CINXE.COM
Search results for: p and s-wave velocities
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: p and s-wave velocities</title> <meta name="description" content="Search results for: p and s-wave velocities"> <meta name="keywords" content="p and s-wave velocities"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="p and s-wave velocities" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="p and s-wave velocities"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 294</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: p and s-wave velocities</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Wave Velocity-Rock Property Relationships in Shallow Marine Libyan Carbonate Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20S.%20Duzan">Tarek S. Duzan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20F.%20Ettir"> Abdulaziz F. Ettir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave velocities, Core and Log petrophysical data were collected from recently drilled four new wells scattered through-out the Dahra/Jofra (PL-5) Reservoir. The collected data were analyzed for the relationships of Wave Velocities with rock property such as Porosity, permeability and Bulk Density. Lots of Literature review reveals a number of differing results and conclusions regarding wave velocities (Compressional Waves (Vp) and Shear Waves (Vs)) versus rock petrophysical property relationships, especially in carbonate reservoirs. In this paper, we focused on the relationships between wave velocities (Vp , Vs) and the ratio Vp/Vs with rock properties for shallow marine libyan carbonate reservoir (Real Case). Upon data analysis, a relationship between petrophysical properties and wave velocities (Vp, Vs) and the ratio Vp/Vs has been found. Porosity and bulk density properties have shown exponential relationship with wave velocities, while permeability has shown a power relationship in the interested zone. It is also clear that wave velocities (Vp , Vs) seems to be a good indicator for the lithology change with true vertical depth. Therefore, it is highly recommended to use the output relationships to predict porosity, bulk density and permeability of the similar reservoir type utilizing the most recent seismic data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20core%20analysis%20%28porosity" title="conventional core analysis (porosity">conventional core analysis (porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20bulk%20density%29%20data" title=" permeability bulk density) data"> permeability bulk density) data</a>, <a href="https://publications.waset.org/abstracts/search?q=VS%20wave%20and%20P-wave%20velocities" title=" VS wave and P-wave velocities"> VS wave and P-wave velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20carbonate%20reservoir%20in%20D%2FJ%20field" title=" shallow carbonate reservoir in D/J field"> shallow carbonate reservoir in D/J field</a> </p> <a href="https://publications.waset.org/abstracts/40040/wave-velocity-rock-property-relationships-in-shallow-marine-libyan-carbonate-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at UG=0.034 m/s) of the transition flow regime and the beginning (at UG=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities UG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20holdup%20fluctuations" title=" gas holdup fluctuations"> gas holdup fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Shannon%20entropy" title=" modified Shannon entropy"> modified Shannon entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov%20entropy" title=" Kolmogorov entropy"> Kolmogorov entropy</a> </p> <a href="https://publications.waset.org/abstracts/42948/identification-of-the-main-transition-velocities-in-a-bubble-column-based-on-a-modified-shannon-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title="elastic constants">elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Scots%20pine" title=" Scots pine"> Scots pine</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50083/determination-of-elastic-constants-for-scots-pine-grown-in-turkey-using-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Guzel">Hatice Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Oral"> Imran Oral</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Isler"> Huseyin Isler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/74353/ultrasonic-measurement-of-elastic-properties-of-fiber-reinforced-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Al-Suraihy">Ibrahim Al-Suraihy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellaziz%20Doghmane"> Abdellaziz Doghmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Hadjoub"> Zahia Hadjoub </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20X2Na2O-X2B2O3" title="mechanical properties X2Na2O-X2B2O3">mechanical properties X2Na2O-X2B2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20signature" title=" acoustic signature"> acoustic signature</a>, <a href="https://publications.waset.org/abstracts/search?q=SAW%20velocities" title=" SAW velocities"> SAW velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-radiation%20dose" title=" gamma-radiation dose"> gamma-radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/22062/nondestructive-acoustic-microcharacterisation-of-gamma-irradiation-effects-on-sodium-oxide-borate-glass-x2na2o-x2b2o3-by-acoustic-signature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Relationship between Wave Velocities and Geo-Pressures in Shallow Libyan Carbonate Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Sabri%20Duzan">Tarek Sabri Duzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of the magnitude of Geo-pressures (Pore, Fracture & Over-burden pressures) is vital especially during drilling, completions, stimulations, Enhance Oil Recovery. Many times problems, like lost circulation could have been avoided if techniques for calculating Geo-pressures had been employed in the well planning, mud weight plan, and casing design. In this paper, we focused on the relationships between Geo-pressures and wave velocities (P-Wave (Vp) and S-wave (Vs)) in shallow Libyan carbonate reservoir in the western part of the Sirte Basin (Dahra F-Area). The data used in this report was collected from four new wells recently drilled. Those wells were scattered throughout the interested reservoir as shown in figure-1. The data used in this work are bulk density, Formation Mult -Tester (FMT) results and Acoustic wave velocities. Furthermore, Eaton Method is the most common equation used in the world, therefore this equation has been used to calculate Fracture pressure for all wells using dynamic Poisson ratio calculated by using acoustic wave velocities, FMT results for pore pressure, Overburden pressure estimated by using bulk density. Upon data analysis, it has been found that there is a linear relationship between Geo-pressures (Pore, Fracture & Over-Burden pressures) and wave velocities ratio (Vp/Vs). However, the relationship was not clear in the high-pressure area, as shown in figure-10. Therefore, it is recommended to use the output relationship utilizing the new seismic data for shallow carbonate reservoir to predict the Geo-pressures for future oil operations. More data can be collected from the high-pressure zone to investigate more about this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title="bulk density">bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20mult-tester%20%28FMT%29%20results" title=" formation mult-tester (FMT) results"> formation mult-tester (FMT) results</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20wave" title=" acoustic wave"> acoustic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20shalow%20reservoir" title=" carbonate shalow reservoir"> carbonate shalow reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=d%2Fjfield%20velocities" title=" d/jfield velocities"> d/jfield velocities</a> </p> <a href="https://publications.waset.org/abstracts/40037/relationship-between-wave-velocities-and-geo-pressures-in-shallow-libyan-carbonate-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Two-Step Inversion Method for Multi-mode Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhang">Ying Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20wave%20inversion" title="surface wave inversion">surface wave inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=waveform%20separation" title=" waveform separation"> waveform separation</a>, <a href="https://publications.waset.org/abstracts/search?q=love%20waves" title=" love waves"> love waves</a>, <a href="https://publications.waset.org/abstracts/search?q=higher-mode%20interference" title=" higher-mode interference"> higher-mode interference</a> </p> <a href="https://publications.waset.org/abstracts/164271/two-step-inversion-method-for-multi-mode-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> A Study on Shock Formation over a Transonic Aerofoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fowsia">M. Fowsia</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Xavier%20Fernando"> Dominic Xavier Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinojitha"> Vinojitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahamath%20Juliyana"> Rahamath Juliyana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transonic%20aerofoil" title="transonic aerofoil">transonic aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=cfd" title=" cfd"> cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20divergence" title=" drag divergence"> drag divergence</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20formation" title=" shock formation"> shock formation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a> </p> <a href="https://publications.waset.org/abstracts/16576/a-study-on-shock-formation-over-a-transonic-aerofoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rahnamoun">Ali Rahnamoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Adri%20van%20Duin"> Adri van Duin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20materials" title="spacecraft materials">spacecraft materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hypervelocity%20impact" title=" hypervelocity impact"> hypervelocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20molecular%20dynamics%20simulation" title=" reactive molecular dynamics simulation"> reactive molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica" title=" amorphous silica"> amorphous silica</a> </p> <a href="https://publications.waset.org/abstracts/17234/study-of-water-cluster-amorphous-silica-collisions-in-the-extreme-space-environment-using-the-reaxff-reactive-force-field-molecular-dynamics-simulation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Simulation of Acoustic Properties of Borate and Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Gaafar">M. S. Gaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Marzouk"> S. Y. Marzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Mahmoud"> I. S. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Al-Zobaidi"> S. Al-Zobaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20wave%20velocities" title=" ultrasonic wave velocities"> ultrasonic wave velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Makishima%20%26%20Mackenzie%20Model" title=" Makishima & Mackenzie Model"> Makishima & Mackenzie Model</a> </p> <a href="https://publications.waset.org/abstracts/43461/simulation-of-acoustic-properties-of-borate-and-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Mechanistic Insights Into The Change Behavior; Its Relationship With Water Velocity, Nanoparticles, Gut Bacterial Composition, And Its Functional Metabolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mian%20Adnan%20Kakakhel">Mian Adnan Kakakhel</a>, <a href="https://publications.waset.org/abstracts/search?q=NIshita%20Narwal"> NIshita Narwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rasta"> Majid Rasta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Xiaotao"> Shi Xiaotao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The widespread use of nanoparticles means that they are significantly increasing in the aquatic ecosystem, where they are likely to pose threat to aquatic organism. In particular, the influence of nanoparticles exposure combined with varying water velocities on fish behavior remain poorly understood. Emerging evidences suggested a probable correlation between fish swimming behavior and gut bacterial dysbiosis. Therefore, the current study aimed to investigate the effects of nanomaterials in different water velocities on fish gut bacterial composition, which in results change in fish swimming behavior. The obtained findings showed that the contamination of nanoparticles was reduced as the velocity increased. However, the synergetic effects of nanoparticles and water velocity significantly (p < 0.05) decreased the bacterial composition, which plays a critical role in fish development, metabolism, digestion, enzymes production, and energy production such as Bacteroidetes and Firmicutes. This group of bacterial also support fish in swimming behavior by providing them a significant energy during movement. The obtained findings of this study suggested that the presence of nanoparticles in different water velocities have had a significant correlation with fish gut bacterial dysbiosis, as results the gut dysbiosis had been linked to the change in fish behavior. The study provides an important insight into the mechanisms by which the nanoparticles possibly affect the fish behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20velocities" title="water velocities">water velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20behavior" title=" fish behavior"> fish behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20bacteria" title=" gut bacteria"> gut bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a> </p> <a href="https://publications.waset.org/abstracts/176617/mechanistic-insights-into-the-change-behavior-its-relationship-with-water-velocity-nanoparticles-gut-bacterial-composition-and-its-functional-metabolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Elastic Constants of Fir Wood Using Ultrasound and Compression Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20tests" title="compression tests">compression tests</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=fir%20wood" title=" fir wood"> fir wood</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/92992/elastic-constants-of-fir-wood-using-ultrasound-and-compression-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya">Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.Karabutov"> Alexander A.Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Makarov"> Vladimir A. Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Mironova"> Elena A. Mironova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20A.%20Shibaev"> Ivan A. Shibaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasonic%20testing" title="laser ultrasonic testing ">laser ultrasonic testing </a>, <a href="https://publications.waset.org/abstracts/search?q=local%20elastic%20moduli" title=" local elastic moduli"> local elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=shungit" title=" shungit"> shungit</a> </p> <a href="https://publications.waset.org/abstracts/54585/determination-of-the-local-elastic-moduli-of-shungite-by-laser-ultrasonic-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Investigating Convective Boiling Heat Transfer Characteristics of R-1234ze and R-134a Refrigerants in a Microfin and Smooth Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaggwa%20Abdul">Kaggwa Abdul</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Chuan%20Wang"> Chi-Chuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is based on R-1234ze that is considered to substitute R-134a due to its low global warming potential in a microfin tube with outer diameter 9.52 mm, number of fins 70, and fin height 0.17 mm. In comparison, a smooth tube with similar geometries was used to study pressure drop and heat transfer coefficients related to the two fluids. The microfin tube was brazed inside a stainless steel tube and heated electrically. T-type thermocouples used to measure the temperature distribution during the phase change process. The experimental saturation temperatures and refrigerant mass velocities varied from 10 – 20°C and 50 – 300 kg/m2s respectively. The vapor quality from 0.1 to 0.9, and heat flux ranged from 5 – 11kW/m2. The results showed that heat transfer performance of R-134a in both microfin and smooth tube was better than R-1234ze especially at mass velocities above G = 50 kg/m2s. However, at low mass velocities below G = 100 kg/m2s R-1234ze yield better heat transfer coefficients than R-134a. The pressure gradient of R-1234ze was markedly higher than that of R-134a at all mass flow rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=R-1234ze%20and%20R-134a" title="R-1234ze and R-134a">R-1234ze and R-134a</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20flow%20boiling" title=" horizontal flow boiling"> horizontal flow boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficients" title=" heat transfer coefficients"> heat transfer coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-fin%20and%20smooth%20tubes" title=" micro-fin and smooth tubes"> micro-fin and smooth tubes</a> </p> <a href="https://publications.waset.org/abstracts/61750/investigating-convective-boiling-heat-transfer-characteristics-of-r-1234ze-and-r-134a-refrigerants-in-a-microfin-and-smooth-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Al-Hasem">Ahmed M. Al-Hasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of the tidal current behavior and bathymetric changes was undertaken in order to establish an information base for future coastal management. The average velocity for tidal current was 0.46 m/s and the maximum velocity was 1.08 m/s during ebb tide. During spring tides, maximum velocities range from 0.90 m/s to 1.08 m/s, whereas maximum velocities vary from 0.40 m/s to 0.60 m/s during neap tides. Despite greater current velocities during flood tide, the bathymetric features enhance the dominance of the ebb tide. This can be related to the abundance of fine sediments from the ebb current approaching the study area, and the relatively coarser sediment from the approaching flood current. Significant bathymetric changes for the period from 1985 to 1998 were found with dominance of erosion process. Approximately 96.5% of depth changes occurred within the depth change classes of -5 m to 5 m. The high erosion processes within the study area will subsequently result in high accretion processes, particularly in the north, the location of the proposed Boubyan Port and its navigation channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathymetric%20change" title="bathymetric change">bathymetric change</a>, <a href="https://publications.waset.org/abstracts/search?q=Boubyan%20island" title=" Boubyan island"> Boubyan island</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Khor%20Abdullah" title=" Khor Abdullah"> Khor Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20current%20behavior" title=" tidal current behavior"> tidal current behavior</a> </p> <a href="https://publications.waset.org/abstracts/74285/tidal-current-behaviors-and-remarkable-bathymetric-change-in-the-south-western-part-of-khor-abdullah-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van-Dycke%20Sarpong%20Asare">Van-Dycke Sarpong Asare</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Adongo"> Vincent Adongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomography" title="tomography">tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated" title=" consolidated"> consolidated</a>, <a href="https://publications.waset.org/abstracts/search?q=Pwalugu%20and%20seismograph" title=" Pwalugu and seismograph"> Pwalugu and seismograph</a> </p> <a href="https://publications.waset.org/abstracts/120294/subsurface-elastic-properties-determination-for-site-characterization-using-seismic-refraction-tomography-at-the-pwalugu-dam-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> A Unification and Relativistic Correction for Boltzmann’s Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lloyd%20G.%20Allred">Lloyd G. Allred</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (<em>E=mc<sup>2</sup></em>), then a relativistic correction is not required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmology" title="cosmology">cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=EMP" title=" EMP"> EMP</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=relativity" title=" relativity"> relativity</a> </p> <a href="https://publications.waset.org/abstracts/84272/a-unification-and-relativistic-correction-for-boltzmanns-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Pegah">Ehsan Pegah</a>, <a href="https://publications.waset.org/abstracts/search?q=Huabei%20Liu"> Huabei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction" title="angle of internal friction">angle of internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=overconsolidation%20ratio" title=" overconsolidation ratio"> overconsolidation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20soils" title=" granular soils"> granular soils</a>, <a href="https://publications.waset.org/abstracts/search?q=P-wave%20velocity" title=" P-wave velocity"> P-wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=SV-wave%20velocity" title=" SV-wave velocity"> SV-wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=SH-wave%20velocity" title=" SH-wave velocity"> SH-wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/106511/evaluation-of-internal-friction-angle-in-overconsolidated-granular-soil-deposits-using-p-and-s-wave-seismic-velocities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dehghani">S. R. Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Naterer"> G. F. Naterer</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Muzychka"> Y. S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation" title="evaporation">evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20spray" title=" sea spray"> sea spray</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20icing" title=" marine icing"> marine icing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/61868/heat-transfer-and-trajectory-models-for-a-cloud-of-spray-over-a-marine-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Molecular Clustering and Velocity Increase in Converging-Diverging Nozzle in Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeoungsu%20Na">Jeoungsu Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehawn%20Lee"> Jaehawn Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Changil%20Hong"> Changil Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhee%20Kim"> Suhee Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A molecular dynamics simulation in a converging-diverging nozzle was performed to study molecular collisions and their influence to average flow velocity according to a variety of vacuum levels. The static pressures and the dynamic pressure exerted by the molecule collision on the selected walls were compared to figure out the intensity variances of the directional flows. With pressure differences constant between the entrance and the exit of the nozzle, the numerical experiment was performed for molecular velocities and directional flows. The result shows that the velocities increased at the nozzle exit as the vacuum level gets higher in that area because less molecular collisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20collision" title=" molecular collision"> molecular collision</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20increase" title=" velocity increase"> velocity increase</a> </p> <a href="https://publications.waset.org/abstracts/61069/molecular-clustering-and-velocity-increase-in-converging-diverging-nozzle-in-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Computational Investigation of Gas-Solid Flow in High Pressure High Temperature Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Alhajeri">M. H. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20M.%20Alhajeri"> Hamad M. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi"> A. H. Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports a Computational Fluid Dynamics (CFD) investigation for a high-temperature high-pressure filtration (ceramic candle filter). However, parallel flow to the filter is considered in this study. Different face (filtration) velocities are examined using the CFD code, FLUENT. Different sizes of particles are tracked through the domain to find the height at which the particles will impinge on the filter surface. Furthermore, particle distribution around the filter (or filter cake) is studied to design efficient cleaning mechanisms. Gravity effect to the particles with various inlet velocities and pressure drop are both considered. In the CFD study, it is found that the gravity influence should not be ignored if the particle sizes exceed 1 micron. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title="fluid flow">fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=HTHP" title=" HTHP"> HTHP</a> </p> <a href="https://publications.waset.org/abstracts/107334/computational-investigation-of-gas-solid-flow-in-high-pressure-high-temperature-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities <em>U</em><sub>G</sub> in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at <em>U</em><sub>G</sub>=0.025 m/s and <em>U</em><sub>G</sub>=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at <em>U</em><sub>G</sub>=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20X-ray%20tomography" title=" ultrafast X-ray tomography"> ultrafast X-ray tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title=" information entropy"> information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20entropy" title=" reconstruction entropy"> reconstruction entropy</a> </p> <a href="https://publications.waset.org/abstracts/43128/entropy-analysis-in-a-bubble-column-based-on-ultrafast-x-ray-tomography-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Fat-Helbary">R. E. Fat-Helbary</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abdel-latief"> A. A. Abdel-latief</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Arfa"> M. S. Arfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Mostafa"> Alaa Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shallow%20seismic%20refraction%20technique" title="shallow seismic refraction technique">shallow seismic refraction technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurkur%20area" title=" Kurkur area"> Kurkur area</a>, <a href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities" title=" p and s-wave velocities"> p and s-wave velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20parameters" title=" geotechnical parameters"> geotechnical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalabsha%20faults" title=" Kalabsha faults"> Kalabsha faults</a> </p> <a href="https://publications.waset.org/abstracts/35906/evaluation-of-geotechnical-parameters-at-nubian-habitations-in-kurkur-area-aswan-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabrouka%20Morri">Mabrouka Morri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Soualmia"> Amel Soualmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Belleudy"> Philippe Belleudy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20models" title="analytic models">analytic models</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20velocity" title=" mean velocity"> mean velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a> </p> <a href="https://publications.waset.org/abstracts/21381/mean-velocity-modeling-of-open-channel-flow-with-submerged-vegetation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Antagonist Coactivation in Athletes Following Anterior Cruciate Ligament Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Pirali">Milad Pirali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohrab%20Keyhani"> Sohrab Keyhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohhamad%20Ali%20Sanjari"> Mohhamad Ali Sanjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ashraf%20Jamshidi"> Ali Ashraf Jamshidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The effect of hamstring antagonist activity on the knee extensors torque of the Anterior Cruciate Ligament reconstruction (ACLR) is not clear and persistent muscle weakness is common after ACLR. Hamstring activation when acting as antagonist is considered very important for knee strengths. Therefore the purpose of this study was to examine hamstring antagonist coactivation during maximal effort of the isokinetic knee extension in ACLR athletes with hamstring autograft. Materials and Methods: We enrolled 20 professional athletes who underwent primary ACLR (hamstring tendon autograft)with 6-24 months postoperative and 20 healthy subjects as control group. Each subjects performed maximal effort isokinetic knee extension and flexion in 60/˚ s and 180/˚ s velocities for the involved and uninvolved limb. Synchronously, surface electromyography (EMG) was recorded of vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF). The antagonist integrated EMG (IEMG) values were normalized to the IEMG of the same muscle during maximal isokinetic eccentric effort at the same velocities and ROM. Results: A one-way analysis of variance designs shows significantly greater IEMG coactivation of hamstring and decreased activation of Vm in ACLR when compared to uninvolved and control group leg in 60/˚ s and 180/˚ s velocities. Likewise peak torque to body weight was decreased in ACLR compared to uninvolved and control group during knee extension in both velocities (p < 0.05). Conclusions: Decreased extensors moment caused by decreased quadriceps inhibition and increased hamstring coactivation. In addition, these result indicated to decrease of motor unit recruitment in the VM (as a kinesiologicmonitore of the knee). It is appearing that strengthening of the quadriceps to be an important for rehabilitation program after ACLR for preparation in athletes endeavors. Therefore, we suggest that having more emphasis and focus on quadriceps strength and less emphasis on hamstring following ACLR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ACLR-coactivation" title="ACLR-coactivation">ACLR-coactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamometry" title=" dynamometry"> dynamometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic" title=" isokinetic"> isokinetic</a> </p> <a href="https://publications.waset.org/abstracts/50139/antagonist-coactivation-in-athletes-following-anterior-cruciate-ligament-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Bodaghkhani">Armin Bodaghkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Colbourne"> Bruce Colbourne</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Muzychka"> Yuri S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spray%20charachteristics" title="spray charachteristics">spray charachteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20size%20and%20velocity" title=" droplet size and velocity"> droplet size and velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-body%20interactions" title=" wave-body interactions"> wave-body interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20image%20velocimetry" title=" bubble image velocimetry"> bubble image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/59908/experimental-modeling-of-spray-and-water-sheet-formation-due-to-wave-interactions-with-vertical-and-slant-bow-shaped-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Pegah">Ehsan Pegah</a>, <a href="https://publications.waset.org/abstracts/search?q=Huabei%20Liu"> Huabei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duncan-Chang%20deformation%20parameters" title="Duncan-Chang deformation parameters">Duncan-Chang deformation parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20fill%20materials" title=" granular fill materials"> granular fill materials</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20waves%20velocity" title=" seismic waves velocity"> seismic waves velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel%20analysis%20of%20surface%20waves" title=" multichannel analysis of surface waves"> multichannel analysis of surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20refraction%20tomography" title=" seismic refraction tomography"> seismic refraction tomography</a> </p> <a href="https://publications.waset.org/abstracts/106481/evaluation-of-duncan-chang-deformation-parameters-of-granular-fill-materials-using-non-invasive-seismic-wave-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20J.%20A.%20Koguna">Aminu J. A. Koguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20M.%20Aliyu"> Aliyu M. Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olawale%20T.%20Fajemidupe"> Olawale T. Fajemidupe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahaya%20D.%20Baba"> Yahaya D. Baba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface%20height" title="interface height">interface height</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid" title=" liquid"> liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersed" title=" dispersed"> dispersed</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20cut" title=" water cut"> water cut</a> </p> <a href="https://publications.waset.org/abstracts/38742/study-of-low-loading-heavier-phase-in-horizontal-oil-water-liquid-liquid-pipe-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Experimental Study of Flag Flutter in Uniform Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sadeghi">A. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedghi"> M. Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Emami%20Azadi"> M. R. Emami Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gharraei%20Khosroshahi"> R. Gharraei Khosroshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flags are objects with very low bending stiffness and under wind forces start to vibrate and finally to flutter. Even in lower velocities of wind their flutter can be seen. In this research physical property of fabric is determined by performing tensile tests. Then with performing laboratory experiments in wind tunnel, determination of initial flapping speed and also study of displacement amplitude at leech and calculation of their frequency would be targeted. Laboratory tests are performed in a wind tunnel and with different velocities of wind flow for specimens with different dimensions. The results show that extension of specimens' width increase flutter initiation velocity and increase of specimen length decreases it. Also by increasing wind velocity displacement amplitude at leech of specimens are decreased. This displacement has a straight relation with specimens' length and width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flag" title="flag">flag</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20velocity" title=" wind velocity"> wind velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter%20amplitudes" title=" flutter amplitudes"> flutter amplitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/20004/experimental-study-of-flag-flutter-in-uniform-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Buhr">Alexander Buhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Ehrenfried"> Klaus Ehrenfried</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20PIV" title=" high-speed PIV"> high-speed PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=ICE3" title=" ICE3"> ICE3</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20train%20model" title=" moving train model"> moving train model</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20elements" title=" roughness elements"> roughness elements</a> </p> <a href="https://publications.waset.org/abstracts/65754/high-speed-particle-image-velocimetry-of-the-flow-around-a-moving-train-model-with-boundary-layer-control-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>