CINXE.COM
Quantization (signal processing) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Quantization (signal processing) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fb309f1e-a865-440e-88e0-a03495091fe5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Quantization_(signal_processing)","wgTitle":"Quantization (signal processing)","wgCurRevisionId":1256393006,"wgRevisionId":1256393006,"wgArticleId":317018,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1: long volume value","Articles with short description","Short description matches Wikidata","Use American English from April 2019","All Wikipedia articles written in American English","Data compression","Digital signal processing","Computer graphic artifacts","Digital audio","Noise (electronics)","Signal processing","Telecommunication theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Quantization_(signal_processing)","wgRelevantArticleId":317018,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q198099","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/1200px-Quantization_error.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="407"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/800px-Quantization_error.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="271"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/640px-Quantization_error.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="217"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Quantization (signal processing) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Quantization_(signal_processing)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Quantization_(signal_processing)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Quantization_(signal_processing)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Quantization_signal_processing rootpage-Quantization_signal_processing skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Quantization+%28signal+processing%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Quantization+%28signal+processing%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Quantization+%28signal+processing%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Quantization+%28signal+processing%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Mathematical_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mathematical properties</span> </div> </a> <ul id="toc-Mathematical_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Types" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Types"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Types</span> </div> </a> <button aria-controls="toc-Types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Types subsection</span> </button> <ul id="toc-Types-sublist" class="vector-toc-list"> <li id="toc-Analog-to-digital_converter" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analog-to-digital_converter"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Analog-to-digital converter</span> </div> </a> <ul id="toc-Analog-to-digital_converter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rate–distortion_optimization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rate–distortion_optimization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Rate–distortion optimization</span> </div> </a> <ul id="toc-Rate–distortion_optimization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mid-riser_and_mid-tread_uniform_quantizers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mid-riser_and_mid-tread_uniform_quantizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Mid-riser and mid-tread uniform quantizers</span> </div> </a> <ul id="toc-Mid-riser_and_mid-tread_uniform_quantizers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dead-zone_quantizers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dead-zone_quantizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Dead-zone quantizers</span> </div> </a> <ul id="toc-Dead-zone_quantizers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Noise_and_error_characteristics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Noise_and_error_characteristics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Noise and error characteristics</span> </div> </a> <button aria-controls="toc-Noise_and_error_characteristics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Noise and error characteristics subsection</span> </button> <ul id="toc-Noise_and_error_characteristics-sublist" class="vector-toc-list"> <li id="toc-Additive_noise_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Additive_noise_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Additive noise model</span> </div> </a> <ul id="toc-Additive_noise_model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantization_error_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantization_error_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Quantization error models</span> </div> </a> <ul id="toc-Quantization_error_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantization_noise_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantization_noise_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Quantization noise model</span> </div> </a> <ul id="toc-Quantization_noise_model-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Design" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Design"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Design</span> </div> </a> <button aria-controls="toc-Design-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Design subsection</span> </button> <ul id="toc-Design-sublist" class="vector-toc-list"> <li id="toc-Granular_distortion_and_overload_distortion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Granular_distortion_and_overload_distortion"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Granular distortion and overload distortion</span> </div> </a> <ul id="toc-Granular_distortion_and_overload_distortion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rate–distortion_quantizer_design" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rate–distortion_quantizer_design"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Rate–distortion quantizer design</span> </div> </a> <ul id="toc-Rate–distortion_quantizer_design-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neglecting_the_entropy_constraint:_Lloyd–Max_quantization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Neglecting_the_entropy_constraint:_Lloyd–Max_quantization"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Neglecting the entropy constraint: Lloyd–Max quantization</span> </div> </a> <ul id="toc-Neglecting_the_entropy_constraint:_Lloyd–Max_quantization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniform_quantization_and_the_6_dB/bit_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniform_quantization_and_the_6_dB/bit_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Uniform quantization and the 6 dB/bit approximation</span> </div> </a> <ul id="toc-Uniform_quantization_and_the_6_dB/bit_approximation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_other_fields" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_other_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In other fields</span> </div> </a> <ul id="toc-In_other_fields-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Quantization (signal processing)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 33 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-33" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">33 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%83%D9%85%D9%8A%D9%85_(%D8%A5%D8%B4%D8%A7%D8%B1%D8%A9)" title="تكميم (إشارة) – Arabic" lang="ar" hreflang="ar" data-title="تكميم (إشارة)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kvantlama_s%C9%99viyy%C9%99si" title="Kvantlama səviyyəsi – Azerbaijani" lang="az" hreflang="az" data-title="Kvantlama səviyyəsi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D1%83%D0%B2%D0%B0%D0%BD_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB" title="Квантуван сигнал – Bulgarian" lang="bg" hreflang="bg" data-title="Квантуван сигнал" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Quantificaci%C3%B3_(processament_de_senyal)" title="Quantificació (processament de senyal) – Catalan" lang="ca" hreflang="ca" data-title="Quantificació (processament de senyal)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BB%D0%B0%D0%BD%D0%B8_(%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D1%81%D0%B5%D0%BD%D0%B5_%D1%82%D0%B8%D1%80%D0%BF%D0%B5%D0%B9%D0%BB%D0%B5%D0%BD%D0%B8)" title="Квантлани (сигналсене тирпейлени) – Chuvash" lang="cv" hreflang="cv" data-title="Квантлани (сигналсене тирпейлени)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Kvantov%C3%A1n%C3%AD_(sign%C3%A1l)" title="Kvantování (signál) – Czech" lang="cs" hreflang="cs" data-title="Kvantování (signál)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kvantisering" title="Kvantisering – Danish" lang="da" hreflang="da" data-title="Kvantisering" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Quantisierung_(Signalverarbeitung)" title="Quantisierung (Signalverarbeitung) – German" lang="de" hreflang="de" data-title="Quantisierung (Signalverarbeitung)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kvantimine" title="Kvantimine – Estonian" lang="et" hreflang="et" data-title="Kvantimine" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cuantificaci%C3%B3n_digital" title="Cuantificación digital – Spanish" lang="es" hreflang="es" data-title="Cuantificación digital" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%A9%D9%88%D8%A7%D9%86%D8%AA%D8%B4_(%D9%BE%D8%B1%D8%AF%D8%A7%D8%B2%D8%B4_%D8%B3%DB%8C%DA%AF%D9%86%D8%A7%D9%84)" title="کوانتش (پردازش سیگنال) – Persian" lang="fa" hreflang="fa" data-title="کوانتش (پردازش سیگنال)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Quantification_(signal)" title="Quantification (signal) – French" lang="fr" hreflang="fr" data-title="Quantification (signal)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%96%91%EC%9E%90%ED%99%94_(%EC%A0%95%EB%B3%B4_%EC%9D%B4%EB%A1%A0)" title="양자화 (정보 이론) – Korean" lang="ko" hreflang="ko" data-title="양자화 (정보 이론)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kvantizacija" title="Kvantizacija – Croatian" lang="hr" hreflang="hr" data-title="Kvantizacija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kuantisasi_(pengolahan_sinyal)" title="Kuantisasi (pengolahan sinyal) – Indonesian" lang="id" hreflang="id" data-title="Kuantisasi (pengolahan sinyal)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Quantizzazione_(elettronica)" title="Quantizzazione (elettronica) – Italian" lang="it" hreflang="it" data-title="Quantizzazione (elettronica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%95%D7%95%D7%A0%D7%98%D7%99%D7%96%D7%A6%D7%99%D7%94_(%D7%A2%D7%99%D7%91%D7%95%D7%93_%D7%90%D7%95%D7%AA%D7%95%D7%AA)" title="קוונטיזציה (עיבוד אותות) – Hebrew" lang="he" hreflang="he" data-title="קוונטיזציה (עיבוד אותות)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Kvant%C3%A1l%C3%A1s_(jelfeldolgoz%C3%A1s)" title="Kvantálás (jelfeldolgozás) – Hungarian" lang="hu" hreflang="hu" data-title="Kvantálás (jelfeldolgozás)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%98%D0%B0_(%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BD%D0%B0_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D0%B8)" title="Квантизација (обработка на сигнали) – Macedonian" lang="mk" hreflang="mk" data-title="Квантизација (обработка на сигнали)" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Kwantisatie_(signaalanalyse)" title="Kwantisatie (signaalanalyse) – Dutch" lang="nl" hreflang="nl" data-title="Kwantisatie (signaalanalyse)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Kvantisering_(signalbehandling)" title="Kvantisering (signalbehandling) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Kvantisering (signalbehandling)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Kwantyzacja_(technika)" title="Kwantyzacja (technika) – Polish" lang="pl" hreflang="pl" data-title="Kwantyzacja (technika)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Quantiza%C3%A7%C3%A3o" title="Quantização – Portuguese" lang="pt" hreflang="pt" data-title="Quantização" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_(%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D0%BE%D0%B2)" title="Квантование (обработка сигналов) – Russian" lang="ru" hreflang="ru" data-title="Квантование (обработка сигналов)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%98%D0%B0_(%D0%BE%D0%B1%D1%80%D0%B0%D0%B4%D0%B0_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D0%B0)" title="Квантизација (обрада сигнала) – Serbian" lang="sr" hreflang="sr" data-title="Квантизација (обрада сигнала)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Kuantisasi" title="Kuantisasi – Sundanese" lang="su" hreflang="su" data-title="Kuantisasi" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kvantisointi" title="Kvantisointi – Finnish" lang="fi" hreflang="fi" data-title="Kvantisointi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kvantisering_(signalbehandling)" title="Kvantisering (signalbehandling) – Swedish" lang="sv" hreflang="sv" data-title="Kvantisering (signalbehandling)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%8A%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BE%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%AE%E0%AF%8D" title="சொட்டாக்கம் – Tamil" lang="ta" hreflang="ta" data-title="சொட்டாக்கம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Nicemleme_(sinyal_i%C5%9Fleme)" title="Nicemleme (sinyal işleme) – Turkish" lang="tr" hreflang="tr" data-title="Nicemleme (sinyal işleme)" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F_(%D0%BE%D0%B1%D1%80%D0%BE%D0%B1%D0%BA%D0%B0_%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB%D1%96%D0%B2)" title="Квантування (обробка сигналів) – Ukrainian" lang="uk" hreflang="uk" data-title="Квантування (обробка сигналів)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/L%C6%B0%E1%BB%A3ng_t%E1%BB%AD_h%C3%B3a" title="Lượng tử hóa – Vietnamese" lang="vi" hreflang="vi" data-title="Lượng tử hóa" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%87%8F%E5%8C%96_(%E4%BF%A1%E5%8F%B7%E5%A4%84%E7%90%86)" title="量化 (信号处理) – Chinese" lang="zh" hreflang="zh" data-title="量化 (信号处理)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q198099#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantization_(signal_processing)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Quantization_(signal_processing)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantization_(signal_processing)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Quantization_(signal_processing)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Quantization_(signal_processing)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Quantization_(signal_processing)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&oldid=1256393006" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Quantization_%28signal_processing%29&id=1256393006&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantization_%28signal_processing%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantization_%28signal_processing%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Quantization_%28signal_processing%29&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Quantization_(signal_processing)&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Quantization" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q198099" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Process of mapping a continuous set to a countable set</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Quantization_error.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/440px-Quantization_error.png" decoding="async" width="440" height="149" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/660px-Quantization_error.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/880px-Quantization_error.png 2x" data-file-width="1280" data-file-height="434" /></a><figcaption>The simplest way to quantize a signal is to choose the digital amplitude value closest to the original analog amplitude. This example shows the original analog signal (green), the quantized signal (black dots), the <a href="/wiki/Signal_reconstruction" title="Signal reconstruction">signal reconstructed</a> from the quantized signal (yellow) and the difference between the original signal and the reconstructed signal (red). The difference between the original signal and the reconstructed signal is the quantization error and, in this simple quantization scheme, is a deterministic function of the input signal.</figcaption></figure> <p><b>Quantization</b>, in mathematics and <a href="/wiki/Digital_signal_processing" title="Digital signal processing">digital signal processing</a>, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite <a href="/wiki/Number_of_elements" class="mw-redirect" title="Number of elements">number of elements</a>. <a href="/wiki/Rounding" title="Rounding">Rounding</a> and <a href="/wiki/Truncation" title="Truncation">truncation</a> are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all <a href="/wiki/Lossy_compression" title="Lossy compression">lossy compression</a> algorithms. </p><p>The difference between an input value and its quantized value (such as <a href="/wiki/Round-off_error" title="Round-off error">round-off error</a>) is referred to as <b>quantization error</b>. A device or <a href="/wiki/Algorithm_function" class="mw-redirect" title="Algorithm function">algorithmic function</a> that performs quantization is called a <b>quantizer</b>. An <a href="/wiki/Analog-to-digital_converter" title="Analog-to-digital converter">analog-to-digital converter</a> is an example of a quantizer. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=1" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For example, <a href="/wiki/Rounding#Round_half_up" title="Rounding">rounding</a> a <a href="/wiki/Real_number" title="Real number">real number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> to the nearest integer value forms a very basic type of quantizer – a <i>uniform</i> one. A typical (<i>mid-tread</i>) uniform quantizer with a quantization <i>step size</i> equal to some value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> can be expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>⌊</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>⌋</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f2b96d64a62e07c90e47cff07b22cfe2cdd85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.012ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"></span>,</dd></dl> <p>where the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor \ \rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mtext> </mtext> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor \ \rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5c5f3c09db405aa8eeb516b1281a0af12c5633b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.645ex; height:2.843ex;" alt="{\displaystyle \lfloor \ \rfloor }"></span> denotes the <a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">floor function</a>. </p><p>Alternatively, the same quantizer may be expressed in terms of the <a href="/wiki/Ceiling_function" class="mw-redirect" title="Ceiling function">ceiling function</a>, as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>⌈</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>⌉</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/589717e3717d0cced093c0af004dc20ffbe02f58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.012ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil }"></span>.</dd></dl> <p>(The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lceil \ \rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌈<!-- ⌈ --></mo> <mtext> </mtext> <mo fence="false" stretchy="false">⌉<!-- ⌉ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lceil \ \rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cd9da603e62fe9d5acb19777c56b59d13c3d2de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.645ex; height:2.843ex;" alt="{\displaystyle \lceil \ \rceil }"></span> denotes the ceiling function). </p><p>The essential property of a quantizer is having a countable-set of possible output-values members smaller than the set of possible input values. The members of the set of output values may have integer, rational, or real values. For simple rounding to the nearest integer, the step size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> is equal to 1. With <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf46f3fc2f930287a56caef6549a2909c3978fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.197ex; height:2.176ex;" alt="{\displaystyle \Delta =1}"></span> or with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> equal to any other integer value, this quantizer has real-valued inputs and integer-valued outputs. </p><p>When the quantization step size (Δ) is small relative to the variation in the signal being quantized, it is relatively simple to show that the <a href="/wiki/Mean_squared_error" title="Mean squared error">mean squared error</a> produced by such a rounding operation will be approximately <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{2}/12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{2}/12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b5be83e88394057daa090c25107b1b57adb48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.477ex; height:3.176ex;" alt="{\displaystyle \Delta ^{2}/12}"></span>.<sup id="cite_ref-Sheppard_1-0" class="reference"><a href="#cite_note-Sheppard-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bennett_2-0" class="reference"><a href="#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-OliverPierceShannon_3-0" class="reference"><a href="#cite_note-OliverPierceShannon-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stein_4-0" class="reference"><a href="#cite_note-Stein-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GishPierce_5-0" class="reference"><a href="#cite_note-GishPierce-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-0" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Mean squared error is also called the quantization <i>noise power</i>. Adding one bit to the quantizer halves the value of Δ, which reduces the noise power by the factor <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>. In terms of <a href="/wiki/Decibel" title="Decibel">decibels</a>, the noise power change is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>≈<!-- ≈ --></mo> <mtext> </mtext> <mo>−<!-- − --></mo> <mn>6</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">B</mi> </mrow> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c8fd999c7f6991821f8d2fe533d63994d6de7ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.103ex; height:2.176ex;" alt="{\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .}"></span> </p><p>Because the set of possible output values of a quantizer is countable, any quantizer can be decomposed into two distinct stages, which can be referred to as the <i>classification</i> stage (or <i>forward quantization</i> stage) and the <i>reconstruction</i> stage (or <i>inverse quantization</i> stage), where the classification stage maps the input value to an integer <i>quantization index</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> and the reconstruction stage maps the index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> to the <i>reconstruction value</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> that is the output approximation of the input value. For the example uniform quantizer described above, the forward quantization stage can be expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow> <mo>⌊</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>⌋</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2dabc358baa4191891f0933adcfb4040bc67d33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.631ex; height:6.176ex;" alt="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"></span>,</dd></dl> <p>and the reconstruction stage for this example quantizer is simply </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}=k\cdot \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}=k\cdot \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4613add6fc8632fbf47861b25cec9fc8388f7339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.153ex; height:2.509ex;" alt="{\displaystyle y_{k}=k\cdot \Delta }"></span>.</dd></dl> <p>This decomposition is useful for the design and analysis of quantization behavior, and it illustrates how the quantized data can be communicated over a <a href="/wiki/Communication_channel" title="Communication channel">communication channel</a> – a <i>source encoder</i> can perform the forward quantization stage and send the index information through a communication channel, and a <i>decoder</i> can perform the reconstruction stage to produce the output approximation of the original input data. In general, the forward quantization stage may use any function that maps the input data to the integer space of the quantization index data, and the inverse quantization stage can conceptually (or literally) be a table look-up operation to map each quantization index to a corresponding reconstruction value. This two-stage decomposition applies equally well to <a href="/wiki/Vector_quantization" title="Vector quantization">vector</a> as well as scalar quantizers. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_properties">Mathematical properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=2" title="Edit section: Mathematical properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Because quantization is a many-to-few mapping, it is an inherently <a href="/wiki/Non-linear" class="mw-redirect" title="Non-linear">non-linear</a> and irreversible process (i.e., because the same output value is shared by multiple input values, it is impossible, in general, to recover the exact input value when given only the output value). </p><p>The set of possible input values may be infinitely large, and may possibly be continuous and therefore <a href="/wiki/Uncountable" class="mw-redirect" title="Uncountable">uncountable</a> (such as the set of all real numbers, or all real numbers within some limited range). The set of possible output values may be <a href="/wiki/Finite_set" title="Finite set">finite</a> or <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countably infinite</a>.<sup id="cite_ref-GrayNeuhoff_6-1" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> The input and output sets involved in quantization can be defined in a rather general way. For example, vector quantization is the application of quantization to multi-dimensional (vector-valued) input data.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Types">Types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=3" title="Edit section: Types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:2-bit_resolution_analog_comparison.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/220px-2-bit_resolution_analog_comparison.png" decoding="async" width="220" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/330px-2-bit_resolution_analog_comparison.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/440px-2-bit_resolution_analog_comparison.png 2x" data-file-width="797" data-file-height="577" /></a><figcaption>2-bit resolution with four levels of quantization compared to analog<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:3-bit_resolution_analog_comparison.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/220px-3-bit_resolution_analog_comparison.png" decoding="async" width="220" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/330px-3-bit_resolution_analog_comparison.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/440px-3-bit_resolution_analog_comparison.png 2x" data-file-width="724" data-file-height="608" /></a><figcaption>3-bit resolution with eight levels</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Analog-to-digital_converter">Analog-to-digital converter</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=4" title="Edit section: Analog-to-digital converter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <a href="/wiki/Analog-to-digital_converter" title="Analog-to-digital converter">analog-to-digital converter</a> (ADC) can be modeled as two processes: <a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">sampling</a> and quantization. Sampling converts a time-varying voltage signal into a <a href="/wiki/Discrete-time_signal" class="mw-redirect" title="Discrete-time signal">discrete-time signal</a>, a sequence of real numbers. Quantization replaces each real number with an approximation from a finite set of discrete values. Most commonly, these discrete values are represented as fixed-point words. Though any number of quantization levels is possible, common word-lengths are <a href="/wiki/Audio_bit_depth" title="Audio bit depth">8-bit</a> (256 levels), 16-bit (65,536 levels) and 24-bit (16.8 million levels). Quantizing a sequence of numbers produces a sequence of quantization errors which is sometimes modeled as an additive random signal called <b>quantization noise</b> because of its <a href="/wiki/Stochastic" title="Stochastic">stochastic</a> behavior. The more levels a quantizer uses, the lower is its quantization noise power. </p> <div class="mw-heading mw-heading3"><h3 id="Rate–distortion_optimization"><span id="Rate.E2.80.93distortion_optimization"></span>Rate–distortion optimization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=5" title="Edit section: Rate–distortion optimization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i><a href="/wiki/Rate%E2%80%93distortion_theory" title="Rate–distortion theory">Rate–distortion optimized</a></i> quantization is encountered in <a href="/wiki/Source_coding" class="mw-redirect" title="Source coding">source coding</a> for lossy data compression algorithms, where the purpose is to manage distortion within the limits of the <a href="/wiki/Bit_rate" title="Bit rate">bit rate</a> supported by a communication channel or storage medium. The analysis of quantization in this context involves studying the amount of data (typically measured in digits or bits or bit <i>rate</i>) that is used to represent the output of the quantizer, and studying the loss of precision that is introduced by the quantization process (which is referred to as the <i>distortion</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Mid-riser_and_mid-tread_uniform_quantizers">Mid-riser and mid-tread uniform quantizers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=6" title="Edit section: Mid-riser and mid-tread uniform quantizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most uniform quantizers for signed input data can be classified as being of one of two types: <i>mid-riser</i> and <i>mid-tread</i>. The terminology is based on what happens in the region around the value 0, and uses the analogy of viewing the input-output function of the quantizer as a <a href="/wiki/Stairway" class="mw-redirect" title="Stairway">stairway</a>. Mid-tread quantizers have a zero-valued reconstruction level (corresponding to a <i>tread</i> of a stairway), while mid-riser quantizers have a zero-valued classification threshold (corresponding to a <i><a href="/wiki/Stair_riser" class="mw-redirect" title="Stair riser">riser</a></i> of a stairway).<sup id="cite_ref-Gersho77_9-0" class="reference"><a href="#cite_note-Gersho77-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>Mid-tread quantization involves rounding. The formulas for mid-tread uniform quantization are provided in the previous section. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>⌊</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>⌋</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f2b96d64a62e07c90e47cff07b22cfe2cdd85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.012ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"></span>,</dd></dl> <p>Mid-riser quantization involves truncation. The input-output formula for a mid-riser uniform quantizer is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>⌋</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e294457483e180cf6b618167c48076fd31e58194" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.178ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)}"></span>,</dd></dl> <p>where the classification rule is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>⌋</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9db48424d238d4426587160971975b052e9d65bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.537ex; height:5.009ex;" alt="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor }"></span></dd></dl> <p>and the reconstruction rule is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df40d7422579750cb074a226966e8b9c8731280a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.781ex; height:3.509ex;" alt="{\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)}"></span>.</dd></dl> <p>Note that mid-riser uniform quantizers do not have a zero output value – their minimum output magnitude is half the step size. In contrast, mid-tread quantizers do have a zero output level. For some applications, having a zero output signal representation may be a necessity. </p><p>In general, a mid-riser or mid-tread quantizer may not actually be a <i>uniform</i> quantizer – i.e., the size of the quantizer's classification <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">intervals</a> may not all be the same, or the spacing between its possible output values may not all be the same. The distinguishing characteristic of a mid-riser quantizer is that it has a classification threshold value that is exactly zero, and the distinguishing characteristic of a mid-tread quantizer is that is it has a reconstruction value that is exactly zero.<sup id="cite_ref-Gersho77_9-1" class="reference"><a href="#cite_note-Gersho77-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Dead-zone_quantizers">Dead-zone quantizers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=7" title="Edit section: Dead-zone quantizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>dead-zone quantizer</b> is a type of mid-tread quantizer with symmetric behavior around 0. The region around the zero output value of such a quantizer is referred to as the <i>dead zone</i> or <i><a href="/wiki/Deadband" title="Deadband">deadband</a></i>. The dead zone can sometimes serve the same purpose as a <a href="/wiki/Noise_gate" title="Noise gate">noise gate</a> or <a href="/wiki/Squelch" title="Squelch">squelch</a> function. Especially for compression applications, the dead-zone may be given a different width than that for the other steps. For an otherwise-uniform quantizer, the dead-zone width can be set to any value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> by using the forward quantization rule<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SullivanIT_12-0" class="reference"><a href="#cite_note-SullivanIT-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>sgn</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo movablelimits="true" form="prefix">max</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mrow> <mo>⌊</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>⌋</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/009afc81fefff3cd64b9a8d17bc18a714d49f547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.832ex; height:6.343ex;" alt="{\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)}"></span>,</dd></dl> <p>where the function <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sgn</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sgn} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec838dfd8a4a659b2877f93a6b53f22fc7777d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.371ex; height:2.009ex;" alt="{\displaystyle \operatorname {sgn} }"></span>( )</span> is the <a href="/wiki/Sign_function" title="Sign function">sign function</a> (also known as the <i>signum</i> function). The general reconstruction rule for such a dead-zone quantizer is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>sgn</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>w</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a361f041f33dd3ceaa2f30b90671bd16d5bdb77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.423ex; height:4.843ex;" alt="{\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)}"></span>,</dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b28e0e640d099f3676330bd4f604ae15c37bb4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.137ex; height:2.009ex;" alt="{\displaystyle r_{k}}"></span> is a reconstruction offset value in the range of 0 to 1 as a fraction of the step size. Ordinarily, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5e4d14e88315ce3a9b5d58eed4cf10129b391b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.155ex; height:3.509ex;" alt="{\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}}"></span> when quantizing input data with a typical <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (PDF) that is symmetric around zero and reaches its peak value at zero (such as a <a href="/wiki/Gaussian_distribution" class="mw-redirect" title="Gaussian distribution">Gaussian</a>, <a href="/wiki/Laplacian_distribution" class="mw-redirect" title="Laplacian distribution">Laplacian</a>, or <a href="/wiki/Generalized_Gaussian_distribution" class="mw-redirect" title="Generalized Gaussian distribution">generalized Gaussian</a> PDF). Although <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b28e0e640d099f3676330bd4f604ae15c37bb4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.137ex; height:2.009ex;" alt="{\displaystyle r_{k}}"></span> may depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> in general, and can be chosen to fulfill the optimality condition described below, it is often simply set to a constant, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}}"></span>. (Note that in this definition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f952fc15fe931e15f2f4a766b3ce68dc52f64842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.454ex; height:2.509ex;" alt="{\displaystyle y_{0}=0}"></span> due to the definition of the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sgn</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sgn} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec838dfd8a4a659b2877f93a6b53f22fc7777d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.371ex; height:2.009ex;" alt="{\displaystyle \operatorname {sgn} }"></span>( )</span> function, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb12fcfddb65e3d1e6a044215f6e833f0cd4337b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{0}}"></span> has no effect.) </p><p>A very commonly used special case (e.g., the scheme typically used in financial accounting and elementary mathematics) is to set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=\Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=\Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9956a3e4f12e1d7ed19e3bf9d0b7024fb3974225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.698ex; height:2.176ex;" alt="{\displaystyle w=\Delta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}={\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{k}={\tfrac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dd7cac862a69cf03af1e547d1359270cba0173d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.894ex; height:3.509ex;" alt="{\displaystyle r_{k}={\tfrac {1}{2}}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>. In this case, the dead-zone quantizer is also a uniform quantizer, since the central dead-zone of this quantizer has the same width as all of its other steps, and all of its reconstruction values are equally spaced as well. </p> <div class="mw-heading mw-heading2"><h2 id="Noise_and_error_characteristics">Noise and error characteristics<span class="anchor" id="Noise"></span><span class="anchor" id="Error"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=8" title="Edit section: Noise and error characteristics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Additive_noise_model">Additive noise model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=9" title="Edit section: Additive noise model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A common assumption for the analysis of quantization error is that it affects a signal processing system in a similar manner to that of additive <a href="/wiki/White_noise" title="White noise">white noise</a> – having negligible correlation with the signal and an approximately flat <a href="/wiki/Power_spectral_density" class="mw-redirect" title="Power spectral density">power spectral density</a>.<sup id="cite_ref-Bennett_2-1" class="reference"><a href="#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-2" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Widrow1_13-0" class="reference"><a href="#cite_note-Widrow1-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Widrow2_14-0" class="reference"><a href="#cite_note-Widrow2-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> The additive noise model is commonly used for the analysis of quantization error effects in digital filtering systems, and it can be very useful in such analysis. It has been shown to be a valid model in cases of high-resolution quantization (small <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> relative to the signal strength) with smooth PDFs.<sup id="cite_ref-Bennett_2-2" class="reference"><a href="#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-MarcoNeuhoff_15-0" class="reference"><a href="#cite_note-MarcoNeuhoff-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>Additive noise behavior is not always a valid assumption. Quantization error (for quantizers defined as described here) is deterministically related to the signal and not entirely independent of it. Thus, periodic signals can create periodic quantization noise. And in some cases it can even cause <a href="/wiki/Limit_cycle" title="Limit cycle">limit cycles</a> to appear in digital signal processing systems. One way to ensure effective independence of the quantization error from the source signal is to perform <i><a href="/wiki/Dither" title="Dither">dithered</a> quantization</i> (sometimes with <i><a href="/wiki/Noise_shaping" title="Noise shaping">noise shaping</a></i>), which involves adding random (or <a href="/wiki/Pseudo-random" class="mw-redirect" title="Pseudo-random">pseudo-random</a>) noise to the signal prior to quantization.<sup id="cite_ref-GrayNeuhoff_6-3" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Widrow2_14-1" class="reference"><a href="#cite_note-Widrow2-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantization_error_models">Quantization error models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=10" title="Edit section: Quantization error models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the typical case, the original signal is much larger than one <a href="/wiki/Least_significant_bit" class="mw-redirect" title="Least significant bit">least significant bit</a> (LSB). When this is the case, the quantization error is not significantly correlated with the signal, and has an approximately <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a>. When rounding is used to quantize, the quantization error has a <a href="/wiki/Mean" title="Mean">mean</a> of zero and the <a href="/wiki/Root_mean_square" title="Root mean square">root mean square</a> (RMS) value is the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> of this distribution, given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>12</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">B</mi> </mrow> <mtext> </mtext> <mo>≈<!-- ≈ --></mo> <mtext> </mtext> <mn>0.289</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">B</mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72e40c7f9413dca8ed4f297a8c6845fb789afd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:16.064ex; height:3.676ex;" alt="{\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} }"></span>. When truncation is used, the error has a non-zero mean of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">B</mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd195bb6e3343a60b349bd85cabd90b08578f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.608ex; height:3.176ex;" alt="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"></span> and the RMS value is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">B</mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f19eb3947c3d3dd9d73dd8025e4f750c5015466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:5.72ex; height:3.676ex;" alt="{\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} }"></span>. Although rounding yields less RMS error than truncation, the difference is only due to the static (DC) term of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">B</mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd195bb6e3343a60b349bd85cabd90b08578f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.608ex; height:3.176ex;" alt="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"></span>. The RMS values of the AC error are exactly the same in both cases, so there is no special advantage of rounding over truncation in situations where the DC term of the error can be ignored (such as in AC coupled systems). In either case, the standard deviation, as a percentage of the full signal range, changes by a factor of 2 for each 1-bit change in the number of quantization bits. The potential signal-to-quantization-noise power ratio therefore changes by 4, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle 10\cdot \log _{10}(4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle 10\cdot \log _{10}(4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09a0a45232f3ac39635982a95e3990b3b38c135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.803ex; height:2.176ex;" alt="{\displaystyle \scriptstyle 10\cdot \log _{10}(4)}"></span>, approximately 6 dB per bit. </p><p>At lower amplitudes the quantization error becomes dependent on the input signal, resulting in distortion. This distortion is created after the anti-aliasing filter, and if these distortions are above 1/2 the sample rate they will alias back into the band of interest. In order to make the quantization error independent of the input signal, the signal is dithered by adding noise to the signal. This slightly reduces signal to noise ratio, but can completely eliminate the distortion. </p> <div class="mw-heading mw-heading3"><h3 id="Quantization_noise_model">Quantization noise model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=11" title="Edit section: Quantization noise model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/300px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif" decoding="async" width="300" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/450px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/600px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif 2x" data-file-width="864" data-file-height="438" /></a><figcaption>Comparison of quantizing a sinusoid to 64 levels (6 bits) and 256 levels (8 bits). The additive noise created by 6-bit quantization is 12 dB greater than the noise created by 8-bit quantization. When the spectral distribution is flat, as in this example, the 12 dB difference manifests as a measurable difference in the noise floors.</figcaption></figure> <p>Quantization noise is a <a href="/wiki/Model_(abstract)" class="mw-redirect" title="Model (abstract)">model</a> of quantization error introduced by quantization in the ADC. It is a rounding error between the analog input voltage to the ADC and the output digitized value. The noise is non-linear and signal-dependent. It can be modelled in several different ways. </p><p>In an ideal ADC, where the quantization error is uniformly distributed between −1/2 LSB and +1/2 LSB, and the signal has a uniform distribution covering all quantization levels, the <a href="/wiki/Signal-to-quantization-noise_ratio" title="Signal-to-quantization-noise ratio">Signal-to-quantization-noise ratio</a> (SQNR) can be calculated from </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">R</mi> </mrow> <mo>=</mo> <mn>20</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mn>6.02</mn> <mo>⋅<!-- ⋅ --></mo> <mi>Q</mi> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">B</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d7ed262342c70036f3bde52bba94f1e19547fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:36.373ex; height:3.176ex;" alt="{\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!}"></span></dd></dl> <p>where Q is the number of quantization bits. </p><p>The most common test signals that fulfill this are full amplitude <a href="/wiki/Triangle_wave" title="Triangle wave">triangle waves</a> and <a href="/wiki/Sawtooth_wave" title="Sawtooth wave">sawtooth waves</a>. </p><p>For example, a <a href="/wiki/16-bit" class="mw-redirect" title="16-bit">16-bit</a> ADC has a maximum signal-to-quantization-noise ratio of 6.02 × 16 = 96.3 dB. </p><p>When the input signal is a full-amplitude <a href="/wiki/Sine_wave" title="Sine wave">sine wave</a> the distribution of the signal is no longer uniform, and the corresponding equation is instead </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">R</mi> </mrow> <mo>≈<!-- ≈ --></mo> <mn>1.761</mn> <mo>+</mo> <mn>6.02</mn> <mo>⋅<!-- ⋅ --></mo> <mi>Q</mi> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">B</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76bbd933a0dd004b25659cecaf61bf955372bd7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:29.347ex; height:2.509ex;" alt="{\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!}"></span></dd></dl> <p>Here, the quantization noise is once again <i>assumed</i> to be uniformly distributed. When the input signal has a high amplitude and a wide frequency spectrum this is the case.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> In this case a 16-bit ADC has a maximum signal-to-noise ratio of 98.09 dB. The 1.761 difference in signal-to-noise only occurs due to the signal being a full-scale sine wave instead of a triangle or sawtooth. </p><p>For complex signals in high-resolution ADCs this is an accurate model. For low-resolution ADCs, low-level signals in high-resolution ADCs, and for simple waveforms the quantization noise is not uniformly distributed, making this model inaccurate.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> In these cases the quantization noise distribution is strongly affected by the exact amplitude of the signal. </p><p>The calculations are relative to full-scale input. For smaller signals, the relative quantization distortion can be very large. To circumvent this issue, analog <a href="/wiki/Companding" title="Companding">companding</a> can be used, but this can introduce distortion. </p> <div class="mw-heading mw-heading2"><h2 id="Design">Design</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=12" title="Edit section: Design"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Granular_distortion_and_overload_distortion">Granular distortion and overload distortion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=13" title="Edit section: Granular distortion and overload distortion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Often the design of a quantizer involves supporting only a limited range of possible output values and performing clipping to limit the output to this range whenever the input exceeds the supported range. The error introduced by this clipping is referred to as <i>overload</i> distortion. Within the extreme limits of the supported range, the amount of spacing between the selectable output values of a quantizer is referred to as its <i>granularity</i>, and the error introduced by this spacing is referred to as <i>granular</i> distortion. It is common for the design of a quantizer to involve determining the proper balance between granular distortion and overload distortion. For a given supported number of possible output values, reducing the average granular distortion may involve increasing the average overload distortion, and vice versa. A technique for controlling the amplitude of the signal (or, equivalently, the quantization step size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span>) to achieve the appropriate balance is the use of <i><a href="/wiki/Automatic_gain_control" title="Automatic gain control">automatic gain control</a></i> (AGC). However, in some quantizer designs, the concepts of granular error and overload error may not apply (e.g., for a quantizer with a limited range of input data or with a countably infinite set of selectable output values).<sup id="cite_ref-GrayNeuhoff_6-4" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Rate–distortion_quantizer_design"><span id="Rate.E2.80.93distortion_quantizer_design"></span>Rate–distortion quantizer design</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=14" title="Edit section: Rate–distortion quantizer design"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A scalar quantizer, which performs a quantization operation, can ordinarily be decomposed into two stages: </p> <dl><dt>Classification</dt> <dd>A process that classifies the input signal range into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> non-overlapping <i><a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">intervals</a></i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{I_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{I_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ceb3143e26ff4f2448fba56b28ec119c44ef38f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.626ex; height:3.176ex;" alt="{\displaystyle \{I_{k}\}_{k=1}^{M}}"></span>, by defining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> <i>decision boundary</i> values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{k}\}_{k=1}^{M-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}=[b_{k-1}~,~b_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}=[b_{k-1}~,~b_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3684925216f27532e6466f8856fb054798a4aee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.23ex; height:2.843ex;" alt="{\displaystyle I_{k}=[b_{k-1}~,~b_{k})}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1,2,\ldots ,M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1,2,\ldots ,M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac248ad016fdafbb81762175f90559edf2f4af09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.289ex; height:2.509ex;" alt="{\displaystyle k=1,2,\ldots ,M}"></span>, with the extreme limits defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{0}=-\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{0}=-\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/128a2a0dde5bc288c7d8999d154187ea3a8b434d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.282ex; height:2.509ex;" alt="{\displaystyle b_{0}=-\infty }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{M}=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{M}=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f6160923ba5d7344e3429e84f949e4577b50be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.379ex; height:2.509ex;" alt="{\displaystyle b_{M}=\infty }"></span>. All the inputs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> that fall in a given interval range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"></span> are associated with the same quantization index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>.</dd> <dt>Reconstruction</dt> <dd>Each interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"></span> is represented by a <i>reconstruction value</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> which implements the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I_{k}\Rightarrow y=y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I_{k}\Rightarrow y=y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d11bc710300f4775c00c72cf4a45ec3b6b53e2cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.378ex; height:2.509ex;" alt="{\displaystyle x\in I_{k}\Rightarrow y=y_{k}}"></span>.</dd></dl> <p>These two stages together comprise the mathematical operation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=Q(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=Q(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1764d9f11a2d3d2d15d6b2a483eec179210d5e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.231ex; height:2.843ex;" alt="{\displaystyle y=Q(x)}"></span>. </p><p><a href="/wiki/Entropy_coding" title="Entropy coding">Entropy coding</a> techniques can be applied to communicate the quantization indices from a source encoder that performs the classification stage to a decoder that performs the reconstruction stage. One way to do this is to associate each quantization index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> with a binary codeword <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2f8052630e67b00d04e3487e1d68ed7070470b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.096ex; height:2.009ex;" alt="{\displaystyle c_{k}}"></span>. An important consideration is the number of bits used for each codeword, denoted here by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {length} (c_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {length} (c_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91859f2ea09cc0ae87099f4d508dc7146241cfd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.236ex; height:2.843ex;" alt="{\displaystyle \mathrm {length} (c_{k})}"></span>. As a result, the design of an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>-level quantizer and an associated set of codewords for communicating its index values requires finding the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{k}\}_{k=1}^{M-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{c_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{c_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9acf6646441fbed725b59d8a09f5c1243dd738c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.61ex; height:3.176ex;" alt="{\displaystyle \{c_{k}\}_{k=1}^{M}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{y_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"></span> which optimally satisfy a selected set of design constraints such as the <i>bit rate</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> and <i>distortion</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>. </p><p>Assuming that an information source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> produces random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> with an associated PDF <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, the probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01084a31964201514f3e6bd0136989e11ea6e58a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.348ex; height:2.009ex;" alt="{\displaystyle p_{k}}"></span> that the random variable falls within a particular quantization interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"></span> is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>P</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26424325c60e39665f71cb6c4881bb490b08e841" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-left: -0.089ex; width:30.011ex; height:6.843ex;" alt="{\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx}"></span>.</dd></dl> <p>The resulting bit rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>, in units of average bits per quantized value, for this quantizer can be derived as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc60b0158fc37a302e5f29f7d9e18067481a173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:52.387ex; height:7.343ex;" alt="{\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx}"></span>.</dd></dl> <p>If it is assumed that distortion is measured by mean squared error,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> the distortion <b>D</b>, is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mi>E</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2292fcf1093dc30c77e2f85e4ad930c2b695ec54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:74.482ex; height:7.343ex;" alt="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"></span>.</dd></dl> <p>A key observation is that rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> depends on the decision boundaries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{k}\}_{k=1}^{M-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"></span> and the codeword lengths <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e349fb4e6c0b6807ef136c6bb9c49ff43d0d595f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.75ex; height:3.176ex;" alt="{\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}}"></span>, whereas the distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> depends on the decision boundaries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{k}\}_{k=1}^{M-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"></span> and the reconstruction levels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{y_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"></span>. </p><p>After defining these two performance metrics for the quantizer, a typical rate–distortion formulation for a quantizer design problem can be expressed in one of two ways: </p> <ol><li>Given a maximum distortion constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\leq D_{\max }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>≤<!-- ≤ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\leq D_{\max }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af7904fc86e20fc913effc17768cefd86d97df36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.238ex; height:2.509ex;" alt="{\displaystyle D\leq D_{\max }}"></span>, minimize the bit rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span></li> <li>Given a maximum bit rate constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\leq R_{\max }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>≤<!-- ≤ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\leq R_{\max }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5392b6623ce9c9c96329bfe254cf8e774675a78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.918ex; height:2.509ex;" alt="{\displaystyle R\leq R_{\max }}"></span>, minimize the distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span></li></ol> <p>Often the solution to these problems can be equivalently (or approximately) expressed and solved by converting the formulation to the unconstrained problem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min \left\{D+\lambda \cdot R\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">min</mo> <mrow> <mo>{</mo> <mrow> <mi>D</mi> <mo>+</mo> <mi>λ<!-- λ --></mi> <mo>⋅<!-- ⋅ --></mo> <mi>R</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \min \left\{D+\lambda \cdot R\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5a2218e7bc6b7531d68e36d2dcb69aa7474e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.15ex; height:2.843ex;" alt="{\displaystyle \min \left\{D+\lambda \cdot R\right\}}"></span> where the <a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is a non-negative constant that establishes the appropriate balance between rate and distortion. Solving the unconstrained problem is equivalent to finding a point on the <a href="/wiki/Convex_hull" title="Convex hull">convex hull</a> of the family of solutions to an equivalent constrained formulation of the problem. However, finding a solution – especially a <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed-form</a> solution – to any of these three problem formulations can be difficult. Solutions that do not require multi-dimensional iterative optimization techniques have been published for only three PDFs: the uniform,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential</a>,<sup id="cite_ref-SullivanIT_12-1" class="reference"><a href="#cite_note-SullivanIT-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplacian</a><sup id="cite_ref-SullivanIT_12-2" class="reference"><a href="#cite_note-SullivanIT-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> distributions. Iterative optimization approaches can be used to find solutions in other cases.<sup id="cite_ref-GrayNeuhoff_6-5" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Berger72_20-0" class="reference"><a href="#cite_note-Berger72-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Berger82_21-0" class="reference"><a href="#cite_note-Berger82-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Note that the reconstruction values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{y_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"></span> affect only the distortion – they do not affect the bit rate – and that each individual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> makes a separate contribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78f5b2abc48e63b987b6d7527caa5aa9b1bb512" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.298ex; height:2.509ex;" alt="{\displaystyle d_{k}}"></span> to the total distortion as shown below: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=\sum _{k=1}^{M}d_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=\sum _{k=1}^{M}d_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6759e8d74d80fd7800d16001df1e49c089d3ab73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.062ex; height:7.343ex;" alt="{\displaystyle D=\sum _{k=1}^{M}d_{k}}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15bdfe74aa22be46dd4522218f3bda5fc59ad0bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:26.416ex; height:6.843ex;" alt="{\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"></span></dd></dl> <p>This observation can be used to ease the analysis – given the set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{k}\}_{k=1}^{M-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"></span> values, the value of each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> can be optimized separately to minimize its contribution to the distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>. </p><p>For the mean-square error distortion criterion, it can be easily shown that the optimal set of reconstruction values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}^{*}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{y_{k}^{*}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4a59687bce6f8cf8261d492815afe9f0f3f3894" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}^{*}\}_{k=1}^{M}}"></span> is given by setting the reconstruction value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> within each interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"></span> to the <a href="/wiki/Conditional_expected_value" class="mw-redirect" title="Conditional expected value">conditional expected value</a> (also referred to as the <i><a href="/wiki/Centroid" title="Centroid">centroid</a></i>) within the interval, as given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34766e917f54bae886b389ad16227d5d7b91f9b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.283ex; height:6.843ex;" alt="{\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"></span>.</dd></dl> <p>The use of sufficiently well-designed entropy coding techniques can result in the use of a bit rate that is close to the true information content of the indices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{k\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>k</mi> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{k\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de9e2048051738754e3e74d141def4edf9e8bbd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.725ex; height:3.176ex;" alt="{\displaystyle \{k\}_{k=1}^{M}}"></span>, such that effectively </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141ccdb272b76a8c66e00c4fe2a76df0fc1d5df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.623ex; height:2.843ex;" alt="{\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)}"></span></dd></dl> <p>and therefore </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <mo>−<!-- − --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06761368ad66036d99a4b7bf173ceaf585c9323f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.443ex; height:7.343ex;" alt="{\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)}"></span>.</dd></dl> <p>The use of this approximation can allow the entropy coding design problem to be separated from the design of the quantizer itself. Modern entropy coding techniques such as <a href="/wiki/Arithmetic_coding" title="Arithmetic coding">arithmetic coding</a> can achieve bit rates that are very close to the true entropy of a source, given a set of known (or adaptively estimated) probabilities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{p_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{p_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2772fbad6866aaf6f44334424688ee8ae3d32050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.772ex; height:3.176ex;" alt="{\displaystyle \{p_{k}\}_{k=1}^{M}}"></span>. </p><p>In some designs, rather than optimizing for a particular number of classification regions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, the quantizer design problem may include optimization of the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> as well. For some probabilistic source models, the best performance may be achieved when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> approaches infinity. </p> <div class="mw-heading mw-heading3"><h3 id="Neglecting_the_entropy_constraint:_Lloyd–Max_quantization"><span id="Neglecting_the_entropy_constraint:_Lloyd.E2.80.93Max_quantization"></span>Neglecting the entropy constraint: Lloyd–Max quantization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=15" title="Edit section: Neglecting the entropy constraint: Lloyd–Max quantization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the above formulation, if the bit rate constraint is neglected by setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> equal to 0, or equivalently if it is assumed that a fixed-length code (FLC) will be used to represent the quantized data instead of a <a href="/wiki/Variable-length_code" title="Variable-length code">variable-length code</a> (or some other entropy coding technology such as arithmetic coding that is better than an FLC in the rate–distortion sense), the optimization problem reduces to minimization of distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> alone. </p><p>The indices produced by an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>-level quantizer can be coded using a fixed-length code using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\lceil \log _{2}M\rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">⌈<!-- ⌈ --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>M</mi> <mo fence="false" stretchy="false">⌉<!-- ⌉ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\lceil \log _{2}M\rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27e11c2290e53831cd6c28a3661b02e3c2c235f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.783ex; height:2.843ex;" alt="{\displaystyle R=\lceil \log _{2}M\rceil }"></span> bits/symbol. For example, when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a5897444f2fc12b87773bf24c2b4744789d5a8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.896ex; height:2.176ex;" alt="{\displaystyle M=}"></span>256 levels, the FLC bit rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is 8 bits/symbol. For this reason, such a quantizer has sometimes been called an 8-bit quantizer. However using an FLC eliminates the compression improvement that can be obtained by use of better entropy coding. </p><p>Assuming an FLC with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> levels, the rate–distortion minimization problem can be reduced to distortion minimization alone. The reduced problem can be stated as follows: given a source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> with PDF <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> and the constraint that the quantizer must use only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> classification regions, find the decision boundaries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{k}\}_{k=1}^{M-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"></span> and reconstruction levels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{y_{k}\}_{k=1}^{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"></span> to minimize the resulting distortion </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mi>E</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a11a15b3c5710c31187e8dfd713f12ca0981a65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:83.62ex; height:7.343ex;" alt="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}}"></span>.</dd></dl> <p>Finding an optimal solution to the above problem results in a quantizer sometimes called a MMSQE (minimum mean-square quantization error) solution, and the resulting PDF-optimized (non-uniform) quantizer is referred to as a <i>Lloyd–Max</i> quantizer, named after two people who independently developed iterative methods<sup id="cite_ref-GrayNeuhoff_6-6" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> to solve the two sets of simultaneous equations resulting from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D/\partial b_{k}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\partial D/\partial b_{k}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a37a80a8ecb1ffae64b043e5392c9f98ec678753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.07ex; height:2.843ex;" alt="{\displaystyle {\partial D/\partial b_{k}}=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D/\partial y_{k}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\partial D/\partial y_{k}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1014f1ba7809ecb5830cb8a9d5e36f489480a9f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.212ex; height:2.843ex;" alt="{\displaystyle {\partial D/\partial y_{k}}=0}"></span>, as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>D</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒<!-- ⇒ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f94675620ae34f529f89b7faf05351f9a0abb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.533ex; height:5.843ex;" alt="{\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}}"></span>,</dd></dl> <p>which places each threshold at the midpoint between each pair of reconstruction values, and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>D</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒<!-- ⇒ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715d5b7d8dfad8e5096842f95b4b7f4189f334b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:51.754ex; height:9.176ex;" alt="{\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"></span></dd></dl> <p>which places each reconstruction value at the centroid (conditional expected value) of its associated classification interval. </p><p><a href="/wiki/Lloyd%27s_algorithm" title="Lloyd's algorithm">Lloyd's Method I algorithm</a>, originally described in 1957, can be generalized in a straightforward way for application to vector data. This generalization results in the <a href="/wiki/Linde%E2%80%93Buzo%E2%80%93Gray_algorithm" title="Linde–Buzo–Gray algorithm">Linde–Buzo–Gray (LBG)</a> or <a href="/wiki/K-means" class="mw-redirect" title="K-means">k-means</a> classifier optimization methods. Moreover, the technique can be further generalized in a straightforward way to also include an entropy constraint for vector data.<sup id="cite_ref-ChouLookabaughGray_24-0" class="reference"><a href="#cite_note-ChouLookabaughGray-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Uniform_quantization_and_the_6_dB/bit_approximation"><span id="Uniform_quantization_and_the_6_dB.2Fbit_approximation"></span>Uniform quantization and the 6 dB/bit approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=16" title="Edit section: Uniform quantization and the 6 dB/bit approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lloyd–Max quantizer is actually a uniform quantizer when the input PDF is uniformly distributed over the range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <mtext> </mtext> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ac33ec6bc757d3e717fc9b35ee9b67676de2e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.66ex; height:2.843ex;" alt="{\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)}"></span>. However, for a source that does not have a uniform distribution, the minimum-distortion quantizer may not be a uniform quantizer. The analysis of a uniform quantizer applied to a uniformly distributed source can be summarized in what follows: </p><p>A symmetric source X can be modelled with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\tfrac {1}{2X_{\max }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\tfrac {1}{2X_{\max }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0d075377e8f186bfd990d9ee8969b0a9714c9b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:13.182ex; height:3.843ex;" alt="{\displaystyle f(x)={\tfrac {1}{2X_{\max }}}}"></span>, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [-X_{\max },X_{\max }]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mo>−<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [-X_{\max },X_{\max }]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cf4bd582eef8f8d55332145bed84a97829c283d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.737ex; height:2.843ex;" alt="{\displaystyle x\in [-X_{\max },X_{\max }]}"></span> and 0 elsewhere. The step size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </mrow> <mi>M</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b101d88f0807c3bd3de76054ff190bd32fa9e6a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.701ex; height:3.843ex;" alt="{\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}}"></span> and the <i>signal to quantization noise ratio</i> (SQNR) of the quantizer is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">R</mi> </mrow> </mrow> <mo>=</mo> <mn>10</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>=</mo> <mn>10</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>12</mn> </mrow> <mrow> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>12</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>10</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>20</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20a6923476ba7cb90a86fc06d0b9fa9e0f67a6bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:71.633ex; height:6.843ex;" alt="{\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M}"></span>.</dd></dl> <p>For a fixed-length code using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> bits, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=2^{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=2^{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aaa5bdbbea857a913997a146a038f6b5242cfca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.395ex; height:2.676ex;" alt="{\displaystyle M=2^{N}}"></span>, resulting in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">R</mi> </mrow> </mrow> <mo>=</mo> <mn>20</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mrow> <mo>=</mo> <mi>N</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>20</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>N</mi> <mo>⋅<!-- ⋅ --></mo> <mn>6.0206</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63b07ba237bcf7826e8bb6692f3f39550ab38cd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.839ex; height:3.176ex;" alt="{\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}}"></span>, </p><p>or approximately 6 dB per bit. For example, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>=8 bits, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>=256 levels and SQNR = 8×6 = 48 dB; and for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>=16 bits, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>=65536 and SQNR = 16×6 = 96 dB. The property of 6 dB improvement in SQNR for each extra bit used in quantization is a well-known figure of merit. However, it must be used with care: this derivation is only for a uniform quantizer applied to a uniform source. For other source PDFs and other quantizer designs, the SQNR may be somewhat different from that predicted by 6 dB/bit, depending on the type of PDF, the type of source, the type of quantizer, and the bit rate range of operation. </p><p>However, it is common to assume that for many sources, the slope of a quantizer SQNR function can be approximated as 6 dB/bit when operating at a sufficiently high bit rate. At asymptotically high bit rates, cutting the step size in half increases the bit rate by approximately 1 bit per sample (because 1 bit is needed to indicate whether the value is in the left or right half of the prior double-sized interval) and reduces the mean squared error by a factor of 4 (i.e., 6 dB) based on the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{2}/12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{2}/12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b5be83e88394057daa090c25107b1b57adb48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.477ex; height:3.176ex;" alt="{\displaystyle \Delta ^{2}/12}"></span> approximation. </p><p>At asymptotically high bit rates, the 6 dB/bit approximation is supported for many source PDFs by rigorous theoretical analysis.<sup id="cite_ref-Bennett_2-3" class="reference"><a href="#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-OliverPierceShannon_3-1" class="reference"><a href="#cite_note-OliverPierceShannon-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GishPierce_5-1" class="reference"><a href="#cite_note-GishPierce-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-7" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Moreover, the structure of the optimal scalar quantizer (in the rate–distortion sense) approaches that of a uniform quantizer under these conditions.<sup id="cite_ref-GishPierce_5-2" class="reference"><a href="#cite_note-GishPierce-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-8" class="reference"><a href="#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_other_fields">In other fields</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=17" title="Edit section: In other fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Quantum_noise" title="Quantum noise">Quantum noise</a> and <a href="/wiki/Quantum_limit" title="Quantum limit">Quantum limit</a></div> <p>Many physical quantities are actually quantized by physical entities. Examples of fields where this limitation applies include <a href="/wiki/Electronics" title="Electronics">electronics</a> (due to <a href="/wiki/Electron" title="Electron">electrons</a>), <a href="/wiki/Optics" title="Optics">optics</a> (due to <a href="/wiki/Photon" title="Photon">photons</a>), <a href="/wiki/Biology" title="Biology">biology</a> (due to <a href="/wiki/DNA" title="DNA">DNA</a>), <a href="/wiki/Physics" title="Physics">physics</a> (due to <a href="/wiki/Planck_limits" class="mw-redirect" title="Planck limits">Planck limits</a>) and <a href="/wiki/Chemistry" title="Chemistry">chemistry</a> (due to <a href="/wiki/Molecule" title="Molecule">molecules</a>). </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=18" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Beta_encoder" title="Beta encoder">Beta encoder</a></li> <li><a href="/wiki/Color_quantization" title="Color quantization">Color quantization</a></li> <li><a href="/wiki/Data_binning" title="Data binning">Data binning</a></li> <li><a href="/wiki/Discretization" title="Discretization">Discretization</a></li> <li><a href="/wiki/Discretization_error" title="Discretization error">Discretization error</a></li> <li><a href="/wiki/Posterization" title="Posterization">Posterization</a></li> <li><a href="/wiki/Pulse-code_modulation" title="Pulse-code modulation">Pulse-code modulation</a></li> <li><a href="/wiki/Quantile" title="Quantile">Quantile</a></li> <li><a href="/wiki/Quantization_(image_processing)" title="Quantization (image processing)">Quantization (image processing)</a></li> <li><a href="/wiki/Regression_dilution" title="Regression dilution">Regression dilution</a> – a bias in parameter estimates caused by errors such as quantization in the explanatory or independent variable</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=19" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Other distortion measures can also be considered, although mean squared error is a popular one.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=20" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Sheppard-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sheppard_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSheppard1897" class="citation journal cs1 cs1-prop-long-vol"><a href="/wiki/William_Fleetwood_Sheppard" title="William Fleetwood Sheppard">Sheppard, W. F.</a> (1897). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1447738">"On the Calculation of the most Probable Values of Frequency-Constants, for Data arranged according to Equidistant Division of a Scale"</a>. <i>Proceedings of the London Mathematical Society</i>. s1-29 (1). Wiley: 353–380. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fs1-29.1.353">10.1112/plms/s1-29.1.353</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0024-6115">0024-6115</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+London+Mathematical+Society&rft.atitle=On+the+Calculation+of+the+most+Probable+Values+of+Frequency-Constants%2C+for+Data+arranged+according+to+Equidistant+Division+of+a+Scale&rft.volume=s1-29&rft.issue=1&rft.pages=353-380&rft.date=1897&rft_id=info%3Adoi%2F10.1112%2Fplms%2Fs1-29.1.353&rft.issn=0024-6115&rft.aulast=Sheppard&rft.aufirst=W.+F.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1447738&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-Bennett-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bennett_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bennett_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bennett_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bennett_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">W. R. Bennett, "<a rel="nofollow" class="external text" href="http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-446.pdf">Spectra of Quantized Signals</a>", <i><a href="/wiki/Bell_System_Technical_Journal" class="mw-redirect" title="Bell System Technical Journal">Bell System Technical Journal</a></i>, Vol. 27, pp. 446–472, July 1948.</span> </li> <li id="cite_note-OliverPierceShannon-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-OliverPierceShannon_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-OliverPierceShannon_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliverPierceShannon1948" class="citation journal cs1">Oliver, B.M.; Pierce, J.R.; <a href="/wiki/Claude_Shannon" title="Claude Shannon">Shannon, C.E.</a> (1948). "The Philosophy of PCM". <i>Proceedings of the IRE</i>. <b>36</b> (11). Institute of Electrical and Electronics Engineers (IEEE): 1324–1331. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Fjrproc.1948.231941">10.1109/jrproc.1948.231941</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0096-8390">0096-8390</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51663786">51663786</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+IRE&rft.atitle=The+Philosophy+of+PCM&rft.volume=36&rft.issue=11&rft.pages=1324-1331&rft.date=1948&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51663786%23id-name%3DS2CID&rft.issn=0096-8390&rft_id=info%3Adoi%2F10.1109%2Fjrproc.1948.231941&rft.aulast=Oliver&rft.aufirst=B.M.&rft.au=Pierce%2C+J.R.&rft.au=Shannon%2C+C.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-Stein-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stein_4-0">^</a></b></span> <span class="reference-text">Seymour Stein and J. Jay Jones, <i><a rel="nofollow" class="external text" href="https://books.google.com/books/about/Modern_communication_principles.html?id=jBc3AQAAIAAJ">Modern Communication Principles</a></i>, <a href="/wiki/McGraw%E2%80%93Hill" class="mw-redirect" title="McGraw–Hill">McGraw–Hill</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-061003-3" title="Special:BookSources/978-0-07-061003-3">978-0-07-061003-3</a>, 1967 (p. 196).</span> </li> <li id="cite_note-GishPierce-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-GishPierce_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GishPierce_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-GishPierce_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGishPierce1968" class="citation journal cs1">Gish, H.; Pierce, J. (1968). "Asymptotically efficient quantizing". <i>IEEE Transactions on Information Theory</i>. <b>14</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 676–683. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1968.1054193">10.1109/tit.1968.1054193</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Asymptotically+efficient+quantizing&rft.volume=14&rft.issue=5&rft.pages=676-683&rft.date=1968&rft_id=info%3Adoi%2F10.1109%2Ftit.1968.1054193&rft.issn=0018-9448&rft.aulast=Gish&rft.aufirst=H.&rft.au=Pierce%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-GrayNeuhoff-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-GrayNeuhoff_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-GrayNeuhoff_6-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrayNeuhoff1998" class="citation journal cs1"><a href="/wiki/Robert_M._Gray" title="Robert M. Gray">Gray, R.M.</a>; Neuhoff, D.L. (1998). "Quantization". <i>IEEE Transactions on Information Theory</i>. <b>44</b> (6). Institute of Electrical and Electronics Engineers (IEEE): 2325–2383. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F18.720541">10.1109/18.720541</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:212653679">212653679</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Quantization&rft.volume=44&rft.issue=6&rft.pages=2325-2383&rft.date=1998&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A212653679%23id-name%3DS2CID&rft.issn=0018-9448&rft_id=info%3Adoi%2F10.1109%2F18.720541&rft.aulast=Gray&rft.aufirst=R.M.&rft.au=Neuhoff%2C+D.L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllen_GershoRobert_M._Gray1991" class="citation book cs1"><a href="/wiki/Allen_Gersho" title="Allen Gersho">Allen Gersho</a>; <a href="/wiki/Robert_M._Gray" title="Robert M. Gray">Robert M. Gray</a> (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DwcDm6xgItUC"><i>Vector Quantization and Signal Compression</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7923-9181-4" title="Special:BookSources/978-0-7923-9181-4"><bdi>978-0-7923-9181-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vector+Quantization+and+Signal+Compression&rft.pub=Springer&rft.date=1991&rft.isbn=978-0-7923-9181-4&rft.au=Allen+Gersho&rft.au=Robert+M.+Gray&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDwcDm6xgItUC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Hodgson, Jay (2010). <i>Understanding Records</i>, p.56. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4411-5607-5" title="Special:BookSources/978-1-4411-5607-5">978-1-4411-5607-5</a>. Adapted from Franz, David (2004). <i>Recording and Producing in the Home Studio</i>, p.38-9. Berklee Press.</span> </li> <li id="cite_note-Gersho77-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gersho77_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gersho77_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGersho1977" class="citation journal cs1"><a href="/wiki/Allen_Gersho" title="Allen Gersho">Gersho, A.</a> (1977). "Quantization". <i>IEEE Communications Society Magazine</i>. <b>15</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 16–28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Fmcom.1977.1089500">10.1109/mcom.1977.1089500</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0148-9615">0148-9615</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:260498692">260498692</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Communications+Society+Magazine&rft.atitle=Quantization&rft.volume=15&rft.issue=5&rft.pages=16-28&rft.date=1977&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A260498692%23id-name%3DS2CID&rft.issn=0148-9615&rft_id=info%3Adoi%2F10.1109%2Fmcom.1977.1089500&rft.aulast=Gersho&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRabbaniJoshiJones2009" class="citation book cs1">Rabbani, Majid; Joshi, Rajan L.; Jones, Paul W. (2009). "Section 1.2.3: Quantization, in Chapter 1: JPEG 2000 Core Coding System (Part 1)". In Schelkens, Peter; Skodras, Athanassios; Ebrahimi, Touradj (eds.). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/jpegsuitethewile00sche"><i>The JPEG 2000 Suite</i></a></span>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/jpegsuitethewile00sche/page/n73">22</a>–24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-72147-6" title="Special:BookSources/978-0-470-72147-6"><bdi>978-0-470-72147-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Section+1.2.3%3A+Quantization%2C+in+Chapter+1%3A+JPEG+2000+Core+Coding+System+%28Part+1%29&rft.btitle=The+JPEG+2000+Suite&rft.pages=22-24&rft.pub=John+Wiley+%26+Sons&rft.date=2009&rft.isbn=978-0-470-72147-6&rft.aulast=Rabbani&rft.aufirst=Majid&rft.au=Joshi%2C+Rajan+L.&rft.au=Jones%2C+Paul+W.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjpegsuitethewile00sche&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaubmanMarcellin2002" class="citation book cs1">Taubman, David S.; Marcellin, Michael W. (2002). "Chapter 3: Quantization". <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/jpegimagecompres00taub"><i>JPEG2000: Image Compression Fundamentals, Standards and Practice</i></a></span>. <a href="/wiki/Kluwer_Academic_Publishers" class="mw-redirect" title="Kluwer Academic Publishers">Kluwer Academic Publishers</a>. p. <a rel="nofollow" class="external text" href="https://archive.org/details/jpegimagecompres00taub/page/n126">107</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7923-7519-X" title="Special:BookSources/0-7923-7519-X"><bdi>0-7923-7519-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+3%3A+Quantization&rft.btitle=JPEG2000%3A+Image+Compression+Fundamentals%2C+Standards+and+Practice&rft.pages=107&rft.pub=Kluwer+Academic+Publishers&rft.date=2002&rft.isbn=0-7923-7519-X&rft.aulast=Taubman&rft.aufirst=David+S.&rft.au=Marcellin%2C+Michael+W.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjpegimagecompres00taub&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-SullivanIT-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-SullivanIT_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SullivanIT_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SullivanIT_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSullivan1996" class="citation journal cs1"><a href="/wiki/Gary_Sullivan_(engineer)" title="Gary Sullivan (engineer)">Sullivan, G.J.</a> (1996). "Efficient scalar quantization of exponential and Laplacian random variables". <i>IEEE Transactions on Information Theory</i>. <b>42</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 1365–1374. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F18.532878">10.1109/18.532878</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Efficient+scalar+quantization+of+exponential+and+Laplacian+random+variables&rft.volume=42&rft.issue=5&rft.pages=1365-1374&rft.date=1996&rft_id=info%3Adoi%2F10.1109%2F18.532878&rft.issn=0018-9448&rft.aulast=Sullivan&rft.aufirst=G.J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-Widrow1-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Widrow1_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWidrow1956" class="citation journal cs1"><a href="/wiki/Bernard_Widrow" title="Bernard Widrow">Widrow, B.</a> (1956). "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". <i>IRE Transactions on Circuit Theory</i>. <b>3</b> (4). Institute of Electrical and Electronics Engineers (IEEE): 266–276. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftct.1956.1086334">10.1109/tct.1956.1086334</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F12139">1721.1/12139</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0096-2007">0096-2007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16777461">16777461</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IRE+Transactions+on+Circuit+Theory&rft.atitle=A+Study+of+Rough+Amplitude+Quantization+by+Means+of+Nyquist+Sampling+Theory&rft.volume=3&rft.issue=4&rft.pages=266-276&rft.date=1956&rft_id=info%3Ahdl%2F1721.1%2F12139&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16777461%23id-name%3DS2CID&rft.issn=0096-2007&rft_id=info%3Adoi%2F10.1109%2Ftct.1956.1086334&rft.aulast=Widrow&rft.aufirst=B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-Widrow2-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Widrow2_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Widrow2_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Bernard_Widrow" title="Bernard Widrow">Bernard Widrow</a>, "<a rel="nofollow" class="external text" href="http://www-isl.stanford.edu/~widrow/papers/j1961statisticalanalysis.pdf">Statistical analysis of amplitude quantized sampled data systems</a>", <i>Trans. AIEE Pt. II: Appl. Ind.</i>, Vol. 79, pp. 555–568, Jan. 1961.</span> </li> <li id="cite_note-MarcoNeuhoff-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-MarcoNeuhoff_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarcoNeuhoff2005" class="citation journal cs1">Marco, D.; Neuhoff, D.L. (2005). "The Validity of the Additive Noise Model for Uniform Scalar Quantizers". <i>IEEE Transactions on Information Theory</i>. <b>51</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 1739–1755. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.2005.846397">10.1109/tit.2005.846397</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14819261">14819261</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=The+Validity+of+the+Additive+Noise+Model+for+Uniform+Scalar+Quantizers&rft.volume=51&rft.issue=5&rft.pages=1739-1755&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14819261%23id-name%3DS2CID&rft.issn=0018-9448&rft_id=info%3Adoi%2F10.1109%2Ftit.2005.846397&rft.aulast=Marco&rft.aufirst=D.&rft.au=Neuhoff%2C+D.L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPohlman1989" class="citation book cs1">Pohlman, Ken C. (1989). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VZw6z9a03ikC&pg=PA37"><i>Principles of Digital Audio 2nd Edition</i></a>. SAMS. p. 60. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780071441568" title="Special:BookSources/9780071441568"><bdi>9780071441568</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Digital+Audio+2nd+Edition&rft.pages=60&rft.pub=SAMS&rft.date=1989&rft.isbn=9780071441568&rft.aulast=Pohlman&rft.aufirst=Ken+C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVZw6z9a03ikC%26pg%3DPA37&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWatkinson2001" class="citation book cs1">Watkinson, John (2001). <i>The Art of Digital Audio 3rd Edition</i>. <a href="/wiki/Focal_Press" title="Focal Press">Focal Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-240-51587-0" title="Special:BookSources/0-240-51587-0"><bdi>0-240-51587-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Art+of+Digital+Audio+3rd+Edition&rft.pub=Focal+Press&rft.date=2001&rft.isbn=0-240-51587-0&rft.aulast=Watkinson&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarvardinModestino1984" class="citation journal cs1"><a href="/wiki/Nariman_Farvardin" title="Nariman Farvardin">Farvardin, N.</a>; Modestino, J. (1984). "Optimum quantizer performance for a class of non-Gaussian memoryless sources". <i>IEEE Transactions on Information Theory</i>. <b>30</b> (3). Institute of Electrical and Electronics Engineers (IEEE): 485–497. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1984.1056920">10.1109/tit.1984.1056920</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Optimum+quantizer+performance+for+a+class+of+non-Gaussian+memoryless+sources&rft.volume=30&rft.issue=3&rft.pages=485-497&rft.date=1984&rft_id=info%3Adoi%2F10.1109%2Ftit.1984.1056920&rft.issn=0018-9448&rft.aulast=Farvardin&rft.aufirst=N.&rft.au=Modestino%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span>(Section VI.C and Appendix B)</span> </li> <li id="cite_note-Berger72-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berger72_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger1972" class="citation journal cs1"><a href="/wiki/Toby_Berger" title="Toby Berger">Berger, T.</a> (1972). "Optimum quantizers and permutation codes". <i>IEEE Transactions on Information Theory</i>. <b>18</b> (6). Institute of Electrical and Electronics Engineers (IEEE): 759–765. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1972.1054906">10.1109/tit.1972.1054906</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Optimum+quantizers+and+permutation+codes&rft.volume=18&rft.issue=6&rft.pages=759-765&rft.date=1972&rft_id=info%3Adoi%2F10.1109%2Ftit.1972.1054906&rft.issn=0018-9448&rft.aulast=Berger&rft.aufirst=T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-Berger82-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berger82_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger1982" class="citation journal cs1"><a href="/wiki/Toby_Berger" title="Toby Berger">Berger, T.</a> (1982). "Minimum entropy quantizers and permutation codes". <i>IEEE Transactions on Information Theory</i>. <b>28</b> (2). Institute of Electrical and Electronics Engineers (IEEE): 149–157. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1982.1056456">10.1109/tit.1982.1056456</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Minimum+entropy+quantizers+and+permutation+codes&rft.volume=28&rft.issue=2&rft.pages=149-157&rft.date=1982&rft_id=info%3Adoi%2F10.1109%2Ftit.1982.1056456&rft.issn=0018-9448&rft.aulast=Berger&rft.aufirst=T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLloyd1982" class="citation journal cs1">Lloyd, S. (1982). "Least squares quantization in PCM". <i>IEEE Transactions on Information Theory</i>. <b>28</b> (2). Institute of Electrical and Electronics Engineers (IEEE): 129–137. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.1338">10.1.1.131.1338</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1982.1056489">10.1109/tit.1982.1056489</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10833328">10833328</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Least+squares+quantization+in+PCM&rft.volume=28&rft.issue=2&rft.pages=129-137&rft.date=1982&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.131.1338%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10833328%23id-name%3DS2CID&rft.issn=0018-9448&rft_id=info%3Adoi%2F10.1109%2Ftit.1982.1056489&rft.aulast=Lloyd&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span> (work documented in a manuscript circulated for comments at <a href="/wiki/Bell_Laboratories" class="mw-redirect" title="Bell Laboratories">Bell Laboratories</a> with a department log date of 31 July 1957 and also presented at the 1957 meeting of the <a href="/wiki/Institute_of_Mathematical_Statistics" title="Institute of Mathematical Statistics">Institute of Mathematical Statistics</a>, although not formally published until 1982).</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMax1960" class="citation journal cs1">Max, J. (1960). "Quantizing for minimum distortion". <i>IEEE Transactions on Information Theory</i>. <b>6</b> (1). Institute of Electrical and Electronics Engineers (IEEE): 7–12. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1960.1057548">10.1109/tit.1960.1057548</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Quantizing+for+minimum+distortion&rft.volume=6&rft.issue=1&rft.pages=7-12&rft.date=1960&rft_id=info%3Adoi%2F10.1109%2Ftit.1960.1057548&rft.issn=0018-9448&rft.aulast=Max&rft.aufirst=J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> <li id="cite_note-ChouLookabaughGray-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-ChouLookabaughGray_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChouLookabaughGray1989" class="citation journal cs1">Chou, P.A.; Lookabaugh, T.; <a href="/wiki/Robert_M._Gray" title="Robert M. Gray">Gray, R.M.</a> (1989). "Entropy-constrained vector quantization". <i>IEEE Transactions on Acoustics, Speech, and Signal Processing</i>. <b>37</b> (1). Institute of Electrical and Electronics Engineers (IEEE): 31–42. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F29.17498">10.1109/29.17498</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0096-3518">0096-3518</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Acoustics%2C+Speech%2C+and+Signal+Processing&rft.atitle=Entropy-constrained+vector+quantization&rft.volume=37&rft.issue=1&rft.pages=31-42&rft.date=1989&rft_id=info%3Adoi%2F10.1109%2F29.17498&rft.issn=0096-3518&rft.aulast=Chou&rft.aufirst=P.A.&rft.au=Lookabaugh%2C+T.&rft.au=Gray%2C+R.M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span> </li> </ol></div></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSayood2005" class="citation cs2">Sayood, Khalid (2005), <i>Introduction to Data Compression, Third Edition</i>, Morgan Kaufmann, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-620862-7" title="Special:BookSources/978-0-12-620862-7"><bdi>978-0-12-620862-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Data+Compression%2C+Third+Edition&rft.pub=Morgan+Kaufmann&rft.date=2005&rft.isbn=978-0-12-620862-7&rft.aulast=Sayood&rft.aufirst=Khalid&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJayantNoll1984" class="citation cs2">Jayant, Nikil S.; Noll, Peter (1984), <i>Digital Coding of Waveforms: Principles and Applications to Speech and Video</i>, Prentice–Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-211913-9" title="Special:BookSources/978-0-13-211913-9"><bdi>978-0-13-211913-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Digital+Coding+of+Waveforms%3A+Principles+and+Applications+to+Speech+and+Video&rft.pub=Prentice%E2%80%93Hall&rft.date=1984&rft.isbn=978-0-13-211913-9&rft.aulast=Jayant&rft.aufirst=Nikil+S.&rft.au=Noll%2C+Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGregg1977" class="citation cs2">Gregg, W. David (1977), <i>Analog & Digital Communication</i>, John Wiley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-32661-8" title="Special:BookSources/978-0-471-32661-8"><bdi>978-0-471-32661-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analog+%26+Digital+Communication&rft.pub=John+Wiley&rft.date=1977&rft.isbn=978-0-471-32661-8&rft.aulast=Gregg&rft.aufirst=W.+David&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinJones1967" class="citation cs2">Stein, Seymour; Jones, J. Jay (1967), <i>Modern Communication Principles</i>, <a href="/wiki/McGraw%E2%80%93Hill" class="mw-redirect" title="McGraw–Hill">McGraw–Hill</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-061003-3" title="Special:BookSources/978-0-07-061003-3"><bdi>978-0-07-061003-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+Communication+Principles&rft.pub=McGraw%E2%80%93Hill&rft.date=1967&rft.isbn=978-0-07-061003-3&rft.aulast=Stein&rft.aufirst=Seymour&rft.au=Jones%2C+J.+Jay&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=21" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernard_WidrowIstván_Kollár2007" class="citation book cs1">Bernard Widrow; István Kollár (2007). <a rel="nofollow" class="external text" href="http://www.mit.bme.hu/books/quantization/"><i>Quantization noise in Digital Computation, Signal Processing, and Control</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780521886710" title="Special:BookSources/9780521886710"><bdi>9780521886710</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantization+noise+in+Digital+Computation%2C+Signal+Processing%2C+and+Control&rft.pub=Cambridge+University+Press&rft.date=2007&rft.isbn=9780521886710&rft.au=Bernard+Widrow&rft.au=Istv%C3%A1n+Koll%C3%A1r&rft_id=http%3A%2F%2Fwww.mit.bme.hu%2Fbooks%2Fquantization%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also_2">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantization_(signal_processing)&action=edit&section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Least_count" title="Least count">Least count</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Digital_signal_processing" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Digital_signal_processing" title="Template:Digital signal processing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Digital_signal_processing" title="Template talk:Digital signal processing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Digital_signal_processing" title="Special:EditPage/Template:Digital signal processing"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Digital_signal_processing" style="font-size:114%;margin:0 4em"><a href="/wiki/Digital_signal_processing" title="Digital signal processing">Digital signal processing</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Detection_theory" title="Detection theory">Detection theory</a></li> <li><a href="/wiki/Discrete_time_and_continuous_time" title="Discrete time and continuous time">Discrete signal</a></li> <li><a href="/wiki/Estimation_theory" title="Estimation theory">Estimation theory</a></li> <li><a href="/wiki/Nyquist%E2%80%93Shannon_sampling_theorem" title="Nyquist–Shannon sampling theorem">Nyquist–Shannon sampling theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sub-fields</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Audio_signal_processing" title="Audio signal processing">Audio signal processing</a></li> <li><a href="/wiki/Digital_image_processing" title="Digital image processing">Digital image processing</a></li> <li><a href="/wiki/Speech_processing" title="Speech processing">Speech processing</a></li> <li><a href="/wiki/Statistical_signal_processing" class="mw-redirect" title="Statistical signal processing">Statistical signal processing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Techniques</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Z-transform" title="Z-transform">Z-transform</a> <ul><li><a href="/wiki/Advanced_z-transform" title="Advanced z-transform">Advanced z-transform</a></li> <li><a href="/wiki/Matched_Z-transform_method" title="Matched Z-transform method">Matched Z-transform method</a></li></ul></li> <li><a href="/wiki/Bilinear_transform" title="Bilinear transform">Bilinear transform</a></li> <li><a href="/wiki/Constant-Q_transform" title="Constant-Q transform">Constant-Q transform</a></li> <li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">Discrete cosine transform</a> (DCT)</li> <li><a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">Discrete Fourier transform</a> (DFT)</li> <li><a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">Discrete-time Fourier transform</a> (DTFT)</li> <li><a href="/wiki/Impulse_invariance" title="Impulse invariance">Impulse invariance</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a></li> <li><a href="/wiki/Post%27s_inversion_formula" class="mw-redirect" title="Post's inversion formula">Post's inversion formula</a></li> <li><a href="/wiki/Starred_transform" title="Starred transform">Starred transform</a></li> <li><a href="/wiki/Zak_transform" title="Zak transform">Zak transform</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">Sampling</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aliasing" title="Aliasing">Aliasing</a></li> <li><a href="/wiki/Anti-aliasing_filter" title="Anti-aliasing filter">Anti-aliasing filter</a></li> <li><a href="/wiki/Downsampling_(signal_processing)" title="Downsampling (signal processing)">Downsampling</a></li> <li><a href="/wiki/Nyquist_rate" title="Nyquist rate">Nyquist rate</a> / <a href="/wiki/Nyquist_frequency" title="Nyquist frequency">frequency</a></li> <li><a href="/wiki/Oversampling" title="Oversampling">Oversampling</a></li> <li><a class="mw-selflink selflink">Quantization</a></li> <li><a href="/wiki/Sampling_rate" class="mw-redirect" title="Sampling rate">Sampling rate</a></li> <li><a href="/wiki/Undersampling" title="Undersampling">Undersampling</a></li> <li><a href="/wiki/Upsampling" title="Upsampling">Upsampling</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Data_compression_methods" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Compression_methods" title="Template:Compression methods"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Compression_methods" title="Template talk:Compression methods"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Compression_methods" title="Special:EditPage/Template:Compression methods"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Data_compression_methods" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_compression" title="Data compression">Data compression</a> methods</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lossless_compression" title="Lossless compression">Lossless</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Entropy_coding" title="Entropy coding">Entropy type</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_coding" title="Adaptive coding">Adaptive coding</a></li> <li><a href="/wiki/Arithmetic_coding" title="Arithmetic coding">Arithmetic</a></li> <li><a href="/wiki/Asymmetric_numeral_systems" title="Asymmetric numeral systems">Asymmetric numeral systems</a></li> <li><a href="/wiki/Golomb_coding" title="Golomb coding">Golomb</a></li> <li><a href="/wiki/Huffman_coding" title="Huffman coding">Huffman</a> <ul><li><a href="/wiki/Adaptive_Huffman_coding" title="Adaptive Huffman coding">Adaptive</a></li> <li><a href="/wiki/Canonical_Huffman_code" title="Canonical Huffman code">Canonical</a></li> <li><a href="/wiki/Modified_Huffman_coding" title="Modified Huffman coding">Modified</a></li></ul></li> <li><a href="/wiki/Range_coding" title="Range coding">Range</a></li> <li><a href="/wiki/Shannon_coding" title="Shannon coding">Shannon</a></li> <li><a href="/wiki/Shannon%E2%80%93Fano_coding" title="Shannon–Fano coding">Shannon–Fano</a></li> <li><a href="/wiki/Shannon%E2%80%93Fano%E2%80%93Elias_coding" title="Shannon–Fano–Elias coding">Shannon–Fano–Elias</a></li> <li><a href="/wiki/Tunstall_coding" title="Tunstall coding">Tunstall</a></li> <li><a href="/wiki/Unary_coding" title="Unary coding">Unary</a></li> <li><a href="/wiki/Universal_code_(data_compression)" title="Universal code (data compression)">Universal</a> <ul><li><a href="/wiki/Exponential-Golomb_coding" title="Exponential-Golomb coding">Exp-Golomb</a></li> <li><a href="/wiki/Fibonacci_coding" title="Fibonacci coding">Fibonacci</a></li> <li><a href="/wiki/Elias_gamma_coding" title="Elias gamma coding">Gamma</a></li> <li><a href="/wiki/Levenshtein_coding" title="Levenshtein coding">Levenshtein</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Dictionary_coder" title="Dictionary coder">Dictionary type</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Byte_pair_encoding" title="Byte pair encoding">Byte pair encoding</a></li> <li><a href="/wiki/LZ77_and_LZ78" title="LZ77 and LZ78">Lempel–Ziv</a> <ul><li><a href="/wiki/842_(compression_algorithm)" title="842 (compression algorithm)">842</a></li> <li><a href="/wiki/LZ4_(compression_algorithm)" title="LZ4 (compression algorithm)">LZ4</a></li> <li><a href="/wiki/LZJB" class="mw-redirect" title="LZJB">LZJB</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer" title="Lempel–Ziv–Oberhumer">LZO</a></li> <li><a href="/wiki/LZRW" title="LZRW">LZRW</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Storer%E2%80%93Szymanski" title="Lempel–Ziv–Storer–Szymanski">LZSS</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch" title="Lempel–Ziv–Welch">LZW</a></li> <li><a href="/wiki/LZWL" title="LZWL">LZWL</a></li> <li><a href="/wiki/Snappy_(compression)" title="Snappy (compression)">Snappy</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Other types</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Burrows%E2%80%93Wheeler_transform" title="Burrows–Wheeler transform">BWT</a></li> <li><a href="/wiki/Context_tree_weighting" title="Context tree weighting">CTW</a></li> <li><a href="/wiki/Context_mixing" title="Context mixing">CM</a></li> <li><a href="/wiki/Delta_encoding" title="Delta encoding">Delta</a> <ul><li><a href="/wiki/Incremental_encoding" title="Incremental encoding">Incremental</a></li></ul></li> <li><a href="/wiki/Dynamic_Markov_compression" title="Dynamic Markov compression">DMC</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li> <li><a href="/wiki/Grammar-based_code" title="Grammar-based code">Grammar</a> <ul><li><a href="/wiki/Re-Pair" title="Re-Pair">Re-Pair</a></li> <li><a href="/wiki/Sequitur_algorithm" title="Sequitur algorithm">Sequitur</a></li></ul></li> <li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">LDCT</a></li> <li><a href="/wiki/Move-to-front_transform" title="Move-to-front transform">MTF</a></li> <li><a href="/wiki/PAQ" title="PAQ">PAQ</a></li> <li><a href="/wiki/Prediction_by_partial_matching" title="Prediction by partial matching">PPM</a></li> <li><a href="/wiki/Run-length_encoding" title="Run-length encoding">RLE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Hybrid</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li>LZ77 + Huffman <ul><li><a href="/wiki/Deflate" title="Deflate">Deflate</a></li> <li><a href="/wiki/LZX" title="LZX">LZX</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Stac" title="Lempel–Ziv–Stac">LZS</a></li></ul></li> <li>LZ77 + ANS <ul><li><a href="/wiki/LZFSE" title="LZFSE">LZFSE</a></li></ul></li> <li>LZ77 + Huffman + ANS <ul><li><a href="/wiki/Zstd" title="Zstd">Zstandard</a></li></ul></li> <li>LZ77 + Huffman + context <ul><li><a href="/wiki/Brotli" title="Brotli">Brotli</a></li></ul></li> <li>LZSS + Huffman <ul><li><a href="/wiki/LHA_(file_format)" title="LHA (file format)">LHA/LZH</a></li></ul></li> <li>LZ77 + Range <ul><li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm" title="Lempel–Ziv–Markov chain algorithm">LZMA</a></li> <li>LZHAM</li></ul></li> <li>RLE + BWT + MTF + Huffman <ul><li><a href="/wiki/Bzip2" title="Bzip2">bzip2</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lossy_compression" title="Lossy compression">Lossy</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Transform_coding" title="Transform coding">Transform type</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">Discrete cosine transform</a> <ul><li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">DCT</a></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li></ul></li> <li><a href="/wiki/Discrete_sine_transform" title="Discrete sine transform">DST</a></li> <li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li> <li><a href="/wiki/Set_partitioning_in_hierarchical_trees" title="Set partitioning in hierarchical trees">SPIHT</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Predictive type</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a> <ul><li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Log_area_ratio" title="Log area ratio">LAR</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li>Motion <ul><li><a href="/wiki/Motion_compensation" title="Motion compensation">Compensation</a></li> <li><a href="/wiki/Motion_estimation" title="Motion estimation">Estimation</a></li> <li><a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">Vector</a></li></ul></li> <li><a href="/wiki/Psychoacoustics" title="Psychoacoustics">Psychoacoustic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression#Audio" title="Data compression">Audio</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit_rate" title="Bit rate">Bit rate</a> <ul><li><a href="/wiki/Average_bitrate" title="Average bitrate">ABR</a></li> <li><a href="/wiki/Constant_bitrate" title="Constant bitrate">CBR</a></li> <li><a href="/wiki/Variable_bitrate" title="Variable bitrate">VBR</a></li></ul></li> <li><a href="/wiki/Companding" title="Companding">Companding</a></li> <li><a href="/wiki/Convolution" title="Convolution">Convolution</a></li> <li><a href="/wiki/Dynamic_range" title="Dynamic range">Dynamic range</a></li> <li><a href="/wiki/Latency_(audio)" title="Latency (audio)">Latency</a></li> <li><a href="/wiki/Nyquist%E2%80%93Shannon_sampling_theorem" title="Nyquist–Shannon sampling theorem">Nyquist–Shannon theorem</a></li> <li><a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">Sampling</a></li> <li><a href="/wiki/Silence_compression" title="Silence compression">Silence compression</a></li> <li><a href="/wiki/Sound_quality" title="Sound quality">Sound quality</a></li> <li><a href="/wiki/Speech_coding" title="Speech coding">Speech coding</a></li> <li><a href="/wiki/Sub-band_coding" title="Sub-band coding">Sub-band coding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Audio_codec" title="Audio codec">Codec</a> parts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/A-law_algorithm" title="A-law algorithm">A-law</a></li> <li><a href="/wiki/%CE%9C-law_algorithm" title="Μ-law algorithm">μ-law</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a> <ul><li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li> <li><a href="/wiki/Delta_modulation" title="Delta modulation">DM</a></li></ul></li> <li><a href="/wiki/Fourier_transform" title="Fourier transform">FT</a> <ul><li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Log_area_ratio" title="Log area ratio">LAR</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li> <li><a href="/wiki/Psychoacoustics" title="Psychoacoustics">Psychoacoustic model</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Image_compression" title="Image compression">Image</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chroma_subsampling" title="Chroma subsampling">Chroma subsampling</a></li> <li><a href="/wiki/Coding_tree_unit" title="Coding tree unit">Coding tree unit</a></li> <li><a href="/wiki/Color_space" title="Color space">Color space</a></li> <li><a href="/wiki/Compression_artifact" title="Compression artifact">Compression artifact</a></li> <li><a href="/wiki/Image_resolution" title="Image resolution">Image resolution</a></li> <li><a href="/wiki/Macroblock" title="Macroblock">Macroblock</a></li> <li><a href="/wiki/Pixel" title="Pixel">Pixel</a></li> <li><a href="/wiki/Peak_signal-to-noise_ratio" title="Peak signal-to-noise ratio">PSNR</a></li> <li><a href="/wiki/Quantization_(image_processing)" title="Quantization (image processing)">Quantization</a></li> <li><a href="/wiki/Standard_test_image" title="Standard test image">Standard test image</a></li> <li><a href="/wiki/Texture_compression" title="Texture compression">Texture compression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chain_code" title="Chain code">Chain code</a></li> <li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">DCT</a></li> <li><a href="/wiki/Deflate" title="Deflate">Deflate</a></li> <li><a href="/wiki/Fractal_compression" title="Fractal compression">Fractal</a></li> <li><a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">KLT</a></li> <li><a href="/wiki/Pyramid_(image_processing)" title="Pyramid (image processing)">LP</a></li> <li><a href="/wiki/Run-length_encoding" title="Run-length encoding">RLE</a></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li> <li><a href="/wiki/Embedded_zerotrees_of_wavelet_transforms" title="Embedded zerotrees of wavelet transforms">EZW</a></li> <li><a href="/wiki/Set_partitioning_in_hierarchical_trees" title="Set partitioning in hierarchical trees">SPIHT</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression#Video" title="Data compression">Video</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit_rate" title="Bit rate">Bit rate</a> <ul><li><a href="/wiki/Average_bitrate" title="Average bitrate">ABR</a></li> <li><a href="/wiki/Constant_bitrate" title="Constant bitrate">CBR</a></li> <li><a href="/wiki/Variable_bitrate" title="Variable bitrate">VBR</a></li></ul></li> <li><a href="/wiki/Display_resolution" title="Display resolution">Display resolution</a></li> <li><a href="/wiki/Film_frame" title="Film frame">Frame</a></li> <li><a href="/wiki/Frame_rate" title="Frame rate">Frame rate</a></li> <li><a href="/wiki/Video_compression_picture_types" title="Video compression picture types">Frame types</a></li> <li><a href="/wiki/Interlaced_video" title="Interlaced video">Interlace</a></li> <li><a href="/wiki/Video#Characteristics_of_video_streams" title="Video">Video characteristics</a></li> <li><a href="/wiki/Video_quality" title="Video quality">Video quality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Video_codec" title="Video codec">Codec</a> parts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">DCT</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li> <li><a href="/wiki/Deblocking_filter" title="Deblocking filter">Deblocking filter</a></li> <li><a href="/wiki/Lapped_transform" title="Lapped transform">Lapped transform</a></li> <li>Motion <ul><li><a href="/wiki/Motion_compensation" title="Motion compensation">Compensation</a></li> <li><a href="/wiki/Motion_estimation" title="Motion estimation">Estimation</a></li> <li><a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">Vector</a></li></ul></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Information_theory" title="Information theory">Theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Compressed_data_structure" title="Compressed data structure">Compressed data structures</a> <ul><li><a href="/wiki/Compressed_suffix_array" title="Compressed suffix array">Compressed suffix array</a></li> <li><a href="/wiki/FM-index" title="FM-index">FM-index</a></li></ul></li> <li><a href="/wiki/Entropy_(information_theory)" title="Entropy (information theory)">Entropy</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a> <ul><li><a href="/wiki/Timeline_of_information_theory" title="Timeline of information theory">Timeline</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Prefix_code" title="Prefix code">Prefix code</a></li> <li><a class="mw-selflink selflink">Quantization</a></li> <li><a href="/wiki/Rate%E2%80%93distortion_theory" title="Rate–distortion theory">Rate–distortion</a></li> <li><a href="/wiki/Redundancy_(information_theory)" title="Redundancy (information theory)">Redundancy</a></li> <li><a href="/wiki/Data_compression_symmetry" title="Data compression symmetry">Symmetry</a></li> <li><a href="/wiki/Smallest_grammar_problem" title="Smallest grammar problem">Smallest grammar problem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Community</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hutter_Prize" title="Hutter Prize">Hutter Prize</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">People</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mark_Adler" title="Mark Adler">Mark Adler</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Compression_formats" title="Template:Compression formats">Compression formats</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Compression_software" title="Template:Compression software">Compression software</a> (<a href="/wiki/Codec" title="Codec">codecs</a>)</li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Noise_(physics_and_telecommunications)" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Noise" title="Template:Noise"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Noise" title="Template talk:Noise"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Noise" title="Special:EditPage/Template:Noise"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Noise_(physics_and_telecommunications)" style="font-size:114%;margin:0 4em"><a href="/wiki/Noise_(spectral_phenomenon)" title="Noise (spectral phenomenon)">Noise</a> (physics and telecommunications)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acoustic_quieting" title="Acoustic quieting">Acoustic quieting</a></li> <li><a href="/wiki/Distortion" title="Distortion">Distortion</a></li> <li><a href="/wiki/Active_noise_control" title="Active noise control">Noise cancellation</a></li> <li><a href="/wiki/Noise_control" title="Noise control">Noise control</a></li> <li><a href="/wiki/Noise_measurement" title="Noise measurement">Noise measurement</a></li> <li><a href="/wiki/Noise_power" title="Noise power">Noise power</a></li> <li><a href="/wiki/Noise_reduction" title="Noise reduction">Noise reduction</a></li> <li><a href="/wiki/Noise_temperature" title="Noise temperature">Noise temperature</a></li> <li><a href="/wiki/Phase_distortion" title="Phase distortion">Phase distortion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Noise in...</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Noise" title="Noise">Audio</a></li> <li><a href="/wiki/Architectural_acoustics" title="Architectural acoustics">Buildings</a></li> <li><a href="/wiki/Noise_(electronics)" title="Noise (electronics)">Electronics</a></li> <li><a href="/wiki/Noise_pollution" title="Noise pollution">Environment</a></li> <li><a href="/wiki/Noise_regulation" title="Noise regulation">Government regulation</a></li> <li><a href="/wiki/Health_effects_from_noise" title="Health effects from noise">Human health</a></li> <li><a href="/wiki/Image_noise" title="Image noise">Images</a></li> <li><a href="/wiki/Noise_(radio)" class="mw-redirect" title="Noise (radio)">Radio</a></li> <li><a href="/wiki/Soundproofing" title="Soundproofing">Rooms</a></li> <li><a href="/wiki/Noise_and_vibration_on_maritime_vessels" title="Noise and vibration on maritime vessels">Ships</a></li> <li><a href="/wiki/Sound_masking" title="Sound masking">Sound masking</a></li> <li><a href="/wiki/Noise_barrier" title="Noise barrier">Transportation</a></li> <li><a href="/wiki/Noise_(video)" title="Noise (video)">Video</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Class of noise</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Additive_white_Gaussian_noise" title="Additive white Gaussian noise">Additive white Gaussian noise</a> (AWGN)</li> <li><a href="/wiki/Atmospheric_noise" title="Atmospheric noise">Atmospheric noise</a></li> <li><a href="/wiki/Background_noise" title="Background noise">Background noise</a></li> <li><a href="/wiki/Brownian_noise" title="Brownian noise">Brownian noise</a></li> <li><a href="/wiki/Burst_noise" title="Burst noise">Burst noise</a></li> <li><a href="/wiki/Cosmic_noise" title="Cosmic noise">Cosmic noise</a></li> <li><a href="/wiki/Flicker_noise" title="Flicker noise">Flicker noise</a></li> <li><a href="/wiki/Gaussian_noise" title="Gaussian noise">Gaussian noise</a></li> <li><a href="/wiki/Grey_noise" title="Grey noise">Grey noise</a></li> <li><a href="/wiki/Infrasound" title="Infrasound">Infrasound</a></li> <li><a href="/wiki/Jitter" title="Jitter">Jitter</a></li> <li><a href="/wiki/Johnson%E2%80%93Nyquist_noise" title="Johnson–Nyquist noise">Johnson–Nyquist noise</a> (thermal noise)</li> <li><a href="/wiki/Pink_noise" title="Pink noise">Pink noise</a></li> <li><a href="/wiki/Quantization_error" class="mw-redirect" title="Quantization error">Quantization error</a> (or q. noise)</li> <li><a href="/wiki/Shot_noise" title="Shot noise">Shot noise</a></li> <li><a href="/wiki/White_noise" title="White noise">White noise</a></li> <li>Coherent noise <ul><li><a href="/wiki/Value_noise" title="Value noise">Value noise</a></li> <li><a href="/wiki/Gradient_noise" title="Gradient noise">Gradient noise</a></li> <li><a href="/wiki/Worley_noise" title="Worley noise">Worley noise</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Engineering <br />terms</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Channel_noise_level" title="Channel noise level">Channel noise level</a></li> <li><a href="/wiki/Circuit_noise_level" title="Circuit noise level">Circuit noise level</a></li> <li><a href="/wiki/Effective_input_noise_temperature" title="Effective input noise temperature">Effective input noise temperature</a></li> <li><a href="/wiki/Equivalent_noise_resistance" title="Equivalent noise resistance">Equivalent noise resistance</a></li> <li><a href="/wiki/Equivalent_pulse_code_modulation_noise" title="Equivalent pulse code modulation noise">Equivalent pulse code modulation noise</a></li> <li><a href="/wiki/Impulse_noise_(audio)" class="mw-redirect" title="Impulse noise (audio)">Impulse noise (audio)</a></li> <li><a href="/wiki/Noise_figure" title="Noise figure">Noise figure</a></li> <li><a href="/wiki/Noise_floor" title="Noise floor">Noise floor</a></li> <li><a href="/wiki/Noise_shaping" title="Noise shaping">Noise shaping</a></li> <li><a href="/wiki/Noise_spectral_density" title="Noise spectral density">Noise spectral density</a></li> <li><a href="/wiki/Noise,_vibration,_and_harshness" title="Noise, vibration, and harshness">Noise, vibration, and harshness</a> (NVH)</li> <li><a href="/wiki/Phase_noise" title="Phase noise">Phase noise</a></li> <li><a href="/wiki/Pseudorandom_noise" title="Pseudorandom noise">Pseudorandom noise</a></li> <li><a href="/wiki/Statistical_noise" class="mw-redirect" title="Statistical noise">Statistical noise</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Ratios</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carrier-to-noise_ratio" title="Carrier-to-noise ratio">Carrier-to-noise ratio</a> (<i>C</i>/<i>N</i>)</li> <li><a href="/wiki/Carrier-to-receiver_noise_density" class="mw-redirect" title="Carrier-to-receiver noise density">Carrier-to-receiver noise density</a> (<i>C</i>/<i>kT</i>)</li> <li><i><a href="/wiki/DBrnC" class="mw-redirect" title="DBrnC">dBrnC</a></i></li> <li><i><a href="/wiki/Eb/N0" title="Eb/N0">E<sub>b</sub>/N<sub>0</sub></a></i> (energy per bit to noise density)</li> <li><i><a href="/wiki/Eb/N0#Relation_to_Es.2FN0" title="Eb/N0">E<sub>s</sub>/N<sub>0</sub></a></i> (energy per symbol to noise density)</li> <li><a href="/wiki/Modulation_error_ratio" title="Modulation error ratio">Modulation error ratio</a> (<i>MER</i>)</li> <li><a href="/wiki/SINAD" title="SINAD">Signal, noise and distortion</a> (<i>SINAD</i>)</li> <li><a href="/wiki/Signal-to-interference_ratio" title="Signal-to-interference ratio">Signal-to-interference ratio</a> (<i>S</i>/<i>I</i>)</li> <li><a href="/wiki/Signal-to-noise_ratio" title="Signal-to-noise ratio">Signal-to-noise ratio</a> (<i>S</i>/<i>N</i>, <i>SNR</i>)</li> <li><a href="/wiki/Signal-to-noise_ratio_(imaging)" title="Signal-to-noise ratio (imaging)">Signal-to-noise ratio (imaging)</a></li> <li><a href="/wiki/Signal-to-interference-plus-noise_ratio" title="Signal-to-interference-plus-noise ratio">Signal-to-interference-plus-noise ratio</a> (<i>SINR</i>)</li> <li><a href="/wiki/Signal-to-quantization-noise_ratio" title="Signal-to-quantization-noise ratio">Signal-to-quantization-noise ratio</a> (<i>SQNR</i>)</li> <li><a href="/wiki/Contrast-to-noise_ratio" title="Contrast-to-noise ratio">Contrast-to-noise ratio</a> (<i>CNR</i>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_noise_topics" title="List of noise topics">List of noise topics</a></li> <li><a href="/wiki/Acoustics" title="Acoustics">Acoustics</a></li> <li><a href="/wiki/Colors_of_noise" title="Colors of noise">Colors of noise</a></li> <li><a href="/wiki/Interference_(communication)" title="Interference (communication)">Interference (communication)</a></li> <li><a href="/wiki/Noise_generator" title="Noise generator">Noise generator</a></li> <li><a href="/wiki/Spectrum_analyzer" title="Spectrum analyzer">Spectrum analyzer</a></li> <li><a href="/wiki/Thermal_radiation" title="Thermal radiation">Thermal radiation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Denoise <br />methods</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Low-pass_filter" title="Low-pass filter">Low-pass filter</a></li> <li><a href="/wiki/Median_filter" title="Median filter">Median filter</a></li> <li><a href="/wiki/Total_variation_denoising" title="Total variation denoising">Total variation denoising</a></li> <li><a href="/wiki/Wavelet#Wavelet_denoising" title="Wavelet">Wavelet denoising</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">2D (Image)</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gaussian_blur" title="Gaussian blur">Gaussian blur</a></li> <li><a href="/wiki/Anisotropic_diffusion" title="Anisotropic diffusion">Anisotropic diffusion</a></li> <li><a href="/wiki/Bilateral_filter" title="Bilateral filter">Bilateral filter</a></li> <li><a href="/wiki/Non-local_means" title="Non-local means">Non-local means</a></li> <li><a href="/wiki/Block-matching_and_3D_filtering" title="Block-matching and 3D filtering">Block-matching and 3D filtering</a> (BM3D)</li> <li><a href="/wiki/Shrinkage_Fields_(image_restoration)" title="Shrinkage Fields (image restoration)">Shrinkage Fields</a></li> <li><a href="/wiki/Autoencoder#Denoising_autoencoder_(DAE)" title="Autoencoder">Denoising autoencoder</a> (DAE)</li> <li><a href="/wiki/Deep_Image_Prior" class="mw-redirect" title="Deep Image Prior">Deep Image Prior</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐cjv9d Cached time: 20241122140720 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.670 seconds Real time usage: 0.945 seconds Preprocessor visited node count: 3500/1000000 Post‐expand include size: 133625/2097152 bytes Template argument size: 1714/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 128391/5000000 bytes Lua time usage: 0.300/10.000 seconds Lua memory usage: 5913500/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 599.376 1 -total 37.72% 226.103 2 Template:Reflist 24.26% 145.415 14 Template:Cite_journal 18.95% 113.592 9 Template:Navbox 16.42% 98.440 1 Template:Short_description 13.64% 81.755 1 Template:DSP 9.61% 57.576 2 Template:Pagetype 5.66% 33.901 1 Template:Anchor 4.87% 29.216 1 Template:Compression_Methods 4.81% 28.835 8 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:317018-0!canonical and timestamp 20241122140720 and revision id 1256393006. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Quantization_(signal_processing)&oldid=1256393006">https://en.wikipedia.org/w/index.php?title=Quantization_(signal_processing)&oldid=1256393006</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Data_compression" title="Category:Data compression">Data compression</a></li><li><a href="/wiki/Category:Digital_signal_processing" title="Category:Digital signal processing">Digital signal processing</a></li><li><a href="/wiki/Category:Computer_graphic_artifacts" title="Category:Computer graphic artifacts">Computer graphic artifacts</a></li><li><a href="/wiki/Category:Digital_audio" title="Category:Digital audio">Digital audio</a></li><li><a href="/wiki/Category:Noise_(electronics)" title="Category:Noise (electronics)">Noise (electronics)</a></li><li><a href="/wiki/Category:Signal_processing" title="Category:Signal processing">Signal processing</a></li><li><a href="/wiki/Category:Telecommunication_theory" title="Category:Telecommunication theory">Telecommunication theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_April_2019" title="Category:Use American English from April 2019">Use American English from April 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 November 2024, at 18:59<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Quantization_(signal_processing)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-zrkgv","wgBackendResponseTime":219,"wgPageParseReport":{"limitreport":{"cputime":"0.670","walltime":"0.945","ppvisitednodes":{"value":3500,"limit":1000000},"postexpandincludesize":{"value":133625,"limit":2097152},"templateargumentsize":{"value":1714,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":128391,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 599.376 1 -total"," 37.72% 226.103 2 Template:Reflist"," 24.26% 145.415 14 Template:Cite_journal"," 18.95% 113.592 9 Template:Navbox"," 16.42% 98.440 1 Template:Short_description"," 13.64% 81.755 1 Template:DSP"," 9.61% 57.576 2 Template:Pagetype"," 5.66% 33.901 1 Template:Anchor"," 4.87% 29.216 1 Template:Compression_Methods"," 4.81% 28.835 8 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.300","limit":"10.000"},"limitreport-memusage":{"value":5913500,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-cjv9d","timestamp":"20241122140720","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Quantization (signal processing)","url":"https:\/\/en.wikipedia.org\/wiki\/Quantization_(signal_processing)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q198099","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q198099","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-09-12T22:10:28Z","dateModified":"2024-11-09T18:59:06Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b8\/Quantization_error.png","headline":"process of mapping a continuous set to a countable set"}</script> </body> </html>