CINXE.COM

Search results for: polymer nanocomposite

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: polymer nanocomposite</title> <meta name="description" content="Search results for: polymer nanocomposite"> <meta name="keywords" content="polymer nanocomposite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="polymer nanocomposite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="polymer nanocomposite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1765</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: polymer nanocomposite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1765</span> Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Shervani">Suboohi Shervani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjing%20Ling"> Jingjing Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiabin%20Liu"> Jiabin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Husain"> Tahir Husain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography &ndash; flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached &ge; 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title="oil spill">oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/112190/grapheneznopolymer-nanocomposite-thin-film-for-separation-of-oil-water-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1764</span> Carbon Nanofibers Reinforced P(VdF-HFP) Based Gel Polymer Electrolyte for Lithium-Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjan%20Sil">Anjan Sil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Sharma"> Rajni Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Ray"> Subrata Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of carbon nanofibers (CNFs) on the electrical properties of Poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolytes has been investigated in the present work. The length and diameter ranges of CNFs used in the present work are 5-50 µm and 200-600 nm, respectively. The nanocomposite gel polymer electrolytes have been synthesized by solution casting technique with varying CNFs content in terms of weight percentage. Electrochemical impedance analysis demonstrates that the reinforcement of carbon nanofibers significantly enhances the ionic conductivity of the polymer electrolyte. The decrease of crystallinity of P(VdF-HFP) due the addition of CNFs has been confirmed by X-ray diffraction (XRD). The interaction of CNFs with various constituents of nanocomposite gel polymer electrolytes has been assessed by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, CNFs added gel polymer electrolytes offer superior thermal stability as compared to that of CNFs free electrolytes as confirmed by Thermogravimetric analysis (TGA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolytes" title="polymer electrolytes">polymer electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=CNFs" title=" CNFs"> CNFs</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a> </p> <a href="https://publications.waset.org/abstracts/33161/carbon-nanofibers-reinforced-pvdf-hfp-based-gel-polymer-electrolyte-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1763</span> Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisoo%20Kim">Jisoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Su%20Lee"> Min Su Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioabsorbable%20polymer" title="bioabsorbable polymer">bioabsorbable polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20fixation%20device" title=" bone fixation device"> bone fixation device</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoparticles" title=" ceramic nanoparticles"> ceramic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20assessment" title=" durability assessment"> durability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20test" title=" fatigue test"> fatigue test</a> </p> <a href="https://publications.waset.org/abstracts/64677/fatigue-test-and-stress-life-analysis-of-nanocomposite-based-bone-fixation-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1762</span> Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisoo%20Kim">Jisoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Choi"> Jin-Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=MinSu%20Lee"> MinSu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioabsorbable" title="bioabsorbable">bioabsorbable</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20fixation%20device" title=" bone fixation device"> bone fixation device</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoparticles" title=" ceramic nanoparticles"> ceramic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20assessment" title=" durability assessment"> durability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/53095/durability-assessment-of-nanocomposite-based-bone-fixation-device-consisting-of-bioabsorbable-polymer-and-ceramic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1761</span> Preparation of Core-Shell AgBr/Cationic Polymer Nanocomposite with Dual Biocidal Modes and Sustained Release of Ag+ Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rongzhou%20Wang">Rongzhou Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on designing nano-antibacterial agent with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a core-shell AgBr/cationic polymer nanocomposite (AgBr/NPVP-H10) were synthesized and its structure confirmed by Fourier Transform Infrared Spectrometer (FT-IR), Nuclear Magnetic Resonance (1H NMR) and X-ray diffraction (XRD), and the cationic polymer contents were determined with Thermal Gravimetric Analyzer (TGA). The morphology was directly observed by Transmission Electron Microscope (TEM) which showed that the nanoparticle contains single core and organic shell and had an average diameter of 30.1 nm. The antibacterial test against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli illuminated that this nanocomposite had potent bactericidal activity, which can be attributed to the contact-killing of cationic polymers and releasing-killing of Ag+ ions. In addition, cationic polymer encapsulating AgBr cores gave the resin discs sustained release of Ag+ ions, which may result in long-lasting bactericidal activity. The AgBr/NPVP-H10 nanoparticle with the dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing bacterial infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-shell%20nanocomposite" title="core-shell nanocomposite">core-shell nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20polymer" title=" cationic polymer"> cationic polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20antibacterial%20capability" title=" dual antibacterial capability"> dual antibacterial capability</a>, <a href="https://publications.waset.org/abstracts/search?q=long-lasting%20antibacterial%20activity" title=" long-lasting antibacterial activity"> long-lasting antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/74782/preparation-of-core-shell-agbrcationic-polymer-nanocomposite-with-dual-biocidal-modes-and-sustained-release-of-ag-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1760</span> Synthesis and D.C. Conductivity Measurements of Polyaniline/CopperOxide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20N.%20Shubha">L. N. Shubha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Madhusudana%20Rao"> P. Madhusudana Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Polyaniline / Copper Oxide(PANI / CuO) nanocomposite was prepared by solution mixing of prepared Polyaniline and copper Oxide in Dimethyl sulfoxide (DMSO). The synthesis involved the formation of dark green colored Polyaniline-Copper Oxide nanocomposite. The synthesized polymer nano composites were characterized by XRD, FTIR, SEM and UV-Visible Spectroscopy. The characteristic peaks in XRD, FTIR and UV-Visible spectra confirmed the presence of CuO in the polymer structure. SEM analysis revealed formation of PANI/CuO nano composite The D.C. conductivity measurements were performed using two probe method for various temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyaniline%2Fcopper%20oxide%20%28PANI%2FCuO%29%20nanocomposite" title="polyaniline/copper oxide (PANI/CuO) nanocomposite">polyaniline/copper oxide (PANI/CuO) nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIRand%20DC-%20conductivity" title=" FTIRand DC- conductivity"> FTIRand DC- conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-visible%20spectra" title=" UV-visible spectra"> UV-visible spectra</a> </p> <a href="https://publications.waset.org/abstracts/44353/synthesis-and-dc-conductivity-measurements-of-polyanilinecopperoxide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1759</span> Optimization of Hydrogel Conductive Nanocomposite as Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20M.%20Elsaeed">Shimaa M. Elsaeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20K.%20Farag"> Reem K. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Nassar"> Ibrahim M. Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer" title=" conductive polymer"> conductive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/42489/optimization-of-hydrogel-conductive-nanocomposite-as-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1758</span> The Preparation and Characterization of Conductive Poly(O-Toluidine)/Smectite Clay Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Erdem">E. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahin"> M. Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smectite is a layered silicate and modified with alkyl ammonium salts to make both the hydrophilic silicate surfaces organophilic, and to expand the clay layers. Thus, a nanocomposite structure can be formed enabling to enter various types of polymers between the layers. In this study, Na-smectite crystals were prepared by purification of bentonite. Benzyltributylammonium bromide (BTBAB) was used as a swelling agent. The mixing time and additive concentration were changed during the swelling process. It was determined that the 4 h of mixing time and 0.2 g of BTBAB were sufficient and the usage of higher amounts of salt did not increase the interlayer space between the clay layers. Then, the conductive poly(o-toluidine) (POT)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POT content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-toluidine/APS mol ratio. The POT content and conductivity of nanocomposite increased with increasing monomer/oxidant mol ratio up to 1 and did not change at higher ratios. The maximum polymer yield and the highest conductivity value of the composite were 26.0% and 4.0×10-5 S/cm, respectively. The structural and morphological analyses of the POT/smectite nanocomposite were carried out by XRD, FTIR and SEM techniques, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28o-anisidine%29" title=" poly(o-anisidine)"> poly(o-anisidine)</a> </p> <a href="https://publications.waset.org/abstracts/37134/the-preparation-and-characterization-of-conductive-polyo-toluidinesmectite-clay-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1757</span> BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Farokhi">H. Farokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahadoran"> A. Bahadoran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer" title="conductive polymer">conductive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title=" magnetic materials"> magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20cell" title=" electrochemical cell"> electrochemical cell</a> </p> <a href="https://publications.waset.org/abstracts/44855/bafe12o19polythiophene-nanocomposite-as-electrochemical-supercapacitor-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1756</span> Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reham%20K.%20El%20Sawah">Reham K. El Sawah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20M.%20El-Tayeb"> N. S. M. El-Tayeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20processing" title="friction stir processing">friction stir processing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix%20nanocomposite" title=" polymer matrix nanocomposite"> polymer matrix nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/141761/microstructure-and-mechanical-evaluation-of-pmmaal2o3-nanocomposite-fabricated-via-friction-stir-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1755</span> PVDF-HFP Based Nanocomposite Gel Polymer Electrolytes Dispersed with Zro2 for Li-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharma">R. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sil"> A. Sil</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ray"> S. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites gel polymer electrolytes are gaining more and more attention among the researchers worldwide due to their possible applications in various electrochemical devices particularly in solid-state Li-ion batteries. In this work we have investigated the effect of nanofibers on the electrical properties of PVDF-HFP based gel electrolytes. The nanocomposites polymer electrolytes have been synthesized by solution casting technique with 10wt% of ZrO2. By analysis of impedance spectroscopy it has been demonstrated that the incorporation of ZrO2 into PVDF-HFP–(PC+DEC)–LiClO4 gel polymer electrolyte system significantly enhances the ionic conductivity of the electrolyte. The enhancement of ionic conductivity seems to be correlated with the fact that the dispersion of ZrO2 to PVDF-HFP prevents polymer chain reorganization due to the high aspect ratio of ZrO2, resulting in reduction in polymer crystallinity, which gives rise to an increase in ionic conductivity. The decrease of crystallinity of PVDF-HFP due the addition of ZrO2 has been confirmed by XRD. The interaction of ZrO2 with various constituents of polymer electrolytes has been studied by FTIR spectroscopy. TEM results show that the fillers (ZrO2) has distributed uniformly in the polymer electrolytes. Moreover, ZrO2 added gel polymer electrolytes offer better thermal stability as compared to that of ZrO2 free electrolytes as confirmed by TGA analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolytes" title="polymer electrolytes">polymer electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=ZrO2" title=" ZrO2"> ZrO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/21340/pvdf-hfp-based-nanocomposite-gel-polymer-electrolytes-dispersed-with-zro2-for-li-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1754</span> Conductive Clay Nanocomposite Using Smectite and Poly(O-Anisidine)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahi%CC%87n">M. Şahi̇n</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Erdem"> E. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Na-smectite crystals purificated of bentonite were used after being swelling with benzyltributylammonium bromide (BTBAB) as alkyl ammonium salt. Swelling process was carried out using 0.2 g of BTBAB for smectite of 0.8 g with 4 h of mixing time after investigated conditions such as mixing time, the swelling agent amount. Then, the conductive poly(o-anisidine) (POA)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POA content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-anisidine/APS mol ratio. POA/smectite nanocomposite was characterized by XRD, FTIR and SEM techniques and was compared separately with components of composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28o-anisidine%29" title=" poly(o-anisidine) "> poly(o-anisidine) </a> </p> <a href="https://publications.waset.org/abstracts/37132/conductive-clay-nanocomposite-using-smectite-and-polyo-anisidine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1753</span> Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pandiyarajan%20Thangaraj">Pandiyarajan Thangaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangalaraja%20Ramalinga%20Viswanathan"> Mangalaraja Ramalinga Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthikeyan%20Balasubramanian"> Karthikeyan Balasubramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20D.%20Mansilla"> Héctor D. Mansilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ruiz"> José Ruiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO" title="rare earth doped ZnO">rare earth doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization" title=" structural characterization"> structural characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/14358/structural-properties-of-surface-modified-pva-zn97pr3o-polymer-nanocomposite-free-standing-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1752</span> Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim">Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20A.%20Fatthallah"> Nesreen A. Fatthallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy"> Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhifeng%20Hao"> Zhifeng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Chen"> Xiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foul-release%20nanocoatings" title="foul-release nanocoatings">foul-release nanocoatings</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene-based%20nanocomposite" title=" graphene-based nanocomposite"> graphene-based nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a> </p> <a href="https://publications.waset.org/abstracts/149138/graphene-based-nanocomposites-as-ecofriendly-antifouling-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1751</span> Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana">M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati"> M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Suriani"> A. B. Suriani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zakaria"> S. Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20%28CNT%29" title="carbon nanotube (CNT)">carbon nanotube (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose%20%28NFC%29" title=" nanofibrillated cellulose (NFC)"> nanofibrillated cellulose (NFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/16843/effect-of-carbon-nanotubes-on-nanocomposite-from-nanofibrillated-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1750</span> Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahidullah%20Tac">Vahidullah Tac</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Gurses"> Ercan Gurses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=interphase" title=" interphase"> interphase</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanical%20modeling" title=" micromechanical modeling"> micromechanical modeling</a> </p> <a href="https://publications.waset.org/abstracts/93783/micromechanical-determination-of-the-mechanical-properties-of-carbon-nanotube-polymer-composites-with-a-functionally-graded-interphase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1749</span> Chemical Synthesis, Electrical and Antibacterial Properties of Polyaniline/Gold Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20N.%20Shubha">L. N. Shubha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalpana"> M. Kalpana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Madhusudana%20Rao"> P. Madhusudana Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyaniline/gold (PANI/Au) nanocomposite was prepared by in-situ chemical oxidation polymerization method. The synthesis involved the formation of polyaniline-gold nanocomposite, by in-situ redox reaction and the dispersion of gold nano particles throughout the polyaniline matrix. The nanocomposites were characterized by XRD, FTIR, TEM and UV-visible spectroscopy. The characteristic peaks in FTIR and UV-visible spectra confirmed the expected structure of polymer as reported in the literature. Further, transmission electron microscopy (TEM) confirmed the formation of gold nano particles. The crystallite size of 30 nm for nanoAu was supported by the XRD pattern. Further, the A.C. conductivity, dielectric constant (€’(w)) and dielectric loss (€’’(w)) of PANI/Au nano composite was measured using impedance analyzer. The effect of doping on the conductivity was investigated. The antibacterial activity was examined for this nano composite and it was observed that PANI/Au nanocomposite could be used as an antibacterial agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC-conductivity" title="AC-conductivity">AC-conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title=" anti-microbial activity"> anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20loss" title=" dielectric loss"> dielectric loss</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline%2Fgold%20%28PANI%2FAU%29%20nanocomposite" title=" polyaniline/gold (PANI/AU) nanocomposite "> polyaniline/gold (PANI/AU) nanocomposite </a> </p> <a href="https://publications.waset.org/abstracts/15221/chemical-synthesis-electrical-and-antibacterial-properties-of-polyanilinegold-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1748</span> Effect of Epoxy-ZrP Nanocomposite Top Coating on Inorganic Barrier Layer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haesook%20Kim">Haesook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha%20Na%20Ra"> Ha Na Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansu%20Kim"> Mansu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Gi%20Kim"> Hyun Gi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Soo%20Kim"> Sung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy-ZrP (α-zirconium phosphate) nanocomposites were coated on inorganic barrier layer such as sputtering and atomic layer deposition (ALD) to improve the barrier properties and protect the layer. ZrP nanoplatelets were synthesized using a reflux method and exfoliated in the polymer matrix. The barrier properties of coating layer were characterized by measuring water vapor transmission rate (WVTR). The WVTR dramatically decreased after epoxy-ZrP nanocomposite coating, while maintaining the optical properties. It was also investigated the effect of epoxy-ZrP coating on inorganic layer after bending and reliability test. The optimal structure composed of inorganic and epoxy-ZrP nanocomposite layers was used in organic light emitting diodes (OLED) encapsulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-zirconium%20phosphate" title="α-zirconium phosphate">α-zirconium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier%20properties" title=" barrier properties"> barrier properties</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20nanocomposites" title=" epoxy nanocomposites"> epoxy nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=OLED%20encapsulation" title=" OLED encapsulation"> OLED encapsulation</a> </p> <a href="https://publications.waset.org/abstracts/67636/effect-of-epoxy-zrp-nanocomposite-top-coating-on-inorganic-barrier-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1747</span> Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Chaichi">Mozhgan Chaichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Sharif"> Farhad Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeede%20Mazinani"> Saeede Mazinani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a> </p> <a href="https://publications.waset.org/abstracts/50372/increasing-toughness-of-oriented-polyvinyl-alcohol-pvafe3o4-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1746</span> Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Jolly">Reshma Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shakir"> Mohammad Shakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shoeb%20Khan"> Mohammad Shoeb Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20E.%20Iram"> Noor E. Iram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive" title="bioactive">bioactive</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=hyroxyapatite" title=" hyroxyapatite"> hyroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/29631/starch-incorporated-hydroxyapatitechitin-nanocomposite-as-a-novel-bone-construct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1745</span> Thermal Properties of Polyhedral Oligomeric Silsesquioxanes/Polyimide Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyfullah%20Madakbas">Seyfullah Madakbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Birtane"> Hatice Birtane</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman"> Memet Vezir Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we aimed to synthesize and characterize polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite. Polyimide nanocomposites widely have been used in membranes in fuel cell, solar cell, gas filtration, sensors, aerospace components, printed circuit boards. Firstly, polyamic acid was synthesized and characterized by Fourier Transform Infrared. Then, polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite was prepared with thermal imidization method. The obtained polyimide nanocomposite was characterized by Fourier Transform Infrared, Scanning Electron Microscope, Thermal Gravimetric Analysis and Differential Scanning Calorimetry. Thermal stability of polyimide nanocomposite was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of composite samples was investigated by scanning electron microscope. The obtained results prove that successfully prepared polyhedral oligomeric silsesquioxanes are containing polyimide nanocomposite. The obtained nanocomposite can be used in many industries such as electronics, automotive, aerospace, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhedral%20oligomeric%20silsesquioxanes" title=" polyhedral oligomeric silsesquioxanes"> polyhedral oligomeric silsesquioxanes</a> </p> <a href="https://publications.waset.org/abstracts/93175/thermal-properties-of-polyhedral-oligomeric-silsesquioxanespolyimide-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1744</span> Synergistic Effect of Carbon Nanostructures and Titanium Dioxide Nanotubes on the Piezoelectric Property of Polyvinylidene Fluoride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepalekshmi%20Ponnamma">Deepalekshmi Ponnamma</a>, <a href="https://publications.waset.org/abstracts/search?q=Erturk%20Alper"> Erturk Alper</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Sharma"> Pradeep Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Al%20Ali%20AlMaadeed"> Mariam Al Ali AlMaadeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a hybrid filler combination of titanium dioxide nanotubes and the carbon nanostructures-carbon nanotubes and reduced graphene oxide- synthesized by hydrothermal method and then introduced into a semi crystalline polymer, polyvinylidene fluoride (PVDF). Simple mixing method is adopted for the PVDF nanocomposite fabrication after ensuring a high interaction among the fillers. The films prepared were mainly tested for the piezoelectric responses and for the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20property" title="dielectric property">dielectric property</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20growth" title=" hydrothermal growth"> hydrothermal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite" title=" polymer nanocomposite"> polymer nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/71215/synergistic-effect-of-carbon-nanostructures-and-titanium-dioxide-nanotubes-on-the-piezoelectric-property-of-polyvinylidene-fluoride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1743</span> Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Jaffar%20Al-Mulla">Emad A. Jaffar Al-Mulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/6713/biodegradability-and-thermal-properties-of-polycaprolactonestarch-nanocomposite-as-a-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1742</span> Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Halder">Monalisa Halder</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Das"> Amit K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20K.%20Meikap"> Ajit K. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlated%20barrier%20hopping" title="correlated barrier hopping">correlated barrier hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=schottky%20diode" title=" schottky diode"> schottky diode</a>, <a href="https://publications.waset.org/abstracts/search?q=TbMnO%E2%82%83" title=" TbMnO₃"> TbMnO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a> </p> <a href="https://publications.waset.org/abstracts/93130/enhanced-thermal-and-electrical-properties-of-terbium-manganate-polyvinyl-alcohol-nanocomposite-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1741</span> Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeshina%20Fadeyibi">Adeshina Fadeyibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=casaava%20Starch" title=" casaava Starch"> casaava Starch</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20film" title=" nanocomposite film"> nanocomposite film</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a> </p> <a href="https://publications.waset.org/abstracts/115011/synthesis-and-characterization-of-cassava-starch-zinc-nanocomposite-film-for-food-packaging-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1740</span> Investigation of Doping of CdSe QDs in Organic Semiconductor for Solar Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20R.%20Bhand">Ganesh R. Bhand</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20Chaure"> N. B. Chaure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium selenide (CdSe) quantum dots (QDs) were prepared by solvothermal route. Subsequently a inorganic QDs-organic semiconductor (copper phthalocyanine) nanocomposite (i.e CuPc:CdSe nanocomposites) were produced by different concentration of QDs varied in CuPc. The nanocomposite thin films have been prepared by means of spin coating technique. The optical, structural and morphological properties of nanocomposite films have been investigated. The transmission electron microscopy (TEM) confirmed the formation of QDs having average size of  4 nm. The X-ray diffraction pattern exhibits cubic crystal structure of CdSe with reflection to (111), (220) and (311) at 25.4ᵒ, 42.2ᵒ and 49.6ᵒ respectively. The additional peak observed at lower angle at 6.9ᵒ in nanocomposite thin films are associated to CuPc. The field emission scanning electron microscopy (FESEM) observed that surface morphology varied in increasing concentration of CdSe QDs. The obtained nanocomposite show significant improvement in the thermal stability as compared to the pure CuPc indicated by thermo-gravimetric analysis (TGA) in thermograph. The effect in the Raman spectra of composites samples gives a confirm evidence of homogenous dispersion of CdSe in the CuPc matrix and their strong interaction between them to promotes charge transfer property. The success of reaction between composite was confirmed by Fourier transform infrared spectroscopy (FTIR). The photo physical properties were studied using UV - visible spectroscopy. The enhancement of the optical absorption in visible region for nanocomposite layer was observed with increasing the concentration of CdSe in CuPc. This composite may obtain the maximized interface between QDs and polymer for efficient charge separation and enhance the charge transport. Such nanocomposite films for potential application in fabrication of hybrid solar cell with improved power conversion efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CdSe%20QDs" title="CdSe QDs">CdSe QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=cupper%20phthalocyanine" title=" cupper phthalocyanine"> cupper phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20absorption" title=" optical absorption"> optical absorption</a> </p> <a href="https://publications.waset.org/abstracts/75785/investigation-of-doping-of-cdse-qds-in-organic-semiconductor-for-solar-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1739</span> Design and Synthesis of Gradient Nanocomposite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pu%20Ying-Chih">Pu Ying-Chih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yin-Ju"> Yang Yin-Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20Jian-Yi"> Hang Jian-Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang%20Guang-Way"> Jang Guang-Way </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gradient" title="Gradient">Gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid" title=" Hybrid"> Hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic-Inorganic" title=" Organic-Inorganic"> Organic-Inorganic</a> </p> <a href="https://publications.waset.org/abstracts/25011/design-and-synthesis-of-gradient-nanocomposite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1738</span> Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasar%20Saleem">Qasar Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=oligomers" title=" oligomers"> oligomers</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic" title=" polylactic"> polylactic</a> </p> <a href="https://publications.waset.org/abstracts/42713/synthesis-and-characterization-of-lactic-acid-grafted-tio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1737</span> The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCrses">A. Gürses</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Ero%C4%9Flu"> Z. Eroğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20%C5%9Eahin"> E. Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G%C3%BCne%C5%9F"> K. Güneş</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20Do%C4%9Far"> Ç. Doğar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20low%20density%20polyethylene" title="linear low density polyethylene">linear low density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=organoclay" title=" organoclay"> organoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a> </p> <a href="https://publications.waset.org/abstracts/53070/the-effect-of-addition-of-dioctyl-terephthalate-and-calcite-on-the-tensile-properties-of-organoclaylinear-low-density-polyethylene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1736</span> Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khansaa%20Al-Essa">Khansaa Al-Essa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title="photodegradation">photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitic%20carbon%20nitride-CeO%E2%82%82" title=" graphitic carbon nitride-CeO₂"> graphitic carbon nitride-CeO₂</a> </p> <a href="https://publications.waset.org/abstracts/189432/graphitic-carbon-nitride-ceo2-nanocomposite-for-photocatalytic-degradation-of-methyl-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10