CINXE.COM
Search results for: castor oil
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: castor oil</title> <meta name="description" content="Search results for: castor oil"> <meta name="keywords" content="castor oil"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="castor oil" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="castor oil"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 40</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: castor oil</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Microwave Assisted Extraction (MAE) of Castor Oil from Castor Bean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Mohd%20Yunus"> Rosli Mohd Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurfarahin%20Bt%20Harun"> Nurfarahin Bt Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardhiana%20Binti%20Ismail"> Mardhiana Binti Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave extraction has attracted great interest among the researchers. The main virtue of the microwave technique is cost-effective, time saving and simple handling procedure. Castor beans was chosen because of its high content in fatty acid, especially ricinoleic acid. The purpose of this research is to extract the castor oil by using the microwave assisted extraction (MAE) using ethanol as solvent and to investigate the influence of extraction time on castor oil yield and to characterize the main composition of the produced castor oil by using the GC-MS. It was found that there is a direct dependence between the oil yield and the time of extraction as it increases from 45% to 58% as the time increase from 10 min to 60 min. The major components of castor oil detected by GC-MS were ricinoleic acid, linoleic acid and oleic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction%20%28MAE%29" title="microwave assisted extraction (MAE)">microwave assisted extraction (MAE)</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ricinoleic%20acid" title=" ricinoleic acid"> ricinoleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=linoleic%20acid" title=" linoleic acid"> linoleic acid</a> </p> <a href="https://publications.waset.org/abstracts/10844/microwave-assisted-extraction-mae-of-castor-oil-from-castor-bean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Biobased Polyurethane Derived from Transesterified Castor Oil: Synthesis and Charecterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonalee%20Das">Sonalee Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years has witnessed the increasing demand for natural resources and products in polyurethane synthesis because of global warming, sustainable development and oil crisis. For this purpose, different plant oils such as soybean oil, castor oil and linseed oil are extensively used. Moreover, the isocyanate used for the synthesis of polyurethane is derived from petroleum resources. In this present work attempts have been made for the successful synthesis of biobased isocyanate from castor oil with partially biobased isocyanate in presence of catalyst dibutyltin dilaurate (DBTDL). The goal of the present study was to investigate the thermal, mechanical, morphological and chemical properties of the synthesized polyurethane in terms of castor oil modification. The transesterified polyol shows broad and higher hydroxyl value as compared to castor oil which was confirmed by FTIR studies. The FTIR studies also revealed the successful synthesis of bio based polyurethane by showing characteristic peaks at 3300cm-1, 1715cm-1 and 1532cm-1 respectively. The TGA results showed three step degradation mechanism for the synthesized polyurethane from modified and unmodified castor oil. However, the modified polyurethane exhibited higher degradation temperature as compared to unmodified one. The mechanical properties also demonstrated higher tensile strength for modified polyurethane as compared to unmodified one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20biobased%20Isocyanate" title=" partially biobased Isocyanate"> partially biobased Isocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20synthesis" title=" polyurethane synthesis"> polyurethane synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/20628/biobased-polyurethane-derived-from-transesterified-castor-oil-synthesis-and-charecterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Bioethanol Synthesis Using Cellulose Recovered from Biowaste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Noridah%20Abdullah"> Noridah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah"> Mimi Sakinah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioethanol is an alcohol made by fermentation, mostly from carbohydrates, Cellulosic biomass, derived from non-food sources, such as castor shell waste, is also being developed as a feedstock for ethanol production Cellulose extracted from biomass sources is considered the future feedstock for many products due to the availability and eco-friendly nature of cellulose. In this study, castor shell (CS) biowaste resulted from the extraction of Castor oil from castor seeds was evaluated as a potential source of cellulose. The cellulose was extracted after pretreatment process was done on the CS. The pretreatment process began with the removal of other extractives from CS, then an alkaline treatment, bleaching process with hydrogen peroxide, and followed by a mixture of acetic and nitric acids. CS cellulose was analysed by infrared absorption spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The result showed that the overall process was adequate to produce cellulose with high purity and crystallinity from CS waste. The cellulose was then hydrolyzed to produce glucose and then fermented to bioethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20shell" title=" castor shell"> castor shell</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=biowaste" title=" biowaste"> biowaste</a> </p> <a href="https://publications.waset.org/abstracts/45623/bioethanol-synthesis-using-cellulose-recovered-from-biowaste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Relaxation Behavior of Biorenewable Waterborne Castor Oil-Based Polyurethane-Lignin Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samy%20Madbouly">Samy Madbouly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relaxation behavior of biorenewable castor oil-based polyurethane-lignin thin films synthesized in homogenous waterborne dispersions was investigated as a function of concentration at different temperatures and frequencies using broadband dielectric relaxation spectroscopy (BDRS). The molecular dynamics of the glass relaxation process and the local relaxation process of the PU-LS thin films were studied over a wide range of temperatures (-70 to 30 ℃) and frequencies (5 × 10−2 to 0.5 × 107 Hz) for different lignin concentration. Four relaxation processes have been observed namely; ?-, β-, γ-relaxations and ionic conductivity for pure castor oil-based PU and castor oil-lignin-based PU thin films at different temperatures and frequencies ranges. The Vogel-Fulcher-Tammann equation was found to be well described the temperature dependence of the characteristic relaxation times of the ?-relaxation process. However, on the other hand, the molecular dynamics of both β- and γ-relaxation processes were given by the Arrhenius equation. The incorporation of lignin into the castor oil-based PU significantly increased the glass transition temperature and primitivity of the thin films. In addition, the broadness, intensity, and molecular dynamics of the only observed ?-relaxation process were found to be strongly dependent on lignin concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersions" title=" dispersions"> dispersions</a> </p> <a href="https://publications.waset.org/abstracts/140796/relaxation-behavior-of-biorenewable-waterborne-castor-oil-based-polyurethane-lignin-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Effects of Different Sowing Dates on Oil Yield of Castor (Ricinus communis L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zden%20%C3%96zt%C3%BCrk">Özden Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6zde%20P%C4%B1nar%20Gerem"> Gözde Pınar Gerem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C3%A7a%20Yenici"> Ayça Yenici</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Haspolat"> Burcu Haspolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castor (Ricinus communis L.) is one of the important non-edible oilseed crops having immense industrial and medicinal value. Oil yield per unit area is the ultimate target in growing oilseed plants and sowing date is one of the important factors which have a clear role in the production of active substances particularly in oilseeds. This study was conducted to evaluate the effect of sowing date on the seed and oil yield of castor in Central Anatolia in Turkey in 2011. The field experiment was set up in a completely randomized block design with three replication. Black Diamond-2 castor cultivar was used as plant material. The treatment was four sowing dates of May 10, May 25, June 10, June 25. In this research; seed yield, oil content and oil yield were investigated. Results showed that the effect of different sowing dates was significant on all of the characteristics. In general; delayed sowing dates, resulted in decreased seed yield, oil content and oil yield. The highest value of seed yield, oil content and oil yield (respectively, 2523.7 kg ha-1, 51.18% and 1292.2 kg ha-1) were obtained from the first sowing date (May 10) while the lowest seed yield, oil content and oil yield (respectively, 1550 kg ha-1, 43.67%, 677.3 kg ha-1) were recorded from the latest sowing date (June 25). Therefore, it can be concluded that early May could be recommended as an appropriate sowing date in the studied location and similar climates for achieved high oil yield of castor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20bean" title="castor bean">castor bean</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricinus%20communis%20L." title=" Ricinus communis L."> Ricinus communis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20date" title=" sowing date"> sowing date</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield" title=" seed yield"> seed yield</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20content" title=" oil content"> oil content</a> </p> <a href="https://publications.waset.org/abstracts/2642/effects-of-different-sowing-dates-on-oil-yield-of-castor-ricinus-communis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Microwave Assisted Thermal Cracking of Castor Oil Zeolite ZSM-5 as Catalyst for Biofuel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdul%20Rahman%E2%80%93Al%20Ezzi"> Ali Abdul Rahman–Al Ezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharmathas%20A%2FL%20Alagappan"> Tharmathas A/L Alagappan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation was to produce biofuel from castor oil through microwave assisted thermal cracking with zeolite ZSM-5 as catalyst. The obtained results showed that microwave assisted thermal cracking of castor oil with Zeolite ZSM-5 as catalyst generates products consisting of alcohol, methyl esters and fatty acids. The products obtained from this experimental procedure by the cracking of castor oil are components of biodiesel. Samples of cracked castor oil containing 1, 3 and 5wt % catalyst was analyzed, however, only the sample containing the 5wt % catalyst showed significant presence of condensate. FTIR and GCMS studies show that the condensate obtained is an unsaturated fatty acid, is 9, 12-octadecadienoic acid, suitable for biofuel use. 9, 12-octadecadienoic acid is an unsaturated fatty acid with a molecular weight of 280.445 g/mol. Characterization of the sample demonstrates that functional group for the products from the three samples display a similar peak in the FTIR graph analysis at 1700 cm-1 and 3600 cm-1. The result obtained from GCMS shows that there are 16 peaks obtained from the sample. The compound with the highest peak area is 9, 12-octadecadienoic acid with a retention time of 9.941 and 24.65 peak areas. All these compounds are organic material and can be characterized as biofuel and biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a> </p> <a href="https://publications.waset.org/abstracts/39975/microwave-assisted-thermal-cracking-of-castor-oil-zeolite-zsm-5-as-catalyst-for-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Effect of Catalyst on Castor Oil Based Polyurethane with Different Hard/Soft Segment Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swarnalata%20Sahoo">Swarnalata Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmentally friendly Polyurethane(PU) synthesis from Castor oil(CO) has been studied extensively. Probably due to high proportion of fatty hydroxy acids and unsaturated bond, CO showed better performance than other oil, can be easily utilized as commercial applications. In this work, cured PU polymers having different –NCO/OH ratio with and without catalyst were synthesized by using partially biobased Isocyanate with castor oil (CO). Curing time has been studied by observing at the time of reaction, which can be confirmed by AT-FTIR. DSC has been studied to monitor the reaction between CO & Isocyanates using non Isothermal process. Curing kinetics have also been studied to investigate the catalytic effect of the NCO / OH ratio of Polyurethane. Adhesion properties were evaluated from Lapshear test. Tg of the PU polymer was evaluated by DSC which can be compared by DMA. Surface Properties were studied by contact angle measurement. Improvement of the interfacial adhesion between the nonpolar surface of Aluminum substrate and the polar adhesive has been studied by modifying surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title="polyurethane">polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20bio-based%20isocyanate" title=" partially bio-based isocyanate"> partially bio-based isocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/20705/effect-of-catalyst-on-castor-oil-based-polyurethane-with-different-hardsoft-segment-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> RAPD Analysis of Genetic Diversity of Castor Bean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Vivod%C3%ADk">M. Vivodík</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%BD.%20Bal%C3%A1%C5%BEov%C3%A1"> Ž. Balážová</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20G%C3%A1lov%C3%A1"> Z. Gálová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrogram" title="dendrogram">dendrogram</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD%20technique" title=" RAPD technique"> RAPD technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricinus%20communis%20L." title=" Ricinus communis L."> Ricinus communis L.</a> </p> <a href="https://publications.waset.org/abstracts/6531/rapd-analysis-of-genetic-diversity-of-castor-bean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipan%20Kumar%20Sohpal">Vipan Kumar Sohpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20violet%20dye" title="crystal violet dye">crystal violet dye</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD" title=" CVD"> CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20leaf%20powder" title=" castor leaf powder"> castor leaf powder</a>, <a href="https://publications.waset.org/abstracts/search?q=CLP" title=" CLP"> CLP</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/108698/optimization-of-temperature-for-crystal-violet-dye-adsorption-using-castor-leaf-powder-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Synthesis of Epoxidized Castor Oil Using a Sulphonated Polystyrene Type Cation Exchange Resin and Its Blend Preparation with Epoxy Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Sudha">G. S. Sudha</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxidized oils can replace petroleum derived materials in numerous industrial applications, because of their respectable oxirane oxygen content and high reactivity of oxirane ring. Epoxidized castor oil (ECO) has synthesized in the presence of a sulphonated polystyrene type cation exchange resin. The formation of the oxirane ring was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The epoxidation reaction was evaluated by Nuclear Magnetic Resonance (NMR) studies. ECO is used as a toughening phase to increase the toughness of petroleum-based epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20castor%20oil" title=" epoxidized castor oil"> epoxidized castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphonated%20polystyrene%20type%20cation%20exchange%20resin" title=" sulphonated polystyrene type cation exchange resin"> sulphonated polystyrene type cation exchange resin</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20derived%20materials" title=" petroleum derived materials"> petroleum derived materials</a> </p> <a href="https://publications.waset.org/abstracts/20933/synthesis-of-epoxidized-castor-oil-using-a-sulphonated-polystyrene-type-cation-exchange-resin-and-its-blend-preparation-with-epoxy-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effect of Varietal Feeding on Larval Duration and Cocoon Parameters of Six Strains of Eri Silkworm Samia ricini Donovan in Nagaland, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakhminandan%20Kakati">Lakhminandan Kakati</a>, <a href="https://publications.waset.org/abstracts/search?q=Merenjungla%20Jamir"> Merenjungla Jamir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rearing of six strains of Samia ricini (eri silk worm) i.e. Yellow plain (YP), Yellow spotted (YS), Yellow Zebra (YZ), Greenish blue plain (GBP), Greenish blue spotted (GBS) and Greenish blue zebra (GBZ) was conducted on Ricinus communis (Castor), Heteropanax fragrans (Kesseru), Evodia fraxinifolia (Payam) and Manihot utilissima (Tapioca) to evaluate the effect of seasonal pattern on larval duration and cocoon parameters in Nagaland, India. Larval duration during spring season was maximum in all strains in all food plants; however minimum for all strains was recorded during summer season on Castor, Kesseru and Tapioca. Cocoon weight was recorded to be minimum (2.8 ± 2 0.55 gm) in YP on Kesseru and maximum (4.06 ± 0.68 gm) in GBZ on Castor during spring season; shell weight fluctuated between 0.34 ± 0.08 gm during spring in GBS on Kesseru and 0.58 ± 0.09 gm during summer in YZ on Castor and percentage of silk ratio was found to be minimum and maximum in YP on Payam during spring (11.37 ± 1.29) and in GBS on Castor during summer (16.05 ± 1.59) respectively. The variation in larval duration and cocoon parameters reflected variation in nutrient composition of food plants and dynamic environment conditions prevailing in different seasons of the year. Payam and Tapioca plants could be fed either singly or alternately with Castor or Kesseru to attain the commercial advantage to ensure more value added production. While there were differences in the productivity parameters with respect to strains and seasons, the present study shows that all the strains on four host plants expressed adaptability and suitability for commercial rearing under Nagaland climatic condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20food%20plants" title="alternative food plants">alternative food plants</a>, <a href="https://publications.waset.org/abstracts/search?q=Larval%20and%20cocoon%20parameters" title=" Larval and cocoon parameters"> Larval and cocoon parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagaland%20Inia" title=" Nagaland Inia"> Nagaland Inia</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20strains%20of%20Samia%20ricini" title=" six strains of Samia ricini"> six strains of Samia ricini</a> </p> <a href="https://publications.waset.org/abstracts/55798/effect-of-varietal-feeding-on-larval-duration-and-cocoon-parameters-of-six-strains-of-eri-silkworm-samia-ricini-donovan-in-nagaland-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Perifanova-Nemska"> Mariana Perifanova-Nemska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20bean" title="castor bean">castor bean</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a> </p> <a href="https://publications.waset.org/abstracts/42571/potential-of-castor-bean-ricinus-communis-l-for-phytoremediation-of-soils-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aiswarea%20Mathew">Aiswarea Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/20839/in-situ-polymerization-and-properties-of-biobased-polyurethaneepoxy-interpenetrating-network-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Polymer Recycling by Biomaterial and Its Application in Grease Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amitkumar%20Barot">Amitkumar Barot</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaykumar%20Sinha"> Vijaykumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing interest in the development of new materials based on recycled polymers from plastic waste, and also in the field of lubricants much effort has been spent on substitution of petro-based raw materials by natural-based renewable ones. This is due to the facts of depleting fossil fuels and due to strict environmental laws. In relevance to this, new technique for the formulation of grease that combines the chemical recycling of poly (ethylene terephthalate) PET with the use of castor oil (CO) has been developed. Comparison to diols used in chemical recycling of PET, castor oil is renewable, easily available, environmentally friendly, economically cheaper and hence sustainability indeed. The process parameters like CO concentration and temperature were altered, and further, the influences of the process parameters have been studied in order to establish technically and commercially viable process. Further thereby formed depolymerized product find an application as base oil in the formulation of grease. A depolymerized product has been characterized by various chemical and instrumental methods, while formulated greases have been evaluated for its tribological properties. The grease formulated using this new environmentally friendly approach presents applicative properties similar, and in some cases superior, compared to those of a commercial grease obtained from non-renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=grease%20formulation" title=" grease formulation"> grease formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/67396/polymer-recycling-by-biomaterial-and-its-application-in-grease-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Development and Characterization of Castor Oil-Based Biopolyurethanes for High-Performance Coatings and Waterproofing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julie%20Anne%20Braun">Julie Anne Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20D.%20da%20Fonseca"> Leonardo D. da Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerson%20C.%20Parreira"> Gerson C. Parreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20J.%20E.%20Andrade"> Ricardo J. E. Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyurethanes (PU) are multifunctional polymers used across various industries. In construction, thermosetting polyurethanes are applied as coatings for flooring, paints, and waterproofing. They are widely specified in Brazil for waterproofing concrete structures like roof slabs and parking decks. Applied to concrete, they form a fully adhered membrane, providing a protective barrier with low water absorption, high chemical resistance, impermeability to liquids, and low vapor permeability. Their mechanical properties, including tensile strength (1 to 35 MPa) and Shore A hardness (83 to 88), depend on resin molecular weight and functionality, often using Methylene diphenyl diisocyanate. PU production, reliant on fossil-derived isocyanates and polyols, contributes significantly to carbon emissions. Sustainable alternatives, such as biopolyurethanes from renewable sources, are needed. Castor oil is a viable option for synthesizing sustainable polyurethanes. As a bio-based feedstock, castor oil is extensively cultivated in Brazil, making it a feasible option for the national market and ranking third internationally. This study aims to develop and characterize castor oil-based biopolyurethane for high-performance waterproofing and coating applications. A comparative analysis between castor oil-based PU and polyether polyol-based PU was conducted. Mechanical tests (tensile strength, Shore A hardness, abrasion resistance) and surface properties (contact angle, water absorption) were evaluated. Thermal, chemical, and morphological properties were assessed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results demonstrated that both polyurethanes exhibited high mechanical strength. Specifically, the tensile strength for castor oil-based PU was 19.18 MPa, compared to 12.94 MPa for polyether polyol-based PU. Similarly, the elongation values were 146.90% for castor oil-based PU and 135.50% for polyether polyol-based PU. Both materials exhibited satisfactory performance in terms of abrasion resistance, with mass loss of 0.067% for castor oil PU and 0.043% for polyether polyol PU and Shore A hardness values of 89 and 86, respectively, indicating high surface hardness. The results of the water absorption and contact angle tests confirmed the hydrophilic nature of polyether polyol PU, with a contact angle of 58.73° and water absorption of 2.53%. Conversely, the castor oil-based PU exhibited hydrophobic properties, with a contact angle of 81.05° and water absorption of 0.45%. The results of the FTIR analysis indicated the absence of a peak around 2275 cm-1, which suggests that all of the NCO groups were consumed in the stoichiometric reaction. This conclusion is supported by the high mechanical test results. The TGA results indicated that polyether polyol PU demonstrated superior thermal stability, exhibiting a mass loss of 13% at the initial transition (around 310°C), in comparison to castor oil-based PU, which experienced a higher initial mass loss of 25% at 335°C. In summary, castor oil-based PU demonstrated mechanical properties comparable to polyether polyol PU, making it suitable for applications such as trafficable coatings. However, its higher hydrophobicity makes it more promising for watertightness. Increasing environmental concerns necessitate reducing reliance on non-renewable resources and mitigating the environmental impacts of polyurethane production. Castor oil is a viable option for sustainable polyurethanes, aligning with emission reduction goals and responsible use of natural resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title="polyurethane">polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=waterproofing" title=" waterproofing"> waterproofing</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title=" construction industry"> construction industry</a> </p> <a href="https://publications.waset.org/abstracts/186148/development-and-characterization-of-castor-oil-based-biopolyurethanes-for-high-performance-coatings-and-waterproofing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Biofuel Production via Thermal Cracking of Castor Methyl Ester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghaieh%20Parvizsedghy">Roghaieh Parvizsedghy</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mojtaba%20Sadrameli"> Seyed Mojtaba Sadrameli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-diesel" title="bio-diesel">bio-diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-gasoline" title=" bio-gasoline"> bio-gasoline</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20methyl%20ester" title=" castor methyl ester"> castor methyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/67949/biofuel-production-via-thermal-cracking-of-castor-methyl-ester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Isolation and Characterization of Cotton Infecting Begomoviruses in Alternate Hosts from Cotton Growing Regions of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Irfan%20Fareed">M. Irfan Fareed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvina%20Gul%20Kazi"> Alvina Gul Kazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castor bean (Ricinus communis; family Euphorbiaceae) is cultivated for the production of oil and as an ornamental plant throughout tropical regions. Leaf samples from castor bean plants with leaf curl and vein thickening were collected from areas around Okara (Pakistan) in 2011. PCR amplification using diagnostic primers showed the presence of a begomovirus and subsequently the specific pair (BurNF 5’- CCATGGTTGTGGCAGTTGATTGACAGATAC-3’, BurNR 5’- CCATGGATTCACGCACAGGGGAACCC-3’) was used to amplify and clone the whole genome of the virus. The complete nucleotide sequence was determined to be 2,759 nt (accession No. HE985227). Alignments showed the highest levels of nucleotide sequence identity (98.8%) with Cotton leaf curl Burewala virus (CLCuBuV; accession No. JF416947) No. JF416947). The virus in castor beans lacks on intact C2 gene, as is typical of CLCuBuV in cotton. An amplification product of ca. 1.4 kb was obtained in PCR with primers for betasatellites and the complete nucleotide sequence of a clone was determined to be 1373 nt (HE985228). The sequence showed 96.3% nucleotide sequence identity to the recombinant Cotton leaf curl Multan betasatellite (CLCuMB; JF502389). This is the first report of CLCuBuV and its betasatellite infecting castor bean, showing this plant species as an alternate host of the virus. Already many alternate host have been reported from different alternate host like tobacco, tomato, hibiscus, okra, ageratum, Digera arvensis, habiscus, Papaya and now in Ricinus communis. So, it is suggested that these alternate hosts should be avoided to grow near cotton growing regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricinus%20communis" title="Ricinus communis">Ricinus communis</a>, <a href="https://publications.waset.org/abstracts/search?q=begomovirus" title=" begomovirus"> begomovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=betasatellite" title=" betasatellite"> betasatellite</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/21282/isolation-and-characterization-of-cotton-infecting-begomoviruses-in-alternate-hosts-from-cotton-growing-regions-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> In vivo Antidiarrheal and ex-vivo Spasmolytic Activities of the Aqueous Extract of the Roots of Echinops kebericho Mesfin in Rodents and Isolated Guinea-Pig Ileum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fisseha%20%20Shiferie%20%28Bpharm">Fisseha Shiferie (Bpharm</a>, <a href="https://publications.waset.org/abstracts/search?q=Mpharm%29"> Mpharm)</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diarrhea is a common gastrointestinal disorder characterized by an increase in stool frequency and a change in stool consistency. Inspite of the availability of many drugs as antidiarrheal agents, the search for a drug with affordable cost and better efficacy is essential to overcome diarrheal problems. The root extract of Echinops kebericho, is used by traditional practitioners for the treatment of diarrhea. However, the scientific basis for this usage has not been yet established. The purpose of the present study was to evaluate the antidiarrheal and spasmolytic activities of the aqueous extract of the roots of E. kebericho in rodents and isolated guinea-pig ileum preparations. In the castor oil induced intestinal transit test, E. kebericho produced a significant (p < 0.01) dose dependent decrease in propulsion with peristaltic index values of 45.05±3.3, 42.71±2.25 and 33.17±3.3%, respectively at doses of 100, 200 and 400 mg/kg compared with 63.43±7.3% for control. In the castor oil-induced diarrhea test, the mean defecation was reduced from 1.81±0.18 to 0.99 ± 0.21 compared with 2.59 ±0.81 for control. The extract (at doses stated above) significantly decreased the volume of intestinal fluid secretion induced by castor oil (2.31±0.1 to 2.01±0.2) in relation to 3.28±0.3 for control. When tested on a guinea-pig ileum, root extract of Echinops kebericho exhibited a dose dependent spasmolytic effect, 23.07 % being its highest inhibitory effect. The results obtained in this study give some scientific support to the use of Echinops kebericho as an antidiarrheal agent due to its inhibitory effects on the different diarrheal parameters used in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidiarrheal%20activity" title="antidiarrheal activity">antidiarrheal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20kebericho" title=" E. kebericho"> E. kebericho</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20medicine" title=" traditional medicine"> traditional medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=enteropooling" title=" enteropooling"> enteropooling</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20intestinal%20transit" title=" and intestinal transit"> and intestinal transit</a> </p> <a href="https://publications.waset.org/abstracts/15265/in-vivo-antidiarrheal-and-ex-vivo-spasmolytic-activities-of-the-aqueous-extract-of-the-roots-of-echinops-kebericho-mesfin-in-rodents-and-isolated-guinea-pig-ileum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Mani%20Rathnam">V. Mani Rathnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Giridhar%20Madras"> Giridhar Madras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20theory" title="association theory">association theory</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20mixtures" title=" liquid mixtures"> liquid mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilities" title=" solubilities"> solubilities</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/107534/an-association-model-to-correlate-the-experimentally-determined-mixture-solubilities-of-methyl-10-undecenoate-with-methyl-ricinoleate-in-supercritical-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Thermal Cracking Approach Investigation to Improve Biodiesel Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghaieh%20Parvizsedghy">Roghaieh Parvizsedghy</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mojtaba%20Sadrameli"> Seyyed Mojtaba Sadrameli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a> </p> <a href="https://publications.waset.org/abstracts/32353/thermal-cracking-approach-investigation-to-improve-biodiesel-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Physiological and Molecular Characterizations of Ricinus Communis Genotypes under Cadmium Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rini%20Rahul">Rini Rahul</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium (Cd) is a poisonous trace metal, which is responsible for excess reactive oxygen species generation (ROS) in plants, thereby adversely affecting their productivity and commercial potential. Ricinus communis (castor) is an industry-efficient non-edible bioenergy crop used for phytoremediation and re-vegetation. We have determined the total Cd content in castor genotypes and established a relationship between the Cd tolerance mechanism and physiological parameters like chlorophyll fluorescence, the total photosynthetic activity, chlorophyll and carotenoid content as well as ROS generation and malondialdehyde content. This study is an effort to comprehend the interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), nicotianamine synthase (NAS) and Natural resistance-associated macrophage protein (NRAMP) gene. The antioxidant enzyme activity increased for WM hence conferring Cd toxicity in this genotype. RcNRAMP genes showed differential expression in GCH2 and WM genotypes; this can also be one of the reasons for Cd toxicity and sensitivity in WM and GCH2, respectively. The cause of pronounced Cd tolerance in WM leaves can be because of enhanced expression of RcNAS1, RcNAS2 and RcNAS3 genes. Our results demonstrate that there is an interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), NAS and NRAMP gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ricinus%20communis" title="ricinus communis">ricinus communis</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotianamine%20synthase" title=" nicotianamine synthase"> nicotianamine synthase</a>, <a href="https://publications.waset.org/abstracts/search?q=NRAMP" title=" NRAMP"> NRAMP</a>, <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde" title=" malondialdehyde"> malondialdehyde</a> </p> <a href="https://publications.waset.org/abstracts/163663/physiological-and-molecular-characterizations-of-ricinus-communis-genotypes-under-cadmium-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Effect of Jatropha curcas Leaf Extract on Castor Oil Induced Diarrhea in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20U.%20Maigari">Fatima U. Maigari</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Halilu"> Musa Halilu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maryam%20Umar"> M. Maryam Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabiu%20Zainab"> Rabiu Zainab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants as therapeutic agents are used as drug in many parts of the world. Medicinal plants are mostly used in developing countries due to culture acceptability, belief or due to lack of easy access to primary health care services. Jatropha curcas is a plant from the Euphorbiaceae family which is widely used in Northern Nigeria as an anti-diarrheal agent. This study was conducted to determine the anti-diarrheal effect of the leaf extract on castor oil induced diarrhea in albino rats. The leaves of J. curcas were collected from Balanga Local government in Gombe State, north-eastern Nigeria; due to its bioavailability. The leaves were air-dried at room temperature and ground to powder. Phytochemical screening was done and different concentrations of the extract was prepared and administered to the different categories of experimental animals. From the results, aqueous leaf extract of Jatropha curcas at doses of 200mg/Kg and 400mg/Kg was found to reduce the mean stool score as compared to control rats, however, maximum reduction was achieved with the standard drug of Loperamide (5mg/Kg). Treatment of diarrhea with 200mg/Kg of the extract did not produce any significant decrease in stool fluid content but was found to be significant in those rats that were treated with 400mg/Kg of the extract at 2hours (0.05±0.02) and 4hours (0.01±0.01). A significant reduction of diarrhea in the experimental animals signifies it to possess some anti-diarrheal activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-diarrhea" title="anti-diarrhea">anti-diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=loperamide" title=" loperamide"> loperamide</a> </p> <a href="https://publications.waset.org/abstracts/42231/effect-of-jatropha-curcas-leaf-extract-on-castor-oil-induced-diarrhea-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Physico-Chemical Characterization of Vegetable Oils from Oleaginous Seeds (Croton megalocarpus, Ricinus communis L., and Gossypium hirsutum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrizia%20Firmani">Patrizia Firmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Perucchini"> Sara Perucchini</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Rapone"> Irene Rapone</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffella%20Borrelli"> Raffella Borrelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Chiaberge"> Stefano Chiaberge</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Grande"> Manuela Grande</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosamaria%20Marrazzo"> Rosamaria Marrazzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Savoini"> Alberto Savoini</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Siviero"> Andrea Siviero</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Spera"> Silvia Spera</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Vago"> Fabio Vago</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Deriu"> Davide Deriu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Fanutti"> Sergio Fanutti</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Oldani"> Alessandro Oldani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the Renewable Energy Directive II, the use of palm oil in diesel will be gradually reduced from 2023 and should reach zero in 2030 due to the deforestation caused by its production. Eni aims at finding alternative feedstocks for its biorefineries to eliminate the use of palm oil by 2023. Therefore, the ideal vegetable oils to be used in bio-refineries are those obtainable from plants that grow in marginal lands and with low impact on food-and-feed chain; hence, Eni research is studying the possibility of using oleaginous seeds, such as castor, croton, and cotton, to extract the oils to be exploited as feedstock in bio-refineries. To verify their suitability for the upgrading processes, an analytical protocol for their characterization has been drawn up and applied. The analytical characterizations include a step of water and ashes content determination, elemental analysis (CHNS analysis, X-Ray Fluorescence, Inductively Coupled Plasma - Optical Emission Spectroscopy, ICP– Mass Spectrometry), and total acid number determination. Gas chromatography coupled to flame ionization detector (GC-FID) is used to quantify the lipid content in terms of free fatty acids, mono-, di- and triacylglycerols, and fatty acids composition. Eventually, Nuclear Magnetic Resonance and Fourier Transform-Infrared spectroscopies are exploited with GC-MS and Fourier Transform-Ion Cyclotron Resonance to study the composition of the oils. This work focuses on the GC-FID analysis of the lipid fraction of these oils, as the main constituent and of greatest interest for bio-refinery processes. Specifically, the lipid component of the extracted oil was quantified after sample silanization and transmethylation: silanization allows the elution of high-boiling compounds and is useful for determining the quantity of free acids and glycerides in oils, while transmethylation leads to a mixture of fatty acid esters and glycerol, thus allowing to evaluate the composition of glycerides in terms of Fatty Acids Methyl Esters (FAME). Cotton oil was extracted from cotton oilcake, croton oil was obtained by seeds pressing and seeds and oilcake ASE extraction, while castor oil comes from seed pressing (not performed in Eni laboratories). GC-FID analyses reported that the cotton oil is 90% constituted of triglycerides and about 6% diglycerides, while free fatty acids are about 2%. In terms of FAME, C18 acids make up 70% of the total and linoleic acid is the major constituent. Palmitic acid is present at 17.5%, while the other acids are in low concentration (<1%). Both analyzes show the presence of non-gas chromatographable compounds. Croton oils from seed pressing and extraction mainly contain triglycerides (98%). Concerning FAME, the main component is linoleic acid (approx. 80%). Oilcake croton oil shows higher abundance of diglycerides (6% vs ca 2%) and a lower content of triglycerides (38% vs 98%) compared to the previous oils. Eventually, castor oil is mostly constituted of triacylglycerols (about 69%), followed by diglycerides (about 10%). About 85.2% of total FAME is ricinoleic acid, as a constituent of triricinolein, the most abundant triglyceride of castor oil. Based on the analytical results, these oils represent feedstocks of interest for possible exploitation as advanced biofuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20protocol" title="analytical protocol">analytical protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuels" title=" biofuels"> biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title=" biorefinery"> biorefinery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/147509/physico-chemical-characterization-of-vegetable-oils-from-oleaginous-seeds-croton-megalocarpus-ricinus-communis-l-and-gossypium-hirsutum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Extraction of Grapefruit Essential Oil from Grapefruit Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adithya%20Subramanian">Adithya Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ananthan"> S. Ananthan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Prasanth"> T. Prasanth</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Selvabharathi"> S. P. Selvabharathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project involves extraction of grapefruit essential oil from grapefruit peels using various oils like castor oil, gingelly oil, olive oil as carrier oils. The main aim of this project is to extract the oil which has numerous medicinal uses. The extraction can be performed by two methods. Project involves extraction of the oil with various carrier oil in a view to reduce the cost of production and the physical properties of the extracted oil are examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20oil" title=" carrier oil"> carrier oil</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20uses" title=" medicinal uses"> medicinal uses</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20of%20production" title=" cost of production"> cost of production</a> </p> <a href="https://publications.waset.org/abstracts/13665/extraction-of-grapefruit-essential-oil-from-grapefruit-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Lal">Deepali Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Summerwar"> Sudha Summerwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoutsna%20Pandey"> Jyoutsna Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20plant" title="distillation plant">distillation plant</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone" title=" acetone"> acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol" title=" alcohol"> alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=pipette" title=" pipette"> pipette</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20leaves" title=" castor leaves"> castor leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=grams%20pods" title=" grams pods"> grams pods</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae%20of%20helicoverpa%20armigera" title=" larvae of helicoverpa armigera"> larvae of helicoverpa armigera</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=vails" title=" vails"> vails</a>, <a href="https://publications.waset.org/abstracts/search?q=jars" title=" jars"> jars</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/48194/efficacy-of-some-plant-extract-against-larvae-and-pupae-of-american-bollworm-helicoverpa-armigera-including-the-effect-on-peritropme-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Synthesis and Use of Bio Polyols in Rigid Polyurethane Foam Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Esra%20Pi%C5%9Fkin">A. Esra Pişkin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Yusuf%20Yivlik"> L. Yusuf Yivlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyurethane consumption in the world increases every year. Polyetherpolyol, which is the main raw material of polyurethane, is produced from petroleum, and bioresources are needed in polyol production due to the damage it causes to the environment and the consumption of too much energy during the production phase. In this present work, bio polyol was synthesized with castor oil and soybean oil, and its use in rigid polyurethane systems was investigated. Transesterification and ring opening methods were applied for polyol synthesis, and the obtained bio polyols were compared with polyols derived petroleum. The goal of the present study was to synthesize biopolyols and to investigate the mechanical, thermal, and chemical properties of the synthesized polyurethane in terms of bio polyols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title="polyurethane">polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=polyol" title=" polyol"> polyol</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolyol" title=" biopolyol"> biopolyol</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a>, <a href="https://publications.waset.org/abstracts/search?q=foam" title=" foam"> foam</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title=" rigid polyurethane foam"> rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20opening" title=" ring opening"> ring opening</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/143609/synthesis-and-use-of-bio-polyols-in-rigid-polyurethane-foam-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Development of Plantar Insoles Reinforcement Using Biocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Vidal">A. C. Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Mulinari"> D. R. Mulinari</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Bandeira"> C. F. Bandeira</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Montoro"> S. R. Montoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the great effort suffered by foot during movement, is of great importance to count on a shoe that has a proper structure and excellent support tread to prevent the immediate and long-term consequences in all parts of the body. In this sense, new reinforcements of insoles with high impact absorption were developed in this work, from a polyurethane (PU) biocomposite derived from castor oil reinforced or not with palm fibers. These insoles have been obtained from the mixture with polyol prepolymer (diisocyanate) and subsequently were evaluated morphologically, mechanically and by thermal analysis. The results revealed that the biocomposites showed lower flexural strength, higher impact strength and open interconnected pores in their microstructure, but with smaller cells and degradation temperature slightly higher compared to the marketed material, showing interesting properties for a possible application as reinforcement of insoles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20insole" title=" polyurethane insole"> polyurethane insole</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20fibers" title=" palm fibers"> palm fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20insoles%20reinforcement" title=" plantar insoles reinforcement"> plantar insoles reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/20900/development-of-plantar-insoles-reinforcement-using-biocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Host Range and Taxonomy of Hairy Caterpillars (Erebidae: Lepidoptera) in Different Cropping Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mallikarjun%20Warad">Mallikarjun Warad</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Kalleshwaraswamy"> C. M. Kalleshwaraswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Shashank"> P. R. Shashank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies were conducted to record the occurrence of different species of hairy caterpillar on different host plants in and around Shivamogga, Karnataka, India. Twelve genera of hairy caterpillars belonging to Arctiinae and Lymantriinae were recorded on different host plants and reared to adults in laboratory on their respective hosts. The Porthesia sp. feed on castor, Creatonotus gangis on cocoa, Perina nuda on fig, Pericalia ricini on pigeon pea, Utetheisa pulchella on sunhemp and Euproctis sp. on paddy and banana. Illustrations of immature and adults were made to associate them. Along with this, light traps were also set during the rainy season, to capture adults of hairy caterpillars. An illustrated identification key was provided for easy and accurate identification of adult of hairy caterpillars based on their morphological (male genitalial) characters. The study through a light on the existence of sexual dimorphism, polyphagous nature and diapause are the major hindrance in taxonomic identification. Hence, attempts were made to address these issues in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erebidae" title="Erebidae">Erebidae</a>, <a href="https://publications.waset.org/abstracts/search?q=hairy%20caterpillars" title=" hairy caterpillars"> hairy caterpillars</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20genitalia" title=" male genitalia"> male genitalia</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/74997/host-range-and-taxonomy-of-hairy-caterpillars-erebidae-lepidoptera-in-different-cropping-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Study on Breakdown Voltage Characteristics of Different Types of Oils with Contaminations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Jouhar">C. Jouhar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajesh%20Kamath"> B. Rajesh Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Veeraiah"> M. K. Veeraiah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since long time ago, petroleum-based mineral oils have been used for liquid insulation in high voltage equipments. Mineral oils are widely used as insulation for transmission and distribution power transformers, capacitors and other high voltage equipment. Petroleum-based insulating oils have excellent dielectric properties such as high electric field strength, low dielectric losses and good long-term performance. Due to environmental consideration, an attempt to search the alternate liquid insulation is required. The influence of particles on the voltage breakdown in insulating oil and other liquids has been recognized for many years. Particles influence both AC and DC voltage breakdown in insulating oil. Experiments are conducted under AC voltage. The breakdown process starts with a microscopic bubble, an area of large distance where ions or electrons initiate avalanches. Insulating liquids drive their dielectric strength from the much higher density compare to gases. Experiments are carried out under High Voltage AC (HVAC) in different types of oils namely castor oil, vegetable oil and mineral oil. The Breakdown Voltage (BDV) with presence of moisture and particle contamination in different types of oils is studied. The BDV of vegetable oil is better when compared to other oils without contamination. The BDV of mineral oil is better when compared to other types of oils in presence of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20AC" title=" high voltage AC"> high voltage AC</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20oil" title=" insulating oil"> insulating oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20breakdown" title=" oil breakdown"> oil breakdown</a> </p> <a href="https://publications.waset.org/abstracts/52370/study-on-breakdown-voltage-characteristics-of-different-types-of-oils-with-contaminations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Protein Quality of Game Meat Hunted in Latvia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Strazdina">Vita Strazdina</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandrs%20Jemeljanovs"> Aleksandrs Jemeljanovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Vita%20Sterna"> Vita Sterna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietic%20product" title="dietic product">dietic product</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20meat" title=" game meat"> game meat</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=scores" title=" scores"> scores</a> </p> <a href="https://publications.waset.org/abstracts/10553/protein-quality-of-game-meat-hunted-in-latvia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=castor%20oil&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=castor%20oil&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>