline"> leakage pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=EPANET" title=" EPANET"> EPANET</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a> </p> <a href="https://publications.waset.org/abstracts/7608/water-leakage-detection-system-of-pipe-line-using-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Management of Permits and Regulatory Compliance Obligations for the East African Crude Oil Pipeline Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezra%20Kavana">Ezra Kavana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article analyses the role those East African countries play in enforcing crude oil pipeline regulations. The paper finds that countries are more likely to have responsibility for enforcing these regulations if they have larger networks of gathering and transmission lines and if their citizens are more liberal and more pro-environment., Pipeline operations, transportation costs, new pipeline construction, and environmental effects are all heavily controlled. All facets of pipeline systems and the facilities connected to them are governed by statutory bodies. In order to support the project manager on such new pipeline projects, companies building and running these pipelines typically include personnel and consultants who specialize in these permitting processes. The primary permissions that can be necessary for pipelines carrying different commodities are mentioned in this paper. National, regional, and local municipalities each have their own permits. Through their right-of-way group, the contractor's project compliance leadership is typically directly responsible for obtaining those permits, which are typically obtained through government agencies. The whole list of local permits needed for a planned pipeline can only be found after a careful field investigation. A country's government regulates pipelines that are entirely within its borders. With a few exceptions, state regulations governing ratemaking and safety have been enacted to be consistent with regulatory requirements. Countries that produce a lot of energy are typically more involved in regulating pipelines than countries that produce little to no energy. To identify the proper regulatory authority, it is important to research the several government agencies that regulate pipeline transportation. Additionally, it's crucial that the scope determination of a planned project engage with a various external professional with experience in linear facilities or the company's pipeline construction and environmental professional to identify and obtain any necessary design clearances, permits, or approvals. These professionals can offer precise estimations of the costs and length of time needed to process necessary permits. Governments with a stronger energy sector, on the other hand, are less likely to take on control. However, the performance of the pipeline or national enforcement activities are unaffected significantly by whether a government has taken on control. Financial fines are the most efficient government enforcement instrument because they greatly reduce occurrences and property damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20compliance" title=" regulatory compliance"> regulatory compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20construction%20permits" title=" and construction permits"> and construction permits</a> </p> <a href="https://publications.waset.org/abstracts/156130/management-of-permits-and-regulatory-compliance-obligations-for-the-east-african-crude-oil-pipeline-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Seismic Impact and Design on Buried Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Schmitt">T. Schmitt</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rosin"> J. Rosin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Butenweg"> C. Butenweg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buried%20pipeline" title="buried pipeline">buried pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20impact" title=" seismic impact"> seismic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20displacement" title=" transient displacement"> transient displacement</a> </p> <a href="https://publications.waset.org/abstracts/62515/seismic-impact-and-design-on-buried-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Modeling of Digital and Settlement Consolidation of Soil under Oedomete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/28196/modeling-of-digital-and-settlement-consolidation-of-soil-under-oedomete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> The Advancement of Environmental Impact Assessment for 5th Transmission Natural Gas Pipeline Project in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Penrug%20Pengsombut">Penrug Pengsombut</a>, <a href="https://publications.waset.org/abstracts/search?q=Worawut%20Hamarn"> Worawut Hamarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Teerawuth%20Suwannasri"> Teerawuth Suwannasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittiphong%20Songrukkiat"> Kittiphong Songrukkiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanatip%20Ratanachoo"> Kanatip Ratanachoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PTT Public Company Limited or simply PTT has played an important role in strengthening national energy security of the Kingdom of Thailand by transporting natural gas to customers in power, industrial and commercial sectors since 1981. PTT has been constructing and operating natural gas pipeline system of over 4,500-km network length both onshore and offshore laid through different area classifications i.e., marine, forest, agriculture, rural, urban, and city areas. During project development phase, an Environmental Impact Assessment (EIA) is conducted and submitted to the Office of Natural Resources and Environmental Policy and Planning (ONEP) for approval before project construction commencement. Knowledge and experiences gained and revealed from EIA in the past projects definitely are developed to further advance EIA study process for newly 5th Transmission Natural Gas Pipeline Project (5TP) with approximately 415 kilometers length. The preferred pipeline route is selected and justified by SMARTi map, an advance digital one-map platform with consists of multiple layers geographic and environmental information. Sensitive area impact focus (SAIF) is a practicable impact assessment methodology which appropriate for a particular long distance infrastructure project such as 5TP. An environmental modeling simulation is adopted into SAIF methodology for impact quantified in all sensitive areas whereas other area along pipeline right-of-ways is typically assessed as an impact representative. Resulting time and cost deduction is beneficial to project for early start. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title="environmental impact assessment">environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=EIA" title=" EIA"> EIA</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipeline" title=" natural gas pipeline"> natural gas pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20area%20impact%20focus" title=" sensitive area impact focus"> sensitive area impact focus</a>, <a href="https://publications.waset.org/abstracts/search?q=SAIF" title=" SAIF"> SAIF</a> </p> <a href="https://publications.waset.org/abstracts/77171/the-advancement-of-environmental-impact-assessment-for-5th-transmission-natural-gas-pipeline-project-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Madhusudana%20Rao%20Kapavarapu">Venkata Madhusudana Rao Kapavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrity" title="integrity">integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20%26%20gas" title=" oil & gas"> oil & gas</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technology" title=" new technology"> new technology</a> </p> <a href="https://publications.waset.org/abstracts/166960/an-integrated-approach-to-handle-sour-gas-transportation-problems-and-pipeline-failures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rofida%20Gamal">Rofida Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mohammed"> Mostafa Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Adel"> Mariam Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Gamal"> Marwa Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20kamal"> Marwa kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayat%20Saber"> Ayat Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Mamdouh"> Maha Mamdouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Emad"> Amira Emad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20Ramadan"> Mai Ramadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lynch%20Syndrome" title="Lynch Syndrome">Lynch Syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20pipeline" title=" computational pipeline"> computational pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=alignment" title=" alignment"> alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=variant%20calling" title=" variant calling"> variant calling</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20markers" title=" genetic markers"> genetic markers</a> </p> <a href="https://publications.waset.org/abstracts/178986/computational-pipeline-for-lynch-syndrome-detection-integrating-alignment-variant-calling-and-annotations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lizhi%20Ma">Lizhi Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Liu"> Dan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline%20parallelism" title="pipeline parallelism">pipeline parallelism</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20cluster" title=" heterogeneous cluster"> heterogeneous cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20training" title=" model training"> model training</a>, <a href="https://publications.waset.org/abstracts/search?q=2-level%20stage%20partitioning" title=" 2-level stage partitioning"> 2-level stage partitioning</a> </p> <a href="https://publications.waset.org/abstracts/191050/efficient-dnn-training-on-heterogeneous-clusters-with-pipeline-parallelism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniyar%20Bossinov">Daniyar Bossinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20laminar%20flow" title="non-isothermal laminar flow">non-isothermal laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy%20crude%20oil" title=" waxy crude oil"> waxy crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnant%20zone" title=" stagnant zone"> stagnant zone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/188992/non-isothermal-stationary-laminar-oil-flow-numerical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing "> ultrasonic testing </a> </p> <a href="https://publications.waset.org/abstracts/27833/design-study-for-the-rehabilitation-of-a-retaining-structure-and-water-intake-on-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Automated End-to-End Pipeline Processing Solution for Autonomous Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar">Ashish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Munesh%20Raghuraj%20Varma"> Munesh Raghuraj Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisarg%20Joshi"> Nisarg Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gujjula%20Vishwa%20Teja"> Gujjula Vishwa Teja</a>, <a href="https://publications.waset.org/abstracts/search?q=Srikanth%20Sambi"> Srikanth Sambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpit%20Awasthi"> Arpit Awasthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmentation" title="augmentation">augmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=camera" title=" camera"> camera</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20end-to-end%20pipeline" title=" custom end-to-end pipeline"> custom end-to-end pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20unification" title=" data unification"> data unification</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar" title=" lidar"> lidar</a>, <a href="https://publications.waset.org/abstracts/search?q=post-processing" title=" post-processing"> post-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing" title=" preprocessing"> preprocessing</a> </p> <a href="https://publications.waset.org/abstracts/162488/automated-end-to-end-pipeline-processing-solution-for-autonomous-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Experimental Stress Analysis on Pipeline in Condition of Frost Heave and Thaw Settlement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang%20Cheng">Zhiqiang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingliang%20He"> Qingliang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Li"> Lu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Ren"> Jie Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety of pipelines in the condition of frost heave or thaw settlement is necessarily evaluated. A full-scale experiment pipe with the typical structure configuration in station pipeline is constructed, the residual stress is tested with X-ray residual stress device, and the residual stress field of pipe is analyzed. The evolution of pipe strain with pressure in the scope of maximum allowable operation pressure (MAOP) is investigated by both strain gauge and X-ray methods. Load caused by frost heave or thaw settlement is simulated by two ways of lifting jack. The relation of maximum stress of pipe and clearances between supporter and pipe is studied in case of frost heave. The relation of maximum stress of pipe and maximum deformation of pipe on the ground is studied in case of thaw settlement. The study methods and results are valuable for safety assessment of station pipeline according to clearances or deformation in the condition of frost heave or thaw settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frost%20heave" title="frost heave">frost heave</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thaw%20settlement" title=" thaw settlement"> thaw settlement</a> </p> <a href="https://publications.waset.org/abstracts/101888/experimental-stress-analysis-on-pipeline-in-condition-of-frost-heave-and-thaw-settlement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>