CINXE.COM
Search results for: Frobenius manifold
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Frobenius manifold</title> <meta name="description" content="Search results for: Frobenius manifold"> <meta name="keywords" content="Frobenius manifold"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Frobenius manifold" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Frobenius manifold"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 110</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Frobenius manifold</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Frobenius Manifolds Pairing and Invariant Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Al-Maamari">Zainab Al-Maamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassir%20Dinar"> Yassir Dinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invariant%20ring" title="invariant ring">invariant ring</a>, <a href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold" title=" Frobenius manifold"> Frobenius manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion" title=" inversion"> inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20theory" title=" representation theory"> representation theory</a> </p> <a href="https://publications.waset.org/abstracts/143099/frobenius-manifolds-pairing-and-invariant-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Introduction of Para-Sasaki-Like Riemannian Manifolds and Construction of New Einstein Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mancho%20Manev">Mancho Manev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of almost paracontact Riemannian manifolds (abbr., apcR manifolds) was introduced by I. Sato in 1976 as an analogue of almost contact Riemannian manifolds. The notion of an apcR manifold of type (p,q) was defined by S. Sasaki in 1980, where p and q are respectively the numbers of the multiplicity of the structure eigenvalues 1 and -1. It also has a simple eigenvalue of 0. In our work, we consider (2n+1)-dimensional apcR manifolds of type (n,n), i.e., the paracontact distribution of the studied manifold can be considered as a 2n-dimensional almost paracomplex Riemannian distribution with almost paracomplex structure and structure group O(n) × O(n). The aim of the present study is to introduce a new class of apcR manifolds. Such a manifold is obtained using the construction of a certain Riemannian cone over it, and the resulting manifold is a paraholomorphic paracomplex Riemannian manifold (abbr., phpcR manifold). We call it a para-Sasaki-like Riemannian manifold (abbr., pSlR manifold) and give some explicit examples. We study the structure of pSlR spaces and find that the paracontact form η is closed and each pSlR manifold locally can be considered as a certain product of the real line with a phpcR manifold, which is locally a Riemannian product of two equidimensional Riemannian spaces. We also obtain that the curvature of the pSlR manifolds is completely determined by the curvature of the underlying local phpcR manifold. Moreover, the ξ-directed Ricci curvature is equal to -2n, while in the Sasaki case, it is 2n. Accordingly, the pSlR manifolds can be interpreted as the counterpart of the Sasaki manifolds; the skew-symmetric part of ∇η vanishes, while in the Sasaki case, the symmetric part vanishes. We define a hyperbolic extension of a (complete) phpcR manifold that resembles a certain warped product, and we indicate that it is a (complete) pSlR manifold. In addition, we consider the hyperbolic extension of a phpcR manifold and prove that if the initial manifold is a complete Einstein manifold with negative scalar curvature, then the resulting manifold is a complete Einstein pSlR manifold with negative scalar curvature. In this way, we produce new examples of a complete Einstein Riemannian manifold with negative scalar curvature. Finally, we define and study para contact conformal/homothetic deformations by deriving a subclass that preserves the para-Sasaki-like condition. We then find that if we apply a paracontact homothetic deformation of a pSlR space, we obtain that the Ricci tensor is invariant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=almost%20paracontact%20Riemannian%20manifolds" title="almost paracontact Riemannian manifolds">almost paracontact Riemannian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifolds" title=" Einstein manifolds"> Einstein manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=holomorphic%20product%20manifold" title=" holomorphic product manifold"> holomorphic product manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=warped%20product%20manifold" title=" warped product manifold"> warped product manifold</a> </p> <a href="https://publications.waset.org/abstracts/138178/introduction-of-para-sasaki-like-riemannian-manifolds-and-construction-of-new-einstein-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Slant and Hemislant Submanifolds of an Indefinite Trans-Sasakian Manifold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barnali%20Laha">Barnali Laha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we would like to establish some of the properties of slant and hemislant submanifolds of an indefinite trans-Sasakian manifold. We have four sections in this paper. The first section is introductory. In Section 2, we recall some necessary details of an indefinite trans-Sasakian manifold. In Section 3, we have obtained some interesting properties on a totally umbilical slant submanifolds of an indefinite trans-Sasakian manifold. Finally, in Section 4, some results on integrability conditions of the distributions of hemislant submanifolds of an indefinite trans-Sasakian manifold have been obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slant%20submanifold" title="slant submanifold">slant submanifold</a>, <a href="https://publications.waset.org/abstracts/search?q=indefi%0Cnite%20trans-Sasakian%20manifold" title=" indefinite trans-Sasakian manifold"> indefinite trans-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=hemislant%20submanifold" title=" hemislant submanifold"> hemislant submanifold</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability%20conditions" title=" integrability conditions"> integrability conditions</a> </p> <a href="https://publications.waset.org/abstracts/21009/slant-and-hemislant-submanifolds-of-an-indefinite-trans-sasakian-manifold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Some Classes of Lorentzian Alpha-Sasakian Manifolds with Respect to Quarter-Symmetric Metric Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santu%20Dey">Santu Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Bhattacharyya"> Arindam Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The object of the present paper is to study a quarter-symmetric metric connection in a Lorentzian α-Sasakian manifold. We study some curvature properties of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We investigate quasi-projectively at, Φ-symmetric, Φ-projectively at Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. We also discuss Lorentzian α-Sasakian manifold admitting quartersymmetric metric connection satisfying P.S = 0, where P denote the projective curvature tensor with respect to quarter-symmetric metric connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quarter-symmetric%20metric%20connection" title="quarter-symmetric metric connection">quarter-symmetric metric connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentzian%20alpha-Sasakian%20manifold" title=" Lorentzian alpha-Sasakian manifold"> Lorentzian alpha-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-projectively%20flat%20Lorentzian%20alpha-Sasakian%20manifold" title=" quasi-projectively flat Lorentzian alpha-Sasakian manifold"> quasi-projectively flat Lorentzian alpha-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=phi-symmetric%20manifold" title=" phi-symmetric manifold"> phi-symmetric manifold</a> </p> <a href="https://publications.waset.org/abstracts/66809/some-classes-of-lorentzian-alpha-sasakian-manifolds-with-respect-to-quarter-symmetric-metric-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meimei%20Wen">Meimei Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX" title="CFX">CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20metal" title=" liquid metal"> liquid metal</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a> </p> <a href="https://publications.waset.org/abstracts/25429/numerical-analysis-of-liquid-metal-magnetohydrodynamic-flows-in-a-manifold-with-three-sub-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> A Dynamic Symplectic Manifold Analysis for Wave Propagation in Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20M.%20Guerra">K. I. M. Guerra</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20P.%20Silva"> L. A. P. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Leal"> J. C. Leal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the traveling wave through the porous body. A solution for this equation is proposed after all boundary, and initial conditions are fixed, and it’s accepted that the solution lies in a manifold U of purely spatial dimensions and that is embedded in the Real n-dimensional manifold, with spatial and kinetic dimensions. It’s shown that the U manifold of lower dimensions than IRna, where it is embedded, inherits properties of the vector spaces existing inside the topology it lies on. Then, a second manifold (U*), embedded in another space called IRnb of stress dimensions, is proposed and there’s a non-degenerative function that maps it into the U manifold. This relation is proved as a transformation in between two corresponding admissible solutions of the differential equation in distinct dimensions and properties, leading to a more visual and intuitive understanding of the whole dynamic process of a stress wave through a porous medium and also highlighting the dimensional invariance of Terzaghi’s theory for any coordinate system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poremechanics" title="poremechanics">poremechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20dynamics" title=" soil dynamics"> soil dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=symplectic%20geometry" title=" symplectic geometry"> symplectic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/83917/a-dynamic-symplectic-manifold-analysis-for-wave-propagation-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Topology Optimization of Heat Exchanger Manifolds for Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjong%20Kim">Hanjong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changwan%20Han"> Changwan Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonghun%20Park"> Seonghun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/60709/topology-optimization-of-heat-exchanger-manifolds-for-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Prakash%20Singh">Jay Prakash Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LP-Sasakian%20manifolds" title="LP-Sasakian manifolds">LP-Sasakian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-conformal%20curvature%20tensor" title=" quasi-conformal curvature tensor"> quasi-conformal curvature tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=concircular%20vector%20%0Cfield" title=" concircular vector field"> concircular vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=torse%20forming%20vector%20%0Cfield" title=" torse forming vector field"> torse forming vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifold" title=" Einstein manifold"> Einstein manifold</a> </p> <a href="https://publications.waset.org/abstracts/50415/on-quasi-conformally-flat-lp-sasakian-manifolds-with-a-coefficient-a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">792</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Kapahi">Sahil Kapahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%20D%20Simulation" title="1 D Simulation">1 D Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20simulation" title=" air flow simulation"> air flow simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title=" ANSYS CFX"> ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=four-stroke%20engine" title=" four-stroke engine"> four-stroke engine</a>, <a href="https://publications.waset.org/abstracts/search?q=OPTIMUM%20LAP" title=" OPTIMUM LAP"> OPTIMUM LAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20WAVE" title=" Ricardo WAVE"> Ricardo WAVE</a> </p> <a href="https://publications.waset.org/abstracts/75416/development-of-restricted-formula-sae-intake-manifold-using-1d-and-flow-simulations-based-on-track-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng%20Su">Meng Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20maps" title="diffusion maps">diffusion maps</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20probabilistic%20models%20%28DPMs%29" title=" diffusion probabilistic models (DPMs)"> diffusion probabilistic models (DPMs)</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold%20learning" title=" manifold learning"> manifold learning</a>, <a href="https://publications.waset.org/abstracts/search?q=high-dimensional%20data%20analysis" title=" high-dimensional data analysis"> high-dimensional data analysis</a> </p> <a href="https://publications.waset.org/abstracts/165159/combining-diffusion-maps-and-diffusion-models-for-enhanced-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Modifying Hawking Radiation in 2D-Approximated Schwarzschild Black Holes near the Event Horizon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pincak">Richard Pincak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from a 4D spacetime model using a partially negative dimensional product manifold (PNDP-manifold), which emerges as a 2D spacetime, we developed an analysis of tidal forces and Hawking radiation near the event horizon of a Schwarzchild black hole. The modified 2D metric, incorporating the effects of the four-dimensional Weyl tensor, with the dilatonic field and the newly derived time relation \(2\alpha t = \ln \epsilon\), can enable a deeper understanding of quantum gravity. The analysis shows how the modified Hawking temperature and distribution of emitted particles are affected by additional fields, providing potential observables for future experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20holes" title="black holes">black holes</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawking%20radiation" title=" Hawking radiation"> Hawking radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Weyl%20tensor" title=" Weyl tensor"> Weyl tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20paradox" title=" information paradox"> information paradox</a> </p> <a href="https://publications.waset.org/abstracts/191161/modifying-hawking-radiation-in-2d-approximated-schwarzschild-black-holes-near-the-event-horizon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongxu%20Chen">Dongxu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipeng%20Li"> Yipeng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title="image denoising">image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20noise" title=" Poisson noise"> Poisson noise</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20geometry" title=" information geometry"> information geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal-means" title=" nonlocal-means"> nonlocal-means</a> </p> <a href="https://publications.waset.org/abstracts/51221/a-nonlocal-means-algorithm-for-poisson-denoising-based-on-information-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> A General Approach to Define Adjoint of Linear and Non-linear Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jafari%20Matehkolaee">Mehdi Jafari Matehkolaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have obtained the adjoint of an arbitrary operator (linear and nonlinear) in Hilbert space by introducing an n-dimensional Riemannian manifold. This general formalism covers every linear operator (non – differential) in Hilbert space. In fact, our approach shows that instead of using the adjoint definition of an operator directly, it can be obtained directly by relying on a suitable generalized space according to the action of the operator in question. For the case of nonlinear operators, we have to change the definition of the linear operator adjoint. But here, we have obtained an adjoint of these operators with respect to the definition of the derivative of the operator. As a matter of fact, we have shown one of the straight applications of the ''Frechet derivative'' in the algebra of the operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjoint%20operator" title="adjoint operator">adjoint operator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20operator" title=" non-linear operator"> non-linear operator</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiable%20operator" title=" differentiable operator"> differentiable operator</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a> </p> <a href="https://publications.waset.org/abstracts/166456/a-general-approach-to-define-adjoint-of-linear-and-non-linear-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Wu">Lina Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Li"> Ye Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20forms" title="closed forms">closed forms</a>, <a href="https://publications.waset.org/abstracts/search?q=co-closed%20forms" title=" co-closed forms"> co-closed forms</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20forms" title=" harmonic forms"> harmonic forms</a>, <a href="https://publications.waset.org/abstracts/search?q=L%5Eq%20spaces" title=" L^q spaces"> L^q spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=p-balanced%20growth" title=" p-balanced growth"> p-balanced growth</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20differential%20k-forms" title=" simple differential k-forms"> simple differential k-forms</a> </p> <a href="https://publications.waset.org/abstracts/75417/an-equivalence-between-a-harmonic-form-and-a-closed-co-closed-differential-form-in-lq-and-non-lq-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Finite Eigenstrains in Nonlinear Elastic Solid Wedges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Golgoon">Ashkan Golgoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhayl%20Sadik"> Souhayl Sadik</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Yavari"> Arash Yavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20eigenstrains" title="finite eigenstrains">finite eigenstrains</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20mechanics" title=" geometric mechanics"> geometric mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20elasticity" title=" nonlinear elasticity"> nonlinear elasticity</a> </p> <a href="https://publications.waset.org/abstracts/58993/finite-eigenstrains-in-nonlinear-elastic-solid-wedges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elnaz%20Lashgari">Elnaz Lashgari</a>, <a href="https://publications.waset.org/abstracts/search?q=Emel%20Demircan"> Emel Demircan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromyography" title="electromyography">electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold%20learning" title=" manifold learning"> manifold learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ISOMAP" title=" ISOMAP"> ISOMAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20Eigenmaps" title=" Laplacian Eigenmaps"> Laplacian Eigenmaps</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20linear%20embedding" title=" locally linear embedding"> locally linear embedding</a> </p> <a href="https://publications.waset.org/abstracts/61632/electromyography-pattern-classification-with-laplacian-eigenmaps-in-human-running" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhilash%20Sahu">Abhilash Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Priyadarshi"> Amit Priyadarshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler%20functional" title="Euler functional">Euler functional</a>, <a href="https://publications.waset.org/abstracts/search?q=p-Laplacian" title=" p-Laplacian"> p-Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=p-energy" title=" p-energy"> p-energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sierpinski%20gasket" title=" Sierpinski gasket"> Sierpinski gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20solution" title=" weak solution"> weak solution</a> </p> <a href="https://publications.waset.org/abstracts/89044/kirchoff-type-equation-involving-the-p-laplacian-on-the-sierpinski-gasket-using-nehari-manifold-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> An Alternative Proof for the Topological Entropy of the Motzkin Shift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alsharari">Fahad Alsharari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md.%20Noorani"> Mohd Salmi Md. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift AZ, x is in M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, we find a new method of calculating the topological entropy of the Motzkin shift M(M,N) without any measure theoretical discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Motzkin%20shift" title=" Motzkin shift"> Motzkin shift</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=theory" title=" theory "> theory </a> </p> <a href="https://publications.waset.org/abstracts/21271/an-alternative-proof-for-the-topological-entropy-of-the-motzkin-shift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhujit%20Deb">Madhujit Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20K.%20Sastry"> G. R. K. Sastry</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Panua"> R. S. Panua</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Banerjee"> Rahul Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Bose"> P. K. Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=BTHE" title=" BTHE"> BTHE</a>, <a href="https://publications.waset.org/abstracts/search?q=BSEC" title=" BSEC"> BSEC</a>, <a href="https://publications.waset.org/abstracts/search?q=soot" title=" soot"> soot</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a> </p> <a href="https://publications.waset.org/abstracts/28162/effect-of-hydrogen-diesel-dual-fuel-combustion-on-the-performance-and-emission-characteristics-of-a-four-stroke-single-cylinder-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Inequality for Doubly Warped Product Manifolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Faghfouri">Morteza Faghfouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we establish a general inequality involving the Laplacian of the warping functions and the squared mean curvature of any doubly warped product isometrically immersed in a Riemannian manifold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20submanifolds" title="integral submanifolds">integral submanifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=S-space%20forms" title=" S-space forms"> S-space forms</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20warped%20product" title=" doubly warped product"> doubly warped product</a>, <a href="https://publications.waset.org/abstracts/search?q=inequality" title=" inequality"> inequality</a> </p> <a href="https://publications.waset.org/abstracts/9822/inequality-for-doubly-warped-product-manifolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ophir%20Nave">Ophir Nave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polydisperse%20spray" title="polydisperse spray">polydisperse spray</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20reduction" title=" model reduction"> model reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20analysis" title=" asymptotic analysis"> asymptotic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20systems" title=" multi-scale systems"> multi-scale systems</a> </p> <a href="https://publications.waset.org/abstracts/71377/singular-perturbed-vector-field-method-applied-to-the-problem-of-thermal-explosion-of-polydisperse-fuel-spray" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> On Lie Groupoids, Bundles, and Their Categories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20Romeo">P. G. Romeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Lie group is a highly sophisticated structure which is a smooth manifold whose underlying set of elements is equipped with the structure of a group such that the group multiplication and inverse-assigning functions are smooth. This structure was introduced by the Norwegian mathematician So- phus Lie who founded the theory of continuous groups. The Lie groups are well developed and have wide applications in areas including Mathematical Physics. There are several advances and generalizations for Lie groups and Lie groupoids is one such which is termed as a "many-object generalization" of Lie groups. A groupoid is a category whose morphisms are all invertible, obviously, every group is a groupoid but not conversely. Definition 1. A Lie groupoid G ⇒ M is a groupoid G on a base M together with smooth structures on G and M such that the maps α, β: G → M are surjective submertions, the object inclusion map x '→ 1x, M → G is smooth, and the partial multiplication G ∗ G → G is smooth. A bundle is a triple (E, p, B) where E, B are topological spaces p: E → B is a map. Space B is called the base space and space E is called total space and map p is the projection of the bundle. For each b ∈ B, the space p−1(b) is called the fibre of the bundle over b ∈ B. Intuitively a bundle is regarded as a union of fibres p−1(b) for b ∈ B parametrized by B and ’glued together’ by the topology of the space E. A cross-section of a bundle (E, p, B) is a map s: B → E such that ps = 1B. Example 1. Given any space B, a product bundle over B with fibre F is (B × F, p, B) where p is the projection on the first factor. Definition 2. A principal bundle P (M, G, π) consists of a manifold P, a Lie group G, and a free right action of G on P denoted (u, g) '→ ug, such that the orbits of the action coincide with the fibres of the surjective submersion π : P → M, and such that M is covered by the domains of local sections σ: U → P, U ⊆ M, of π. Definition 3. A Lie group bundle, or LGB, is a smooth fibre bundle (K, q, M ) in which each fibre (Km = q−1(m), and the fibre type G, has a Lie group structure, and for which there is an atlas {ψi: Ui × G → KUi } such that each {ψi,m : G → Km}, is an isomorphism of Lie groups. A morphism of LGB from (K, q, M ) to (K′, q′, M′) is a morphism (F, f ) of fibre bundles such that each Fm: Km → K′ is a morphism of Lie groups. In this paper, we will be discussing the Lie groupoid bundles. Here it is seen that to a Lie groupoid Ω on base B there is associated a collection of principal bundles Ωx(B, Ωx), all of which are mutually isomorphic and conversely, associated to any principal bundle P (B, G, p) there is a groupoid called the Ehresmann groupoid which is easily seen to be Lie. Further, some interesting properties of the category of Lie groupoids and bundles will be explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groupoid" title="groupoid">groupoid</a>, <a href="https://publications.waset.org/abstracts/search?q=lie%20group" title=" lie group"> lie group</a>, <a href="https://publications.waset.org/abstracts/search?q=lie%20groupoid" title=" lie groupoid"> lie groupoid</a>, <a href="https://publications.waset.org/abstracts/search?q=bundle" title=" bundle"> bundle</a> </p> <a href="https://publications.waset.org/abstracts/173005/on-lie-groupoids-bundles-and-their-categories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurlal%20Singh">Gurlal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Singh"> Rupinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas" title="exhaust gas">exhaust gas</a>, <a href="https://publications.waset.org/abstracts/search?q=automobiles" title=" automobiles"> automobiles</a>, <a href="https://publications.waset.org/abstracts/search?q=solenoid" title=" solenoid"> solenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=airbrake" title=" airbrake"> airbrake</a> </p> <a href="https://publications.waset.org/abstracts/93446/application-of-exhaust-gas-air-brake-system-in-petrol-and-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Madhusudana%20Rao%20Kapavarapu">Venkata Madhusudana Rao Kapavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrity" title="integrity">integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20%26%20gas" title=" oil & gas"> oil & gas</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technology" title=" new technology"> new technology</a> </p> <a href="https://publications.waset.org/abstracts/166960/an-integrated-approach-to-handle-sour-gas-transportation-problems-and-pipeline-failures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Analytical Investigation of Viscous and Non-Viscous Fluid Particles in a Restricted Region Using Diffusion Magnetic Resonance Imaging Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf">Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I."> S. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba"> Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=A."> A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaoye"> Olaoye</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20O."> D. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20J.%20A."> Ibrahim J. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahaya%20H.%20M."> Yahaya H. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatto%20A.%20O"> Jatto A. O</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear Magnetic Resonance (NMR) technology has been applied in several ways to provide vital information about petro-physical properties of reservoirs. However, due to the need to study the molecular behaviours of particles of the fluids in different restricted media, diffusion magnetic resonance equation is hereby applied in spherical coordinates and solved analytically using the method of separation of variables and solution of Legendre equation by Frobenius method. The viscous fluid considered in this research work is unused oil while the non-viscous fluid is water. The results obtained show that water begins to manifest appreciable change at radial adjustment value of 10 and Magnetization of 2.31191995400015x1014 and relaxes finally at 2.30x1014 at radial adjustment value of 1. On the other hand, unused engine oil begins to manifest its changes at radial adjustment value of 40 and Magnetization of 1.466557018x1014and relaxes finally at 1.48x1014 at radial adjustment value of 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscous%20and%20non-viscous%20fluid" title="viscous and non-viscous fluid">viscous and non-viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20medium" title=" restricted medium"> restricted medium</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20times" title=" relaxation times"> relaxation times</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20diffusion" title=" coefficient of diffusion"> coefficient of diffusion</a> </p> <a href="https://publications.waset.org/abstracts/168225/analytical-investigation-of-viscous-and-non-viscous-fluid-particles-in-a-restricted-region-using-diffusion-magnetic-resonance-imaging-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Numerical Analysis of Charge Exchange in an Opposed-Piston Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czy%C5%BC">Zbigniew Czyż</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski"> Lukasz Grabowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a description of geometric models, computational algorithms, and results of numerical analyses of charge exchange in a two-stroke opposed-piston engine. The research engine was a newly designed internal Diesel engine. The unit is characterized by three cylinders in which three pairs of opposed-pistons operate. The engine will generate a power output equal to 100 kW at a crankshaft rotation speed of 3800-4000 rpm. The numerical investigations were carried out using ANSYS FLUENT solver. Numerical research, in contrast to experimental research, allows us to validate project assumptions and avoid costly prototype preparation for experimental tests. This makes it possible to optimize the geometrical model in countless variants with no production costs. The geometrical model includes an intake manifold, a cylinder, and an outlet manifold. The study was conducted for a series of modifications of manifolds and intake and exhaust ports to optimize the charge exchange process in the engine. The calculations specified a swirl coefficient obtained under stationary conditions for a full opening of intake and exhaust ports as well as a CA value of 280° for all cylinders. In addition, mass flow rates were identified separately in all of the intake and exhaust ports to achieve the best possible uniformity of flow in the individual cylinders. For the models under consideration, velocity, pressure and streamline contours were generated in important cross sections. The developed models are designed primarily to minimize the flow drag through the intake and exhaust ports while the mass flow rate increases. Firstly, in order to calculate the swirl ratio [-], tangential velocity v [m/s] and then angular velocity ω [rad / s] with respect to the charge as the mean of each element were calculated. The paper contains comparative analyses of all the intake and exhaust manifolds of the designed engine. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20swirl" title=" engine swirl"> engine swirl</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rates" title=" mass flow rates"> mass flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston%20engine" title=" opposed-piston engine"> opposed-piston engine</a> </p> <a href="https://publications.waset.org/abstracts/81483/numerical-analysis-of-charge-exchange-in-an-opposed-piston-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Analyzing a Tourism System by Bifurcation Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Behradfar">Amin Behradfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tourism has a direct impact on the national revenue for all touristic countries. It creates work opportunities, industries, and several investments to serve and raise nations performance and cultures. This paper is devoted to analyze dynamical behaviour of a four-dimensional non-linear tourism-based social-ecological system by using the codimension two bifurcation theory. In fact we investigate the cusp bifurcation of that. Implications of our mathematical results to the tourism industry are discussed. Moreover, profitability, compatibility and sustainability of the tourism system are shown by the aid of cusp bifurcation and numerical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tourism-based%20social-ecological%20dynamical%20systems" title="tourism-based social-ecological dynamical systems">tourism-based social-ecological dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cusp%20bifurcation" title=" cusp bifurcation"> cusp bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20manifold%20theory" title=" center manifold theory"> center manifold theory</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability" title=" profitability"> profitability</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Ecompatibility" title=" compatibility"> compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/47209/analyzing-a-tourism-system-by-bifurcation-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hendrick%20Maxil%20Z%C3%A1rate%20Rocha">Hendrick Maxil Zárate Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20da%20Silva%20Pereira"> Ricardo da Silva Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoel%20Fernandes%20Martins%20Nogueira"> Manoel Fernandes Martins Nogueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20R.%20Pereira%20Belchior"> Carlos R. Pereira Belchior</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Emilia%20de%20Lima%20Tostes"> Maria Emilia de Lima Tostes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel" title=" dual fuel"> dual fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20analysis" title=" combustion analysis"> combustion analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a> </p> <a href="https://publications.waset.org/abstracts/64653/experimental-investigation-of-hydrogen-addition-in-the-intake-air-of-compressed-engines-running-on-biodiesel-blend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswathi%20Thrivikraman">Aswathi Thrivikraman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Advaith"> S. Advaith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSTM" title="LSTM">LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=autoencoder" title=" autoencoder"> autoencoder</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=seq2seq%20model" title=" seq2seq model"> seq2seq model</a> </p> <a href="https://publications.waset.org/abstracts/157449/performance-evaluation-of-the-classic-seq2seq-model-versus-a-proposed-semi-supervised-long-short-term-memory-autoencoder-for-time-series-data-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Doppler">Christian Doppler</a>, <a href="https://publications.waset.org/abstracts/search?q=Gernot%20Hirschl"> Gernot Hirschl</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Zsiga"> Gerhard Zsiga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%2Fwater-charge%20air%20cooler" title="air/water-charge air cooler">air/water-charge air cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=co-simulation" title=" co-simulation"> co-simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20working%20process" title=" diesel working process"> diesel working process</a>, <a href="https://publications.waset.org/abstracts/search?q=EURO%20VI%20fuel%20consumption" title=" EURO VI fuel consumption"> EURO VI fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/15699/investigations-on-the-influence-of-optimized-charge-air-cooling-for-a-diesel-passenger-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>